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Abstract: We revisit the Helmert transformation, and provide a useful and simple derivation of the joint

distribution of the sample mean and the sample variance in samples from independently and identically

distributednormal randomvariables. Our derivation is distinguishedby concreteness, very little abstractness,

and should be appealing to beginning students of statistics, and to both beginning and advanced students

of econometrics. We also highlight one fruitful application of the Helmert transformation in panel data

econometrics. The Helmert transformation can be used to eliminate the fixed effects in the estimation of fixed

effects models, and we briefly review this application of the transformation in the panel data context.

Keywords: Helmert transformation, sample mean, sample variance, panel data econometrics, fixed effects

model

JEL Classifications: B23, C16, C20

1 Introduction

The Helmert transformation is named after the German geodesist Friedrich Robert Helmert (1876) and has

a long history of use in statistics (Sawkins 1940; Cramér 1946, p. 116; Kruskal 1946; Weatherburn 1961,

p. 164; Brownlee 1965, p. 271; Rao 1973, p. 182 among others). One application (the application from now

on for brevity) of the Helmert transformation in statistics is to find the joint distribution of the sample

mean, and the sample variance, calculated from a sample from a normal population. Although the cited

referencesareauthoritative, thepresentations thereof theapplicationare inourviewoften rathercomplicated,

which inhibits readers’ understating of the topic. We present our version of how the Helmert transformation

works in the application, and our version should be particularly suitable and accessible to either beginning

undergraduate university students in statistics, or students at both undergraduate and postgraduate level in

econometrics, or quantitative social and political sciences which use econometrics.

For example, Cramér (1946, p. 116) andWeatherburn (1961, p. 164) both follow Sawkins (1940), and intro-

duce in abstract terms an orthogonal linear transformation having certain properties. Instead, we think that

explicitly stating the transformation, and then directly establishing its key propertieswould have pedagogical

advantages. Rao (1973, p. 182) similarly uses an orthogonal matrix, i.e. a Helmert matrix, which he defines

in terms of certain abstract properties. We think there would be pedagogical advantage to instead explicitly

display one such Helmert matrix, so that the reader can visualize what is going on, and then proceed to

establishing its properties and what it exactly does in the context of the application.
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Uponpresenting our treatment of the application,whichof course uses the vary same ideas of theHelmert

transformation and the associated Helmert matrix as the sources mentioned above, we also briefly discuss

the use of the Helmert transformation in panel data econometrics. In particular, the Helmert transformation

can be employed to eliminate fixed effects in the estimation of fixed effects models. Therefore, our treatment

has the advantage that it is very concrete and explicit compared to previous literature, and advocates formore

extensive use of the Helmert transformation. Unlike previous authors, we firstly explicitly state the Helmert

transformation and display the Helmert matrix, and then proceed to prove the implications of applying the

Helmert transformation in the application.

Our proof is closest to Brownlee (1965, p. 271). Brownlee (1965, p. 271) starts with a formula for the sample

variance and using it, derives new variables that possess certain desired properties. This derivation of the new

variables is fairly involved. We instead start by defining the new variables and then using a simple induction

argument, prove that these variables have the same variance as the original variables.

We use mathematical induction in our proof, and Stigler (1984) also uses mathematical induction in

his proof, but the argument there is different. He first establishes the joint distribution of the sample mean

and variance for a sample of just two observations and then via the induction argument, proves that this

joint distribution extends to samples of larger size. Zehna (1991) asserts that Stigler’s proof is not completely

rigorous, and relies three times throughout the proof on a faulty argument.

This article proceeds as follows. In Section 2 we introduce the Helmert transformation and derive the

joint distribution of the sample mean and the sample variance. In Section 3 we introduce the Helmert matrix

associated with the transformation, and provide some remarks on its properties. In Section 4 we suggest that

the use of the Helmert transformation has been somewhat overlooked in within estimation of one way error

component fixed effects models in panel data econometrics, and we briefly survey the extant applications of

the Helmert transformation in panel data context. In the last section we conclude.

2 The Helmert Transformation and the Joint Distribution

of the Sample Mean and the Sample Variance in Samples

from a Normal Population

We have a set of T random variables xt, t = 1, 2,… ,T independently and identically distributed (i.i.d. from

now on) as Normal(𝜇, 𝜎2), and we want to find the joint distribution of the sample mean x̄T =
∑T

t=1xt∕T and

the sample variance s2 =
∑T

t=1(xt − x̄T)
2∕(T − 1).

Consider the Helmert transformation, which takes the set xt, t = 1, 2,… ,T and produces a new set of

variables zt, t = 1, 2,… ,T as follows:

z1 = x̄T , z2 = (x2 − x1)

√
1∕2, z3 = x3 − [(x2 + x1)∕2]

√
2∕3,… ,

zt = (xt − x̄t−1)

√
(t − 1)∕t,… , zT = (xT − x̄T−1)

√
(T − 1)∕T, (1)

where x̄t−1 =
∑t−1

𝜏=1x𝜏∕(t − 1).

The new set of variables zt have convenient properties. (In what follows, we liberally use the properties

of the expectation E(⋅), variance Var(⋅), and covariance Cov(⋅, ⋅) operators, and we assume that the reader is

familiar with these properties.)

Properties of the Helmert transformation:

1. zt, t = 1, 2,… ,T are mutually uncorrelated: Cov(z1, zt) = Cov
(
x̄T , (xt − x̄t−1)

√
(t − 1)∕t

)

= (1∕T)
√
(t − 1)∕t ⋅ Cov

(∑T

𝜏=1x𝜏 , xt −
∑t−1

𝜏=1x𝜏∕(t − 1)
)

= (1∕T)
√
(t − 1)∕t[𝜎2 − (t − 1)𝜎2∕(t − 1)] = 0 for

t = 2,… ,T. And, Cov(zt, z𝜃) = Cov
(
xt −

∑t−1
𝜏=1x𝜏∕(t − 1), x𝜃 −

∑𝜃−1
𝜏=1x𝜏∕(𝜃 − 1)

)
= −𝜎2∕(𝜃 − 1)
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+ (t − 1)𝜎2∕[(t − 1)(𝜃 − 1)] = 0, where without loss of generality we take 𝜃 > t > 1. (Property 1

does not require normality; an i.i.d. distribution of the variables would be su�cient.)

2. zt, t = 1, 2,… ,T are linearcombinationsofxt, t = 1, 2,… ,T (whichwehaveassumed,are jointlynormally

distributed) and hence zt, t = 1, 2,… ,T are jointly normally distributed as well.

3. Ez1 = Ex̄T = 𝜇; Ezt = E[(xt − x̄t−1)
√
(t − 1)∕t] =

√
(t − 1)∕t ⋅ (𝜇 − 𝜇) = 0, for t = 2, 3,… ,T.

4. Var z1 = 𝜎2∕T, Var zt = [𝜎2 + 𝜎2∕(t − 1)](t − 1)∕t = 𝜎2, t = 2,… ,T. So z2,… , zT are homoskedastic.

5.
∑T

t=1(xt − x̄T)
2 =

∑T

t=2z
2
t
=

∑T

t=2(xt − x̄t−1)
2(t − 1)∕t, which we prove in the theorem below.

An Auxiliary Theorem. Let xt be a scalar quantity observed over t = 1, 2,… ,T periods. Then,

T∑
t=1

(xt − x̄T)
2 =

T∑
t=2

(xt − x̄t−1)
2(t − 1)∕t, (2)

where x̄T =
∑T

t=1xt∕T and x̄t−1 =
∑t−1

𝜏=1x𝜏∕(t − 1).

Proof of the Auxiliary Theorem by induction. For T = 2 we have

2∑
t=1

(xt − x̄T)
2 = (x1 − x1∕2− x2∕2)

2 + (x2 − x1∕2− x2∕2)
2

= (x2 − x1)
2∕2 =

2∑
t=2

(xt − x̄t−1)
2(t − 1)∕t,

so for T = 2 the relationship holds indeed.

Now we assume that the relationship holds for T, and demonstrate that if it holds for T, then it holds for

T + 1 too. First,

T+1∑
t=2

(xt − x̄t−1)
2(t − 1)∕t =

T∑
t=2

(xt − x̄t−1)
2(t − 1)∕t + (xT+1 − x̄T)

2T∕(T + 1).

Second,

T+1∑
t=1

(xt − x̄T+1)
2 =

T+1∑
t=1

x2
t
− (T + 1)x̄2

T+1 =

T∑
t=1

x2
t
+ x2

T+1 − (T + 1)x̄2
T+1

=

T∑
t=1

(xt − x̄T)
2 + Tx̄2

T
+ x2

T+1 − (T + 1)x̄2
T+1.

By the induction hypothesis
T∑
t=1

(xt − x̄T)
2 =

T∑
t=2

(xt − x̄t−1)
2(t − 1)∕t.

Therefore, what remains to be shown is that

(xT+1 − x̄T)
2T∕(T + 1) = Tx̄2

T
+ x2

T+1 − (T + 1)x̄2
T+1.

Rewrite

(T + 1)x̄2
T+1 =

(
T∑
t=1

xt + xT+1

)2

∕(T + 1) = (Tx̄T + xT+1)
2∕(T + 1)

= [T2∕(T + 1)]x̄2
T
+ 2[T∕(T + 1)]x̄TxT+1 + x2

T+1∕(T + 1).
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Hence,

Tx̄2
T
+ x2

T+1 − (T + 1)x̄2
T+1 = Tx̄2

T
+ x2

T+1 − [T2∕(T + 1)]x̄2
T
− 2[T∕(T + 1)]x̄TxT+1 − x2

T+1∕(T + 1)

= [T∕(T + 1)]x̄2
T
− 2[T∕(T + 1)]x̄TxT+1 + [T∕(T + 1)]x2

T+1,

which is indeed equal to (xT+1 − x̄T)
2T∕(T + 1). □

We will now use the properties of the Helmert transformation to deduce the joint distribution of the

samplemean and the sample variance in samples from a normal population.We use the following three facts.

First, linear combinations of jointly normal random variables are themselves jointly normally distributed

(Cramér 1946, p. 213; Weatherburn 1961, p. 57). Second, for a set of jointly normal random variables, if they

are uncorrelated, they are independent as well (e.g. Lancaster 1959; David 2009). There is a subtle point here,

the set of variables need to be jointly normal, as one can construct counter examples where the marginal

distributions are normal but the joint distribution is not normal, variables are uncorrelated, and yet they

are not independent. Lancaster (1959) presents such a counter example, and precisely states the conditions

in his Theorem 1. Third, the sum of k independent, squared, standard normal variables is distributed as

𝜒 2(k), which is a distribution discovered and described by Helmert (1876). (Helmert (1876) discovered the 𝜒 2

distribution, however he did not observe that the sample mean and the sample variance are independent,

see David (2009).)

Main Theorem. The joint distribution of the sample mean and the sample variance in a sample of T i.i.d.

random variables xt, t = 1, 2,… ,T, each xt distributed as Normal(𝜇, 𝜎2), has the following properties:

– The sample mean x̄T and the sample variance s2 are independently distributed.

– The sample mean x̄T is distributed as Normal(𝜇, 𝜎2∕T).

– (T − 1)s2∕𝜎2 is distributed as 𝜒 2(T − 1).

Proof of the Main Theorem. In the proof we will refer to the listed Properties of the Helmert transformation

as Property plus the number under which the property was listed.

– The sample mean x̄T is a function of z1 only, and by Property 5, the sample variance s2 is a function of

zt, t = 2,… ,T only. By Property 1, zt, t = 1, 2,… ,T are uncorrelated, and by Property 2, zt, t = 1, 2,… ,T

are jointly normally distributed. Because zt, t = 1, 2,… ,T are a set of uncorrelated and jointly normal

random variables, they are a set of independent random variables as well (Lancaster 1959, Theorem 1).

Therefore the independence of x̄T (a function of z1 only) and s
2 (a function of z2, z3,… , zT only) follows

because z1 is independent of z2, z3,… , zT .

– The samplemean x̄T is normally distributed by Property 2. Itsmean is given in Property 3, and its variance

is given in Property 4. Overall x̄T is distributed as Normal(𝜇, 𝜎2∕T).

– (T − 1)s2∕𝜎2 =
∑T

t=1(xt − x̄T)
2∕𝜎2 =

∑T

t=2z
2
t
∕𝜎2, where the last equality follows by dividing both sides of

Property 5 by 𝜎2. However,
∑T

t=2z
2
t
∕𝜎2 is the sum of T − 1 squared standard normal variables, and hence

is distributed as 𝜒 2(T − 1).

The Main Theorem was first proved by Fisher (1915, 1925), but Fisher’s “geometric arguments” are di�cult to

follow.Whatwe have presented, albeit somewhat lengthy, is an elementary and concrete proofwhich requires

very little abstract thinking. Our proof should be accessible to students with any moderately quantitative

background, and should bemuch preferable to students who are not used to elaborate abstract mathematical

thinking, such as beginning undergraduates in statistics, or both undergraduate and graduate students in

econometrics. Overall, from the transformed set of variables zt it is very easy to deduce the joint distribution

of the sample mean and the sample variance.

We finish this section by stating another property of the Helmert transformation, which we will briefly

use in Section 4. Suppose there is another set of variables yt, t = 1,… ,T. Then,

6.
∑T

t=1(xt − x̄T)(yt − ȳT) =
∑T

t=2(xt − x̄t−1)(yt − ȳt−1)(t − 1)∕t,
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The proof of this property follows the same steps as the proof of the Auxiliary Theorem and, therefore, is

omitted. Note that if yt = xt for all t, this property reduces to Property 5.

3 The Helmert Matrix

The previous section is self contained, and using the Helmert transformation to deduce the joint distribution

of the sample mean and the sample variance does not require any matrix algebra. However if there is

need, or desire to do so, one can also relate the Helmert transformation from the previous section to what

Lancaster (1965) calls a Helmert matrix in the strict sense.

Consider the following matrix

HoT×T ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 … 1

−1 1 0 0 … 0

−1∕2 −1∕2 1 0 … 0

−1∕3 −1∕3 −1∕3 1 … 0

… … … … … …

−1∕(T − 1) −1∕(T − 1) −1∕(T − 1) −1∕(T − 1) … 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
We can verify by direct multiplication that the rows of this matrix are orthogonal, that is, HoHo′ results in a

diagonal matrix. We can also consider the rescaled version of Ho

HmT×T ≡ diag
(
1∕T

√
1∕2

√
2∕3

√
3∕4 …

√
(T − 1)∕T

)
⋅ Ho,

where diag(v) is an operator that transforms a vector v into a diagonal matrix, and overall the operation

diag(v) ⋅ Ho results in multiplying the ith row of the matrix Ho by the ith element of the vector v. With the

choice of the first element in v as 1∕T, we can see by direct multiplication that Hm′Hm is symmetric with

one element repeated on the main diagonal and another element repeated everywhere off the main diagonal.

HmHm′ is diagonal and is almost the identity matrix, only the upper left element is different from 1, the rest

of HmHm′ coincides with the identity matrix.

If we instead choose the first element in v to be 1∕
√
T,

HnT×T ≡ diag
(
1∕
√
T

√
1∕2

√
2∕3

√
3∕4 …

√
(T − 1)∕T

)
⋅ Ho,

direct multiplication shows that Hn′Hn and HnHn′ are both the identity matrix, and we would call such a

matrix Hn an orthonormal matrix.

We see that if we arrange the set xt, t = 1, 2,… ,T into a column vector x ≡

(
x1 x2 … xT

)′

, and

choose the first element of v to be 1∕T, we will obtain the Helmert transformation from the previous section,

z = Hm ⋅ x, where z ≡
(
z1 z2 … zT

)′

. Because of the appealing aesthetics of Hn with the first element

in v chosen to be 1∕
√
T, i.e. a choice resulting in an orthonormal matrix Hn′Hn = HnHn′ = Identity, all

authors we are aware of use this version of the Helmert matrix. However for our application all we need is

that HmHm′ be a diagonal matrix with all the elements on the main diagonal below the first being equal to

1. In this situation, the elements of the vector z = Hm ⋅ x will be mutually uncorrelated and each element zt,

t = 2,… ,T will be homoskedastic. Therefore, for our application choosing the first element in the vector v as

1∕T serves perfectly fine.

4 The Helmert Transformation in Panel Data Models

Wehavederived the joint distributionof the samplemeanand the sample variancewithparticular focuson the

simplicity and concreteness of the derivation, and particular focus on the use of the Helmert transformation.
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The Helmert transformation has found its application in the “fixed effects” panel data model too. Consider

the standard one way “fixed effects” panel data model (e.g. Wooldridge 2010, Ch.10; Hsiao 2014, Ch.3)

yit = x′
it
𝛽 + 𝜇i + 𝜀it, i = 1, 2,… , I, t = 1, 2,… ,T (3)

where the regressand yit is a scalar, the regressor vector xit is K × 1,
(
yit, x

′
it

)
are i.i.d. for i = 1, 2,… , I, i.e. the

variables constitute an i.i.d. random sample in the cross section. The individual “fixed effects” (so called by

convention) are time constant, random and potentially correlated with the regressor vector. The idiosyncratic

error term 𝜀it is uncorrelated with the regressor xj𝜏 for all t, 𝜏, i, j, i.e. the regressor xit is strictly exogenous

with respect to 𝜀it conditional on the fixed effects, and 𝜀it is i.i.d. both in the cross section and in the time

series dimensions.

Consistent estimation of the parameter vector 𝛽 in Eq. (3) under the assumptions that the fixed effects

can be arbitrarily correlated with the regressors, and the regressors are strictly exogenous with respect

to 𝜀it, conditional on the fixed effects, proceeds by eliminating the fixed effects. The conventional way

of eliminating the fixed effects is by the within transformation, firstly averaging Eq. (3) across time, to

obtain ȳiT = x̄′
iT
𝛽 + 𝜇i + 𝜀̄iT , where ȳiT =

∑T

t=1yit∕T, x̄iT =
∑T

t=1xit∕T and 𝜀̄iT =
∑T

t=1𝜀it∕T. Then we subtract

this averaged equation from Eq. (3) to eliminate the fixed effects and to obtain the estimating equation

yit − ȳiT = (xit − x̄iT)
′𝛽 + (𝜀it − 𝜀̄iT), i = 1, 2,… , I, t = 1, 2,… ,T. (4)

Finally, we estimate Eq. (4) by ordinary least squares (OLS) over the I ⋅ T pooled observations to obtain the

within estimator

𝛽 =

(
I∑
i=1

T∑
t=1

(xit − x̄iT)(xit − x̄iT)
′

)−1( I∑
i=1

T∑
t=1

(xit − x̄iT)(yit − ȳiT)

)
. (5)

The within estimator is well studied, well understood and a basic building block in the panel data econo-

metrics literature. However the within transformation introduces strong correlation between the transformed

errors in the estimating Eq. (4), because all the transformed errors (𝜀it − 𝜀̄iT) for a cross sectional unit i share

the same 𝜀̄iT . Thismakes residual diagnostic checks and residual analysis awkward and di�cult, for example,

if we wanted to test that the errors 𝜀it are indeed i.i.d.

On the other hand if we apply the Helmert transformation in Eq. (1) on each variable in the fixed effects

model Eq. (3) and for each cross sectional unit i separately, to construct transformed variables corresponding

to z2, z3,… , zT which have mean 0, then we again eliminate the fixed effects 𝜇i:

(yit − ȳit−1)

√
(t − 1)∕t =

[
(xit − x̄it−1)

′
√
(t − 1)∕t

]
𝛽 + (𝜀it − 𝜀̄it−1)

√
(t − 1)∕t, (6)

i = 1, 2,… , I, t = 2,… ,T, where ȳit−1 =
∑t−1

𝜏=1yi𝜏∕(t − 1), x̄it−1 =
∑t−1

𝜏=1xi𝜏∕(t − 1), 𝜀̄it−1 =
∑t−1

𝜏=1𝜀i𝜏∕(t − 1).

We can proceed with the OLS estimation of the Helmert-transformed estimating Eq. (6),

𝛽 =

(
I∑
i=1

T∑
t=2

(xit − x̄it−1)(xit − x̄it−1)
′

)−1( I∑
i=1

T∑
t=2

(xit − x̄it−1)(yit − ȳit−1)

)
, (7)

which is thebest linearunbiasedestimator,because theerrors in theHelmert-transformedestimatingequation

(𝜀it − 𝜀̄it−1)
√
(t − 1)∕t are uncorrelated and homoskedastic, (and normal if the original 𝜀it were normal to start

with). By invoking Property 6 of the Helmert transformation, one can verify that the estimator in Eq. (7)

coincides with the within estimator in Eq. (4). However, as an added benefit, we can apply any residual

diagnostics and checks thatwemight have inmind, because theHelmert-transformed errors in the estimating

equation have the same stochastic properties as the original errors in the structural model. To the best of our

knowledge, the existing literature on panel data models has not exploited this simplification in the analysis

afforded by the Helmert transformation.
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The use of the Helmert transformation in the context of panel models and, in particular, dynamic panel

models has been popularized by Arellano and Bover (1995) and Arellano (2003). (See also Alvarez and

Arellano 2003.) It is also described in Hansen (2022, Section 17.43). A dynamic panel model is like the one

given in Eq. (3), but it additionally contains the lagged values of the dependent variable as regressors. For

example, if yit (directly) depends only on its own value in the previous period, then the model is

yit = yit−1𝛼 + x′
it
𝛽 + 𝜇i + 𝜀it, i = 1, 2,… , I, t = 2,… ,T. (8)

Arellano and Bover (1995) suggest to transform the variables in the following way:

(yit − ȳit+1)

√
(T − t)∕(T − t + 1), (xit − x̄it+1)

′
√
(T − t)∕(T − t + 1), (9)

i = 1, 2,… , I, t = 1,… ,T − 1, where ȳit+1 =
∑T

𝜏=t+1yi𝜏∕(T − t), x̄it+1 =
∑T

𝜏=t+1xi𝜏∕(T − t). Observe that this is

the same Helmert transformation in Eq. (1) but with the variables ordered in the reverse order according to

the time index. Arellano and Bover (1995) refer to this transformation as “the forward orthogonal deviation”

as opposed to “the backward orthogonal deviation” which is the one displayed in Eq. (6).

Both forward andbackward orthogonal deviations produce uncorrelated andhomoskedastic errors in the

transformed model, provided that the original errors 𝜀it are i.i.d. However, the forward orthogonal deviation

has the following advantage in thedynamic panelmodel.When transforming the variables to remove thefixed

effects, it introduces correlation between the transformed lagged dependent variable and the transformed

error term. Therefore, one needs to use an instrumental variables estimator to obtain consistent estimates of 𝛼

and 𝛽. With the forward orthogonal deviation, the past values of the dependent variable yi1,… , yit−1 are valid

instruments for (yit−1 − ȳit)
√
(T − t − 1)∕(T − t),which is thenew laggeddependent variable after the variable

transformation. Furthermore, Hayakawa (2009a, 2009b) shows that the instrumental variables estimator is

more e�cient if the instruments themselves are constructed using backward orthogonal deviations.

5 Conclusion

We revisit the Helmert transformation, and we provide a simple and useful induction-based derivation of the

joint distribution of the samplemean and the sample variance in samples from independently and identically

distributed normal random variables. Our derivation is concrete and should be appealing to students of

statistics and econometrics. We also suggest one fruitful application of the Helmert transformation in panel

data econometrics – residual based tests in fixed effects models. We briefly review the applications of the

Helmert transformation in panel data context, where the transformation is more commonly known as “the

forward/backward orthogonal deviations operator”.
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