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N

EXISTENCE AND UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO
STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY
DATA*

MIROSLAV BULICEK', VICTORIA PATEL!, ENDRE SULI$, AND YASEMIN SENGULY

Abstract. We consider a system of evolutionary equations that is capable of describing certain viscoelastic
effects in linearized yet nonlinear models of solid mechanics. The constitutive relation, involving the Cauchy stress,
the small strain tensor and the symmetric velocity gradient, is given in an implicit form. For a large class of
these implicit constitutive relations, we establish the existence and uniqueness of a global-in-time large-data weak
solution. Then we focus on the class of so-called limiting strain models, i.e., models for which the magnitude of
the strain tensor is known to remain small a priori, regardless of the magnitude of the Cauchy stress tensor. For
this class of models, a new technical difficulty arises. The Cauchy stress is only an integrable function over its
domain of definition, resulting in the underlying function spaces being nonreflexive and thus the weak compactness
of bounded sequences of elements of these spaces is lost. Nevertheless, even for problems of this type we are able
to provide a satisfactory existence theory, as long as the initial data have finite elastic energy and the boundary
data fulfil natural compatibility conditions.

Key words. nonlinear viscoelasticity, strain-limiting theory, evolutionary problem, global existence, weak
solution, regularity

AMS subject classifications. 35M13, 35K99, 74D10, 74H20

1. Introduction. This paper is devoted to the study of the following nonlinear system of
partial differential equations (PDEs).We assume that 2 C R? is a given bounded open domain.
We denote the associated parabolic cylinder by @ := (0,7) x © and its spatial boundary by
T := (0,7) x 99, where T > 0 is the length of the time interval of interest. For given data
G:Rijxy‘,iL%Rg;,‘fL, f: Q=R ur: Q=R vy:Q—=RY ur: T — R and a, 8 > 0, we seek a
couple (u,T) : Q — R% x RI%4 gatisfying

sym

1.1a) Zu—divT = f in Q,
1.1b) ag(u) + fe(Ou) = G(T) in Q,
1.1c) u(0) =us, Ou(0)=wvy in Q,
1.1d) u = ur on T

Here, (1.1a) represents an approximation' of the balance of linear momentum, where f is the
density of the external body forces, u is the displacement, T denotes the Cauchy stress tensor and
the operator div denotes the divergence operator with respect to the spatial variables z1, ..., zq4.
The Cauchy stress tensor T is implicitly related to the small strain tensor £(u) := 1(Vu+ (Vu)T)
and to the symmetric velocity gradient e(0;u) := 0;(e(w)) via (1.1b). The initial displacement and
the initial velocity are given by (1.1c) and the Dirichlet boundary condition for the displacement

*Submitted to the editors 25.10.2021

Funding: M. Bulicek’s work is supported by the project 20-11027X financed by GACR. M. Bulicek is a member
of the Necas Center for Mathematical Modeling. V. Patel is supported by the UK Engineering and Physical Sciences
Research Council [EP/L015811/1].

tCharles University, Faculty of Mathematics and Physics, Sokolovsks 83, 186 75 Praha 8, Czech Repub-
lic.(mbul8060@karlin.mff.cuni.cz).

fMathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG,
UK. (victoria.patel@maths.ox.ac.uk).

§Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, Oxford OX2 6GG,
UK. (endre.suli@maths.ox.ac.uk).

YSchool of Mathematics, Cardiff University, Cardiff CF24 4AG, UK. (sengultezely@cardiff.ac.uk).

n fact, the density o of the solid should also appear in (1.1a). In principle, ¢ is a function of space and should
satisfy the equation for the balance of mass. Since we are dealing with small strains here, that is, the case when
the displacement gradient of the solid is small, assuming that the solid is homogeneous at initial time ¢t = 0, we
consider the density to be equal to a constant for all times t € (0,7"). We scale the density to be identically equal
to one for simplicity. We refer also to the discussion in [8]. However, under suitable assumptions, we can extend
the results presented herein to the case of variable density.
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2 M. BULICEK, V. PATEL, E. SULI, AND Y. SENGUL

is represented by (1.1d). A more detailed discussion concerning the relevance of (1.1) to problems
in viscoelasticity is contained in Section 1.2.

It remains to specify the form of the implicit constitutive law (1.1b). The minimal assumptions
imposed on the mapping G throughout the paper are the following. We assume that the function
G : R4Xd 5 RiXd is 5 continuous mapping such that, for some p € [1,00), some positive constants

sym Sym
C1 and C5, and for all T, W € Rg;n‘f, the following inequalities hold:
(A1) (G(T) — GW)) - (T W) > 0,
(A2) G(T) T >Ci[TP - Co,
(A3) G(T)| < Co(1+ [T,
where | - | stands for the usual Frobenius matrix norm. Assumptions (A1)—(A3) are sufficient for

the existence and uniqueness of a weak solution provided that p € (1,00). For p = 1, however, we
must impose a more restrictive assumption because of the lack of compactness experienced when
working in L'(Q). Namely, we assume that there exists a strictly convex function ¢ € C?>(R,;R,)
such that ¢(0) = ¢/(0) = 0, [¢”(s)| < C(1+ )~ for every s € Ry, and for all T € REX? there
holds

_@(T)T
T

We note that the structure of the constitutive relation (1.1b) is vital to many of the estimates in
our work. In particular, we have the following memory kernel structure:

(A4) G(T)

5D
&

This representation of the strain e(u) allows us to obtain bounds on this term, given bounds on
the initial strain (w(0)) and the stress tensor T.

Concerning the initial and boundary data, we assume that we are given a function ug : Q — R?
fulfilling, in an appropriate sense, the initial and boundary conditions

e(u(t)) = e 5le(u(0)) + /O G(T (7)) dr.

uo(0) =ur in Q,
at’u,()(O) =y in Q,

ug=ur onl.

Although not the standard approach, such a joint treatment of the initial and boundary conditions
simplifies the exposition here, as it avoids nonessential technical details concerning the choice of
function spaces for the data and the corresponding trace theorems. We henceforth formulate all
assumptions on the initial and boundary data in terms of wg, rather than w;, vy and up. While
this choice may appear nontrivial upon first glance, the function spaces for ug stated below are
the same as those for the weak solution w. Hence it is necessary that such a ug exists. Otherwise
our construction of a weak solution would not be possible.

1.1. Statement of the main results. First, we formulate our result for the case when
p > 1. Here, p and p’ are dual exponents.

THEOREM 1.1. Let 1 < p < 2d/(d — 2), let G satisfy (Al), (A2) and (A3), and let a, 8 >0

be arbitrary. Assume that the data satisfy the following hypotheses:
(o)  *F W (0, T; W (9 RY) 0 W22 (0, T (Wo ' (2, RY)*) N C1([0, T); L2 (5 RY)),
' £ € LP(0,T; (W' (Q; RY))").

There exists a couple (u,T) fulfilling

(13)  wel(0,T); L3 RY) n WE# (0, T; WHP (2, RY)) 0 W2P(0, T; (Wo? (Q;RY)™),
(1.4) T c LP(0,T; LP(; RIX4))

sym
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and solving (1.1) in the following sense:

(1.5) (Opu, w) + / T -Vw = (f,w) Vw e Wol’p/(Q;Rd), for a.e. t€(0,T),
Q

(1.6) oae(u) + poe(u) = G(T) a.e. in Q,

and

(1.7 w—up=0 ae onT and ©(0) — up(0) = Opu(0) — Qrup(0) =0  a.e. in Q.

Furthermore, the function w is unique. If, additionally, the mapping G is strictly monotonic, then
T is also unique.

Before proceeding, we first comment on the assertions of Theorem 1.1. The proof of Theo-
rem 1.1 is based on the relevant a priori estimates. The function spaces considered in (1.3), (1.4)
correspond to the structural assumptions imposed on G, namely the coercivity assumption (A2)
and the growth condition (A3). Since p > 1, we have a “standard” function space setting, so the
nonlinearity in (1.6) can be identified by using a modification of Minty’s method. Theorem 1.1
can also be understood as an extension of the results established in [8]. In a similar way to the
work presented here, the authors of [8] treat a viscoelastic solid model of generalized Kelvin—Voigt
type. However, they consider a constitutive relation for the Cauchy stress of the following explicit
form:

T =Ta(e(u)) + Tuis(Oe(w)) a.e. in Q.

The regularity results for such models are available in [7]. It is remarkable that while (1.6) can
be fully justified from the physical point of view via implicit constitutive theory, (see [29], [31] for
example) the above explicit form T = T,; + T,;s can be justified for particular choices of T.; and
T,is only.

In contrast with the case p > 1, almost none of the above applies in the case that p = 1,
or for the limit, as p — 1., of the sequence of solutions constructed in Theorem 1.1. Indeed,
for similar models in the purely elastic, steady setting, it was demonstrated in [3] that T is, in
general, a Radon measure and therefore one cannot consider (1.6) pointwise in (). Nevertheless,
it was shown there that under some structural assumptions on G (corresponding to (A4)), T is
integrable.

A similar situation is studied in [2] but with p — co. In general, this leads to solutions u in
the spaces of bounded variation. However, under a structural assumption related to (A4), one can
again overcome such difficulties and show the existence of a solution that belongs to a Sobolev
space. We expect something similar in our setting when p = 1. Therefore, in order to avoid
difficulties associated with the interpretation of 0y u and the interpretation of the sense in which
the initial data are attained, we assume here, for simplicity, that the right-hand side f € L?(Q;R%).
We also use a variational formulation which is slightly different from (1.5). Nevertheless, we will
show that (1.5) still holds locally in (0,7) and, in the case of more regular initial data, we are
able to show the continuity with respect to time of w and d,u on the whole time interval [0, 7.

Inspired by [3], if p = 1 we assume in addition to (A1)—(A3) that we have (A4). It follows
from these structural assumptions that, for all s € R, we have

@ — Oy < ¢(s) < Cas,

2
0 S (]5/(8) S 02.
Since ¢ is convex, we deduce that there exists an L > 0 such that
(1.8) L:= lim P'(s) > ¢'(t) VteR.

The number L plays an essential role in the subsequent analysis, in particular in the assumptions
on the initial and boundary data. Indeed, thanks to (A4), we see that

(1.9) L= lim |GW) >|G(T) VTeR:d
IW|— o0

sym *
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Hence, if (1.1b) is satisfied, we necessarily have that
(1.10) lae(u) + Boe(u)| < L a.e. in Q.

Consequently, if such a w exists, it is natural to assume that (1.10) must also hold for the initial
and boundary data. That is, we must have

(1.11) |ae(ug) + BOE(ug)| < L a.e. in Q.

In fact, we require in the existence analysis that (1.11) is satisfied with a strict inequality sign.
We call this the safety strain condition.

THEOREM 1.2. For some strictly conver ¢ € C*(R;R,), let G satisfy (A1)—(A4) with p = 1.

Assume that the data satisfy the following hypotheses:
(1.12) ug € WH(0,T; WhH2(Q; RY)) n W0, T; L*(Q; RY)),
' f € L0, T; L* (4 RY)),

with the safety strain condition

(1.13) lloe (o) + BOE (o) | o etzty < L

sym )

and for every 6 > 0 we have

(1.14) esssup  |Oue(uo(t, x))| < oo.
(t,z)e(6,T)xQ

There ezists a unique couple (u, T) fulfilling

(1.15) w e Wh (0, T; WH2(;RY) N CH([0, T]; L2 (9 RY) N W22(5, T; L2 (; RY)),
(1.16) e(u) € L= (Q;RE:),

(1.17) dre(u) € L=(Q; Ry),

(1.18) T e L'(0,T; LY (% RE5),

for every § > 0, and satisfying

(1.19) /8ttu-w+T-dex:/f-wdx Vw e W™ (Q;RY), for a.e. te(0,T),
(1.20) " ag(u) + foe(u) = Gg(ZT) a.e. in Q,

and

(121) w—up=0 ae onT and u(0) — up(0) = du(0) — Aup(0) =0  a.e. in Q.

This theorem answers the question of existence of weak solutions to the problem under the as-
sumptions (A1)—(A4) when p = 1 and therefore provides an existence result for limiting strain mod-
els where the symmetric displacement gradient and symmetric velocity gradient remain bounded.
In Section 1.2, we discuss the physical background and the importance of this model.

In our proof, we rely on an approximation of the strain-limiting problem where in the con-
stitutive relation we replace G with G,(T) = G(T) + L. However, if we consider a regularisation

of the form G,(T) = G(T) + ﬁ, taking the limit n — oo exactly corresponds to taking
n(1+ n

the limit p — 1,. Such a regularisation is considered in [9], for example. However, in order to
simplify the exposition, we only consider the linear regularisation term of the form %

A similar existence result was established recently in [11]. However, there are certain essential
differences, which make the results of the present paper much stronger. First, in [11] the authors
only consider the prototypical model
(1.22) G(T) := %,

(1+[T|9)a
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STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY DATA 5

while we are able to cover here a more general class of models under hypothesis (A4). The
corresponding potential ¢ (whose existence is assumed in (A4)) for the model (1.22) is given by

s t
¢(S) = A m dt, S € R+.

The role of the parameter ¢ in (1.22) is indicated in Fig. 1. Furthermore, the paper [11] is

IG(T)]

IT|

Fig. 1: Dependence of |G| on |T| for the prototype model (1.22). The three curves correspond to
g =1 (solid curve), ¢ = 2 (dashed curve) and ¢ = 10 (dash-dotted curve). Clearly, |G(T)| tends
to 1 more rapidly with increasing ¢ when |G(T)| > 1.

concerned with the spatially periodic setting, which simplifies the analysis in an essential way,
most notably with regards to the derivation of the relevant a priori estimates. We are not able
to derive estimates of the same strength as those in [11]. This is the consequence of working in
the nonperiodic setting, as well as the choice of a more general constitutive relation. However, by
an application of Chacon’s biting lemma and Egoroff’s theorem, we are able to overcome these
difficulties and obtain a complete existence result.

Finally, in [11] the initial data are assumed to be quite regular. They are supposed to belong
to the Sobolev space W*2(Q; R?) with k > % This is related to the choice of the method used
to prove the existence of a weak solution. In this paper we do not require such strong regularity
of the initial data, although in the current setting it is difficult to describe the correct space-time
trace spaces, because we are dealing with L°°-type spaces and symmetric gradients. Since we want
to state the result in its full generality, and, in particular, to be able to admit time-dependent
boundary data, we assume a certain compatibility condition via an a priori prescribed space-time
function ug that we use in order to impose the initial and boundary conditions. This further
justifies our choice of working with a function ug incorporating both the boundary and the initial
data.

The existence of ug satisfying the safety strain condition (1.13) is necessary for the existence
of a solution and is used when deriving appropriate a priori estimates. The assumption (1.12);
concerning the temporal regularity of wg is required in order to ensure that wg and J;uy have
meaningful traces at time ¢ = 0. Finally, the assumption (1.14) prescribes the required temporal
smoothness of the boundary data. It only involves t € (§,T) for 6 > 0. Hence it does not affect the
regularity of the initial condition or the compatibility between the boundary and initial data. We
give several examples for simplified settings regarding the boundary conditions in the following
remark.

Remark 1.3. We discuss two cases of boundary and initial data from (1.1c)—(1.1d) for which
it is easy to construct a function wug that satisfies the assumptions (1.12)—(1.14).

Boundary data independent of time. Suppose that ur is independent of time and w; € W2(Q; RY)
satisfies the compatibility condition u|sq = ur. The boundary data are independent of time so
it is natural to assume that vy € I/Vol’2 (4 RY), where

(1.23) ||C¥E(U[) + 56(UO)HLOO(Q;Rdxd < L.

sym
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We set
n aur(z) + Bvo(x)

1—e %),
- (1—e"7)

ug(t,x) := ef%uf(x)

A direct computation yields that
Orug(t, z) = vo(z) e 7,
and thus ug(0,2) = ur(x), ug(0,x) = vo(x) for z € Q and up|r = ur. Moreover,
ae(ug) + Boe(ug) = ae(ur) + Be(vp).

Consequently, ug satisfies (1.13) provided (1.23) holds. The validity of (1.14) is obvious.

Time-dependent boundary data. In this setting, we assume the existence of a function w such that
@(0,2) = us(x) for z € Q and @|r = wp. In addition, we assume the natural compatibility
condition vo(-) = dyur(0,-) on 9NQ. We adopt the following assumption on @ and vg:

(1.24) o (@) + B(Bre(@) — dre(@l0,-)) +€(Wo()) | g (gurtrt) < L-

sym

We define
B(vo(z) — 9yu(0, x))

1—e %),
- (I—e7)

uo(t,z) == a(t,z) +

Clearly, ug(0,2) = @(0,z) = us(x) for x € Q and up = ur on I'. The time derivative of ug is
druo(t,z) = dyaa(t, z) + (vo(z) — pw(0,2)) e~ F .
Thus Opuo(0, x) = vo(z) for z € Q. In addition, since
ag(ug) + Soe(ug) = ae(ur) + B(0e(ur) — 0e(ur(0)) +€(vo)),

we see that (1.13) is equivalent to (1.24). The assumption (1.14) is only related to our extension
of the boundary data inside of 2 and the temporal regularity of the boundary data.

1.2. Relevance to the modelling of viscoelastic solids. With these results in mind, we
now discuss the importance of such problems. We often encounter materials exhibiting viscoelastic
response. By definition, viscoelasticity involves the material response of both elastic solids and
viscous fluids, which can be modelled linearly or nonlinearly. We refer to [13] for an extensive
overview. On the other hand, it is well-known that implicit constitutive theories allow for a more
general structure in modelling than explicit ones (cf. [29], [30]), where the strain can be given
as a function of the stress. Indeed, this is the case in our constitutive relation (1.1b) in system
(1.1). Rajagopal’s main contribution [31] to the theory was to show that a nonlinear relationship
between the stress and the strain can be obtained after linearizing the strain. The relation (1.1b)
is obtained by Erbay and Sengiil in [18] as a result of application of the linearization procedure
introduced by Rajagopal (see e.g., [33] for details) to the relation between the stress and the
strain tensors under the assumption that the magnitude of the strain is small. For models of
this type it is possible that once the magnitude of the strain has reached a certain limiting value
(as is the case in Theorem 1.2), any further increase of the magnitude of the stress causes no
changes in the strain. These models are called strain-limiting and/or strain-locking models and
such behaviour has been observed in numerous experiments (see [15] and references therein). For
a further discussion of such models in the purely elastic setting or in the setting of the generalized
Kelvin—Voigt model we refer to [8], and in the viscoelastic setting to [15, 18, 14, 12].

We note that the term ideal-locking material was introduced by Prager [28] (see also [27]). In
the extreme cases, the strain (resp. stress) can increase arbitrarily without any further increase in
the stress (resp. strain). However, in his study Prager neglects the elastic stresses in comparison
to the much larger stresses that can be supported in the locked state. This is a more limited
setting than that given by Rajagopal’s framework of implicit constitutive theory.
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A potential application of strain-limiting models is in the context of fracture mechanics and
crack propagation. Under a linear relationship between the stress and strain, in the anti-plane
setting, the stress and the strain behave like r’%, where r is the distance to the crack tip [32].
In particular, both the stress and the strain experience a singularity at the crack tip. However,
this contradicts the standing assumption in the derivation of the model, namely, that one is in
the small-strain regime. A better model for studying fracture in brittle materials might ensure
that the magnitude of the strain tensor remains bounded a priori even in the presence of a stress
singularity, as is the case for the model considered here.

There has been some analysis in the literature of strain-limiting models of fracture, particularly
in the time-independent setting from a computational point of view. In [24, 25], the authors
consider a strain-limiting model in the anti-plane strain setting, studying a plate with a V-notch.
The one-dimensional setting allows the reduction of the problem by use of the Airy stress function.
Studying the problem numerically, the stress is shown to concentrate around the tip of the V-notch.
We notice that this contradicts the asymptotic analysis performed in [35], where the stress is shown
to vanish in the vicinity of the crack tip. This conflict is likely due to the fact that solutions of
nonlinear PDEs can exhibit very different behaviour to what is suggested by formal asymptotic
analysis. We mention the similar studies in [26, 10, 21], considering different geometric settings.

Furthermore, there has been recent study of a finite-element discretisation of problems based
on strain-limiting elasticity in [37]. The authors study the time-independent problem in three
different crack geometries in the anti-plane setting. The numerical results presented in [37] indicate
that the linearised strain remains bounded a priori below a fixed value, while the value of the stress
is able to be very high. Indeed, near the crack tip, the stress grows significantly faster than the
strain. The strain does not exhibit a singularity near the crack tip, in contrast to the linear model,
which is also studied in [37] for comparison.

The aforementioned literature all deal with time-independent problems. Here, we only study
the time-dependent problem. Furthermore, we only consider viscoelastic solids. However, the
study of implicitly constituted fluids is a very rich, active area of current research. We refer to
[29, 30] for the modelling background on these fluids, of which strain-limiting fluids are a special
subclass. For the corresponding mathematical analysis, we point the reader to [4] for the steady
case and [5] for the unsteady case; however, we note that those studies do not cover a strain-
limiting problem analogous to the one explored here. We refer to [6] for the analysis of a related
parabolic type problem with the bounded gradient.

Strain-limiting problems have also been considered in the quasi-static setting, that is, with the
term 02 is neglected from the balance of momentum equation. In [22], the authors consider the
quasi-static system in a domain with a fixed crack set. Under certain conditions on the constitutive
relation, they show that a weak solution of the problem exists. However, they are only able to
show that a weak solution exists in the space of measures. In particular, the stress tensor is shown
to be in the space C([0, T]; M(Q)4*4), where M(Q) is the space of Radon measures on 2. We
mention also [23] for a similar problem.

A similar problem is studied in [16] but in an abstract setting. The authors consider

OXu + Adyu + Bu = f,

where u is scalar-valued. Assuming that A, B are operators on ‘nice’ function spaces and by
considering a sequence of approximating problems based on temporal discretization, the authors
prove the existence of a weak solution to this doubly nonlinear problem. We also mention the
related work [17], where the authors consider

Opu — div(F(Vowu) + Vu) = f,

supplemented with a Dirichlet boundary condition. The function F satisfies a suitable growth
condition; namely, F' is assumed to be a continuous, monotone function such that there exists an
N-function (see [1, p. 228] for the definition) ¢ for which

F(v) v > c(p(v) + ¢"(F(v))),
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8 M. BULICEK, V. PATEL, E. SULI, AND Y. SENGUL

where ¢* is the convex conjugate of ¢. The existence of such a ¢ ensures that one is not in
any kind of strain-limiting setting. In particular, it is not the case that Vu is a priori uniformly
bounded on its domain of definition.

Finally, we note the analysis in [36]. There, the author considers the system of equations

du — div (G(Vou, Vu)) = f.

The restrictions on G are however such that any physically realistic constitutive relation is ex-
cluded. In particular, the uniform strict monotonicity assumption eliminates the strain-limiting
case. However, the author suggests that the methods employed in the paper could be used in
order to extend the results to physically more realistic cases. We note also that in [36] the full
gradient is considered, rather than the symmetric gradient as is discussed here. One should refer
to the review [13] for more related work on classical nonlinear viscoelasticity.

Now we introduce some basic kinematics in order to discuss these limiting strain models from
a mathematical perspective. We denote by u(X,t) := x(X,t) — X the displacement of a given
body at a space-time point (X,t), where X is the position vector in the reference configuration
and x(X,t) is the position vector in the current configuration. We denote the deformation of the
body, which is assumed to be stress-free initially, by x (X, t). The deformation gradient is defined
as F = 0x/0X. We define the left Cauchy-Green deformation tensor as B = FFT, the velocity
as v = Jx/0t and denote by D the symmetric part of the gradient of the velocity field L = V.
Under the small displacement gradient assumption, that is,

(125) HvXuHLOQ(Q;RdXd) = O((S), <ok 1,

one can consider the linearized strain defined by
1
(1.26) e(u) = 3 [Vxu+ (Vxu)'].

We consider a general constitutive relation between the Cauchy stress tensor T, the deformation B
and the symmetric velocity gradient D. Noticing that B = I+ 2e + (Vxu)(Vxu)T and linearising
under the assumptions (1.25), we obtain a relationship between the Cauchy stress, the linearised
strain and the strain rate €(0;u). In particular, we obtain (1.1b).

As is explained in [15], in the purely elastic setting, starting from the following constitutive
relation between the stress and the strain

(1.27) G(T,B) =0,
for frame-indifferent and isotropic bodies, one can obtain the representation

G(T,B) = xol + x1T + x2T + x3T* + x4B* + y5(TB + BT)

1.28
(1.28) + x6(T?B + BT?) + x7(B?T + TB?) 4 x&(T?B? + B?T?),

where the functions y;, i = 0,...,8, depend only on the scalar invariants of T and B, which can
be expressed in terms of
trT,trB, tr T2, tr B2, tr T2, tr B, tr TB, tr T?B, tr TB?, tr T2B2.

Under the smallness assumption (1.25), we have that |B — (I +¢)| = O(6?), with € = £(u). Thus,
at the end of the linearization process, (1.28) gives a nonlinear relationship between T and €. In
many studies a simpler subclass of constitutive relations than (1.28) is considered, namely

(1.29) B=xol +x:T+ x2T%
Under the assumption (1.25), the equality (1.29) becomes

(130) E = )Zol + )ZlT + )ZQT2,
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with some invariant-dependent coefficients X;, ¢ = 0, 1, 2. The analysis of a limiting strain problem
with a constitutive relation of the form € = G(T), which is a more general version of (1.30), with
a bounded mapping G, as those considered here, was also studied in [9], [3], where the authors
highlight the analytical difficulties associated with such models, most notably the lack of weak
compactness of approximations to the stress tensor in L*(€; Rfyxn‘i). We rely on methods developed
in [3] in order to show that (1.19) holds for our proposed solution of the problem. The additional
time-dependence here presents further difficulties in the analysis. In particular, we must develop
suitable space-time estimates.

As is discussed in [34], we can consider a general implicit constitutive relation of the form
(1.31) G(T,B,D) = 0.

Motivated by the constitutive equation for the classical Kelvin-Voigt model and considering the
simplification of (1.31) under the assumption of frame-indifference and isotropy, we obtain the
following subclass of such implicit models:

(132) aB + ﬂD = ’}/ol + ’)/1T + ’YQTz,

where v; = v;(I1, I2,I3), i = 0,1,2, I; = trT, I = %tI‘TQ,Ig = %trT3, for nonnegative constants
a and 8. We note that under assumption (1.25), we can interchange derivatives with respect
to £ and X. In particular, also assuming a similar smallness assumption for ||Vxv||peqrexq),
the linearized counterpart of D can be identified with 0, = €(d;u). Therefore, assuming (1.25)
and writing the right-hand side of (1.32) more generally as a nonlinear function of T, one obtains
(1.1b), as required.

Models of the type (1.32) were considered in [34] in order to describe viscoelastic solid bodies.
The model is a generalization of the classical (linear) Kelvin—Voigt model, which in one space

dimension involves the constitutive relation
(1.33) o = Ee + ney,

where o denotes the scalar stress, € the scalar strain, and E, n are constants signifying the modulus
of elasticity and the viscosity, respectively. As mentioned previously, it is worth noting that similar
models have been considered in [8, 7], where the authors assumed that the stress T was a sum of the
elastic T; and viscous T,;s parts. Considering implicit relations for each component separately,
they obtained T.; = H(e), T,;s = G(e;) for nonlinear mappings H, G. However, the assumptions
that were made there on H and G result in a problem that is not of strain-limiting type. This,
together with the additive decomposition of the stress considered there, gives an analysis that is
very different from the one performed here.

There is some analysis, albeit limited, available in the literature for problem (1.1). In par-
ticular, studies of the one-dimensional case have been performed. In [18], the authors derive the
equation

(1.34) Oza + BOwzt = 9(0)ut,

using the equation of motion (1.1a) together with the constitutive relation (1.1b) and setting
a =1, with o denoting the scalar stress. In (1.34), the nonlinearity g corresponds to G in problem
(1.1). The authors investigate conditions on the function g under which travelling wave solutions
exist. Furthermore, in [20] the authors prove the local-in-time existence of solutions for equation
(1.34). In this work, we cannot proceed in the same way and derive a single equation, on account
of the fact that we are not working in one spatial dimension. In particular, the symmetric gradient
does not reduce to a classical gradient operator as in the one-dimensional case, a property that is
exploited in [18] and [20].

A related problem is studied in [19] where the authors look at a stress-rate problem rather
than a strain-rate one. In the one-dimensional setting, this results in the equation

(1.35) Ozz + Y0ttt = h(0)r-
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The constitutive law for the study is e +yo; = h(o). We note that the travelling wave solutions of
equations (1.34) and (1.35) coincide. However, we do not attempt to treat the stress-rate problem
in higher dimensions in this work.

We close this section with a thermodynamical justification of the model (1.1). In particular,
we show that an energy-dissipation balance holds and that the sum of the kinetic energy and the
elastic energy is a decreasing function of time. We suppose that the constitutive relation can be
written as

ag(u) + Pe(Oru) = g—_Ti(T) =:G(T)

where ¢ is a function from R?*9 to R, defined by (T) = ¢(|T|). We suppose that ¢(0) = ¢'(0) = 0
and ¢ € C?(Ry;R,) is strictly convex. Clearly this is the case if (A4) holds. Under these
assumptions, ¢ is also strictly convex, noting that ¢ is strictly increasing on [0, c0). Furthermore,
G is monotone. We define the convex conjugate ¢* by

e*(e)= sup (e-T—¢(T)).

TR 4
We note that ¢* is also convex and, for any T € R?;,g, the following identity holds:
(1.36) ©*(G(T)) +¢(T)=G(T) - T.
Thus, the function G~ = %—“.’; is also monotone. With these facts in mind, formally testing (1.1a)
against J;u and assuming the absence of body forces, we obtain
1d 9
(1.37) -— [ |Owu|*dz+ | T -e(0u)dx =0.

However, the integrand in the second term on the right-hand side can be rewritten as

* *

T e(0u) = 22 (ae(u)) - e(0ru) + (T _ 9 (ae(u))) - (Oyu)

T aT oT
= 20" (aew) + 5 (T S <ae<u>>) (G(T) — ae(w))

= 20U (0e(w) + 5 (T =G~ (a(w))) - (G(T) — ac(uw)).

Substituting this back into (1.37) and defining To := G~!(ae(u)), we see that

(1.38) % </Q %|3tu|2 + Ww) + %/Q(T ~To) - (G(T) — G(Tp)) dz = 0.

Recalling that G is monotone, we deduce that

sup <A;|6tu|2+sﬁ(o;[d1mdx> S/Q;atuo(o)QJrgf(aE(a’u,o(O)))dz'

te(0,T)

Consequently, the sum of the kinetic energy and elastic energy is decreasing. The extra term
that appears in (1.38) corresponds to the dissipation. In particular, we have an energy-dissipation
balance that holds in accordance with the laws of thermodynamics.

The structure of the remainder of the paper is as follows. In Section 2 we prove Theorem 1.1.
We structure the proof in the following way. First, in Section 2.1 we use a Galerkin method and
find a weak solution to an approximate problem. In Section 2.2, we obtain uniform bounds on the
sequence of Galerkin solutions, and use these in Section 2.3 in order to take the limit as n — oo.
Finally, we show that the limit is the correct one in Section 2.4. We prove uniqueness in Section
2.5. In Section 3 we obtain further temporal and spatial regularity estimates for these solutions.
Finally, in Section 4 we consider the case p = 1 and give the proof of Theorem 1.2.
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2. Proof of Theorem 1.1. To prove the existence of a weak solution, we use a compactness
argument based on a sequence of Galerkin approximations. Since G is not invertible in general,
we introduce the following regularization:

G, (T):=G(T) +n HT|P2T.

For all n € N, the regularized mapping still satisfies (A1)—(A3), with Cy replaced by (Cy + 1).
However, additionally, the inequality (A1) is strict whenever T # W. Therefore, it directly follows

from the theory of monotone operators that there exists a continuous inverse G, ' : RE<d — RIX4.

2.1. Galerkin approximation. Let {w;}32, be a basis® of Wgn*’z(Q;Rd), which is or-
thonormal in L?(Q;R%) for an arbitrary m* > g + 1. We denote by P™ the projection of
Wit "2 (©;R?) onto the linear hull of {w;}7_,. This is a continuous linear operator by standard
properties of Hilbert projections. The choice of m* guarantees that we have the continuous em-
bedding W™ 2(Q; R%) ¢ C'(;R?). In particular, the sequence of projections (P"w),, is bounded
in Wh?' (Q; RY), for every w € W(;"*Q(Q;Rd), a fact that we use in later estimates.

We look for a function u” of the form

n

w’(t,x) = uo(t,z) + Y CF (Hwi),

i=1

such that for all j =1,2,...,n and almost all ¢t € (0,T) it solves the following problem:

(2.1a) [ G oy + G ae(w) + Be(w™)) - Vi do = (£,
(2.1b) u"(0) = uo(0),
(21C) 8tu"(0) = 8{(14)(0)

We denote by C"™ the vector of coefficients (C7*)?_,. It follows that (2.1b) and (2.1c) are equivalent

to C™(0) = 0 and §,C"(0) = 0, respectively. Since G, ! is continuous and the basis functions

{w;}32, are orthonormal in L2(Q;R?), equation (2.1a) reduces to
onCy (1) = Fi(t,C"™(t),0,C"(t)),

where I} is a Carathéodory mapping for every i = 1,2,...,n. Hence, using standard Carathéodory
theory for systems of ordinary differential equations, we deduce that there exists a solution on
some maximal time interval (0,7*). Furthermore, either we must have |C"(t)| + |0;C"(t)| — oo
as t — T or we can extend the solution to the whole interval (0,7"). We next show that the latter
is true by establishing uniform bounds on the sequence of Galerkin approximations.

2.2. Uniform bounds. First, let us define
T" = G, (a(u”) + Bohe(u™)).
which is clearly equivalent to
(2.2) ae(u™) + Boe(u™) = G(T") + n~ YT [P~2T™,

We multiply (2.1a) by o CT + %C]” and sum the resulting identities with respect to the indices
7 =1,...,n to obtain

B
= (f,0:(u" —ug) + %(U" — ug)).

(] 4T (S H IO oelue) + Blel)y

(2.3)
/Qattu" . [8t(u" — ’u,o) -+ B B

2Such a basis can be found by looking for eigenfunctions w; € W(;”*’Q(Q;Rd) of the problem

*
m _ . .
—A™ w; = Ajw; on Q.
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It follows from (2.2) that

n oze(u”)Jrﬂate(u") 7} ny . Tn n*l n|p
T ( 3 >_3(G(T)T+ T"P).

Also, we can write

d
/ Op(u" —ug) - (u" —up) de = —/ O (u"™ —up) - (u" — ug) da — / |0 (u™ — ug)|* da.

Using these two identities in (2.3), we obtain

_ 2 o _ _ l/ ny . Tn —1lTn|p
337 10 =)+ 20w — o) - (" —wo)da+ 5 [ GO T T o

20) = (0w o))+ [ T Ore(own) = - D" — ) d
+ %/ |0 (U — uo)|2 — 0o - (U™ —ug) + T -e(ug)dz + (f, (u”™ — ug)).
Q

We define on [0, 7] the function

2

1 2
vrim [ = uo) = ol |ou(u” o) + 5 o)
Q

Using this, we rewrite the first term on the left-hand side of (2.4) as

d a? 1\ d
_ et _ _ _ —~yn _ | = -\ = n __ 2 .
2dt/ |0 (u" — ug)|? + 5 Ot(u ug) - (U™ —ug)dr = th (52 +4> dt/Q|u up|® dz

Consequently, utilising this identity in (2.4), using (A2) to deal with the second term on the left-
hand side, and applying the Holder inequality to the terms on the right-hand side together with
the Poincaré and Korn inequalities, it follows that

—Y"+f/|T"|pd ( )dt/|u —ug|*dz

< C(lle(u™)llyr + 110 (™)l + lle(uo)llp + (1€ (wo) [ ) U Fll gy + 100l 2.01-)
+ C(lle(wo)llpr + [19e (wo)l[p)I[T"[l, + C (1 +Y7),

(2.5)

where C'is a generic constant that is independent of n. To bound the right-hand side, we use (2.2)
to observe that .
es?

) (e%ts(u")) = S5 (G T,

After integration with respect to time, this yields

X

e(u" (1)) = ¢ 7'e(uo(0)) + 0_%t/ %(G(T”(T) +n T T ()P (7)) dr

0

As discussed previously, this memory property follows from the specific structure of the constitutive
relation. Namely, the elasticity and viscosity tensors are each a positive scalar multiple of the
identity tensor. Using properties of the Bochner integral, it follows that

t
le(u™ (@)l < C (/0 IG(T™) +n= T P=2T" |7, dr + IIUO(O)’f,p/)

t
<o [ + I, +1)

(2.6)
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where for the second inequality we have used (A3). Consequently, using (2.6) and (2.2), we have
the following bound:

t
(2.7) loe(ur ()] < C (1 o), + [T @2 + / |T"||§d7) .

To bound the final term on the left-hand side of (2.5), we notice that performing differentiation
in the time variable yields

d
&/ \u”—uo\de:/28t(u”—u0)-(u"—u0)dx
Q Q

(2.8) S/ ‘at(un_u0)|2_’_|un_u0|2dx
Q

<4Y™.

Hence, using (2.6) and (2.7) for the terms appearing on the right-hand side of (2.5), using (2.8)
for the last term on the left-hand side, and applying Young’s inequality to the resulting right-hand
side, we deduce that

d cr [ &
—(y» n|p n|p
G (e 5 [ rmigar) + S
n Cl ! n P/
(2.9) SC(Y"+— [ [[T"[Pdr | +C sup [luo(t)|I],
458 Jo t€[0,T7] ’

P’ P P
0 (10wl + 151+ 100y )
Using Gronwall’s lemma and the assumptions on the data, we get that
T
(2.10) sup Y (t) +/ [T"|Ddr < C(uo, f) +Y"(0) = C(uo, f).
t€(0,T) 0
From the definition of Y™, the bounds (2.6), (2.7), and Korn’s inequality, we deduce that

T
@) sup (10 B+ ) + I o1 dt < a1,
te (0,

It remains to provide a bound on dpu™. We define V := {w € Wgn*’Q(Q;Rd), ||lw|[m= 2 =1}. Using

the orthonormality of the basis and the continuity of P™ as a linear operator on W;" *’Z(Q;Rd),
we deduce from (2.1a) that

o0 Ol gy = 51 | B (1) was

= sup / Opu™(t) - Plwdz
weV JQ

= sup <<f,in> f/QT”(t)~V(P”w) dz)

wey

IN

1,p’>

< 1,p’ dy)* " " m*

<0 sup ((1FOll gz ey + T 1) 1P 0l 2)
< C(Hf(t)”(WOlvP’(Q;Rd))* + ||Tn(t)||l7)7

where we have used the fact that W™ 2(Q;R%) is continuously embedded into W' (Q;R%).
Therefore, it follows from (2.11) that

n n
swp (IOl g ey + 1T Ol P

T T
n||p p n||p
@12 [0 g WS C [ g+ T I < Ol £
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2.3. Limit n — oo. Using the bounds from Section 2.2 in conjunction with the reflexivity
and separability of the underlying spaces, we can find a subsequence, that we do not relabel, such
that

G(T") =G weakly in L¥ (0,T; LPI(Q;Rfixd))’

sym
u Sy weakly™ in W1 (0,T; L3(Q;RY)),
(2.13) u" —~u  weakly in WP (0, T; W' (Q; RY)),
T* =T  weakly in LP(0, T; LP(Q; RYH),

Bpu™ — dyu  weakly in LP(0,T; (W™ 2 (9 R))*).

Hence, we see that T fulfils (1.4) and u belongs to the first two spaces indicated in (1.3). In
addition, thanks to the fact that W1? (Q;R9) is compactly embedded into L?(£2;RY), using the
Aubin-Lions lemma, up to a further subsequence that we do not relabel, we have that
(2.14) u" —u  strongly in C([0,T]; L*(Q;R?)),

’ du™ — dyu  strongly in L*(0,T; L2(:RY)) N C ([0, T); (W™ 2 (0 RY))).

It follows directly from the fact that ©™(0) = uo(0) and Jyu™(0) = Jyup(0) and the convergence
result (2.14) that we have
u(0) =uo and Oru(0) = Jrup(0).

Next, we let n — oo in (2.1a). Let ¢ € C*°([0,T]) be arbitrary. We multiply (2.1a) by ¢ and
integrate the result over (0,7') to get

T T T
/0 <8ttu”,wj>¢dt+/0 /QT”~V(wj¢)dxdt:/O (f,wj)odt,

for every j € {1,...,n}. Thus, for a fixed j, we can let n — oco. Using the weak convergence
result (2.13), we deduce that

T T T
| towwyoars [ T-Vwoanar= [ (oo

Since j and ¢ are arbitrary, and recalling that {w;}72; forms a basis of wy" *’Z(Q;Rd), it follows
that

(2.15) (Oppu, w) + / T -Vwdz = (f,w) Vw e WS"*’2(Q;R‘1), for a.e. t € (0,T).
)

Consequently, by the density of W(;n*’2 (4 RY) in Wol’p/ (€ RY), we see that, for almost all ¢ € (0,T),
we have dyu € (WP (Q;R%))*. Furthermore, we have

O™ (1)

lwer gy = sup [— (1) Vwda + (£ (). w)

weWL?' (QRD), ||lwl|, /=1 Q

Using (2.11) and (2.13), it follows that

T T
AU e a<c [T At < Cluo, ).
0 0

WhP (QsR4))* (WP’ (R))*

Hence, (2.15) can be strengthened so that (1.5) holds. In addition, by standard parabolic inter-
polation and the fact that d;ug € C([0, T]; L?(€;R?)), we see that w satisfies (1.3).
Finally, letting n — oo in (2.2) and using (2.13), we see that

(2.17) ae(u) + Boe(u) =G ae. in Q.

Hence, in order to show (1.6) and deduce the existence of a weak solution, it remains to show that

G =G(T) ae. in Q.
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2.4. Identification of the nonlinearity. In order to identify the nonlinearity, we use mono-
tone operator theory. Let ¢ € C3((0,T)) be an arbitrary nonnegative function. We multiply (2.3)

by ¢ and integrate the result over (0,7"). With the help of integration by parts, and the fact that
u"(0) = up(0) and ¢(0) = ¢(T) = 0, we observe that

T
0 Q ﬂ
T n
_ / / <|<9t(““0)|2 + 90, (" — ) - (" — uo)) ¢ du dt
0 Q 2 6

T T
- %/0 Q O1(u” — wo) "¢ da dt +/0 o T" - (Oe(uo) + %E(uo))ﬁﬁdx dt

(2.18)

T
+ / <f - 8ttu0, 3t(u" — Uo) + %(un — U0)>¢)dt

0

Next, we use the weak convergence results (2.13) and the strong convergence results (2.14) to
identify the limits on the right-hand side of (2.18). In particular, we see that

T
nanéo/O /QT”-(8ts(u”)+%e(u”))¢dxdt

:/OTA(W—i-gat(u—uo)'(U—uo)) ¢' dwdt

T T
+%/0 /Q|8t(u—uo)|2¢dwdt+/0 /QT. (5t6(uo)+%6(uo))¢>dxdt

T
+/ <f—8ttUQ,8t(u—U0)+
0

(2.19)

%(u — u))dt.

Next, we use (1.5) to evaluate the terms on the right-hand side of (2.19). We note that, as a result
of the regularity of u, both w — ug and 0;(u — ug) are admissible test functions in (1.5). Using
these two choices as the test function w, multiplying the resulting equalities by ¢ and integrating
over (0,7T), we can apply integration by parts in order to obtain the following identity:

/OT/QT. (D (u™) + %e(u"))(bdxdt
—/T/ <W+gat(uuo).(qu)> o dedt

ﬁ/ /|8tu Ug) ¢da:dt+/ / ats (uo +ﬂ€(uo))¢dxdt

+/0 (f — Onug, O¢(u — U0)+B(U ug))p dt.

(2.20)

Comparing (2.19) with (2.20), we see that

(2.21) lim sup /Q dT" - (ce(u™) + Boe(u™))dz dt = /Q(bT - (ae(u) + Boe(u)) dz dt.

n—oo



ot ot
[N} N
w [\V]

(S
NN N
(LN

ool ¢

540

16 M. BULICEK, V. PATEL, E. SULI, AND Y. SENGUL

Therefore, using the nonnegativity of ¢, we observe that

lim sup/ ¢G(T") - T"da dt < lim sup/ H(G(T™) +n T P2T") - T" da dt
Q

n— oo n—oo

2 tim 5up/ ¢T" - (ae(u”) + Boe(u™)) dz dt
n—oo

(2.22)
/Q ¢T - (ae(u) + Boe(w)) dz dt

(2.17) / oT -Gdzdt.
Q

The inequality (2.22) is the key to identifying the nonlinearity. Let W € L?(Q, RdXd) be arbitrary.
Using the monotonicity assumption (Al), the weak convergence results (2.13), the bound (2.22)
and the nonnegativity of ¢, we obtain

0 gnmsup/ 6 (G(T™) — G(W)) - (T" — W) dadt g/
Q

n—oo Q

Setting W = T — kB for an arbitrary B € LPI(Q ngxnff) and k > 0, we divide through by & to
deduce that

¢ (C - G(W)) (T = W) da dt.

0< / (ﬁ(C—G(T—KB)) -Bdzdt.
Q

Hence, since G is continuous, we let £ — 04 and deduce that
0< / & (C—G(T)) Bdzdt.
Q

As B and ¢ are arbitrary, we conclude that
G=G(T) ae. inQ.
Thus we have proved the existence of a weak solution.

2.5. Uniqueness of solutions. To complete the proof of Theorem 1.1, it remains to show
uniqueness of the weak solution. To this end, let (w1, T1) and (ug, T2) be two weak solutions of
(1.1) emanating from the same data. We denote w := u; — uo. Then, using (1.5), we see that

(Opuw, w) + / (T1 —Te) - e(w)dz =0 Vwe W&’pl(Q;Rd) and a.e. t € (0,7).
Q

We have that w and d;u belong to Wol’p/(Q;Rd) for almost all ¢ € (0,7). Hence we can set
w = BOiu + aw in the above to deduce that, for almost all ¢ € (0,T"), the following holds:

dt
Following the same procedure that is used to derive the previous a priori estimates and using the

constitutive relation (1.6), we obtain

4 ( / fatupwatu.udx) + [T =T (B0ew) + as(w)) do = [ alouf

4dt/6|8tul2+ﬁlul2+/3 8tu+?u d:c+/Q(G(T1) —G(Ty)) - (T1 = Ty)da
= / a|Opul® + <ﬁ+ 2) |u|? dz
Q B
2
8) [ Aol + Bluf + 5o + S| d.

The second term on the left-hand side is nonnegative thanks to (A1) so we can apply Gronwall’s
inequality. Since u(0) = d;u(0) = 0, we deduce that w = 0 a.e. in Q. In addition, by monotonicity,
we also obtain that (G(Tl) — G(Tg)) -(T1 —T2) =0 a.e. in Q. This proves that u; = ug a.e. in
Q. If G is strictly monotone then also T; = Ts.
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3. Regularity estimates. In this section we prove the higher regularity estimates for the
solution constructed in Theorem 1.1. We note that this is an essential part in the proof of the
existence of a solution for the limiting strain model, that is, the case p = 1. Indeed, as the
focus turns to the limiting strain model, in this part we assume that there exists a strictly convex
C?-function F : R%X4 — R such that, for all T € R%xd

Sym sym ?
OF(T)
aT

In this case, G is strongly monotone. In order to simplify the subsequent notation, for an arbitrary
T € R4 we denote

(3.1) = G(T).

sym ’
_O*F(T) _ 0G(T) ij ~0Gy(T)
AN = Fror = 51 Aal)= T
We define a T-dependent scalar product on ngxrg by
d
— _ 9Gi;(T)
(3:2) (V,W) 4y = AT)V-W = ; T, VW

The fact that (3.2) does indeed define a scalar product follows from the fact that G has a po-

tential F'. In particular, we know that for all T € Rg;nﬁl there holds agff_g) a({;#i(;r% that is,

symmetry. Furthermore, A(T) is positive definite as a result of the convexity assumption.

In what follows, we split the regularity estimates. First, we focus on time regularity. Then
we consider regularity with respect to the spatial variable. We provide only a formal proof of the
results. Nevertheless, the time regularity proof is fully rigorous since it can be deduced at the
level of Galerkin approximations. The spatial regularity proof is only formal, but can be justified
by using a standard difference quotient technique. We emphasise that we do not impose any
coercivity and growth assumptions on 4 here because, in the case p = 1, we lose such information.

We note that, if p € (1,00), one can usually assume that

(3.3) (VW) 4| < Cs(1+ [T)P2 V| |W, (W, W) 41y > Ca(1+ TP W

Under assumption (3.3), the regularity estimates can be deduced in an easier way. However, they
are not included here as the more challenging case of p = 1 is our primary interest. Also, it is worth
observing that our prototype models (1.22) do not satisfy (3.3)s and in general, the assumption
(3.3)2 is not satisfied when p = 1.

Defining the convex conjugate F* of F' as in Section 1.2, we recall that, from the definition
of G, we have that

(3.4) F(T) + F*(G(T)) = G(T) - T.

3.1. Time regularity. Here, we improve the bound on the time derivative. This bound is
used in the existence proof for the limiting strain model in order to pass to the limit in the term
Oiru in the weak formulation. We formulate the following lemma locally in time in order to keep
the initial data as general as possible.

LEMMA 3.1. Let p € (1,00) and suppose that (3.1) holds with G fulfilling (A1)—(A3). Assume
that f € L?(0,T; L?(;RY)) and ug € W2 (5, T; WHP ((;RY)) for every § > 0. For any weak
solution to (1.1) and for every § > 0, the following bound holds:

T
sup /F*(G(T))dx—i—/ ||8ttu||§dt
Q 5

te(5,T)

T
(3:5) < Cf(a,p) (ﬂ / | FI3 + [0vul3 + 0o |3 + [Druo|3 + [T - 0 (Bre (o) + ae(uo))| da dt)

(c 5 X 2
/ / F*(ag(u(r)) + Bore(u(r))) + |Ou(r)|? dz dr.
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18 M. BULICEK, V. PATEL, E. SULI, AND Y. SENGUL

If additionally ug € WP (0, T; W' (Q; R?)), we have the following global-in-time bound:
T
sup / F*(G(T)) dx—i—/ |Opee||3 dt
te(0,T)

(3.6) < C(a </ |F|2 + |0su|3 + [Ossuo |3 + |Ouol3 + | T - 8t(5(')te(uo)+a€(u0))|dmdt>
+C(a,5)/ﬂF*(a€(uO(0))+l38t6(uO(0)))+|3tuo(0)| dz.

Proof. Recalling that f € L2(0,T; L*(Q,R%)), we set w := B0y (u — ug) + ads(u — ug) in
(1.5) to observe that, for almost all ¢ € (0,7,
Splowl3+ [ Blowul’ + T (adie(w) + Boue(w) da

(3.7 _ /Q I (adi(u — ug) + B0y (u — ug)) + Opu - (adyug + By uo)

+ T - (adie(uo) + BOue(ug)) da.

For the third term on the left-hand side of (3.7), using (1.1b), we see that

/T (0dse(u) + BOue(u dx—/G T)) : 8,G(T)dz

d

=& | FEm)ds,

recalling that G=1(T) = %—E;(T). Thus, using this in (3.7) and applying Young’s inequality, we

obtain the following bound:

d * « 2 B 2
3 ([ e+ Sloas) + J ol

(3.8)
SC(Oz7ﬁ)(||f||3+||<'9tUI|§+||3ttuO||§+||3tuO||§)+/QT~3t(B3t8(uO)+OA6(uO))-

Integrating (3.8) over (0,7) and using the fact that
F*(G(T(0))) = F" (e (uo) + Bore(uo)),

we deduce (3.6). Similarly, integrating (3.8) over (7,t) where /2 < 7 < § <t < T are arbitrary,
we deduce that

w (| Fr(em) + A2 dr) + / CPWERT
te(s,T) Q

T
(39) < C(a,ﬂ)[; /lf\2 +10cuf* + Ouwo]* + [Druo|* + [T - 9:(B0e (o) + 0 (uo))| da it
s Ja
+C(a,B) / F*(ae(u(r)) + Bde(u(r))) + [dyu(r)|* dz.
Q
Integrating with respect to 7 € (6/2,9) and dividing by 0, we directly obtain (3.5). d

3.2. Spatial regularity. Here, we improve the spatial regularity of the weak solution. In
particular, we prove a weighted bound on VT, which is a key tool for obtaining the existence of a
weak solution for the limiting strain model, that is, in the case p = 1.
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LEMMA 3.2. Let the assumptions of Lemma 3.1 be satisfied. Also, assume that Oyug(0) €
Wh2(Q;R?) and

T
[ AT A e <

Then, for an arbitrary open set ' C Q' C Q, for any § > 0, we have the following bound:

d T
sup ||atquL2(Q’)+Z/ /((%TﬁkT)A(T) da dt
(3.10) te@1) k=170 J&

T
< C(Q’,é)/ / TG+ [AMIITE + £ + [Vul* + [0,V ul” + [AT)|| £* dz dt.
0 Q

If, additionally, ug € C*([0,T); W12(Q;R?)), then we also have

d T
sup ||atquL2(Q’)+Z/ / (0T, 0k T) ATy da dt
k=170 '

te(0,T
(3'11) , 2 2 2 2 2
<o) / / TG+ [AMI[TE + £ + [Vl + 0, Vul? + |AT)||f] dzdt

+ O[3, Vo (0)][3-
Proof. Fix an arbitrary nonnegative smooth compactly supported ¢ € C5°(£2). For the test

function in (1.5), we choose w := — div(¢*V (au + 89;u)). Then we integrate by parts to deduce
the following identity:

ég/ |6tVu<p|2da:+ozi/8tVu-Vu902dz

2d o

(3.12) / Z T i;0; (¢ (adpu; + BOOpu;)) da
i,4,k=1

— [ £-di (VG o) dr+a [ [0 TupP .
Q Q

This can be rewritten in the more useful form

(3.13)
d I5) 9 1 2
i ] govuel + 55 ’onucp + B@tip‘ de + Z 0xT1;0; (9 (adu; + O, 0pu:)) da
z ,J,k=1
f-div (¢*V(ou + Boyu)) dz + a/ |0: Vugp|? dz + W 0 Vu - Vuyp? dz.
Q

Next, we show that the second integral on the left-hand side is the key source of information. We
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use (1.1b), integration by parts and the symmetry of T to observe that

(3.14)

/ S 0,750, 0Dk + BODiu) da
i,7,k=1
d
= Z akTij (<p2(oz6k8jui + ﬁ@t(‘?k@jui)) + 28kT,»jg08j<p(a8kui + Bétakul) dz

ijk*l Q

Z / akTZ]QO 8k(oa'-:”( ) + ﬁateu( )) + 48kT”cp8Jgo(aEm(u) + 58t5ik(u)) dz
1,j,k=1

-2 Z / 0k Tijp0jp(diur, + fO:0;ur) do

,jk 1

/ O Tijp°0kGij (T) — 4T ;01 (90;0)Gik (T) — AT ;500500 G (T) da

jkl

+ Z / T:0k; (92)i (auy, + BOuy,) dx + 2 Z / T.;90;00; (adyuy, + B Opur) dz

,]kl i,7,k=1

d
-/ S 0T 0T am —4 S Tudhle, )6 =4 S Tty GuT)da

k=1 i,7,k=1 i,5,k=1

Z / 0T3O ()0 (auy, + Bdyuy) dz — Z / T.0k (0%)0;; (qug + BOyuy) da

1,5,k=1 i,5,k=1

+2 Z / Tij0;900,Gri(T) dx

i,7,k=1

6
=: Z I1,.

m=1

We need to determine what bounds can be deduced from (3.14). In particular, we show that the
terms Is,...,Is can be bounded in terms of I; and the data. The simplest bound is for I5. In
particular, it directly follows that

L] < O(e) /Q T IG(T)| d.

Letting §,,;, denote the Kronecker delta, in order to bound I3 we first rewrite it as

d d
> TiuediedGu(T) = > 6 Tij0d;0A1k (T)0,Tim
i,7,k=1 i,7,k,l,m,n=1
d

= Z Z Alm a T im nsz]§08j§0

J,n=1 \i,k,l,m=1

Using the Cauchy—Schwarz inequality and the fact that A generates a scalar product, applying
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Young’s inequality we find that

d
EIAD> S A M0 TonbuiTogtye | | do
Q

7mn=1 \i,k,l,m=1

d d 2

<c / S A M0Tied Tue
Q

7m=1 \i,k,l,m=1

Z A (T)8mT10;00, Tijj0 | | da

ik, l,m=1

< %+ C(@)/Q LA(T)||T[2 da.

The term I can be bounded in a very similar way. In particular, we have
I 9
ol < o +Cly) A |A(T)|[T]" da.

For I, we use the equation (1.1a) and Young’s inequality to obtain

1| = Z / — Oyui) () 0s( s, + BOyuy) da

<C 80)/ |F12 + [0pul® + |0, Vul? + |[Vul* da.
Q
Finally, to evaluate I, we first recall the following identity

0;j(ouy, + Soruy)

(315) = @(aajk(u) + ﬂatsjk(u)) + 6j (OZEZ']C(’U,) + B@taik(u)) — 8k(aeij (u) + ﬁ@teij (U))

Then, we rewrite I5 with the help of (1.1b) to find that

/ Ti;0k(0%) (0:Gjx(T) + 9;Gir(T) — 9kGi;(T)) da.

i,7,k=1

Hence, we see that we are in the same situation as with the term I3 and we deduce that
5l < 3 +Clo) [ JAMITE e

Thus we have suitable bounds on the left-hand side of (3.13). We rewrite the first term on the
right-hand side of (3.13) in the following way:

/ f - div(p?*(aVu + SO, Vu)) dz

Z / £:(0;(¢*)(@dju; + B, 0ju;) + 2 (ad;ju; + $0:9;u,)) dx
3,7=1
Z ©?)(adju; + BOIw;) + ©2(20;Gi;(T) — 9;G;;(T)) da.

7,7=1



612
613

614

615
616
617
618
619

630
631
632
633
634
635

636

22 M. BULICEK, V. PATEL, E. SULI, AND Y. SENGUL

Using Young’s inequality on the first term and a procedure similar to the one used for I3 for the
second, we get

f - div(p*(aVu + B0;Vu)) dz
o

(3.16)
I
<3 +C(<P)/Q|f\2+ Val? +18:Vul* + [AT)|| | da.

Substituting the above bounds into (3.13) and using a similar procedure to the one used in

the proof of Lemma 3.1, we deduce (3.11) and (3.10). |

4. Limiting strain - Proof of Theorem 1.2. As in the proof of Theorem 1.1, in order to
prove Theorem 1.2 we first introduce an approximate problem. However, we are able to make use

of the knowledge obtained from Theorem 1.1. Indeed, we define a function on ngxnf by

(4.1) G"(T) :=G(T) +n 'T.

Since G satisfies (A1)—(A3) with p = 1, it is evident that G™ satisfies (A1)—(A3) with p = 2.
Therefore, as a result of Theorem 1.1, there exists a couple (u™, T™), fulfilling®

(42) W' eCH[0,T]; LA RY) W0, Ty WH(RY) 0 W22(0, T5 (Wy * (2 RY)"),

(4.3) T" € L2(0, T; L*(Q; R D)

sym

and satisfying
(4.4) <6ttu”,w>+/T”-V'wdm:/f~wdx Yw e Wy (9 RY)  for ae. t € (0,7),
Q Q

and
(4.5) ag(u”) + Boe(u”) =G™(T") =G(T") + nIT" ae. in Q.

We note that we can replace the duality pairing by the integral over € in the term containing f
thanks to the assumed regularity of f. Moreover, we know that*

u" =uy onTU({0} xQ), Ou™ = Oyug  on {0} x .
We want to consider the limit as n — oo in order to prove the existence of a solution to the
limiting strain problem in the sense of Theorem 1.2.

4.1. A priori n-independent bounds. We start with bounds that are independent of the
order of approximation. For this purpose, we use and mimic some of the steps from the preceding
sections. We start with the first uniform bound. Setting w := 89, (u"™ — uo) + a(u — ug) in (4.4),
applying the same algebraic manipulations as those used for (2.4), we deduce that

(4.6)
d 2
Lot Jy o ol + )

— / T" - (ag(ug) + BOte(uo)) dr + 04/ |0 (u" — uo)|* dz
0 0

2

O (u™ — uyp) (u" — uyg)

dx—l—/G"(T")~T"dx
Q

202
+ / (f — Ouuo) - (a(u"™ —ug) + SO (u" — up)) dx + N Or(u™ — ug) - (u" — ug) da.
Q Q

3We assume a slightly different restriction on ug than in Theorem 1.1. However, the proof of Theorem 1.1 can
be easily adapted to this case.

4In case that Q is not a Lipschitz domain, the identity below is not understood in the sense of traces but in the
sense that u —ug € W&’I(Q;Rd) for almost all t € (0,T), where Wol’l(Q; R%) defined as the closure of C§°(Q;R%)
in the norm of W11 (Q; R?).
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In order to obtain the required a priori estimate, we need to use the safety strain condition. In
particular, it follows from (1.13) that there exists a § > 0 such that

(4.7 |ag(ug) + BOE(ug)| < L —26 a.e. in Q,

where L is defined as in (1.9). Defining F(T) := ¢(|T]), it follows from the convexity of ¢ that,
for any 6 > 0, there exists a C5 such that, for all T € Rdxd

sym>
(4.8) F(T) > (L —9)[T| - Cs.
We choose 6 = § as in (4.7) and let Cs be the corresponding constant from (4.8). Since § depends
in principle on ug and F', we do not trace the dependence of C' on § in what follows. Consequently,
for the second term on the left-hand side of (4.6), we can use (3.4) and (4.5) to deduce that
G'(T") - T" =n"HT"? + F(T") + F*(G(T")) > (L — §)[T"*| + n T2 = C

Furthermore, the first term on the right-hand side of (4.6) can be bounded by using (4.7) in the
following way:

/QT” - (ae(uo) + Bose(uo)) dz < (L — 26)|T"|1.

Therefore, it follows from (4.6), the above bounds and Holder’s inequality that

. 2y
i e~ w ¢

<cC </Qﬂlat(u” —ug)]’ + 3

2

2
dz + 0T 1 +n~ T3

O(u" —uo) + F(u" —up)

(49) ” :
at(u” — UO) —+ F

(u™ — up)

dr + ||f||§ + ||attu0||g + 1) .

An application of Gronwall’s lemma yields

T
(4.10) Sup (I2eu™ @15 + 1w (®)]13) +/0 Tl + 27T 3 dt < C(f, wo),

where we use assumption (1.12) regarding the data. It follows from (1.6) and the above bound
that

(4.11) / lag(u™) + BOe(u™)|? dr dt < /Q(L +n T2 dedt < C(f,ug).
However, we know that

ey Ty<om+ TE
Hence, as a result of (4.10), we have that

(4.12) /Q |G™(T") - T"|dzdt < C(f,uo).

Furthermore, arguing as with (2.6) and making use of (4.10), (4.11), we deduce that

T
(4.13) sup [l 1 + / |0pu" |25 dt < C(f, uo).
0

t€(0,T)
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4.2. Regularity via n-independent bounds. The bounds (4.10), (4.12) and (4.13) are not
sufficient to pass to the limit n — oo, since we only have a priori control on T™ in a nonreflexive
space L'(Q;R%*?). In particular, at best we have that the weak star limit of T is a measure.
Therefore, the pointwise relation (1.20) is neither meaningful nor likely to be valid in this case.
Instead, we improve our information by using the regularity technique introduced in Section 3.
Namely, we use Lemma 3.1 and Lemma 3.2. First, we define an approximation F;, of the potential
F by

T 2
F,(T):=F()+ %
We have that
oF™(T) _ _ 1
T G.(T)=G(T)+n""T.

We now apply the results from Section 3 with p = 2, replacing (u, F, G) with the triple (u"™, F,,, Gy,).
Using the definition of G,,, we define A,, in an analogous way to A. In particular, we write

ny\Y .. A a ¢/(|Tn|) n —1Tn
(.An(T ))Ukl = (9Tzl ( |T”| Tij+n Tij

AL " (ITDIT" = ¢"(IT")\ T5 Tk
= 0;1041 (’I’L 1 + + .
! T T T2
Consequently, using the fact that ¢'(0) = 0 and ¢”(s) < C(1 + s)~ !, we see that
(4.14) AL (T < Cn~' + _C
. n < T

With this in mind, we first discuss regularity with respect to time. We see that all assumptions
of Lemma 3.1 are satisfied. Therefore we have, for every ¢ > 0, the following inequality:

(4.15)

T
sup /F;’{(Gn(T”))dx—&—/ ||8ttu”||§dt
te(8,T) JQ b

T
< C(o, B) ( / /Q f|§+|atu”|§+|attuo|§+atuo|§+T”-atwate(uo)+ae<uo>>|dzdt>

C(O"ﬂ) ’ * n n n 2
: /O /Q Fr(ae(u™(1)) + Boe(u™ (1)) + |9 (7)]? da dr.

+

We focus on the right-hand side. For the second integral on the right-hand side, it follows from
the properties of the convex conjugate function and the uniform bounds (4.10), (4.12), (4.13) that
we have

J §
| [ Fitestur) + soetwn) + jorarar = [ [ FiG.(77) + o azar
0 @ 0 Q
é
S/ /(FZ(Gn(T")HFn(T”))+|atu”|2dxd7
0 Q
=/ G, (T™) - T" + [Opu"* dw dt
Q

< C(uo, f),

using property (1.36) with (F,G) replaced by (Fy,G,) in order to deduce the second inequality.
For the first term on the right-hand side of (4.15), we use Holder’s inequality, the assumptions on
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the data (1.12), (1.13), (1.14) and the uniform bound (4.10) in order to deduce that

T
[5 / | £13 + [00u™ |3 + |0ruol3 + |0puol3 + [T - 9,(BOie(uo) + ae(ug))| da dt
5 Jo

T
< Cluan. £) + e (o)l + re(uo)ll s ey [ [ Tkt

< C(an f)
It follows from the above bounds and (4.15) that, for every § > 0, we have
T
(4.16) sup / F (G, (T")) da +/ O™ 2 dt < C(F, uo).
te(s8,T) JQ 8

Similarly, in case that (1.14) holds for § = 0, we use (3.6). By an analogous computation to
the above, we deduce that

T
sup / F* (G (T™)) do + / O™ |3 dt
Q 0

te(0,T)

(4.17) < C(f,u0) +C / F2 (ae(u0(0)) + B0 (uo(0))) de

< C(f,uo) + C/QF*(ae(uo(O)) + Bhe (10(0))) da

S C(.fv“’O)?

using the fact that F)f < F* and assumptions (1.13), (1.14) with 6 = 0. o
Next, we consider the spatial regularity estimates. For an arbitrary open set ' C 0/ C Q and
for any 6 > 0, it follows from (3.10) that

(4.18)
d T
sup ||0;Vu" ||L2(Q/)+Z/ / (OkT"™, Ok T™) 4, (Tmy da dt
te(5,T) Py ’

<O, 5)/ TIGa (T + A (TT" P + [ £ + [V [ + [0,V [* + [ An (T™)]| £ da dt.
Q
Since |T™||G,(T™)| = [T™ - G,,(T™)|, we can use (4.10), (4.12) and (4.13) to deduce that
TG T+ I£2 + V" + 07w dedt < Cluo, ).
Q

It only remains to bound the terms involving 4,, on the right-hand side of (4.18). To this end,
we note that

/ An (T[T 4 | AL (T | £2 dedt < C / W TR 1 T 4 £ < Cluo, ),
Q Q

where the last inequality follows from (4.10) and the assumptions on f. Using these inequalities
for the terms appearing on the right-hand side of (4.18), we immediately deduce that

(4.19) sup |0 Vu"|| 2 Q/)+Z/ / (O, T™, 0, T™) 4, (Tm) dzdt < C(ug, f, Q).

te(s,T)

Similarly, if ug € C'([0, T]; W2(Q;R?)) we can use (3.11) and perform similar computations to
find that

(420) Sup ||8tVu ||L2(Q/) + Z/ / 8kT 8kT .A (T7) dz dt < C( , UQ, f)
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Next, we focus on the bounds on the second order spatial derivatives of 0;u™ and u™. It follows
from (4.5) and the Cauchy—Schwarz inequality that

|0k (ae(u™) + BOwe(u™ )|2

= (Ok(ae(u™) + Boe(u"))) - kG, (T™)

= (O (ae(u™) + Boe(u™)), Ok T"™) 4, (Tm)

< (O (ag(u™) + BOe(u™)), Ok (ag(u™) + /Bate(un)))in(Tn)(aan’ 8an)jn(T")

< C|ok(ce(u™) + Boe(u"))[(0kT", ak-rn)jtn(T")'

Therefore,

\8k(as(u") + B&te(u"))\Q < C(aan,aan)An(Tn).

Using this and (4.19), simple algebraic manipulations imply that

T
(4.21) /5 [ [Voe(u) + fore(u)) de di < Clug. £.5Y).

4.3. Convergence results as n — oo based on uniform bounds. From the uniform
bounds (4.10), (4.12) and (4.13), we see that we can find a subsequence, not relabelled, such that

(4.22) u" = u weakly in W52(0, T; Wh2(Q; R?)),
(4.23) u" S weakly™ in W1(0, T; L?(Q; R?)),
(4.24) n!T" =0 strongly in L?(0, T; L*(€; R4*9)).

In addition, using the regularity estimates (4.16), (4.21), as well as the Aubin—Lions lemma, we
deduce that, for every 6 > 0,

(4.25) u" —u weakly in W22(6, T; L*(; RY)),
(4.26) ut — weakly in Wh2(5,T; W22 (; RY)),
(4.27) u" = u strongly in W'2(6, T} Wllof (Q;RY)).

Next, we focus on taking the limit in the constitutive relation (4.5). The mapping G is bounded
so we have that

(4.28) G(T") G  weakly® in L°°(Q; R*%),

We need to identify G. We note that from (4.5), (4.23) and (4.24), we must have

(4.29) G =ae(u) + B0e(u)  ae inQ.

Next, we show that there exists a T such that G = G(T). To do so, we appeal to Chacon’s biting
lemma and deduce from (4.10) that there exists a T € L*(Q; R?*?) and a nondecreasing sequence
of sets Q1 C Q2 C -+, with |Q \ Q;] — 0 as i — oo, such that, for each i € N,

(4.30) T" - T  weakly in L'(Q;; R™*9).

However, thanks to (4.27), (4.29) and Egoroft’s theorem, we know that for every £ > 0 and every
i € N there exists a Q; . C Q;, with |Q; \ Qic| < &, such that

ae(u™) + Boe(u™) — G strongly in L™(Q; .; R¥*9).
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Therefore, using the monotonicity of G and the above convergence result, we deduce, for an
arbitrary W € L'(Q; R%*?), that

0< lim [ (G(T") — GW)) - (T" — W) da dt

n—oo
Qic

= GW) - (W-T)-G-Wdzdt+ lim G(T")-T"dadt

Qi,s n—roo Qi,s

< GW) - (W-T)-G-Wdzdt+ lim G,(T") - T"dxdt
Qi,s n—roo Q'i,s

= GW)- W -T)—-G-Wdzdt + lim (ce(u”) + Boe(u™)) - T da dt
Qi,s n—roo Qi,e

:/ (G — G(W)) - (T — W) dadt.
Qi,e

Since G is a monotone mapping and W is arbitrary, we use Minty’s method to see that
G=G(T) a.e. in Q.

Recalling that ¢ > 0 and i € N are arbitrary, (1.20) follows, using (4.29) and the above identity.

Additionally, setting W := T in the above and using the fact that G = G(T), we see that

lim (G(T™) — G(T)) - (T" = T)|dzdt = lim [ (G(T") = G(T))- (T" = T)dadt = 0.

n=%0 JQi. n—o0 Jo.
Consequently, we must have that
T ->T a.e. in Q; ¢,

702 as a result of the strict monotonicity of G. However, as before, since ¢ > 0 and ¢ € N are arbitrary,
703 we deduce that

o (431) T =T a.e. in Q.

706 Using (4.10), (4.31) and Fatou’s lemma, it follows that
07 (4.32) / IT|de dt < Cluo, f).
Q

Next, we focus on the boundary and initial conditions for w. It is evident from the convergence
result (4.22), combined with the fact that u™ = ug on " and u™(0) = ug(0) on 2, that we must
have u = ug on I' as well. Furthermore, it follows that

[u(t) —uo(0)f1,2 — 0 ast — 0.

708 Concerning the attainment of the initial condition for d;u(0) we need to proceed slightly differently
709 since we only have control on dyu locally in (0,7). We integrate (4.6) over a time interval (0,t),
710  where 0 < t < T, and since we know that for each n the initial datum is attained we deduce that

(4.33)
1 [ Blor —wo) ) + 50w — w1

+ 2—Oé(u" —ug)(t)| dz

g
- /o /QTn - ((ae(ug) + B (uo)) — Gu(T™)) + |0y (u" — ug)|? dz dr

+ / /Q (F — Buo) - (a(w™ — o) + By (u" — wo)) + z%atmn ) - (" — ug) da dr.
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Our goal is to let n — oo. Since ¢t > 0, we can use the “local” convergence result (4.25) to let
n — oo in the left-hand side of (4.33). To bound also the right-hand side, we first use the safety
strain condition (1.13), which implies that there exists a To € L'(Q; R%*?) such that

ag(ug) + BOe(ug) = G(Ty) a.e. in Q.
Using the monotonicity of G, we see that
T - ((age(uo) + fdie(uo)) = Gn(T")) < T" - (G(To) — G(T")) < To - (G(To) — G(T")).

Using the convergence results (4.22)—(4.29) applied to all terms in (4.33) with the above inequality
yields the following:

2

O¢(u — up)(t) + %(u —up)(t)| dz

S/O /QTO - ((ae(ug) + Boe(ug)) — G(T)) + |0y (u — ug)|? dzdr

1 Aot w) o) + 5

(4.34) ,

+/Ot/Q(f—3tt’uO)~(OZ(U—UO)'i‘B(?t(u—uO))—i-2;at(u—uo).(u_uo)dxdT

t
SC/HEM+MMH@MM+hh
0

Letting t — 04, we see that

lim (|lu(t) — uo(0)[I3 + [Dru(t) — Qo (0)3) = 0.

t—04

In addition, it also follows from (4.25) that w € CY([6, T]; L?(€;R%)) for every § > 0, which
combined with the above result gives that w € C*([0, T]; L?(Q; RY)).

4.4. Validity of the equation in the limit. To summarize the results so far, we have
found a couple (u, T) that satisfies (1.3)—(1.18) and (1.20), (1.21). It remains to show (1.19). To
do so, we use the method developed in [3]. Let g be a smooth nonnegative nonincreasing function

satisfying
(s) = 1, for s €[0,1],
g = 0, for s> 2.

For each k € N, let us define
gi(s) = g(s/k).

It is clear that g, 1. Next let v € C§°(Q;R?) be arbitrary but fixed. In particular, there exist
a compact subset ' € 2 and a § > 0 such that supp(v) C [§,T — 4] x ©'. Thanks to (4.25) and
(4.31), all terms in (1.19) are well-defined for almost all ¢ € (0,T) and we just need to check that
the equality holds.

We fix § > 0. Using the properties of g, we have

I::/ Opu-v+T-Vo— f-odedt
(4.35) @

k—o0

= lim / Opu - vgr(|T)) + T - Vogi(IT|) — f - vgr(|T|) dz dt.
Q

Using (4.25), (4.30), the fact that T" € L2(6, T; W22(; R**9)) for every § > 0, which follows
from (4.19), and the fact that g (| T™|) is supported only in the set where |[T"| < 2k, we can rewrite
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the right-hand side of (4.35) in the following way:

I = lim lim Opu” - vgp(|IT") + T™ - Vogr(|T"]) — f - v (|T"]) de dt
Q

k—o00 n—o00

= Jin lin [ G o (T + T Voge(T) - £ o (T do ds
(4.36)
— lim lim [ T" - (Vg:(]T"|) ® v)dxdt

k— o0 n—00

=—lim lim [ T" (Vg (T"|) ® v)dzdt,

k—o00 n—o0

where for the last equality we have used (4.4) with w := vgx(|T"|). This is a justified choice of
test function by the following reasoning. We have T € L?(4,T; I/Vl1 2((2 R?*4)). Hence, using the

chain rule for weak derivatives, it follows that g, (|T™|) € L2(8, T; W2 2(€; R%*?)). By the compact

loc

support property of v, we deduce that vg,(|T"|) € L2(0,T; W 2(9 R?)) with support contained
in [6,T —d] x Q.
It remains to show that the right-hand side of (4.36) vanishes. We define

Then, using that |g;,(s)| < C’silx{se(ky%)}, we see that

< Cmin{s,k} for all s >0,
=0 for s < k.

(4.37) Mi(s) {
Next, we use the structural assumption (A4) to rewrite the term under the limit in (4.36) as
- [T CaT ) e v dedr
Q

—/Gn(T")~(V|T"|® )#dxdt
(4.38) ? T

—/ G(T") - (VM (IT")) © v) da dt
Q
= / div G, (T"™) - v My, (|T"]) da dt +/ G, (T") - VoM, (|T"|) da dt.
Q Q
For the first term on the right-hand side of (4.38), we use the definition of A, alongside the

Cauchy—Schwarz inequality to obtain

d
| div G (T™) - v M (IT7])] = Z n(T") 505 Tay oMy (IT")
a,b=1

14,5,a,b=1
d 1 d - :
<D @nT" 0T e ooy | Do (An(T™)0mivibmavs Mi (T
m=1 i,7,a,b=1
d n % 1 c 272 n 2
<UD O T 0T oy (071 1+‘m)\vl M (IT™)
m=1
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Using this bound in (4.38) and then in (4.36), recalling the fact that v is compactly supported,
we deduce with the help of Holder’s inequality and the uniform bound (4.18) that

(4.39)
d 1 C %
1] < klggo nlggo o Z (3mT",3an)i\n(Tn) <(n_1 + 1+|T"|> |”|2M13n(|Tn)) da dt
m=1
< C(v) lim lim / n_l—i—L M?, (|IT") da dt :
= k—o0n—r00 \ Jg L+ [Tn) T km

2 3
= C(v) klim ( ]Wk_$_||T|) dz dt) ,
— 00 Q

where for the last equality we use (4.31) and the boundedness of M. Consequently, using that
T € LY(Q; R*¥9) and the structure of M}, (4.37), we deduce that

2 3 2
[I| < C(v) lim < de dt) < C(v) lim / IT|dzdt ] =0.
k—o00 Q |T‘ k— o0 Qﬂ{‘T‘>k}

Since v is arbitrary, we see that (1.19) holds for almost all ¢ € (0,7) and all smooth compactly
supported w. Finally, using a weak* density argument based on [3, Lemma A.3] we deduce that
(1.19) holds for an arbitrary w € W*(Q,R?) fulfilling e(w) € L>(Q; R¥*?). This concludes the
proof of the existence of a solution as asserted in Theorem 1.2.

4.5. Uniqueness of solutions. It remains to prove the uniqueness of such weak solutions.
Let (w1, T1) and (uq, T2) be two solutions emanating from the same data and denote u := u; —us.
Then it follows from (1.19) that, for almost all ¢ € (0,T) and for every w € Wy ™ (Q; RY),
(4.40) / Dy -w + (Ty — Ts) - e(w) dz = 0.
Q
Since d;e(u) and &(u) belong to L (Q; R?*?) for almost all ¢t € (0,T), we can again use the weak*
density argument as in the previous section to deduce that (4.40) holds with w := au + Sou.

Consequently, since we have

ou + fou = G(T1) — G(T2),
we can use the monotonicity of G and integration over (to,t), with 0 < tg < t < T, to deduce from
(4.40) that
t
0 > 2/ &gtu . (O(U + ﬁ@tu) dx dr
t
’ t
= 6/ |0su(t)]? — |0yu(to)|* + 2a0su(t) - v(t) — 2au(ty) - u(ty) do — 2a/ / |0pu|? da dr.
Q to JQ

We note that this procedure is rigorous for every such ¢ty > 0 thanks to the regularity of w; and
uy asserted in (1.15). Since u € C1([0,7T]; L*(Q;R?)) as a result of (1.15), we can use (1.21) and
let tg — 04 in the above inequality to deduce that

t
0> 5/9 |0su(t) | + 200,u(t) - u(t) dz — 204/0 /Q |0yu|? dz dT
t t
=5 [ ou(o)? +2000u(r) ( /O yu(r) dT) dz — 20 /O /Q Ou)? do dr
B 2 ! 2
> 2 (1ol - cla.s.1) [ ol ar)
0

d t
= ecesnd (ewsn [ joupizar).



STRAIN-LIMITING VISCOELASTICITY WITH DIRICHLET BOUNDARY DATA 31

Simple integration with respect to ¢ then gives that d;u = 0 almost everywhere in @) and conse-
quently u; = uo. By strict monotonicity, we necessarily also have that T; = Ts almost everywhere
in (). Hence, uniqueness follows.

NE

R.
L.
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