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1 Summary

As the average age of the population in the UK gets higher caution needs to
be taken to ensure that elderly and vulnerable people are not left behind and
can access the care and support that they need. This study aims to assess
whether basic household sensors paired with a machine learning system can
be used to act as an early warning system for carers, reducing carer workload
while ensuring an equal level of care for their patients. To achieve this we
have designed an anomaly detection system using a threshold system that
aims to detect unusual behaviour in the property.

Partnering with the Safehouse company we have access to two properties
that have been outfitted with a range of environmental sensors. For the
purpose of this study focusing on the temperature, humidity, light and motion
in these property.

Three time series prediction methods have been compared, these are
LSTM, Arima and Autoencoder. A mixture of several important metrics
were used to measure performance, namely Mean Absolute Error (MAE),
Root Mean Square Error (RMSE) and R2, as well as expert feedback from
the team at Safehouse.

While we found the LSTM had the highest accuracy when making pre-
dictions on the data, particularly when using a combined sensor approach,
due to the potential time taken to process data regularly it is not suited for
a real world system. For this reason we suggest the use of an Autoencoder to
make predictions on the data, with extra parameters to assist in identifying
important anomalies.

Further research involving direct contact with carers is needed to discover
whether this system is sufficient to their needs. Stricter monitoring of the
people within the properties is also necessary in order to decide whether the
anomalies detected identify all relevant real world problems.
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3 Introduction

A growing problem across the United Kingdom is the emergence of an aging
population. This problem is expected to grow, as the ONS (Science 2016)
predicts that by 2050 over 25% of the UK’s population will be 65 or over.
(Overview of the UK population - Office for National Statistics n.d.)

As people get older they are more likely to require regular care. Currently,
many families are taking to caring of their relatives in need. However, this
can have negative effects on the carer as they may not be prepared to provide
full-time care without negatively affecting their own quality of life due to the
strain put on them, both monetary and mentally. (Living longer - Office for
National Statistics n.d.)

Many elderly people are not able to be cared for by their relatives and
instead need to receive professional care, either at home, or in a care home.
While waiting for these care options to become available, many people are
required to stay in hospital beds. Despite this, the number of hospital beds
available for this purpose has decreased substantially over the last few years
(Ewbank, Thompson, and McKenna 2017). This is a growing problem and
without practical solutions to solve them will result in a decrease in the
quality of life for many older people in the country.

In this study we will be introducing a system to detect anomalies in data
from several different sensor sources, with the aim to answer the question
of whether a machine learning system paired with environmental data can
help to allow elderly and vulnerable people to live at home, without the need
of constant care. We will be analysing and utilising sensor data from two
properties provided by our partner company Safehouse.

Several different machine learning algorithms will be compared to identify
which provides the most effective and reliable results for our stated goals. The
algorithms tested will be identified through the use of relevant related works.

This study will be focusing on detecting anomalies. According to the
Cambridge Dictionary an anomaly is defined as ‘a person or thing that is
different from what is usual, or not in agreement with something else and
therefore not satisfactory’. For the sake of this study an anomaly is perceived
as any value received from a sensor that is out of the ordinary range for that
sensor in the specific time period. These points will then be evaluated by the
experts at Safehouse to ensure that expected anomalies are being detected,
and that potential false positives are ignored. With their help the system
will be refined until a good degree of accuracy is achieved.
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Machine learning was deemed necessary for this study due to the poten-
tial limitations of traditional data analysis and anomaly detection. Machine
learning is good at working with large data sets when compared to an indi-
vidual manually sorting through this data. (Zhou et al. 2017), (L. Wang, G.
Wang, and Alexander 2015). In particular machine learning can be used in
order to detect patterns and trends that would be missed by a non machine
learning algorithm.

Prediction will be used in order to find what the expected value for the
sensors will be at a specific time. This is important for obtaining a base value
to compare the actual value of the sensors against when attempting to detect
anomalies. The accuracy of the machine learning model used will dictate how
accurate the expected value for these sensors will be at a given time, helping
to ensure that the anomalies detected are genuine. While an average value for
these sensors could be predicted without using machine learning, the use of
machine learning should allow us to more accurately predict the future values
for these sensors. This type of future prediction is regularly used in other
markets, such as the stock market where it is used in order to decide when
to buy and sell stocks. (Patel et al. 2015) (Shen, Jiang, and Zhang n.d.).
This is achieved by monitoring the values of stocks over time and detecting
any trends and inconsistencies. While this paper is focused on sensor data,
rather than stock value, the concepts behind either methods are applicable
in both situations, as we are aiming to detect differences in a single value
over time.

One of the most important aspects of the design of the system is how well
it is able to convey information to the user. To achieve this a bespoke user
interface will be designed that allows for the user to choose and customise
what information is presented, and how. The interface will be designed to
allow the user to see at a glance which anomalies have been detected, as well
as allowing them to gain more insight into why they occurred by displaying
a timeline of events.

In this study we suggest a potential system that would help to allow
elderly, and otherwise vulnerable, people to live alone. This will be through
the implementation of an anomaly detection application that can act as an
early warning system for carers. Allowing the vulnerable person to be left
alone, unless the system detects there is a reason for the carer to intervene.
To achieve this we aim to address several key research questions.

• Can environmental sensors be used in combination with automatic re-
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mote monitoring to allow vulnerable people to live alone?

• Can machine learning be used on environmental sensors in order to
detect anomalies in human behaviour?

• Does a combination of different sensor types provide more accurate
anomaly detection results than a single sensor solution?

• Can a system be designed to provide this information in an easy to
read way?

• What is the most effective machine learning model for detecting anoma-
lies in sensor data?

This thesis will be separated into sections in order to attempt to answer
these questions.

INTRODUCTION: Introduction to the study, and the main motivations
for doing this work.

METHODOLOGY: Details the concepts and techniques that were used
in this study and provides background on some of the key terms used in this
paper.

RELATEDWORKS: Describes the solutions currently existing for similar
problems, and what information is relevant and applicable to the research
being done in this paper.

EXPERIMENT SETUP: Discussion of the problems that we aim to fix in
detail. This section will also take into account the considerations that were
made to ensure the study was fair and successful.

MODEL COMPARISON: Taking the models that were identified in the
related works and testing them on the different properties and their sensors.
Models will be compared to find out which performs the most effectively on
our data. This will start with a comparison of the different configurations for
each of the models. The ideal configurations of the models are then compared
against each other on several different criteria in order to decide which model
is the best under perfect circumstances.

ANOMALYDETECTIONWITH SINGLE ANDMULTIPLE SENSORS:
Details what is considered an anomaly by the system. We will also discuss
how the system is able to detects anomalies, as well as the results of using
the system on the key sensors for both properties.
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ANOMALY DETECTION WITH ADDITIONAL PARAMETERS: Im-
plementation of the features suggested by our industry partners, and the
testing results of combination sensors in the system. The results of each of
these on the different sensors will be compared to determine in which cases
these extra parameters are worthwhile.

USER INTERFACE: Covers the considerations taken to display data in
a clear and concise way. We will also discuss how the feedback from our
industry partner helped to shape the final design.

DISCUSSION: An evaluation and discussion of the work that has been
done and the limitations that had an impact on the results of our study.
Details of how the study could be improved given extra time and resources.

CONCLUSION: Final conclusions on whether the system was able to
achieve the goals that were set out in this introduction.
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4 Methodology

4.1 Background

This subsection will cover the knowledge needed in order to understand the
rest of this paper. We assume that the reader has a basic understanding of
programming and machine learning before beginning.

4.1.1 Machine Learning

This section will briefly explain some of the machine learning terms that are
used in this study.

Time Series Prediction Time series prediction is the process of using
historic data in order to predict future values. Time series prediction will be
used to map the expected future values for the different sensors.

Univariate and Multivariate Univariate is a term that describes data
that only has a single characteristic. An example of univariate data in this
study is the readings that come from a single sensor, such as the temperature
over time.

Multivariate differs from univariate as it data with multiple characteris-
tics. We will be using this type of data when utilising combined data sources
such as those coming from multiple sensor types.

ANN Artificial neural networks are designed to artificially simulate the
neurons of a brain. They are made up of several nodes that are put together
to match the structure of a brain. ANNs are made up of input and output
layers, as well as several hidden layers that act to change the input into data
that can be used by the output layer.

ANNs excel in situations where there is a large amount of data that needs
to be monitored to find patterns. Through the use of ANNs complex patterns
that would be impossible for single individuals to find through conventional
means can be found.

There are several different types of ANNs, however for the sake of this
study we will be looking at only one type of ANN known as a recurrent neural
networks.

RNN Recurrent neural networks are a type of ANN with specific proper-
ties that make them particularly suited for learning and predicting on com-
plex data.

Like other types of ANNs, RNNs take in training data to learn. This
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training data is a sample of a representative data set that is similar to the
data the model will eventually be used on. In many cases this training data
is made up of a portion of real world data.

Unlike other types of ANNs, RNNs have a temporal dimension, and as
such take into account the order and sequence of data. This is important
when trying to learn time series data, which is important for the purpose of
this study.

4.2 Machine Learning Models

Several different machine learning methods will be tested in this paper. As
will be discussed in the section 5.3 of this paper, these were the models that
were successful in other papers with similar scenarios. The details on how
these models work are provided below.

4.2.1 LSTM

LSTM, which stands for Long Short Term Memory, is a type of recurrent
neural network that recognises patterns in data. Unlike other neural net-
works, LSTM takes into account the time and sequence of data, making it
particularly suited for making forecasts on time series data.

This paper will primarily be looking at univariate LSTM models, however
later tests will be performed using multiple sensors and will therefore need
to use multivariate models. In a univariate model only a single variable is
used as an input, here the variable would be the data from a single sensor.
Multivariate models on the other hand takes multiple variables as an input.

The implementation in this study was created using the Keras library
with a TensorFlow back end. This is the standard method for implementing
machine learning models using the Python programming language. Both
Keras and TensorFlow are the leading standard for implementing machine
learning and are used by several industry leaders, such as Airbnb, Intel,
Twitter and Google.

4.2.2 AutoEncoder

An AutoEncoder will be tested for its ability to make predictions and detect
anomalies. This system works differently than the other time series machine
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learning methods as it’s not attempting to predict the future, instead at-
tempting to recreate the input provided based on past data. We will then be
assessing how well the autoencoder’s predictions matched up with the actual
results coming from the real data from the sensors.

The autoencoder receives an input and attempts to learn and recreate
that input as accurately as possible. To help with this process, LSTM layers
are used by the model to capture the importance of the sequentiality of the
data that is used as an input to the model. Using LSTM layers should
dramatically increase the accuracy of the model in this instance.

4.2.3 ARIMA

Auto Regressive Integrated Moving Average, also known as ARIMA, is a
generalisation of time series data that can be used to predict future values
by using past data. It is generally accepted that any non random time
series data can be modeled using ARIMA, with varying degrees of success
depending on how much of a pattern is present within the data. While
standard ARIMA is non seasonal, the results of the ARIMA model can be
improved in data sets where there is some seasonality by utilising Seasonal
Auto Regressive Integrated Moving Average (SARIMA).

ARIMA is made up of three terms, p, d and q. P is the lag order, d is
the degree of differencing, and q is the order of moving average. Generally
these three properties are adjusted in order to find the ideal performance for
a given time series data set. However, we will be utilising a utility known as
Auto ARIMA that automatically tests the different potential models to find
the ideal fit for the data. For the sake of this study the Pyramid ARIMA
library’s implementation of Auto ARIMA will be used.

4.3 Measuring Model Accuracy

In order to ensure that the models being used are suitable for the different
sensors they will first need to be evaluated. Several different methods have
been used in order to assess the accuracy of these models in different situa-
tions. As we have access to experts in this field, we will also be using their
advice and guidance to fine tune the models. The methods described here
were chosen based on the papers found and discussed in the related works
section 5.

7



4.3.1 MAE

Mean Absolute Error (MAE) is a measure of the error between the actual
value and the value predicted by the model. It is the average of the absolute
errors.

This method of measuring model accuracy is regularly used, as shown
by our related works research in section 5.4, and can be applied on each
of the prediction models. MAE is particularly well suited as a standard
measurement method as it purely describes the average error. The issue
with MAE is that it is using the absolute values which can be problematic in
some cases, particularly when attempting to compare the results of multiple
sensors.

4.3.2 RMSE

Root mean squared error (RMSE) is the average amount of error in the
model’s predictions in comparison to the actual values in the data set. In
general, a lower RMSE value is considered better, as this indicates that the
average amount of error in the model’s predictions are low.

RMSE is dependent on the type of units being measured, therefore it
can be difficult to compare the RMSE of models on different data sets. For
example in temperature a few degrees change would be large, while in a
sensor like light, a change of a few lux is not significant.

One method of evaluating the RMSE is to compare it with the standard
deviation of the data. This will provide a baseline for how well the model
is learning, in comparison to the average amount of difference between the
different points in the data set. A model with a lower RMSE than the data
sets standard deviation is learning from the data and performing positively,
while a higher RMSE indicates a problem with the training model.

4.3.3 R2

R-squared, or R2, is a measurement that describes how much of the data
variance can be explained by independent variables in the regression model.
Unlike RMSE, R2 is not dependent on the type of unit being measured. For
this reason it is possible to measure and compare multiple models against
each other effectively by using the R2 score.

When measuring R2, a value closer to 1 is generally better. Due to the
randomness of human behaviour, this may not always indicate that this is
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the best model however.

4.3.4 Expert Feedback

As a lot of the metrics used to measure model accuracy are subjective, many
of the judgements will be made based on the expertise of our partner com-
pany, Safehouse. They have several years of experience in the field and have
been able to advise us on how effective they believe the model has been at
any given time.

Throughout the project weekly meetings with the Safehouse team have
been held. During these meetings the progress that had been done on the
model implementation and user interface was shown to the attending team
members. Generally these team members would include the CEO of Safe-
house, a product specialist and a software engineer. This range of experiences
helped to ensure that the feedback provided was relevant to every section of
the project. The product specialist was particularly knowledgeable about
the sensors and their real world implementations. The feedback we received
from the team was entirely qualitative. This is due to how subjective the
measurement of how well the system performed was, requiring us to rely on
the judgement of these experts.

Because we have been showing the user-facing side of the application,
the team at Safehouse have had several opportunities to view the visualised
data. Here they have been able to observe how the data has changed over
time, and at which points exactly anomalies have been detected. This makes
it easier for the team to give feedback on how the system has performed.

4.4 Model Comparisons

In the model comparison section we will be aiming to find out which of the
identified models is best suited to the task of accurately detecting anomalies
in the data set. To achieve this we will be measuring the accuracy of each of
the models under different conditions and with different configurations. Once
the ideal configurations have been found the 3 models will also be compared
against each other under realistic conditions to decide on the best fit for the
project.

Each of the models will be compared and their results analysed to discover
their strengths and weaknesses. In order to ensure that the tests performed
are fair to the different model architectures, preliminary steps are taken.
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These measures will differ between the models as they all have different
requirements for being effectively tested.

Before comparing models against each other the model architectures need
to be tuned and optimised to provide the best possible results independently.
To achieve this each of the models will go through several rounds of testing
wherein their configurations will be changed and adjusted until the best
model architecture is found for the test data set.

4.4.1 LSTM

Due to variance in results when training LSTM models, several repeats of the
model training and testing are needed for this model to obtain an accurate
idea of the results of using this model on the available data sets. In this
study the combined average of 10 repeats will be used in order to assess this
model. This will provide an average assessment for the error rates that the
model provides when tested on the data set. A repeat in this instance is
running the model on the same data with the same configurations multiple
times.

Different configurations of this model will be tested in order to find the
best suited for the data sets that we have. There are two key components
of the LSTM configuration that can be modified to obtain better results,
namely the batch size and number of epochs. The batch size is the number
of training samples used in each pass through of the data during the training
stage, while epochs are the number of times that the model passes over the
entire training data set during training. Adjusting these parameters can have
a large impact on the performance of the model. These configurations will
then be measured using the methods outlined above, these are the RMSE
and R2.

Once the model configuration has been decided upon the expert feedback
will be taken into account to evaluate the effectiveness of the model. We
choose not to involve them in the earliest stages as the different model con-
figurations can be easily compared against each other with little worry that
the results may not be representative of the models performance.

4.4.2 AutoEncoder

The AutoEncoder is the most simple to assess as no repeats are needed. As
an LSTM layer is being implemented, different configurations of this setting
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will be tested to find the best AutoEncoder model for the data sets. These
configurations will be assessed in the same way as the standard LSTM model,
with feedback from our experts once the final configuration has been selected
and testing done.

4.4.3 ARIMA

Auto ARIMA will automatically select the best model based on the AIC and
BIC scores of each possible model configuration. For this reason experimen-
tation with different ARIMA configurations is not necessary. Preliminary
testing showed that seasonal ARIMA performed better than non seasonal
ARIMA by a significant degree. Therefore all of the tests performed in this
study will be using a seasonal auto ARIMA model.

4.5 Anomaly Detection

Once the models have been sufficiently trained we will then use a threshold
system in order to detect anomalies in the data of each of the sensors. This
will be done by first comparing the expected values provided by our predic-
tions and comparing them against the actual values from the sensors. These
difference between these values will then be compared with the threshold
system to decide whether they should be detected as an anomaly, and how
severe they are as an anomaly.

We will primarily be relying on the expert feedback from our partners in
the Safehouse team in order to judge how successful our anomaly detection
system is. This consists of regular meetings where the team can view the
system and any anomalies that have been categorised. Using their expert
knowledge they can then judge whether all of the expected anomalies have
been detected, and how to tune the model further in order to get the desired
results for later meetings.

4.6 User Interface

The interface of our system is also an important factor to consider. As with
the anomaly detection we will primarily rely upon the feedback provided
by the team at Safehouse. During the regularly scheduled meetings the user
interface, including prototypes, will be shown to the team to gather feedback.
The interface will then be molded around the feedback that they provide in
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each session in order to ensure that the system conveys information in an
effective and fluent manner.
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5 Related Works

We will discuss the relevant works that have been conducted on similar ques-
tions as our own. These will be split into sections depending on what material
from these papers are relevant to our study.

5.1 Similar Papers

While there exist several other similar papers to this study, there are several
key differences that differentiate this work from others. One of the most
unique factors of this study is the type of data that is being collected, and the
hands off approach that was taken when gathering this data. A unique range
of sensors was installed within the properties, providing us with a variety of
different environmental data. This differs significantly from other papers that
have primarily focused on data received directly from the participant either
through wearables (Zhu, Sheng, and Liu 2015) or through monitoring their
actions directly using cameras (Deep et al. 2020) or RFID (Hsu and Chen
2010). This has a significant limitation in that the person is always aware that
they are being monitored and may need to make alterations to their lifestyle
to accommodate these extra sensors. Our approach to data gathering aims
to be unobtrusive and considerate for the people living within the properties.
This has already proved to be an important factor for technology acceptance
by older people (Novák, Biňas, and Jakab 2012).

Unlike other papers, such as (Aran et al. 2016), we are not focusing on
anomaly classification. This was not possible due to the unobtrusive nature
of this study as in order to classify sensor readings we would need to keep
a detailed diary of the properties being monitored. Instead we are choosing
to simply focus on identifying potential anomalies in the data, leaving the
classification to the experts later on.

Other studies in this field have chosen to hone in on participants with
specific illnesses, such as (Arifoglu and Bouchachia 2017) and (Lotfi et al.
2012) that chose to focus on participants suffering with dementia, allowing
them to tailor their study to focus on detecting known behaviours. One such
behaviour (Arifoglu and Bouchachia 2017) chose to look for was the partici-
pant “forgetting and repeating activities”. This allowed for those studies to
be tailored to find a specific problem. This is not the case in this study as
we are not focusing on a specific debilitating condition, instead we aim for
this system to be applicable to all elderly or vulnerable persons.
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One of the things that wasn’t present in any of the studies currently
available is how information is presented to a caregiver once an anomaly
is detected. We believe that this is an important step of the process as
information needs to be clearly conveyed to a carer for them to react. For
this reason we will be discussing this in section 10 of this paper.

5.2 Living Alone

There are many challenges that the elderly and otherwise vulnerable people
face due to living alone. While not all of these people require a constant
carer, they may still feel the impact of being alone for long periods. These
can include increased feelings of isolation, depression and suicidal thoughts
as shown by (Fukunaga et al. 2012), (Dean et al. 2016) and (Yeh and Lo
2004). In the event that they are able to obtain a carer this can regularly
be in the form of a family member who may not always be equipped to deal
with caring for a vulnerable person. This can have a negative impact on both
their, and the person receiving care’s quality of life. (Living longer - Office
for National Statistics n.d.)

5.3 Time Series Forecasting

In past studies different algorithms have been used to create future forecasts
of time series data. Of those algorithms machine learning models performed
particularly well for this task, with various Long Short Term Memory(LSTM)
and Auto Regressive Integrated Moving Average(ARIMA) variations proving
particularly popular and effective. Comparisons of these algorithms for time
series prediction have had mixed results, with algorithms performing well in
specific circumstances, but failing in others. This is generally due to several
key factors, such as the type of data used in the study, or the amount of
training data available.

A comparison of ARIMA and LSTM by (Siami-Namini, Tavakoli, and
Siami Namin 2019) found that “deep learning-based algorithms such as LSTM
outperform traditional-based algorithms such as ARIMA model.” With an
average error rate reduction of between 84% and 87% when compared to a
standard ARIMA algorithm. Indicating that the LSTM algorithm was vastly
superior to ARIMA when forecasting future data. This was contradicted
however by a study attempting to predict future Bitcoin prices (Yamak, Yu-
jian, and Gadosey 2019), as they found that ARIMA gave better results than
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the two deep learning regression models that they tested. They also found
that another model, GRU, outperformed LSTM in their tests. While not
directly comparable to our study, predicting the future value of bitcoins are
similar to sensor readings as they are both individual numerical values that
change over time.

In a study by (Siami-Namini, Tavakoli, and Siami Namin 2019) they
found that changing the number of epochs in the LSTM model did not af-
fect the model results in a significant way, instead it was found that the
model forecasts exhibited a “truly random behaviour”. This indicates that
attempting to tune the model for more accurate forecasts has no bearing on
the actual effectiveness of the system. Instead more importance should be
placed in training the model on a representative and sufficiently large subset
of the complete data set.

Other comparisons with ARIMA have also been made. (Kohzadi et al.
1996) compared ARIMA with a feed forward neural network for forecasting
the commodity prices of cattle and wheat between 1950 and 1990. They
found that the neural network was able to perform significantly better than
the ARIMA equivalent in all measurement categories used, namely MSE,
MAE and MAPE. It was also found that while ARIMA was only able to
detect sharp changes in the wheat data, the neural network was able to
detect changes in both wheat and cattle, suggesting that the model is ”not
problem specific” and would also be effective for predicting other data types,
such as stock prices.

The study by (Khashei and Bijari 2011) attempted to use a hybrid ap-
proach of combining ARIMA with artificial neural networks in order to over-
come the usual limitations of ANNs and to increase the accuracy of their
own predictions. On the three readily available data sets that they tested
on, it was found that the proposed hybrid model worked effectively and was
able to enhance the results found in comparison to using components of the
model separately. While (Hosseini and Sarrafzadeh 2019) used clustering,
along side an LSTM autoecoder, to predict negative health events before
they happened. They were able to predict anomalies in the health of in-
fants with relatively high success, and suggested that their approach could
be viable for identifying health events in other instances.

While the majority of the time series studies here focused on univariate
data, some, such as (Sagheer and Kotb 2019) opted to use multivariate data
for their predictions. This suggested method proved to perform better than
alternative univariatie models tested in other papers.

15



From the research done here we can see that no single model solution
performed better than the others in every instance. Of the papers tested
both LSTM and ARIMA appeared to be particularly effective for time se-
ries prediction, for this reason these will be the models we look at going
forward. While the majority of work done was using univariate data, the
paper by (Sagheer and Kotb 2019) indicated that multivariate solutions are
a worthwhile method to be explored.

5.4 Model Accuracy

Several different methods have proven effective for measuring the accuracy
of the models once they have been implemented. Popular methods include
Root Mean Square Error(RMSE), Mean Absolute Error(MAE), Mean Abso-
lute Percentage Error(MAPE), Mean Absolute Squared Error(MASE), Root
Mean Absolute Error(RMAE) and Coefficient of Determination(R2). For the
purpose of this study we will be using the methods that prove to perform
consistently in similar use cases as our own.

MAE proved to be one of the most popular methods of measuring model
accuracy. However (Willmott and Matsuura 2005) found that MAE was
an unambiguous and natural measure of average error. In comparison they
found that RMSE was highly ineffective as a measurement metric because
they found ”no consistent functional relationship between RMSE and aver-
age error” and that there is no clear interpretation of it as a measurement.
On the other hand (Chai and Draxler 2014) suggested that the RMSE is not
ambiguous in meaning, contradicting several other papers that came before
it. They found that when the error distribution for a model is expected to
be Gaussian that RMSE was a more appropriate method of evaluating per-
formance that MAE, despite the fact that many other researchers appear to
favour MAE over RMSE. Overall they found that while RMSE is a more
accurate measure of performance under certain circumstances, that a com-
bined approach of multiple different measurement metrics are needed to get
an accurate estimate of a model’s performance.

Alternatives to using the standard MAE were also suggested. One such
metric used in several papers was the MAPE, or Mean Absolute Percentage
Error. Unlike MAE this provides a relative estimate of the amount of error
between the actual value and the prediction, (Myttenaere et al. 2016) found
that this was a feasible measurement method.

Another suggestions was the use of a dynamic mean absolute error, DMAE,
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as a measurement system. As suggested by (Fŕıas-Paredes et al. 2018) this
dynamic solution would attempt to account for both temporal and abso-
lute error components. They found that their dynamic solution, paired with
the standard MAE, provided a deeper and more accurate estimation of the
performance of a models ability to estimate future time series data.

The paper by (Hyndman and Koehler 2006) compared several different
forecast measurement methods. Their study suggested that scaled errors
should become the standard measure for forecast accuracy. Particularly in
cases where the data is of a very different scale they recommended the use of
MASE, mean absolute squared error, to measure the accuracy of the forecast.
They did however recognize that both MAE and MAPE can be useful for
data on a smaller scale as they are significantly easier to explain.

As explored in these research papers we can see that each of these accu-
racy measurement methods have their own advantages, and disadvantages.
As no clear consensus was found on the best measurement system we will
focusing on a combined approach using RMSE, MAE and R2.

5.5 Anomaly Detection

Anomaly detection can be implemented in several ways. The method used
is dictated by what is classified as an anomaly, as well as the type of data
that is being predicted.

One of the main methods of anomaly detection is to look for outliers in
the data, that is points that don’t match the general pattern of the rest of the
data set. The most obvious outliers are usually the highest and lowest points
in the dataset, however through the use of machine learning, among other
techniques, outliers that do not appear to deviate as much can be detected.
In time series data these may be points that are vastly different than usual
for a specific time of day.

The paper by (Kieu et al. 2019) recommended an ensemble auto encoder
solution in order to reduce the problems associated with using a single auto
encoder, primarily the issue of the autoencoders being overfitted to outliers.

5.6 Sensors

In this study a range of different sensors will be used. A suite of custom
environmental sensors provided by our partner company Safehouse will be
the main focus of the study. While this exact configuration of sensors has not
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been seen in other studies, there are multiple cases of similar set ups being
used and analysed in different scenarios, with some studies focusing on similar
problems requiring time series prediction, as well as anomaly detection.

Our study required us to use properties with custom sensors installed,
however other studies have used existing infrastructure. (Yassine, Singh, and
Alamri 2017) chose to utilise the readings of already present smart meters to
detect activity, while (Tsukiyama 2015) focused on whether the participant
was using a normal amount of water. While other papers have chosen to in-
stall their own unique sensors, such as (Nishida et al. 2016) which attempted
to detect how well elderly people are able to get around their house through
the use of a handrail grip sensor.

In the study by (Van Kasteren, Englebienne, and Kröse 2010), they used
a comprehensive suite of environmental sensors connected to a single network
node. Temperature sensors, reed switches, pressure pads and infrared were
used in order to monitor the participants activity in the home. The use of
wireless, battery powered, sensors allowed them to conveniently install the
sensors around the property in unobtrusive locations.

While we are not intending to monitor the participants location, several
studies including (Ahmad and Mohan 2009), (Hsu and Chen 2010), (Wu
2012) opted to use RFID tags in order to find out where the participant was
moving around the house. The majority of these studies focused on the user
carrying around an RFID tag, or sensor, and measuring which other tags
they came into contact with. They found that the RFID tags were small
enough to be unobtrusive to the participants, resulting in no resistance from
the participant.
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6 Experiment Setup

6.1 Description

The primary purpose of this study is to design and implement a system
that utilises machine learning in order to detect anomalies in the behaviour
of elderly or otherwise residents. To create the most effective system three
different models will be tested. LSTM and ARIMA models will be used for
time series prediction, while an LSTM auto encoder will be used in order
to recreate the time series data that is provided to it. The advantages and
disadvantages of each of these three will be compared against each other in
order to decide which is the most suitable for the task at hand. Refinement
of these results will be achieved by implementing extra parameters. This will
cut down on the number of potential false positives and give further insight
into why they occurred.

6.2 Partner Company

Safehouse are a company that specialise in providing sensors for the pur-
pose of monitoring properties, particularly those occupied by vulnerable peo-
ple. They already have several properties setup with various different sensor
types, and they will be providing the data used in this study. Several mem-
bers of the team assisted us with this project. This included the CEO and
other members of the team, such as the project specialist and software engi-
neer, who have extensive technical knowledge, and experience with using the
sensors that have been provided.

6.3 Setup

Two properties are being monitored for the purpose of this research. These
properties have several different sensors installed, with a wide range of envi-
ronmental monitoring abilities. Three different types of environmental sen-
sors have been installed in the two properties. Each of these sensors have
different purposes, and will provide relevant information for the rooms that
they are based within.

This study will be using a mixture of main and battery powered wireless
sensors. The main benefit of the battery powered sensors over mains powered
is that they can be installed in unobtrusive locations, such as hidden on walls.
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These low powered devices will also be able to last the duration of the study
without requiring a battery change.

6.4 Environmental Sensors

6.4.1 Safehouse Hub

Figure 1: Safehouse hub

The Safehouse hub sensor acts as the main access point to the network.
This sensor’s primary purpose is to report the results of the other sensors
back to the Safehouse database to be collected for this study. This is a mains
powered sensor that will be located in a central location in the properties.

While this sensor is able to monitor some basic readings, because of the
improved accuracy of the USB and motion sensors, we will be using those
sensors where possible, with the hub acting as a backup in the event that
one of those other sensors fails or runs out of battery.
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6.4.2 Safehouse USB

Figure 2: Safehouse USB

The primary sensor being used in the two properties living rooms is the
Safehouse USB sensor. This is the smallest of the sensors that will be used,
but is also the most accurate in the data that it gathers. Like the hub, this
sensor needs to be plugged directly into the properties mains, and will need
to be placed in a convenient location for the user.

One benefit of this sensor is its storage capacity. The USB sensor is able
to store several months worth of data internally, reducing the risk of losing
data due to a power outage, or in the event that the main hub is not able
to deliver data back to the main hub for any reason. Each of the sensors
associated with this device transmit their readings every 30 minutes.

Sensor Measurement Purpose
Temperature Degrees Temperature comfort of the room
Humidity Percentage Humidity comfort of the room
Light Lux How bright the room is

Air-Pressure Pascals Pressure in the room
Noise Decibels How much noise has been recorded
VOC Parts Per Million (ppm) VOC particles in the air
ECO2 ppm CO2 levels in the room.

Table 1: Table of the data tracked by the Safehouse USB Sensor
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6.4.3 PIR Sensor

Figure 3: Safehouse PIR

We will also be using a more specialised sensor for our study, the passive
infrared (PIR) sensor. This sensor works in the same way to the basic hub
sensor, with several extra features that are available due to the PIR camera
that has been built into this device. The unique benefit of the PIR is the
ability to track motion within its range of sight.

The PIR sensor works by measuring infrared light emitting from objects
in its proximity. PIR sensors give a general idea of how many times an object
has passed by it, but is unable to detect what that image may be. For that
reason this sensor can only be used to track the number of times that an
occupant has moved past the sensor. The device will record the number of
times that the PIR sensor detected movement within the space of an hour
and report that back with the rest of the results.

One of the limitations of the PIR sensor is that it is unable to differentiate
between the different things that may activate it. In houses with multiple
occupants, or pets, this may cause issues as each of them would trigger the
sensor. While we cannot control whether guests trigger the sensor, to reduce
the chance of pets activating the sensor they will be placed at the occupants
chest height, allowing animals to walk below the beam without setting it off.
For the sake of this study we will be assuming that only the occupant of each
property is triggering the PIR sensor.

This device is battery powered and unlike the other sensors used is not
directly linked to the mains supply. However because the battery is tested to
last several years on low power mode it will not run out during the duration
of this study. The main advantage of this is that the sensor is not limited
in install location by where it can be plugged in, particularly important as
these sensors need to be located where they’re most likely to detect only the
occupants movement.

The Safehouse team opted to install these sensors at chest level and near
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the entrance of the rooms. This would ensure that the sensors detect the
occupant as they move into and leave a room, while remaining out of sight.

Time Frame Hourly
Temperature Degrees
Humidity Percentage
Light Lux

Air-Pressure Pascals

Table 2: Table of the data tracked by the Safehouse PIR Sensor
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6.5 Data Reporting

Data is gathered from the environmental sensors at regular intervals where
they report all data back to the Safehouse central database. This reporting
is kept consistent as all of these sensors are kept in a static location and are
connected to a local network through a central hub sensor. In the event that
the hub sensor is unable to transmit for any reason, a notification is provided
to the Safehouse team who can then work to resolve the issue.

The environmental hub sensors contained within the properties report
back to the main database once every hour. However the separate environ-
mental sensors themselves report at different intervals, ranging from every
20 minutes to hourly.

A method of preventing data loss is also present, as many of the sensors
are outfitted with local storage systems that can be used to recover data that
would normally be lost in the event of them failing to transmit.

Data is pulled from the central Safehouse server every hour through the
use of an API. Once processed, this data is then used to update a Mongo
database stored on Mongo Atlas. Mongodb was chosen as the database
storage method as it is highly scalable and can handle the ever increasing
amount of data that is passed to it. The database is hosted on the cloud
through Atlas with backups hosted on multiple server providers, ensuring
that the database has a high rate of availability.

NoSQL was chosen as the database as it allows for the type of data being
stored to evolve and change over time. Flexible model updates are one of the
key benefits of NoSQL databases. Allowing for different fields to be added,
or removed, from within different documents in the same collection. This
was particularly important in this instance as different rooms had different
sensor types.

There were also instances early on in the project where the Safehouse
team would install new sensors into the properties, which would require whole
model changes in a regular SQL relational database, but was not necessary
here.

To facilitate the inclusion of sunrise and sunset data into the system the
‘sunrise-sunset.org’ API is being used. This provides the sunrise and sunset
data for each day in the participants location. This level of accuracy helps to
determine which anomalies detected were in the day and which were in the
night, which can be important for assessing the severity of certain anomalies.
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6.6 Participants

This study is primarily focusing on users of a similar age range who live
alone, but no specific health conditions are being looked for. For this rea-
son the specific conditions seen elsewhere such as (Arifoglu and Bouchachia
2017),(Lotfi et al. 2012),(Arifoglu and Bouchachia 2017) were not necessary
for our study. Instead we will be monitoring the properties of two elderly
patients with no significant health conditions.

6.7 Property Map

The layout of the property being monitored, as well as the sensor placements
appeared to have a drastic effect on the quality of data. (Aran et al. 2016)
found that they had much more accurate results by making sure that their
sensors were working correctly, and that they were placed in appropriate
locations in the property. (Rabiner and Juang 1986) corroborated this as
they found that the layout of houses had a large impact on the system’s
results, and that using raw sensor data could result in inconsistent results

An aim of the sensors is to be as unobtrusive to the occupant as possible.
To achieve this the sensors have been carefully placed in locations where
they won’t be in clear sight, while ensuring that they’re still in the optimal
location to accurately detecting their environment.

The exact placements of the sensors was decided by the team at Safehouse.
Their expertise allowing them to place the sensors in the locations that would
provide the most accurate data, while remaining out of the occupants sight.

Figure 4: Floor Plan Key
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Figure 5: Property 1 Ground Floor plan

Figure 6: Property 1 First Floor plan
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Figure 7: Property 2 Ground Floor plan
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7 Model Comparison

In this section we will be displaying the results of utilising the various machine
learning models on the data set that is available. We will first test the
differences that different configurations have on the models, and then we will
use these tuned models on the individual sensors.

7.1 Model Consideration

Several methods for detecting anomalies in the data sets have been con-
sidered. As no clear consensus was achieved as to the ideal model in the
related works section 5.3, a mixture of model types will be used to identify
the best fit for our situation. The three most prominent methods identified
for time series prediction were LSTM, ARIMA and AutoEncoder. Each of
these models have their own distinct advantages and disadvantages that will
be explored and assessed.

These models were selected due to their prevalence in similar works, as
discussed in section 5.1 and 5.3. Past studies (Siami-Namini, Tavakoli, and
Siami Namin 2019), parenciteYamak2019AForecasting, (Kohzadi et al. 1996)
have shown the effectiveness of LSTM and ARIMA for predicting future time
series data. ARIMA also provides a good base line performance that the
models will need to be able to exceed to demonstrate their effectiveness.

As this study will be attempting to detect anomalies in the data an Au-
toEncoder solution is also being tested. This model will include an LSTM
layer, and as such should receive some of the advantages of using LSTM to
forecast future data.
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7.2 Data

Figure 8: Property 1 Bluetooth data
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Figure 9: Property 2 Bluetooth data
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The data consists of several anonymous data sets from two different prop-
erties. These data sets have been provided by the team at Safehouse and are
stored in a secure MongoDB database.

While the data sets for the two properties were similar, they were not
identical due to limitations related to data gathering early in the project,
particularly due to the difficulty in procuring the required sensors at the
beginning of the project. This led to a delay in sensor installation and the
eventual decision to install one less PIR sensor in property 2.

Where possible the Bluetooth sensors in the living rooms were used for
testing the system, as these had the highest accuracy for the data that we
were recording. Before processing both property 1 and 2 had Bluetooth
living room data records between 03/03/2020 and 11/08/2020. Property 1
consisted of 27125 records, while property 2 consisted of 27111. As we wanted
to test the performance of the system on motion data we needed to utilise a
sensor with motion capturing capabilities. To achieve this we used the PIR
sensors located in the kitchens of the two properties.

To keep the data consistent, prior to use in the system the data is first
re-sampled based on computing the mean for a given time frame. While
this is customisable in the interface, the default is to re-sample to the hour.
An hour was chosen as the default value as this would give a good balance
between the number of data points available while remaining a short enough
time frame to remain actionable by a carer.

In the event of gaps in the data set these are filled in with the nearest
following value. This is ideal for sensors such as the temperature and humid-
ity as the variation between two hours should not be large. As can be seen
in the figures 8 and 9 there was one notable gap in the data where this was
needed. This was between the months of May and June where the sensors
were not able to transmit data.

Before being used by the model, each of the data sets will be scaled
using the sklearn StandardScaler. This standardised features by removing
the mean and scaling to unit variance. Scaling helps to prevent larger values
in the data set from having too big of an impact on the training of the model.
Scaling can also be used to allow different features to be compared to each
other, which is useful in multivariate prediction.

Once normalised the data is then split into training and test data. Due
to the limited time of the data capturing period there was only a few months
worth of data to train on. Preliminary testing using a ratio of 9:1 resulted in
there not being a lot of test data to evaluate the models sufficiently. Particu-
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larly as this meant that there was less than a month worth of data available
for testing the model. The results of these preliminary tests can be seen in 58
and 59. For that reason in our primary tests we use 70% of the data set for
training, while the remaining 30% is used for testing, ensuring that there is
enough data to use several months worth for training and testing the model
before it is and applied on the remaining data.

The split on the data was made based on time without random resam-
pling. This was done due to the importance of the data remaining sequential.
The first 70% of the dataset was used for training, while the remaining 30%
was used for testing.

As there are two distinct properties, different models will be trained on
the different data sets available for each of them. This will occur at runtime
of the application to ensure that the results are relevant and kept up to date.
The configuration for these models will be kept the same between properties.

Validation was considered in order to evaluate the performance of the
model, however due to the lack of access to participants it was not possible to
record data for this purpose. This meant that there was no data to compare
the results against, meaning we needed to rely on the measures detailed above
in order to evaluate the system.

Statistic Value
Count 3875
Mean 20.195

Standard Deviation 1.804
Min 15.753
25% 18.993
50% 20.135
75% 21.200
Max 28.897

Table 3: Property 1 Living Room Temperature Test Data
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Statistic Value
Count 3875
Mean 56.240

Standard Deviation 8.436
Min 32.120
25% 50.203
50% 56.133
75% 61.900
Max 81.383

Table 4: Property 1 Living Room Humidity Test Data

Statistic Value
Count 3875
Mean 19.148

Standard Deviation 23.216
Min 0
25% 0
50% 10.333
75% 34.500
Max 124.333

Table 5: Property 1 Living Room Light Test Data

Statistic Value
Count 4548
Mean 11.924

Standard Deviation 13.920
Min 0
25% 0
50% 8
75% 18
Max 113

Table 6: Property 1 Kitchen Motion Test Data
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Statistic Value
Count 3873
Mean 20.942

Standard Deviation 2.230
Min 13.195
25% 19.665
50% 20.970
75% 22.260
Max 29.050

Table 7: Property 2 Living Room Temperature Test Data

Statistic Value
Count 3873
Mean 52

Standard Deviation 7.258
Min 31.65
25% 46.933
50% 51.68
75% 57.41
Max 71.43

Table 8: Property 2 Living Room Humidity Test Data

Statistic Value
Count 3873
Mean 60.658

Standard Deviation 97.005
Min 0
25% 0
50% 17.667
75% 84
Max 678.333

Table 9: Property 2 Living Room Light Test Data
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Statistic Value
Count 3854
Mean 5.632

Standard Deviation 8.694
Min 0
25% 0
50% 1
75% 8
Max 74

Table 10: Property 2 Kitchen Motion Test Data
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7.3 Configurations

The first step for deciding on the ideal model for the data set is to compare
different configurations of the model types in order to find the architectures
that provide the most accurate results. Different models will need to be
modified in several ways to obtain more accurate results. This report will
first be looking at optimising the models used before comparing them against
each other.

During the testing process of the models the same data set will be used.
This is to ensure that the results are kept consistent, and that differences
in the data sets don’t have a positive, or negative, effect on the model’s
accuracy. For example a dataset without much variation over time is more
likely to return more accurate predictions when used by the model, whereas
a dataset with a lot of variation would have the opposite effect.

For this reason the tests were performed on the temperature data from
the living room Bluetooth sensor in the first property. This data was chosen
because it was the largest chunk of data that was available early in the
process that had no noticeable gaps. Temperature was chosen as the test
sensor because it was clear that patterns could be identified in this type
of data, due to the lack of variance in the data, and the peaks and lows
remaining in similar locations each day.

7.3.1 LSTM

Batch Size RMSE R2
64 0.726 0.677
128 0.670 0.722
256 0.608 0.774
500 1.422 -0.264

Table 11: The results of changing the batch size of the model when used on
the Temperature Bluetooth data from the first property

We can use the results of these experiments to decide which of the model
configurations is the best fit for the data set provided. In this instance we
can see that the batch size of 256 provided the lowest RMSE, and R2 closest
to 1, for these reasons it is indisputably the best batch size of those tested.
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Epoch Number RMSE R2
10 0.606 0.774
50 0.523 0.834
75 0.923 0.473
100 0.679 0.708

Table 12: The results of changing the epoch number of the model when used
on the Temperature Bluetooth data from the first property

Similar results were found in the epoch number, where 50 provided the best
results in both categories. In general as the RMSE value became higher the
R2 score for the results were further away from 1. This is because the results
are highly dependent on each other and a higher RMSE would indicate that
the R2 would be worse when repeatably testing the same dataset.

From these experiments we can see that the ideal batch size is 256 and
number of epochs is 50 for the data set that this model was tested on. Further
tuning at a granular level may provide better results on specific data sets,
but for the sake of future tests we will be going with the configuration found
here.
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7.3.2 LSTM AutoEncoder

Batch Size RMSE R2
64 0.123 0.083
128 0.122 0.106
256 0.140 -0.193
500 1.142 -0.215

Table 13: The results of changing the batch size of the model when used on
the Temperature Bluetooth data from the first property

Epoch Number RMSE R2
10 0.134 -0.087
50 0.122 0.106
75 0.122 0.103
100 0.131 -0.031

Table 14: The results of changing the epoch number of the model when used
on the Temperature Bluetooth data from the first property

From these tests we can see that the ideal configuration for the Autoen-
coder is a batch size of 128 and 50 epochs. As these are the two configuration
options with the best relative RMSE and R2 values.
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7.4 Comparison of models

In this section the models will be compared. Their performance will be mea-
sured using their MAE, RMSE and R2 as mentioned above. The amount
of time that it takes for the models to fully compute will also be taken
into account for these tests, as it’s important that the system can be run
in a timely manner. Timings will be measured using Python’s built-in pro-
cess time method. This will measure the amount of time that the processor
spends on each of the tasks, while ignoring time spent unrelated to the pro-
cess. This should provide the most accurate timings for running the system.

7.4.1 Individual Sensor Results

Model Type MAE RMSE R2
AutoEncoder 0.544 0.722 0.060

LSTM 0.176 0.242 0.915
ARIMA 0.610 0.881 -0.208

Table 15: Results for Property 1 Temperature

Model Type AME RMSE R2
AutoEncoder 0.540 0.692 0.056

LSTM 0.083 0.126 0.973
ARIMA 0.566 0.748 -0.009

Table 16: Results for Property 2 Temperature

Model Type MAE RMSE R2
AutoEncoder 0.636 0.858 0.420

LSTM 0.173 0.260 0.947
ARIMA 1.520 1.796 -1.509

Table 17: Results for Property 1 Humidity
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Model Type MAE RMSE R2
AutoEncoder 0.362 0.512 0.463

LSTM 0.106 0.176 0.946
ARIMA 0.567 0.737 -0.061

Table 18: Results for Property 2 Humidity

Model Type MAE RMSE R2
AutoEncoder 0.856 1.212 -0.800

LSTM 0.203 0.388 0.815
ARIMA 0.753 0.894 0.004

Table 19: Results for Property 1 Light

Model Type MAE RMSE R2
AutoEncoder 0.819 1.136 -0.664

LSTM 0.257 0.553 0.622
ARIMA 4.219 4.336 -19.455

Table 20: Results for Property 2 Light

Model Type MAE RMSE R2
AutoEncoder 0.597 0.820 -0.518

LSTM 0.706 0.843 -1.374
ARIMA 0.661 0.756 -0.299

Table 21: Results for Property 1 Motion

Model Type MAE RMSE R2
AutoEncoder 0.548 0.902 -0.115

LSTM 0.321 0.583 0.577
ARIMA 0.716 0.895 -0.071

Table 22: Results for Property 2 Motion
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7.4.2 Time Taken

Model Type Seconds
AutoEncoder 145.953

LSTM 12095.469
ARIMA 5136.531

Table 23: System time taken for the model to process the Bluetooth temper-
ature data for Property 1

The one area that the models differed the most was in the amount of time
it took for the system to process the data. Monitoring only the time that the
process was being run on the CPU showed that the auto encoder was able
to process significantly faster than the other two models.

ARIMA took almost thirty five times longer to run than the Autoencoder
did. While LSTM took even longer, taking more than double the amount
of time that it took for the ARIMA system to finish. This is likely because
the LSTM model needed to be retrained on the new data to remain relevant
each time.

These tests were performed on a top of the line consumer grade CPU, an
AMD Ryzen 9 5950x. In a realistic scenario this system would need to be run
continuously on a less powerful server, which would only serve to increase
the length of the already long run times for the system.

Making the user wait for long periods of time does not provide a good
user experience, and may also result in the user being unable to react quickly
to detected anomalies in cases where the system took to long to finish pro-
cessing.

7.5 Conclusion

From the tests done we can see that the standard LSTM time series predic-
tion model demonstrated the most accurate results when it came to making
predictions using the dataset, followed by the Autoencoder and with Arima
proving the least effective. While the Autoencoder model was significantly
quicker than either of the alternatives in terms of processing time.

The length of time that it took for the LSTM system to finish processing
the data made it an unviable solution for use in a real world scenario, due to
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the expectation that this system would be running on low cost servers with
less powerful hardware than the computer that is being used for testing. This
issue could potentially be circumvented by the use of a powerful cloud server
provided as part of AWS or Microsoft Azure, however this would likely incur
an increased cost which may not be palatable for the potential users of this
system. For these reasons the Autoencoder system is used going forward.
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8 Anomaly Detection With Single and Mul-

tiple Sensors

In this section we will be detailing how the system was designed to detect
anomalies within the data sets, as well as the results of running the system
on each of the different data types.

8.1 Detecting Anomalies

Prior to being used on a sensor’s data set the model is first trained on that
individual sensor’s training data. Once trained the model can then be applied
on the sensors remaining data. This will provide a list of data predictions
based on the data that was fed in.

The output is evaluated by comparing the models predicted values, against
the actual values of the sensor. The error of this comparison is then com-
pared with thresholds in order to decide whether a point is classified as an
anomaly or not. Any values that exceed these thresholds will be classed as
anomalies.

8.2 Thresholds

To decide what the ordinary range should be for a given sensor a threshold
system will be implemented. This threshold will define how different the
actual value is able to be from the predicted value before it is detected as an
anomaly. Two different thresholds are used to decide on the level of severity
for the anomalies that are detected.

If the error rate exceeds the low threshold, but not the high threshold,
the point is considered a low anomaly, while a point that exceeds the high
threshold is considered a high anomaly. A point that does not exceed either
of the thresholds is not considered an anomaly.

Tests were performed with different threshold levels in order to evaluate
which would provide the most effective results. These were performed with
the auto encoder model and served to indicate how many anomalies each
threshold level would classify.

Initially a set value was used as the threshold. The value of 1 was chosen
as the starting value as that would indicate that the prediction was wrong by
a whole unit of whichever sensor was being tracked at the time. This posed
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a problem with sensors that have a large variation. While a change of 1 in
the temperature sensor is relatively significant, in sensors such as humidity
this is not a significant change at all.

Below are the results of testing different solid value thresholds on the
Bluetooth data sets.
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Figure 10: Anomalies detected in Property 1 Bluetooth temperature data
using threshold with high of 1.2 and low of 1
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Figure 11: Anomalies detected in Property 1 Bluetooth temperature data
using threshold with high of 1 and low of 0.8
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Solid Value Identified Anomalies
1.2 27
1 53
0.8 116

Table 24: Identified anomalies in Property 1 temperature data for different
solid value thresholds
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Figure 12: Anomalies detected in Property 1 humidity data using threshold
with high of 1.2 and low of 1
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Figure 13: Anomalies detected in Property 1 humidity data using threshold
with high of 1 and low of 0.8
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Solid Value Identified Anomalies
1.2 74
1 112
0.8 183

Table 25: Identified anomalies in Property 1 humidity for different solid value
thresholds
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After some consideration it was decided to change to percentage measure
for the thresholds. Rather than a set value, a percentage of how much error
is allowed was selected as the threshold. This allows for the same threshold
to be used independent from a specific sensor, ensuring similar results for
each of the different data types in the property.

The percentage measure works by calculating the mean absolute error
rate of the model when used on the training data. This is then considered
the general error rate for the model and is considered a baseline. Thresholds
are selected by finding the value that a specific percentile of the errors in the
training data are within, and then applying that value as a threshold when
the system is used on the actual data.
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Figure 14: Anomalies detected in Property 1 temperature data using thresh-
old with high of 5% and low of 10%

Percentage Value Identified Anomalies
5% 57
10% 86
15% 117
25% 190

Table 26: Table showing identified anomalies in Property 1 temperature for
different percentage value thresholds
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Figure 15: Anomalies detected in Property 1 temperature data using thresh-
old with high of 15% and low of 25%
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Figure 16: Anomalies detected in Property 1 humidity data using threshold
with high of 5% and low of 10%

Percentage Value Identified Anomalies
5% 98
10% 157
15% 214
25% 321

Table 27: Table showing identified anomalies in Property 1 humidity for
different percentage value thresholds
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Figure 17: Anomalies detected in Property 1 humidity data using threshold
with high of 15% and low of 25%
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8.2.1 Threshold Conclusion

From the results above we can see that a percentage based system works
best for creating anomaly thresholds. This allows for the system to adapt
to different data types, without requiring for a user to manually adjust the
system each time.

Using the testing results we decided on default values. It was decided for
the current system to use 5% as a high threshold and 10% as a low threshold,
as according to the Safehouse team these provided the most manageable
number of anomalies.

The percentage of anomalies detected is able to be customised in the user
interface, allowing for the system to be adapted to the users needs. This
allows for the user to modify how strict the thresholds are, thus allowing
the user to classify more or less points as anomalies. This may be useful in
situations where an ”at risk” person is being monitored, as what may be a
minor anomaly for someone else, may indicate a severe problem for them.

8.3 Single Sensor Anomaly Detection

8.3.1 Details

The purpose of the system is to display the high and low anomalies detected
in the properties. The number and location of which will give a good idea of
how effectively the system is able to work on the different properties.

To provide a more objective view of the results the RMSE of using the
system on each of the sensors will be provided. As suggested by other works
(Chai and Draxler 2014), this will provide a more generalised view of how
the system is performing in each instance. The RMSE can also be compared
between the two properties to detect instances where the model performed
more favourably in one property over the other.

Below are the test results of running the generic anomaly detection system
on the different environmental sensor types in the two properties. For the
sake of these tests the LSTM Autoencoder is used, as this was found to
provide consistent results in a short time span.
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8.3.2 Temperature

As can be seen, the system picked up on the largest peaks and drops in this
sensor and identified them as anomalies. At key points, such as on August the
9th, the system was also able to detect where the temperature was beginning
to ascend at an abnormal rate, resulting in a spike.

Of note is that the temperature itself did not change much during the time
period, generally remaining between 20 and 24 degrees, with some peaks and
drops out of this range. Despite this several anomalies were still detected in
the 20 to 24 degree range. Generally this range would be considered safe for
the average property, so while anomalies have been detected they may not
require immediate attention.
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Figure 18: Regular anomaly detection in property 1 temperature
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Figure 19: Regular anomaly detection in property 2 temperature
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8.3.3 Humidity

The charts below also show that several of the highs and lows in the data were
identified as expected. Dips that occurred during the night were regularly
detected by the system, as well as sharp rises such as on July the 29th.
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Figure 20: Regular anomaly detection in property 1 humidity
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Figure 21: Regular anomaly detection in property 2 humidity
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8.3.4 Light

The light sensors showed a similar pattern each day in property 1. Each of
the peaks have been correctly identified as anomalies. This same pattern was
observed in the property 2 with all sharp peaks being identified as anomalies,
while smaller values were generally ignored.

Neither of the properties appear to have much light at night, resulting
in no night anomalies being detected during this time period. The lack of
anomalies due to a lack of light suggests that this same pattern was present
in the data used for training the model.
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Figure 22: Regular anomaly detection in property 1 light
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Figure 23: Regular anomaly detection in property 2 light
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8.3.5 Motion

Unlike the other sensors that use the average for the hour, the motion sensor
detects the total number of times that the sensor detected motion within the
hour, giving a good idea of how much activity was performed in the room.

The majority of anomalies were detected when there was a small amount
of activity, while points where there were high or low spikes did not regis-
ter as anomalies. This can be explained as over time the system will have
encountered a high number of lows and peaks in the data and will learn to
register those points as normal.
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Figure 24: Regular anomaly detection in property 1 motion
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Figure 25: Regular anomaly detection in property 2 motion
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8.4 Combined Anomaly Detection

8.4.1 Method

In order to allow for a multi sensor approach an LSTM Time Series predic-
tion model is being used. This model works similarly to the LSTM system
discussed in this paper till this point, and will use the same parameters. It
takes an input and attempts to predict future readings for that input based
on what has been given to it.

The combined sensor approach uses a multivariate input in order to pre-
dict the future readings for a single primary input. The model takes in a
single primary input, this will be the sensor which the model will attempt
to predict future readings for. Several secondary inputs are also added to
the model, the readings of these sensors will be used in order to attempt to
predict the primary inputs future readings.

As the inputs are all scaled prior to being used by the model, they are all
equally weighed in the system. This stops excessively high readings in one
sensor from negatively affecting the result of the model. This also allows for
sensors that have vastly different reading values to be used together.

The accuracy of this model is dependent on how closely linked the results
of the sensors used as inputs are, as past correlation is being used to detect
the future. As can be seen further on, obvious examples such as temperature
and humidity are very closely linked and can therefore be used in order to
make accurate predictions.

As with the earlier model, anomalies are detected based on how different
the actual future values are in comparison to what was predicted by the
model. Similar thresholds are also in place in order to evaluate anomalies as
either severe or minor.

An extra benefit of this model is that we’re able to see whether the anoma-
lies detected were anomalies because their results were higher or lower than
expected. This is useful as it gives insight as to which way things are chang-
ing and makes it easier to work out what the issue is. For example a reading
that’s lower than expected in the temperature data may indicate a sharp
drop, while a higher temperature than expected may indicate a sharp rise.

8.4.2 Temperature with Humidity

As we can see from the RMSE and R2 score this algorithm was able to
effectively predict the future temperature with a great degree of accuracy.
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Property MAE RMSE R2
Property 1 0.217 0.301 0.928
Property 2 0.141 0.232 0.906

Table 28: Results of utilising a combined approach of temperature with
humidity

An R2 score so close to 1 suggests that the predictions made were very similar
to the actual reading for the model. In general a reading above 0.7 for R2 is
considered very accurate. This accuracy is also shown by the RMSE being
as low as it is. Similar results can be observed in the second property. The
results of running this model on that property were remarkably similar to
the results of the first.

As shown in the charts, the system was able to successfully identify a
large amount of anomalies in the first property. Of note however is that a
couple of major rises were missed by the system. Namely the rise on the 2nd

of August and at the end of the chart on the 13th.
In this aspect the system appears to have done a better job of predicting

anomalies in the second property. Managing to detect all of the highest peaks
as anomalies, however it did miss a couple of the earlier dips.
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Figure 26: Anomaly detection in property 1 temperature supplemented by
humidity
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Figure 27: Anomaly detection in property 2 temperature supplemented by
humidity

When looking at the total number of anomalies in both properties we can
see that the number detected in both was nearly identical.

The notable difference between the two properties is that a near equal
number of positive and negative anomalies were found in property 1, while
property 2 had significantly more positive than negative anomalies. This
may explain why some of the dips were not identified in the second property
chart.
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Type Occurrences
Total Data 607

Total Anomalies 60
Positive Anomalies 31
Negative Anomalies 29

High Positive Anomalies 22
High Negative Anomalies 19

Table 29: All readings in property 1 temperature supplemented with humid-
ity

Type Occurrences
Total Data 607

Total Anomalies 58
Positive Anomalies 45
Negative Anomalies 13

High Positive Anomalies 36
High Negative Anomalies 9

Table 30: All readings in property 2 temperature supplemented with humid-
ity

The RMSE when predicting using multiple sensors was significantly lower
than in the single sensor prediction. The RMSE of using the single sensor
system on temperature was 0.657, in comparison to the 0.295 when using
temperature combined with humidity, giving it an RMSE of less than half
of that when using a single sensor to make predictions. This indicates that
the multi sensor prediction was significantly more accurate than when only
a single sensor was used.

The lower RMSE and R2 so close to 1 also suggest that the temperature
and humidity in the property are very closely linked and can therefore be
used together to more accurately predict future results.

Combining the different types of anomalies gives a total of 60 anomalies
when using the combination of temperature and humidity. In comparison
when detecting anomalies on temperature alone, 81 anomalies were detected.
This increase is likely due to the higher RMSE in the single sensor predic-
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tion, and indicates that some of those detected anomalies are potential false
positives.

In conclusion it would appear that a combination of temperature and
humidity provides more accurate results than when using a single sensor.
This comes with drawbacks however. The most notable of these drawbacks
is that it takes significantly longer to use the system on multiple sensor types.
This is a particularly big problem when we expect to run the system regularly
so as to be able to detect anomalies as they happen. Another drawback is
that a lot more data is required. The data of two relevant sensors is needed
in order to detect these anomalies, whereas the single sensor system only
needs one.
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8.4.3 Temperature with Light

Combining the temperature sensor data with the light sensor data provides
significantly different results. As can be seen in the tables below, this combi-
nation of sensors provides worse results than using the individual temperature
sensors in both properties. This is because of the lack of correlation between
the two sensors, as temperature and light in the room are not reliant on each
other, unlike temperature and humidity which are.

Property MAE RMSE R2
Property 1 0.278 0.528 0.657
Property 2 0.238 0.536 0.644

Table 31: Results of utilising a combined approach of temperature with light

Type Occurrences
Total Data 607

Total Anomalies 53
Positive Anomalies 23
Negative Anomalies 30

High Positive Anomalies 22
High Negative Anomalies 24

Table 32: All readings in property 1 temperature supplemented with light

Type Occurrences
Total Data 607

Total Anomalies 48
Positive Anomalies 30
Negative Anomalies 18

High Positive Anomalies 26
High Negative Anomalies 12

Table 33: All readings in property 2 temperature supplemented with light
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8.4.4 Temperature with Sound

As with the combination of temperature and light, this combination was less
effective than the individual temperature sensors in the two properties. This
is likely due to the same reason as the correlation between the temperature
and sound readings are unlikely to be tightly linked.

Property MAE RMSE R2
Property 1 0.397 0.577 0.588
Property 2 0.560 0.734 0.290

Table 34: Results of utilising a combined approach of temperature with sound

Type Occurrences
Total Data 607

Total Anomalies 73
Positive Anomalies 28
Negative Anomalies 45

High Positive Anomalies 20
High Negative Anomalies 35

Table 35: All readings in property 1 temperature supplemented with sound

Type Occurrences
Total Data 607

Total Anomalies 48
Positive Anomalies 33
Negative Anomalies 19

High Positive Anomalies 26
High Negative Anomalies 12

Table 36: All readings in property 2 temperature supplemented with sound
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8.4.5 Humidity with Temperature

Using the temperature sensor data to supplement the humidity sensor pro-
vides similar results to when the sensors are combined in the opposite way,
that is temperature supplemented by humidity. In this way the combination
provides similar results to when the humidity sensor is used by itself. This is
likely due to the obvious connection between humidity and temperature in a
property.

Property MAE RMSE R2
Property 1 0.207 0.275 0.890
Property 2 0.098 0.138 0.968

Table 37: Results of utilising a combined approach of humidity with temper-
ature

Type Occurrences
Total Data 607

Total Anomalies 68
Positive Anomalies 42
Negative Anomalies 26

High Positive Anomalies 29
High Negative Anomalies 20

Table 38: All readings in property 1 humidity supplemented with tempera-
ture
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Type Occurrences
Total Data 607

Total Anomalies 65
Positive Anomalies 46
Negative Anomalies 19

High Positive Anomalies 30
High Negative Anomalies 13

Table 39: All readings in property 2 humidity supplemented with tempera-
ture
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8.4.6 Humidity with Light

As with the temperature, combining humidity with the light sensor also
provided worse results than using the humidity sensors of both properties
individually. The results from the two properties were relatively similar,
indicating no clear differences between the two when it came to this combi-
nation of sensors.

Property MAE RMSE R2
Property 1 0.248 0.442 0.760
Property 2 0.243 0.532 0.650

Table 40: Results of utilising a combined approach of humidity with light

Type Occurrences
Total Data 607

Total Anomalies 59
Positive Anomalies 22
Negative Anomalies 37

High Positive Anomalies 19
High Negative Anomalies 29

Table 41: All readings in property 1 humidity supplemented with light

Type Occurrences
Total Data 607

Total Anomalies 49
Positive Anomalies 29
Negative Anomalies 20

High Positive Anomalies 26
High Negative Anomalies 12

Table 42: All readings in property 2 humidity supplemented with light
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8.4.7 Humidity with Sound

Similarly to when the humidity was combined with light, the results of com-
bining humidity with light also provided poor results. Notably however was
the greatly reduced accuracy of the model in the second property. While
there are likely multiple reasons for this difference, the largest is that the
noise in the property does not appear to match any other sensor data. This
may be because of the location of the sensor in the room, or the presence of
external noise that is not also in the first property.

Property MAE RMSE R2
Property 1 0.414 0.595 0.562
Property 2 0.593 0.784 0.190

Table 43: Results of utilising a combined approach of humidity with sound

Type Occurrences
Total Data 607

Total Anomalies 71
Positive Anomalies 37
Negative Anomalies 34

High Positive Anomalies 22
High Negative Anomalies 27

Table 44: All readings in property 1 humidity supplemented with sound

Type Occurrences
Total Data 607

Total Anomalies 69
Positive Anomalies 45
Negative Anomalies 24

High Positive Anomalies 34
High Negative Anomalies 16

Table 45: All readings in property 2 humidity supplemented with sound
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8.5 Conclusion

Initially the evaluation of whether a point is considered an anomaly is the
same across the different sensor types. Allowing the system to work on most
sensor types provided, but failing to account for the context of the different
sensor types. This could be a future problem as the majority of values
detected remained within what is generally considered a safe range.

The system performed best on the temperature and humidity sensors.
Each of these sensors provide continuous data that changes gradually over
time, while keeping to some pattern based on the time of day. For these
reasons both sensors are prime candidates for machine learning that aims to
find patterns, and points outside of those patterns.

In comparison the system performed poorly on the light and motion sen-
sors. Likely due to the irregular changes in their value as the results are
entirely dependent on human interaction which can be erratic.

From the tests we performed a combination of sensors provided better
results than a single sensor solution in cases where the sensors used were
relevant in some way. This can be most clearly seen in the temperature
and humidity combinations where the results were more accurate than single
sensor solutions for those sensors. However the drawbacks of this method
were severe, requiring a significant amount of data and time in order to obtain
these results. Using sensors that are not as deeply related also reduced the
quality of the results, with the combination of sensors performing worse than
the individual sensors. As seen in the instance where the temperature sensor
data was supplemented by the light or sound sensor data.
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9 Anomaly Detection With Additional Pa-

rameters

9.1 Additional Conditions

The primary improvement we aimed to implement was a range of extra con-
ditions that were provided by the Safehouse team.

A key piece of feedback we received was that the system was too sensitive,
and that this was resulting in an unrealistic number of points being identified
as anomalies. This is problematic as the workload for the person monitoring
the occupant would be very high as they would need to manually check each
of the detected anomalies. Reducing this to a manageable number was a task
that the Safehouse team defined as a top priority.

Safehouse provided a number of extra conditions to help narrow down
the number of anomalies, and to help identify which anomalies are the most
important. As well as these extra conditions, several suggestions have been
provided for specific things that should be looked for in the property that
indicate an anomaly or danger to the occupant. These may detect unique
anomalies that the system was unable to detect by itself, or enhance the
knowledge we have on the existing anomalies.

9.1.1 Traffic Light Range

In order to narrow down the number of anomalies detected a traffic light
system was implemented. This categorises points within three different zones
based on how comfortable they would be for the occupant and the property
as a whole.

The traffic light system was provided by the experts from the Safehouse
team. The levels used for this system were defined based on their own re-
search and expertise in the subject. As the traffic light system is different for
each of the sensor types, Safehouse provided traffic light charts for several
different sensors in the properties. These denote the ranges for the different
danger levels, as well as the common problems that may occur if they are
exceeded.

An obvious limitation of this system is that it takes a ”one size fits all”
approach to classifying data. While the traffic light system provides general
guidelines for comfortable and safe levels of particular readings in a property,
what is comfortable for one person, may not be for another. For this reason
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the Safehouse team have worked to ensure that the guidelines provided are
suitable for the majority of people.

Figure 28: Traffic light range for temperature

Points within the green zone are considered normal readings and can be
safely ignored. These are points that are within a comfortable temperature
range for the occupant and should have no adverse effects on the occupant
or property.

Points within the amber zone are detrimental, but should not have any
life risking impacts on the occupant. Temperatures within this range may
result in the occupant becoming uncomfortable, as well as some minor risks
to the property.

Points within the red zone are considered major problems and should be
avoided whenever possible. Allowing the temperature to remain within this
range can result in severe impacts to the well being of the occupant, as well
as long lasting damages to the property.

As with temperature, humidity also has a comfortable range that the
property needs to remain within. Any values outside of this range could
reveal, or cause, serious problems in the property. The range for the different
thresholds and the problems they may cause are illustrated in the diagram.
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Figure 29: Traffic light range for humidity

Figure 30: Traffic light range for light

Light is another value that has an ideal range. Unlike temperature and
humidity this is a level that the sensor should remain above. It’s important
to maintain a good light level when the occupant is in the room, particularly
at night so as to avoid any potential accidents, but also during the day to
reduce disorientation and headaches.

While less extreme of an issue, low light levels in the property can also
have a negative effect on the occupants overall mood, diminishing their qual-
ity of life.
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9.1.2 Constant

While using the traffic light system in conjunction with the basic anomalies
will allow us to more accurately gauge the severity of anomalies, the traffic
light system can also allow for other anomaly types to be detected. One such
anomaly is when the value of a sensor remains within a dangerous range for
a prolonged period of time.

This time period will be dependent on which sensor is being monitored.
The specific time periods for each of the sensors were provided by the Safe-
house team.

In the case of temperature the system was looking to detect instances
where the temperature was above or below the red line for more than 24 hours
without equalising. This is useful as the longer the temperature remains in
the red zone the more likely that the occupant, or property, will suffer the
possible negative effects from it.

For humidity the system is aiming to detect where it has remained in the
red zone for a period of 24 hours or longer. It’s important to detect when
this occurs as high levels of humidity for a prolonged period of time can
cause mold growth within the house, which may then result in future health
concerns for the occupant.

Consecutively remaining in the red zone for the light sensor indicates a
different kind of anomaly than when this is detected in the other sensors.
Remaining in the red zone for over 24 hours indicates that the lighting in the
room has not hit a level comfortable for the occupant. This can indicate one
of a few things. It may indicate that the occupant has not entered the room
for a long length of time. Which is problematic if the room is a kitchen or
bedroom, which they would be expected to use regularly. It may also indicate
that the lights are not working, or that the occupant is simply failing to turn
the lights on.

9.1.3 Difference in Values

Extra conditions were suggested in order to detect sharp drops, or rises, that
may have been missed by the main system. The difference between two
corresponding values must not exceed a set threshold value that indicates a
drastic change in what was detected. This threshold will need to be adapted
for each of the different sensor types that are being used as a different drop,
or rise, is appropriate for different sensor types.
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In the temperature sensor we are looking for a change of 4 degrees or
more in an hour. This would be a severe change and would indicate that
something is seriously wrong within the property.

9.1.4 Percentage Change

One of the conditions the Safehouse team asked to be implemented was to
check when the percentage change between the inside and outside sensors
differ by 20% or more. This is particularly important in the temperature
and humidity sensors as it shows a strange change in either the inside, or
outside, atmosphere.

In general the occupant should be attempting to keep the room in a com-
fortable state at all times. To do this they will need to adjust the temperature
to match the changes outside. This extra condition will check whether this
is the case.

9.1.5 Outside Comparison

The system checks for instances where the outdoor humidity drops below
the indoor humidity. This is a problem as it may indicate a problem in the
property, particularly related to the heating and insulation.

9.1.6 Motion in the Dark

An extra condition exclusive to the motion sensor is the need to check for
instances where the occupant is moving in the dark. This is dangerous for a
number of reasons, for example the occupant is more likely to fall if they’re
unable to see where they’re going. The occupant failing to turn on the light
may also signify deeper underlying problems as this would definitely fall out
of the range of usual activity.

To detect this kind of anomaly three different things will be monitored.
These are whether the occupant is moving, whether it’s night time, and
whether the lighting within the room is sufficient. If all three conditions are
met then it indicates that the occupant is likely moving around the house in
the dark.
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9.2 Temperature Results

Figure 31: Property 1 Temperature with all conditions

Figure 32: Property 2 Temperature with all conditions

As shown in the previous results, the system does a good job of detecting
a large number of anomalies, particularly in areas where a large peak, or
drop, has occurred in the data set.

One of the issues with the existing method of detecting anomalies is that
the context related to each of the sensor types is ignored. While this allows
the model to work on several different sensors with ease, it does struggle with
cases that while unusual may be acceptable because of the type of readings
being monitored. An example of this is found in the temperature, where
even in the event of a sharp drop, so long as the temperature remains within
a comfortable range this is perfectly acceptable and as such does not need to
be detected as an anomaly.
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9.2.1 Standard anomalies

Points are detected as anomalies when they are above the low threshold of
error as defined earlier on. Points detected as low and high anomalies were
combined together in order to avoid extra confusion that may occur by having
the extra parameters as well as low and high anomalies.

As shown in charts a large number of points were identified as anomalies
in the data set, particularly towards the end of the data such as on August
the 9th, where there is a large peak followed by a sharp drop.

9.2.2 Amber and red anomalies

In order to narrow down the number of anomalies detected a traffic light
system was implemented. This categorises points within three different zones
based on how comfortable they would be for the occupant.

The traffic light system has been implemented into the system. The
boundaries for each of the sections are indicated by the yellow and red lines
on the chart. Anything within the two yellow lines is green, anything between
the yellow and red is amber and anything outside of the red lines are red.

To make this clearer anomalies that fall within the amber or red ranges
have been labeled as such, while potential anomalies that fall within the
green zone have been removed altogether.

This has two notable effects:

• Red anomalies can be easily identified as more severe problems that
need to be resolved.

• False positives are reduced, as anomalies detected within the green zone
have been removed, thus reducing the number of points that the carer
needs to be aware of.

One point of note is that the sharp drop detected on August 9th remains
within the ideal conditions for the house, as set out by the traffic light system
provided by the Safehouse team.

9.2.3 Difference anomalies

In this instance we’re looking for a change of 4 degrees within the space of
an hour. However as can be seen in the chart below no instances of this
happening have been found.
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While it’s possible that there were no suspicious drops in the data, future
adjustments may be needed to accurately detect sharp drops. Checking for
changes over the course of 2 hours rather than just 1 may provide more
insight.

9.2.4 Constant anomalies

While no instances have been detected in either of the test properties, extra
conditions have been put in place in order to check when the temperature
has stayed above or below the red comfort threshold for a significant amount
of time.

9.2.5 Percentage anomalies

If the difference in the rate of change between the indoor and outdoor sensors
is more than 20% then an anomaly is flagged. Both properties had several
instances of this as shown by the identified anomalies.

This is useful for identifying instances where the temperature within the
house is not changing consistently with outside, potentially indicating an
unusual drop or rise in temperature.

9.2.6 Overall

Type Occurrences
Total Data 751

Low Anomaly 35
High Anomaly 46

Anomaly 81
Amber Anomaly 36
Red Anomaly 0

Difference Anomaly 0
Consecutive Anomaly 0

Difference Percentage Anomaly 8

Table 46: Table showing all readings in property 1 temperature

These are the number of anomalies of different types found within both
properties living room temperature data.
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Type Occurrences
Total Data 751

Low Anomaly 42
High Anomaly 26

Anomaly 68
Amber Anomaly 33
Red Anomaly 2

Difference Anomaly 0
Consecutive Anomaly 0

Difference Percentage Anomaly 10

Table 47: Table showing all readings in property 2 temperature

Of the 751 points of data in the first property, 35 were identified as low
anomalies and 46 were identified as high anomalies, giving a total of 81
anomalies in the data.

Of the 81 detected anomalies 36 were above the amber threshold, and
none were above the red. The fact that none of the anomalies were above
the red threshold indicates that the occupant is probably not at a severe
risk and may not need immediate attention. Depending on how the am-
ber anomalies are grouped these may warrant further investigation as they
indicate conditions that may result in some discomfort.

Similar results were found in the second property. The second property
had fewer overall anomalies, but had two instances where red anomalies were
detected. These are higher priority anomalies and indicate events that should
be looked into.

No sharp drops over a one hour period were detected in the data as
indicated by the lack of difference anomalies.

There were no consecutive anomalies in either of the properties, there-
fore the temperature in the homes was not kept at a dangerous level for a
significant period of time.

A similar number of instances were detected in both properties where the
indoor and outdoor temperature were not changing at a similar rate. As the
number is so similar these may indicate a large drop, or rise, in the outside
temperature rather than anything changing inside the house. Nevertheless
it may be worth looking into these anomalies to ensure that the occupant is
changing the temperature in their home to accommodate for outside.
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9.2.7 Specialised compared to standard

Type Occurrences
Total Data 751

Difference Anomaly Low 0
Difference Anomaly High 0
Consistent Anomaly Low 0
Consistent Anomaly High 0
Difference Percentage Low 0
Difference Percentage High 0

Table 48: Table showing matching readings in property 1 temperature

Type Occurrences
Total Data 751

Difference Anomaly Low 0
Difference Anomaly High 0
Consistent Anomaly Low 0
Consistent Anomaly High 0
Difference Percentage Low 0
Difference Percentage High 0

Table 49: Table showing matching readings in property 2 temperature

As can be seen from the results there were no instances where the origi-
nal system was able to detect the unique extra anomalies suggested by the
Safehouse team in either of the properties.

This is inconclusive for this sensor type however as two of the anomaly
types, difference and consecutive, were not detected in the data and the
number of different percentage anomalies was low.
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9.3 Humidity Results

Figure 33: Property 1 Humidity with all conditions

Figure 34: Property 2 Humidity with all conditions

As with the temperature sensor, there are a several humidity conditions
that need to be checked in order to ensure that there are no problems in the
house. These vary slightly from the conditions that have been set for the
temperature sensor.
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9.3.1 Amber and red anomalies

Unlike with temperature, several of the humidity anomalies crossed the red
threshold, indicating anomalies that could have a significant impact on the
occupant. These would be the most important points to identify as they may
require immediate attention.

9.3.2 Outside anomalies

One of the issues exclusive to humidity is that the outside humidity should
not be below the indoor humidity.

The system now checks for when the outside levels drop below those of
inside. There are a few instances in the monitored period where this occurs.

9.3.3 Constant anomalies

Unlike with temperature, several points in the humidity data were detected
after remaining above the red threshold for 24 hours. These indicate pro-
longed problems in the property that could have long term effects on the
occupant and their quality of life.

9.3.4 Percentage anomalies

As with the temperature sensor, it’s important to be able to tell when the
rate of change in humidity crosses a certain threshold, as this would indicate
a big change in the conditions of the indoor sensors in comparison to outside.

9.3.5 Overall

A significantly higher number of anomalies were detected in the humidity
sensor over temperature, particularly in the first property. Each of the dif-
ferent anomaly types that the system was looking for were detected in the
first property, with the second only missing red and consecutive anomalies.
This indicates one of two things. Either the system is too sensitive for the
humidity sensor, or the household has had serious issues with humidity.

One hundred and fifty five total anomalies were detected in the data.
Without applying the extra conditions this provides a lot of points that
would need to be examined to check their severity. The extra conditions have
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Type Occurrences
Total Data 751
Anomaly 155

Amber Anomaly 48
Red Anomaly 13

Difference Anomaly 39
Outside anomaly 23

Consecutive Anomaly 45
Difference Percentage Anomaly 8

Table 50: Table showing all readings in property 1 humidity

Type Occurrences
Total Data 751
Anomaly 68

Amber Anomaly 10
Red Anomaly 0

Difference Anomaly 10
Outside Anomaly 31

Consecutive Anomaly 0
Difference Percentage Anomaly 9

Table 51: Table showing all readings in property 2 humidity

helped to cut this down to a more manageable number, while also potentially
highlighting why they were identified as anomalies in the first place.

Slightly less than a third of the anomalies detected were within the amber
zone. This drastically reduces the number of anomalies that would need to
be checked, while ensuring that potentially important anomalies are marked.

Unlike temperature several anomalies were in the red zone in the first
property, with 13 in total. These are the key anomalies that the person
monitoring would want to be aware of. Not only do these indicate that an
anomaly has occurred, but also that the environment within the house has
reached dangerous levels.

A large number of points in the data were identified as difference anoma-
lies. These are sharp rises or drops in the humidity value within the space
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of an hour. This is a problem because it indicates that the humidity within
the house is fluctuating at unnatural levels.

One of the unique conditions of humidity that needs to be monitored is
to ensure that the outside levels are higher than inside. As can be seen from
the table there were 23 times where this was not the case.

45 consecutive anomalies were detected in the first property. This indi-
cates that the house was consistently kept at an uncomfortable level. Re-
acting before this number of consecutive anomalies is detected will not only
help keep the occupant healthy and happy, but may also prevent permanent
damage to the house. Interestingly the second property experienced none of
this type of anomaly.

The differential percentage anomalies indicate there were 8 and 9 in-
stances, in the first and second properties respectively, where the difference
in change of the indoor and outdoor humidity varied greatly. Again this is
very similar to the results of this type of anomaly in the temperature for the
properties, further indicating that it’s more likely linked to outside of the
house changing rather than inside. The fact that the two properties are so
similar also indicates that this is not an unusual change.

80



9.3.6 Specialised compared to standard

Type Occurrences
Total Data 751

Difference Anomaly Low 12
Difference Anomaly High 6
Outside Anomaly Low 9
Outside Anomaly High 9
Consistent Anomaly Low 2
Consistent Anomaly High 0
Difference Percentage Low 2
Difference Percentage High 2

Table 52: Table showing matching readings in property 1 humidity

Type Occurrences
Total Data 751

Difference Anomaly Low 3
Difference Anomaly High 2
Outside Anomaly Low 7
Outside Anomaly High 5
Consistent Anomaly Low 0
Consistent Anomaly High 0
Difference Percentage Low 4
Difference Percentage High 4

Table 53: Table showing matching readings in property 2 humidity

Unlike in the results from the temperature sensor there were several in-
stances where the extra anomalies were detected by the base system. This
is likely because of the sheer number of extra anomalies detected in the hu-
midity data.

Interestingly despite there being a large variance in the extra anoma-
lies found between the two properties, the number of extra anomalies that
correlate with the standard anomalies was similar for the two.
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Of note however is that very few of the consecutive anomalies were picked
up on. This makes sense for the main system as it’s looking for a divergence
from a standard pattern. In cases where the value remains in a similar
area for several consecutive hours then the original system would begin to
recognise that pattern and not treat any of those points as anomalies.
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9.4 Light Results

There were two extra conditions to be detected in this property, the traffic
light system and the consecutive anomalies.
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Figure 35: Property 1 Light with all conditions

Date
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Figure 36: Property 2 Light with all conditions
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9.4.1 Overall

Type Occurrences
Total Data 751

Low Anomaly 24
High Anomaly 30
Amber Anomaly 10
Red Anomaly 7

Consecutive Anomaly 194

Table 54: Table showing all readings in property 1 light

Type Occurrences
Total Data 751

Low Anomaly 28
High Anomaly 31
Amber Anomaly 0
Red Anomaly 2

Consecutive Anomaly 0

Table 55: Table showing all readings in property 2 light

Both properties had instances of red anomalies, however only the first
had any amber anomalies. In comparison to the standard anomalies, the
number of amber and red anomalies were fairly low.

As amber and red anomalies are based on when light level is below a
specific range, the lack of specialised anomalies detected is likely due to the
light in the property being significantly higher than expected. Extra tuning
may be needed here to check what the light levels should be at different
points in the day.
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9.5 Motion Results
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Figure 37: Property 1 Motion with all conditions
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Figure 38: Property 2 Motion with all conditions

There are two extra details to look for in the motion sensors. The first
is when the occupant performs no activity for a prolonged period of time.
This may indicate that they’re not able to move around for some reason and
may require assistance. After discussion with the Safehouse team we chose
to detect when the occupant had not moved for 6 hours or more in a row.

One of the main limitations with the motion sensor is that it’s not avail-
able in every room. In the first property there are motion sensors in the
bedroom and kitchen, while the second property only has a motion sensor in
the kitchen. This allows us to pick up on activity in those rooms, but will
fail to detect any activity happening in the rest of the house.

Unsurprisingly most days picked up 6 hours with no motion activity. This
is mostly because of the night time where the occupant would be sleeping.

As can be seen from the chart there was only a single day in the first
property where a long period with no movement was detected. We can also
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see that the lack of movement was early in the day which may suggest that
the occupant had a late start, or perhaps the sunrise was earlier than usual.

Looking at the general motion after the anomalies we can see that the
occupants’ behaviour went back to normal after the morning. Suggesting
that no further action would be needed at that time.

The second condition that the system is aiming to detect is more complex.
This is when the occupant is moving around in the dark. As specified earlier,
this type of anomaly is detected when the user is moving at night in a room
with a low light level.

As can be seen from the results below there were a good number of times
where this was the case in both properties. Particularly early in the night
there were instances almost every day in both properties where this type of
anomaly was detected.

Further refinement may be needed to set a later time frame before this
type of anomaly is triggered. With more data we may also be able to see the
difference in the winter where it becomes darker earlier and therefore would
be more important that the property has sufficient light levels.
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9.5.1 Overall

Type Occurrences
Total Data 886

Low Anomaly 26
High Anomaly 2

Consecutive Anomaly 9
Moving Anomaly 104

Table 56: Table showing all readings in property 1 motion

Type Occurrences
Total Data 747

Low Anomaly 60
High Anomaly 37

Consecutive Anomaly 23
Moving Anomaly 90

Table 57: Table showing all readings in property 2 motion

The lack of anomalies detected by the system in the first property suggests
that the occupants’ movement in the kitchen is similar each day. The second
property however had vastly different results, with more than double the
number of anomalies detected, suggesting the opposite.

There were 9 consecutive anomalies in the first property, signifying a
prolonged period without movement in a single day. As all of these anomalies
were grouped together, we can see that this was the only day in the dataset
where the occupant did not move through the kitchen. Again the second
property was vastly different, with consecutive anomalies on several days.
In a realistic situation the number and frequency of these anomalies should
result in some investigation by whoever is monitoring the property, as they
may indicate that the occupant has not left their room for some reason.

87



9.6 Conclusion

Adding extra conditions significantly reduced the number of points that were
detected by the system, in turn resulting in fewer false positives as identified
by our industry experts. The problem with this however is that potential
true positives may be missed in situations where the criteria is too strict.
Further refinement of the criteria parameters may be needed to ensure that
this is not the case going forward.

The most effective conditions were the traffic light system that was im-
plemented. This allowed the system to automatically classify the expected
severity of any anomalies detected based on the actual sensor values.

More specific conditions were demonstrably less effective, likely due to
the fact that they were looking for indicators that would result in a severe
problem, such as the temperature remaining too hot or cold for a large period
of time. These conditions picked up on very few instances where they were
triggered over the course of this study, and thus more testing would be needed
to decide whether they are useful for the system going forward.

One instance where a specific anomaly was effective however was for
checking motion in a specific period of time. This allowed for the user to
check whether there have been periods of time where the person in the prop-
erty has not moved, despite it being light in the room, indicating that a
person was present but not able to move.

There was no clear difference between the two properties, with both hav-
ing a similar number of detected anomalies. This is likely because of the
similarity in the behaviours between the two properties. It’s also unlikely
that either of the people within the properties allowed for the properties to
hit particularly uncomfortable levels, preventing the more severe anomalies
from presenting themselves.
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10 User Interface and Visualisation

This section aims to address the design decisions made when creating the app.
This section specifically aims to address the research question of whether a
system can be designed to provide information from the anomaly detection
system in an easy to read way. We will discuss the design decisions made
when designing the application. This section will also include an overview of
the different pages that are included within the application.

10.1 Design

While there were no strict design guidelines provided by our partner com-
pany, there were applications that they had available to adhere the design
to. Ensuring that the designs of the system that I created were in fitting
with these applications was important. As well as sticking to the general
Safehouse style, I also attempted to follow good practice when designing and
implementing the rest of the systems visuals.

10.1.1 Front End

In the application Dash has been used for the front end. This is an open
source Python framework created by the developers of the Plotly graphing
library. According to the developers it is ‘the most downloaded, trusted
framework for building ML & data science web apps.’ Dash is a Python
based framework that allows for integration of both Python and HTML into
the same web application, and is built on top of Plotly.js, React and Flask.

As Dash is built on top of React it is simple to make an application that
is highly reactive. What this means is that the application will adapt the
proportions of the elements on screen in order to accommodate the size of the
screen, or window, that it is contained within. This allows for the application
to be run on a multitude of different devices, such as desktop computers or
mobile phones, without the need for the developer to explicitly accommodate
these devices.

Both web and mobile app were unfeasible for the time that was avail-
able, but designing the application using a reactive framework ensures that
a mobile application can be created later on if needed.

Bootstrap was also integrated into the application using the Dash Boot-
strap Components package. Bootstrap is a responsive mobile first web frame-
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work. It is the most popular of its kind and has a range of components and
tools to ensure that any website using it correctly is highly responsive. Also
included are basic icons and a CSS sheet that can be built upon and cus-
tomised to the users needs.

The primary reason that Bootstrap was implemented was due to its abil-
ity to adapt to mobile devices, as that’s a potential use case I looked to
explore. Another benefit of Bootstrap is that it’s a popular framework and
used frequently by popular websites, so it’s likely that the user of the system
will be familiar with the components that I am using from the library, such
as the navigation bar and information cards. This will help to reduce the
amount of training time required to get the user to a competent level with
the system.

The charts used within the system are rendered using the Plotly Python
library. Plotly is a free and open source graphing library that makes it possi-
ble to rapidly develop interactive charts and diagrams. The main advantage
of Plotly over other graphing software is the high level of customisation that
is available, as well as its ability to be easily integrated into a user friendly
front end using the Dash framework.

As Plotly is a Python library it’s able to directly interact with and have
data passed through to it. This is important for allowing the user to interact
with the system. Particularly when the user wants to test the system on
different data sets or to make simple adjustments, such as to the format of
the displayed data.

10.1.2 Charts

The charts are created and displayed using the Plotly graphing library. Line
charts are used in order to map the key values of the sensors. These can
accommodate the change in the sensors value over time and map it as such
on the chart. This will make it possible to see how the sensor value has
changed over the chosen duration of time. Line charts also make it easy to
see the highs and lows in the data as these will show as the highs and lows
of the chart.

Detected anomalies are mapped onto the chart as scatter points. Each
different type of anomaly is automatically assigned its own colour to differ-
entiate them from each other. This colour mapping is handled by Plotly and
will adjust based on the number of different anomaly types that are input.
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Figure 39: Basic chart
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10.2 Pages

The user selects the property that they would like to view by selecting from
the drop down in the top left of the page. This drop down will show any
properties that have been allocated to the user. The currently selected prop-
erty is shown in the top left of the page and will be used by the system when
attempting to view readings from the different rooms.

Figure 40: Navigation panel

Each of the rooms in the two properties have been allocated their own
page in the application. These pages remain consistent when either property
has been selected. Different pages are available for the living room, bedroom
and kitchen. In the event that sensors were installed in other rooms in the
property then extra pages to accommodate them would become available.
As the testing properties have both standard and bluetooth sensor types in
the living room, an extra page has been included to allow the user to monitor
either type.

Separate to these pages is a dashboard. This page contains localised
information for every sensor in all of the property’s rooms. If the user wants
to monitor every room and sensor from one centralised location, they can do
that on this page. This dashboard will be elaborated on in a later part of
this section.
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After going to Safehouse for feedback we found that at times the user
was confused about the purpose of each of the extra conditions. This was
primarily due to the short titles for the extra conditions, as longer titles
would not be able to fit on the chart without taking up excessive space. To
rectify this issue short descriptions for each of the extra conditions have been
provided in the pages where those details are relevant.
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10.3 Customisation

Figure 41: Basic page customisation

A large range of customisation options are available to the user. These
customisation options present allow for a great deal of control over the sys-
tem, both in the way that anomalies are detected as well as how they’re
displayed.

Each of the pages has different customisation options in order to accom-
modate their different use cases. The most basic of these differences is the
sensor types that are able to be selected for the chart. Where appropriate,
multiple sensors are able to be displayed on a single chart to facilitate easier
comparison between their readings.

Where appropriate outside sensors can also be displayed. This is useful
for comparing where dips in sensors, such as temperature, may be due to
things changing outside of the property. In some cases there may be separate
anomalies that occur because of what’s happening outside, such as when the
humidity indoors and outside cross.

By default each of the data sets is scaled to the nearest hour, for readings
such as temperature or humidity this is the mean for that time, while in
counting sensors like motion this is the total number of occurrences in that
time period. This value can be easily changed in the interface so that another
time scale can be used. This change not only alters what is displayed to the
user but also the data fed to the algorithm, altering the results of the system
itself.
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The biggest change that can be made through the interface is to the two
thresholds that are used by the system. These thresholds dictate which points
are considered anomalies and which ones are not. The default thresholds are
the top 5% for high and the top 10% for low. After several tests I found that
these two thresholds provided the most relevant results for the majority of
the sensors. However if the user wants to change this they’re free to do so.
This can allow the system to be changed so it’s as sensitive as required by
the user.

An extra option present on each of the pages is the ability to hide either
weekdays or weekends from the charts. While this does not modify the actual
results of the system, this makes it easier for the user to observe patterns in
the results. This is particularly important as the behaviour of the occupant is
likely to be significantly different on the weekends in comparison to weekdays.

Figure 42: Detail page multiple charts

One of the unique features of the ’detail’ page is that multiple sensors
can be compared at the same time. While this is possible in the other charts
by plotting all of the sensors on the same chart, this method can be more
effective as it shows where other anomalies coincided at the same point on the
chart. This is particularly useful when the user wants to compare anomalies
across a large number of different sensor types, which may have values on a
vastly different scale.

The ’multiple’ page includes functionality to combine the results of several
sensors into one. Testing has shown that using multiple relevant sensors can
provide more accurate results than when a single sensor is used by itself.
In this instance the user is able to select a main sensor along with one, or
several, extra sensors. The main sensor is what will be predicted, while the
extra sensors supplement that prediction.
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Figure 43: Multiple page customisation
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10.3.1 Chart Customisation

Several options for customising the chart itself are also available. The main
purpose of these options is to increase the readability of the chart and to
prevent unnecessary information from cluttering the chart.

Results can be removed from the chart so that important details can be
focused on. Both identified points and the lines used to represent values
can be turned off. The chart size will resize to accommodate whatever data
is being displayed. As can be seen, turning off the outside readings can
greatly increase the visibility of what’s going on indoors, at the expense of
temporarily losing extra information.

Alongside the bottom of the charts is a scaled version of the chart. By
using this tool the user is able to accurately select the time frame of data
they want shown on the main chart. Not only can the user select a different
period of time, but they’re also able to adjust the length of this time to suit
their needs.

Figure 44: Chart scale

The user is also able to interact directly with the charts. By simply
highlighting a section using the mouse they can choose what data they want
shown. Initially this highlighting allowed the user to zoom in on a specific
point, however as this could be confusing when there are multiple sensors on
the chart, this functionality was limited to allowing the user to highlight a
specific amount of time. The chart will automatically zoom to an appropriate
level for the chosen time, ensuring that the relevant sensor data is easy to
see.

Another method to adjust the time frame of the chart is by using the
buttons located at the top of each chart. These buttons scale the time frame
based on which button has been pressed. Several useful and commonly used
time frames are available.

For the sake of the test properties the buttons available are for a day, one
or multiple weeks, one or multiple months, one year, or all of the data. An
advantage that buttons have over manual adjustments is that a high level of
precision is much easier to obtain and a specific amount of time can be easily
selected, whereas manually adjusting the scale is susceptible to user error.
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Figure 45: Chart highlighting

Figure 46: Date buttons
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10.4 Dashboard UI

10.4.1 Prototype Design

Figure 47: Dashboard Prototype

Before suggesting ideas to the Safehouse team I first devised a design
prototype of how the dashboard would look. This would allow me to get
early feedback before I proceeded to creating the actual dashboard.

The purpose of the dashboard is to convey all relevant information from
the latest hour in a single location. The main advantage of this is the ability
for the user to see at a glance whether any immediate action is needed, as well
as whether it’s worth investigating activity in a given property any further.

The system is separated into card blocks for each of the rooms, that are
themselves separated into different sections for the sensors contained within.
To represent the sensor types relevant iconography and text are used. While
text is important for providing detailed information, icons allow the user to
quickly find the sensor that they are looking for. Initially I intended for the
entire sections to change colour based on which anomalies were detected in
the room, however early testing showed that this made it too difficult to view
the text in some instances. Instead only the colour of the sensor icon now
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changes. This colour changes based on which of the traffic light anomalies
have been detected in the sensor.

Other anomalies detected in the system are listed alongside the sensor
icon. As the majority of these anomaly types were deemed less immediately
problematic than the traffic light ones it made sense to place them in a simple
text view.
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10.4.2 Final Design

Figure 48: Dashboard Final

Figure 49: Dashboard card green

As in the prototype, the dashboard interface is split into sections based
on the number of rooms being monitored in the property. These rooms
are then split into several cards, shown in the fig below, that contain the
relevant information on their given sensor, such as the latest reading and
which anomalies were detected.

Indicator icons at the top of the card change colour based on whether a
red, amber or green anomaly is detected in the sensor. This change is also
reflected in the border of the card which also changes colour to match the
icon. In cases where the traffic light system is not possible for the sensor type
then green or red is used based on whether a standard anomaly was found.
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Figure 50: Dashboard card amber

Below these are details on other anomalies that were detected for this
hour. These can help to give the user a better idea of what’s going on in the
property.

At the bottom of the card is a link to the corresponding page for that
sensor that displays the data in a chart over a longer period of time. This
is useful for monitoring the events that lead up to an anomaly occurrence
and can be used by the user to help decide whether they want to act on the
anomaly.
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10.4.3 Usage

The user of the dashboard is expected to be a caregiver for a patient. This
caregiver is envisioned to be an NHS worker or an independent carer. At
present the dashboard is designed for one carer to monitor a limited number of
patients. The dashboard provides a simple overview of the rooms and sensors
for an individual patient, however the carer can navigate to the dashboards
for other patients in their care by using the drop down menu in the navigation
bar.

While more patients could be added to the system, this could quickly
become overwhelming as the carer would need to manually navigate to the
pages of each of the patients. For this reason the system is not ideally suited
to the management of more than a select few patients. Future modifications,
such as an alert system that indicates when an anomaly is detected in a
patient not currently being viewed, could be implemented to allow for easier
patient management.

Patients would also be able to view their own property through the sys-
tem. In this instance the patient would only have access to their own sensors,
and would not be able to navigate to another patients details through the
dashboard.
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10.4.4 Privacy

Privacy is a large concern for this type of application. While personal details
about the patients are omitted from the application, it still relies on data
obtained from the property that they’re living in. This is sensitive data and
will need to be treated in a secure manner. Were this application to be
adopted for real use extra security would need to be provided to ensure that
only authorised users can access the data for their patients. This would be
implemented in the form of a login system that would prevent access to the
dashboard or any other pages in the application unless the correct access
rights are provided.

The application will also need to comply with local regulations, such
as GDPR. This will include requirements, such as the need to host the data
securely within the country and allowing the patient to have their information
deleted on request. Patients would also need to be made aware of the data
that is being tracked, how long it will be held for and where it will be held.

10.5 Conclusion

The feedback from the Safehouse team indicates that the design of the ap-
plication was able to provide an effective interface for interacting with the
data provided by the machine learning system. Over several iterations the
dashboard was improved using their feedback to provide a detailed overview
of the sensors from a single page. Each of the individual sensor pages allow
for a range of customisation options to optimise the results of the system for
the users needs.

There are some improvements that would be necessary for the application
to go further than this project. Primarily around ensuring that the applica-
tion is secure and easily scalable to more users. As detailed above this could
be achieved through a login system that would limit which users are able to
access the system.
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11 Discussion

Overall the system was able to detect anomalies in different sensors with
varying degrees of success. The customisation present allowed for the user
to increase, or decrease, how strict the anomaly detection was. Allowing the
number of anomalies detected to be fine tuned. While the extra conditions
helped to highlight the most important anomalies that were detected, as well
as providing a potential reason behind these anomalies.

11.1 Anomaly Detection

Humans act in an erratic and irregular way which can be difficult for machine
learning models to learn due to the lack of clear patterns. This can be seen
in the results of using the system on specific sensors such as temperature
and humidity, that are only moderately impacted by the persons actions and
behaviours, and may follow a set daily pattern. In comparison the system
doesn’t work as effectively on the motion and light. As these two sensors are
directly impacted by the occupants random habits, such as what room they
walked into and whether a light was turned on or not.

World events also had a large impact on the results of the system. Mid-
way through the data gathering stage Covid-19 was reported in the United
Kingdom, leading to lock downs and general changes to the populations be-
haviour. One of the changes that occurred was that people were told to
remain in doors more often. This would have an impact on the sensor read-
ings, particularly at times where usually the occupant would be out of the
house, but were not because of Covid-19. Changes in behaviour like this
make it more difficult for the models to make accurate predictions, as what
may have been correct before Covid-19 may not be during the Covid-19 pe-
riod. Requirements for the study also changed over time as initially it was
unknown which sensors would be available for the project. Therefore the ini-
tial system was unable to be designed with specific sensors in mind. Instead
over the course of the project the system needed to be adjusted to match the
data that was provided.

Of the single sensor models used the AutoEncoder with an LSTM layer
performed the best. As a model it was able to effectively detectl anomalies
in the data set when compared to the two alternative models tested, as it
was quicker while remaining accurate in its detection.

The system worked best when a combination of linked sensors were utilised
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together. Most notably in the case of temperature combined with humidity
where the system worked very effectively and was able to make predictions
with a high degree of accuracy. The major drawback of using the combina-
tion of sensors is the need for a significant amount of data, although this is
slightly negated as data from multiple sensor sources on the same hub can be
used together. Another issue with this method is the amount of time that it
takes for the system to process data from multiple sensors together. This is
particularly problematic when the predictions need to be available instantly
to the person monitoring the occupant.

The difference in the results of the two different properties was relatively
minimal. An interesting difference between the two was in cases where the
person in one property followed a more clearly set pattern than the other.
This is particularly visible in the light sensors where we can see that the
lights came on at virtually the same time each day in the second property,
but was on at seemingly random intervals in the other. Surprisingly this did
not have a significant impact on the results of the machine learning models
as both had similar RMSE, MAE and R2 values for this sensor.

Another notable difference between the two properties was the large vari-
ance in the humidity between the two. This was the only environmental
sensor where a large difference was found between the results from each of
the properties. This may indicate that there is a higher degree of randomness
when it comes to humidity in comparison to other factors, or that the one
property was better insulated than the other.

11.2 Extra Conditions

Extra conditions were useful for optimising the system once it was deemed
by the Safehouse team to be able to detect anomalies with a good level of
success. In particular the traffic light system worked well for reducing the
number of false positive anomalies detected by the system. This limited the
anomalies detected to those that are within set bounds unique for each sensor
type.

Different boundary levels show the expected severity of any detected
anomalies. Anomalies detected within the red boundary are severe and likely
require immediate action, while amber anomalies are not as severe and may
not require immediate action to remedy. On the other hand any anomalies
within the green boundary are ignored and no longer marked on the chart.
These factors can be useful for the user when deciding whether they need to
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act on the detected anomalies.
One issue with the traffic light system is that sharp drops that remain

within these bounds will not be detected, and that the bounds may not always
be accurate for every property or person. Some occupants may prefer the
temperature, humidity or light to remain within a different range for them
to feel comfortable at home. These are factors that could not be accounted
for as each person would need to be polled for their ideal comfort level.

Other conditions that were added, such as the comparison with outside
values, helped to define the cause of the anomalies that were detected, or to
detect strange activities that would not usually be classified by the system.
This helped to ensure that the system provided a comprehensive view of
all potential anomalies that may be occurring in the property. Many of
these requirements were not dependent on the machine learning part of the
system, and highlight the fact that many anomaly types can be detected
without needing to develop a complex system. In some cases these simple
checks performed as effectively, or more effectively, than the main system as
they were able to detect anomalies that were missed or filter out potential
false anomalies.

Conditions unique to the motion and light were effective in determining
which anomalies it was worth the user investigating. Initially the system
attempted to detect movement when the room is dark, however because
people don’t generally turn on their light in the daytime this resulted in a
number of anomalies that we deducted were false positives. To refine this
only anomalies of this kind detected at night, as defined by the local day night
cycle, were marked as anomalies on the chart. This cut down on the number
of points in time that the user needed to be aware of, while also limiting the
anomalies to those that would be the most dangerous, as the occupant is
more likely to be in danger when moving in the dark night, rather than in
the day.

11.3 Measuring Effectiveness

None of the measurement criteria used by themselves were able to accurately
assess the effectiveness of the model, but by combining the results of different
tests a general idea of the effectiveness of the systems could be determined.
Unfortunately due to the random nature of human activity the R2 score was
not as useful as first hoped, instead more subjective measures such as MAE
and RMSE were relied upon. Combining these methods allowed for a fair
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comparison between the different model types, to find which performed the
best on the data that was available.

For a more detailed analysis of the models effectiveness the feedback from
our partner company was used. Not only did this provide feedback on the
effectiveness of the model, but it also gave some insight into the reason that
the anomalies were detected in the first place.

11.4 User Interface

The interface effectively displays the results on the different sensors. One, or
multiple sensors, in any of the properties can be plotted to chart and viewed
by the user. Individual sensor pages gave a detailed overview of the events
that led up to the detected anomalies. Allowing the user to track the data
from when tracking began to view the trends for themselves, before choosing
to agree or disagree with the assessment of the anomaly detection system.

Extensive customisation was available to the user on every page, allowing
them to change each aspect of the system to their liking. This is particu-
larly useful for limiting the amount of sensors shown on the charts, which is
important for clearly analysing activities in the property. Charts will auto
scale to account for the amount of data on display, but the user is also able
to highlight a select amount of data to exclusively display. Over the course
of the project this functionality was improved to provide a more convenient
way to choose what data was on display. A selection of buttons were made
available that could be pressed to select a specific period of time. Buttons
were available for the common time frames that may be needed, and the
data on display would be limited to such. As well as this the user can man-
ually highlight portions of the chart to zoom in on them. This is useful for
analysing the change in data that caused for an anomaly to occur.

Options were also present to change how the system dealt with the data.
The user can choose which time scale, to the hour, that the data will be
formatted to. As well as the time frame the user is able to select the thresh-
olds used for classification, allowing them to make the system as sensitive
or strict as they want. Both of these options will vastly change the results
of the system and which points are classified as anomalies. Effectively ac-
commodating the needs of the user. We found that the ability to change the
threshold was also particularly useful during the testing process, as we could
minor changes to the threshold and then observe the results.

The dashboard was able to accurately convey an overview of the property
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at any given time. A quick glance at the dashboard would allow for the
user to quickly identify any sensors within the property that may require
immediate action. In the event that a recent anomaly was detected the user
could then click into that sensors individual page for more information. This
was an effective way of providing the immediately relevant info quickly, while
allowing for the user to obtain more information if required.

To ensure that the details presented on the dashboard were clear a com-
bination of icons, colours and words were used. Icons to represent each of
the sensor types were present in each of the room cards and would change
colour based on whether a recent anomaly was detected. Red, amber or green
were chosen for this purpose to give an obvious indication of the state of the
room using a universally recognised colour scheme for danger. In instances
where more details on the anomalies found would be needed a list of iden-
tified anomalies were also provided to the side of the sensor icons. These
were not colour coded as they were not deemed as immediately important
as the traffic light anomalies and multiple colours could end up reducing the
readability of the rest of the page.

An intrinsic limitation of the study is that the environment may not
always accurately reflect the actions of the occupant. Outside factors will
have a large impact on the readings of many of the sensors. One way we
attempted to alleviate this problem was by displaying the readings of similar
sensors outdoor on the same chart, thus allowing the user to compare the
readings inside and outside, and identify any potential corresponding trends.
This was possible in sensors where we had outside reading equivalents, such
as temperature and humidity.

Overall the Safehouse team deemed in the feedback sessions that the
dashboard interface was effective in quickly and efficiently communicating
the most important information from the system. The only notable disad-
vantages of the dashboard are that it takes a longer period of time to load
than the individual pages, as it needs to process each sensor in every room,
and that accessing more detailed information requires the user to navigate
to a separate page altogether.

11.5 User Comfort

While the idea of ambient assisted living is becoming more popular, there
are still several factors holding it back, as discussed by (Memon et al. 2014)
these factors ranged in level of severity and importance. Multiple studies as
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highlighted in section 5.1 highlighted the ways, and reasons, that people may
feel uncomfortable with being monitored, primarily related to their indepen-
dence and privacy. The study by (Rashidi and Mihailidis 2013) found that
it was very important that the sensors were as comfortable as possible for
the participants. They also raised concerns about the security of the partic-
ipants’ data, and the importance of ensuring that the proper procedures are
taken to ensure that it is as secure as possible. While (Maan and Gunawar-
dana 2018) highlighted participants concerns around their own technology
skills hindering the system, or that it would result in less human contact.
These are concerns that we hope to have addressed by making our system
as unobtrusive as possible, resulting in fewer users feeling that their privacy
is being invaded, or that they are being monitored at all times. The person
being cared for will also not need to be technologically proficient, as they do
not need to directly interact with the system in anyway.

11.6 Property Data

This study had a number of limitations that effected what could be done.
The most notable limitation was the amount of data accessible. Only two
properties were being tracked during this study, and the amount of time that
the properties were monitored was also limited by external factors. This led
to a reduced amount of data compared to what was initially expected for the
project.

The small sample size of different properties also limited the number of
times that the models could be tested, making it difficult to assess whether
unusual results in the readings were because of issues in the model, or external
factors that may be present in these specific properties alone. This also
introduced the issue of being unable to accurately detect seasonality within
the data. The range of values detected by many of the environmental sensors,
such as temperature, would be vastly different during different seasons. While
the model created has tried to account for differences between month, the
lack of data makes it impossible to accurately model how different whole
seasons would be.

The data was of mixed quality, and while the data did accurately repre-
sent the properties of two people within our target demographic, neither of
the environments were completely controlled. The presence of other people,
or pets, entering the household could not be monitored, potentially result-
ing in unusual sensor readings as unexpected people entered the properties.
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While this was intentional for ensuring that the system can work in realistic
scenarios, it made it difficult to assess the accuracy of the system.

While we aimed to have sensors in similar locations in the two properties,
the difference in those properties meant that they could not be in identical
locations in the two. Proximity to doors, or windows, when opened would
have a large impact on several environmental readings, such as temperature,
humidity and light. For these reasons the properties are not able to be
directly compared on the actual values of the sensors, instead trends, spikes
in data and instances of anomalies detected in the properties are compared.

Neither of the properties used were closely monitored meaning we had no
exact record of the activities taking place within the property. Because of this
we were unable to classify anomalies as specific activities and were limited in
the type of models that could be used. This caused further problems as it left
us without the ability to mark identified anomalies as true or false, instead
we needed to measure the anomalies using more subjective measurement
methods. Eventually a threshold system was settled on. This threshold
system would use the training data to dictate what are suitable ranges for
the thresholds to be within. Ultimately this appeared effective, with our
industry partners agreeing with the assessment of the system for the most
part. The extra conditions added also helped to ensure that the results that
came from the system were valid anomalies, and not false positives.
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12 Conclusion

As detailed in the introduction of this paper we aimed to answer several
research questions in this thesis. In this section we will discuss whether or
not these research questions have been met, as well as any future work that
may be needed for this project to take it further.

What is the most effective machine learning model for detecting
anomalies in sensor data?

Each of the models tested had their own advantages and disadvantages.
Overall the Autoencoder was the best solution for general anomaly detection
as it provides consistent results, while being able to process data at a rapid
pace. This is particularly important as in a real world setting the system
would be hosted on a computer, or server, of a lower specification than of
that used in this study. The amount of data used for the system is also likely
to grow exponentially increasing the amount of processing required.

Of the models LSTM is the most effective at accurately predicting fu-
ture values for the sensors, however the actual anomaly detection was not
necessarily more effective as we account for the potential error when incor-
porating the thresholds. This model also took a considerable amount of time
to train on new data, making it a potentially unviable solution for real world
application, especially as the data set continues to grow.

Does a combination of different sensor types provide more ac-
curate anomaly detection results than a single sensor solution?

As shown in section 8.4, using a combination of relevant sensors improved
the quality of the prediction made significantly, with the combination of
temperature and humidity working particularly well together. However, as
with the univariate LSTM model, this also had the issue of taking a great
deal of time to process the data. In the event that processing time was not
an issue a multiple sensor approach may be the most effective for accurately
predicting anomalies. This also had the downside that if the two sensors
were not related in a clear way that the results of the combination of sensors
would be less accurate than utilising a single sensor, such as in the case where
temperature was used with light.

Can machine learning be used on environmental sensors in order
to detect anomalies in human behaviour?

The threshold system allowed for the number of anomalies detected to be
fine tuned by the user, giving control over how strict the system was at any
given time. Combining these results with a carefully selected group of extra
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conditions has helped to refine the detected anomalies down to only the most
important and likely anomalies, as well as detecting anomalies that may have
been missed by the system otherwise. While this may need some tuning in
the future, the team at Safehouse has indicated that these have identified
the most important potential anomalies. The use of extra conditions, such
as the traffic light system, has also allowed the system to narrow down the
type of anomalies. Anomalies are now graded by severity and type, allowing
for a carer to asses whether they agree with the systems output.

Can a system be designed to provide this information in an easy
to read way?

The feedback provided by the Safehouse team indicates system is effective
in presenting the detected anomalies to the user. This is primarily due to
the way that the system was designed around their expert knowledge in the
field, as detailed in section 10. Charts in the application are automatically
adjusted to display anomalies in an effective manner, with colour coding and
annotations helping to highlight important information. Even in situations
where the user is not necessarily interested in anomaly detection, the system
remains a useful tool for visualising the data over time. With the high level
of customisation in the pages allowing the user to customise charts to their
needs. Regular monitoring will be required to act on the anomalies once
they have been detected. Carers will need to manually evaluate detected
anomalies by reading through the sensor data using the charts provided to
ensure that they agree with the systems evaluation.

Can environmental sensors be used in combination with auto-
matic remote monitoring to allow vulnerable people to live alone?

I believe that this system shows that anomaly detection is a viable solu-
tion for helping to allow older members of the community to live at home, as
it can provide a valuable tool to assist carers by acting as an early warning
system and identifying potential problems within a property, without requir-
ing them to be there themselves. Not only does this allow for single carers
to monitor multiple people, but anomalies detected may also identify risk
factors that have been missed by the carer. This can also allow for elderly,
or otherwise vulnerable people, to live with some degree as independence as
they will not need to be physically monitored at all times. Not only will
this reduce the pressure on the carers, but may also increase the amount of
privacy of the person being cared for, as the sensors we are monitoring for
this project can be considered less intrusive than having someone physically
present.
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While the system is effective at detecting anomalies this alone is not
enough to allow a person to live independently at home. There are still the
risks of potential problems that are unable to be captured by the environ-
mental data available. For these reasons future work is needed to test the
system in a realistic scenario to identify these potential gaps.

Future Work
The system may be improved by more closely monitoring the properties

to check whether the anomalies detected by the system match up with the
problems that are present at the property. At present we rely upon the
measures that we can records such as the RMSE and R2 and the subjective
expert opinions of the Safehouse team. Making this change would require
a participant to keep a detailed diary of events within the property which
can then be marked and checked. Keeping track of events will also allow
the system to be improved by marking anomalies as true positives or false
positives in the data set, potentially allowing for extra classification in the
future.

While we initially intended for the system to be designed for a carer
monitoring people living at home, there is scope to expand the system in
order to accommodate multiple users, properties or even care homes. This
would need to be done in the user interface by allowing for the carer to view
the sensors for multiple rooms in different properties on the same page. The
current system could also be adapted so as to provide notifications to the
carer when an anomaly is detected, rather than expecting the carer to be
viewing the dashboard or individual page at any given time.
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14 Appendix

14.1 Extra tests

Batch RMSE R2
64 0.285 0.928
128 0.271 0.934
256 0.263 0.938
500 0.275 0.933

Table 58: The results of changing the batch size of the model when used on
the Temperature Bluetooth data from the first property with a 9 to 1 split

Epochs RMSE R2
64 0.254 0.942
128 0.263 0.938
256 0.266 0.937
500 0.273 0.934

Table 59: The results of changing the epochs of the model when used on the
Temperature Bluetooth data from the first property with a 9 to 1 split

14.2 Data
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14.3 Results

123



D
at
e

Celsius

F
ig
u
re

53
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

1
te
m
p
er
at
u
re

124



D
at
e

Celsius

F
ig
u
re

54
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

2
te
m
p
er
at
u
re

125



D
at
e

HumidityPercentage

F
ig
u
re

55
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

1
h
u
m
id
it
y

126



D
at
e

HumidityPercentage

F
ig
u
re

56
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

2
h
u
m
id
it
y

127



D
at
e

Lux

F
ig
u
re

57
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

1
li
gh

t

128



D
at
e

Lux

F
ig
u
re

58
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

2
li
gh

t

129



D
at
e

MotionRecorded

F
ig
u
re

59
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

1
m
ot
io
n

130



D
at
e

MotionRecorded

F
ig
u
re

60
:
R
eg
u
la
r
an

om
al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

2
m
ot
io
n

131



D
at
e

Celsius

F
ig
u
re

61
:
A
n
om

al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

1
te
m
p
er
at
u
re

su
p
p
le
m
en
te
d
b
y
h
u
m
id
it
y

132



D
at
e

Celsius

F
ig
u
re

62
:
A
n
om

al
y
d
et
ec
ti
on

in
p
ro
p
er
ty

2
te
m
p
er
at
u
re

su
p
p
le
m
en
te
d
b
y
h
u
m
id
it
y

133



F
ig
u
re

63
:
P
ro
p
er
ty

1
T
em

p
er
at
u
re

w
it
h
al
l
co
n
d
it
io
n
s

134



F
ig
u
re

64
:
P
ro
p
er
ty

2
T
em

p
er
at
u
re

w
it
h
al
l
co
n
d
it
io
n
s

135



F
ig
u
re

65
:
P
ro
p
er
ty

1
H
u
m
id
it
y
w
it
h
al
l
co
n
d
it
io
n
s

136



F
ig
u
re

66
:
P
ro
p
er
ty

2
H
u
m
id
it
y
w
it
h
al
l
co
n
d
it
io
n
s

137



D
at
e

Lux

F
ig
u
re

67
:
P
ro
p
er
ty

1
L
ig
h
t
w
it
h
al
l
co
n
d
it
io
n
s

138



D
at
e

Lux

F
ig
u
re

68
:
P
ro
p
er
ty

2
L
ig
h
t
w
it
h
al
l
co
n
d
it
io
n
s

139



D
at
e

MotionRecorded

F
ig
u
re

69
:
P
ro
p
er
ty

1
M
ot
io
n
w
it
h
al
l
co
n
d
it
io
n
s

140



D
at
e

MotionRecorded

F
ig
u
re

70
:
P
ro
p
er
ty

2
M
ot
io
n
w
it
h
al
l
co
n
d
it
io
n
s

141


