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Abstract Soil moisture plays a very important role in hydro-
logical processes. It has been found in many studies that the
surface soil moisture (SSM) is highly related to the diurnal
change of the surface soil temperature (ΔSST) at the same soil
depth. However, some studies contradict this common belief
with findings of a much stronger correlation between the SSM
and the SST. In order to investigate this further, we have car-
ried out for the first time a comparative assessment of the in-
situ measured SST and ΔSST for SSM estimations, over two
catchments with contrasting climate types and land uses (i.e.
one in the UK and the other in Australia). In both catchments,
the time point for the highest relationship between the SST
and the SSM is explored. As a result, it is found the SST is
more suitable to monitor the variability of the SSM than the
ΔSST in both catchments. Moreover the proposed seasonal-
based classification method further improves the SSM simu-
lation results in both catchments, with a superior performance
observed in the UK catchment (NSE = 0.900 and
RMSE = 0.030). In the Australian catchment, a relatively
weaker correlation is observed and some potential reasons
are explained. The potential applications of the findings for
remote sensing soil moisture retrievals are also discussed.
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Introduction

Soil moisture plays a very important role in hydrological pro-
cesses (Kerr et al. 2001; Zhuo et al. 2015); in particular, the
surface soil moisture (SSM) has been widely recognised as a
vital element in a number of environmental studies. For example,
Wanders et al. (2014) found that calibrating large-scale hydro-
logical models with satellite-retrieved surface soil moisture re-
sulted in Ban accurate identification of parameters related to land-
surface processes^ (Wanders et al. 2014: pp 6874). Dumedah
and Coulibaly (2013) demonstrated that assimilating the soil
moisture observations and flow data into the soil and water as-
sessment tool could raise the accuracy of flow modelling as well
as soil moisture calculation when compared with the open-loop
simulation. Yoon and Leung (2015) showed that Bantecedent soil
moisture information was as important as concurrent ENSO con-
dition in controlling rainfall anomalies over the United States"
(Yoon and Leung 2015: pp 5005). Particularly in hydrology, the
presence of sufficientmoisture in the upper-most few centimetres
of soil plays an important role in controlling and distributing
water input from rainfall and irrigation into runoff, interflow
and groundwater (Idso et al. 1975). As a result, accurate soil
moisture information is essential in real-time flood forecasting,
as well as decision making in water resource management
(Brocca et al. 2010; de Michele and Salvadori 2002; Komma
et al. 2008; Zhuo and Han 2016; Zhuo et al. 2016; Srivastava
et al. 2013b; Srivastava et al. 2016).

In theory, soil with low thermal inertia changes its temperature
significantly during the daily heating-cooling cycle, whereas soil
with high thermal inertia responds slower. This means that the
areas with drier soil are warmer during the day and cooler in the
night (de Griend-Van and Engman 1985). Some researchers be-
lieve the diurnal surface soil temperature difference (ΔSST) can
reflect the variation of SSM with high performance (Deardorff
1978; Price 1980; Wetzel et al. 1984). This is because the
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variations of the SST are mainly affected by albedo and diurnal
heat capacity, and the diurnal heat capacity is mainly influenced
by soil moisture (Price 1980). However, the result found in
Srivastava et al. (2013a) is against this common belief, and
instead, it concludes that there exists a much stronger
correlation between the SST and the SSM. It is explained by
Srivastava et al. (2013a) that the possible cause behind the poor
result ofΔSST in the paper may be related to satellite night-time
data, which suffer "more from night dew, relative humidity
changes during night or uncertainty in day/night registration of
satellite data^ (Srivastava et al. 2013a: pp 3137; Wan 1999). His
conclusion raises our interest to further explore the relationship
between the SST and the SSM using the in-situ observations
which are more reliable than the satellite data, so that a more
convincing conclusion can be made. Moreover, to our knowl-
edge, no prior studies have focused on comparing the perfor-
mance of both products (i.e. the ΔSST and the SST) for the
SSM estimation, especially at catchments of contrasting climate
and land cover conditions. Hence, in this paper, we have carried
out for the first time a detailed assessment of the SST and the

ΔSST for SSM simulations at two representative catchments,
one in England (Brue) and the other in Australia (Stanley).
Since Srivastava et al. (2013a) use satellite datasets only, the
accuracy of the data themselves can be highly dependent on
weather conditions (e.g. rainfall, humidity and cloud) and vege-
tation coverages when satellites retrieve those measurements
(Schmugge et al. 1986). Furthermore, the datasets retrieved from
various satellites, and at different geographical locations, can
have diverse spatial resolutions (Wagner et al. 2012).
Therefore, in order to avoid the aforementioned uncertainties in
our conclusion, the in-situ groundmeasurements are used, so that
the datasets are more reliable.

Materials and methodology

Data and catchments

The Brue catchment is located in Southwest England (51.06°N
and 2.93°W) as shown in Fig. 1a, b. The reason for choosing

Fig. 1 Geographical locations. a, b Brue with soil moisture observation
station in the red star, and river network (Floodsite; Remesan et al. 2009).
c, d Stanley microcatchment (S) with soil moisture monitoring station S2

in the red star, and river network (Rüdiger et al. 2007). G, M and K stand
for the soil moisture stations in Goulburn River catchment, Merriwa
River catchment and Krui River catchment, respectively
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this study area is its representativeness of the UK catchments
and the availability of data. The land use of this mid-sized
(135 km2) catchment is predominantly grassland on clay soils,
with 10% arable farming, 7% forestry and no major urban or
industrialised areas (Roberts et al. 2000). The in-situ data are
provided by the British Atmospheric Data Centre collected
from the HYREX project. The catchment is well equipped with
an automatic weather station and an automatic soil water and
thermometer station (both stations are located at the same place
next to each other as shown in the red star in Fig. 1b). Both the
SST and the SSM (at 5 cm) are measured at an hourly interval.
The soil moisture is recorded using both the capacitance probes
and the tensionmeters (Moore 1995). In this study, the SSM
measured by the capacitance probe is chosen due to its better
data integrity. The raw output from the capacitance probe is
given as frequency in Hertz expressed as F = A(B + 1/θ), where
F is the frequency and θ is the soil volumetric water content
(m3/m3). The A and B parameters are correlated to the soil
characteristics and instrument property, which can be calibrated
from a built-in instrument model (Dean 1994). However such
calibration was not available during the HYREX project

(BADC 2003; Moore 1995). Therefore, the reciprocal of the
frequency (i.e. 1/Hz) is used as a representative indicator of the
volumetric soil moisture for the Brue catchment to avoid the
conversion error. The SST (in the unit of °C) is retrieved by a
soil thermometer. The areal daily rainfall data is obtained by
averaging the retrievals of the 49 tipping bucket rain gauges
using the Thiessen polygon technique. The observations in the
Brue catchment cover a 12-month period in 1995.

The Stanley microcatchment (Wells and Christoph 2003;
Rüdiger et al. 2007) is located in New South Wales, Australia
(32.1°S and 150.1°E). The study site is within the Goulburn
River catchment (6540 km2) which has two subcatchments in
the northern half of the catchment, the Merriwa River
(651 km2) and Krui River (562 km2). Stanley (1.75 km2) is part
of the Krui River catchment. It has a low tomoderate vegetation
cover and is used mostly for farming. Soil is predominantly
basalt-derived soil and cracking clay. Figure 1c, d illustrate
the geographical locations of the Goulburn River catchment
(G) and its subcatchments (M, K) andmicrocatchment (S), with
the locations of soil moisture observations also indicated. In this
study, the surface soil information is collected from the site S2

Fig. 2 Daily maximum and
minimumSST histogram plots for
Brue (a) and Stanley (b), during
1995 and 2005, respectively. It is
noted missing data exist in both
catchments
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in the Stanley microcatchment (shown as a red star in Fig. 1d).
The reason for choosing site S2 is because it is fully equipped
with an automatic weather station, soil sensors and rain gauges.
The volumetric SSM (in the unit of m3/m3) at 5 cm deep is
measured by a water content reflectometer, and the SST (in the
unit of °C) at the same depth is retrieved by a soil temperature
sensor. Both sources of soil information are recorded hourly.
The daily rainfall amount is recorded by a tipping bucket rain
gauge. The data used from Stanley covers a 12-month period in
2005.

It should be noted that the retrieved data from both catch-
ments contain missing data, which are mainly due to instru-
ment failures.

Methodology

The methodology used in this study is mainly correlational sta-
tistics. In addition to statistical indicators, summary tables and
graphs are also used to analyse the data. In this study, the ob-
served in-situ datasets in their original form are too large to find
regularities and draw a conclusion. Instead, table and figures are
useful in exploring the overall pattern of the datasets (Mann
1995). The time series analysis (NIST 2012) has been adopted
in this study in the soil moisture and rainfall plots to extract

meaningful seasonal fluctuations.Moreover, the bivariate anal-
ysis via scatter-plots is used to visually demonstrate the correla-
tions between variables such as SST against SSM and ΔSST
against SSM. In addition, a combination plot is utilised to show
multiple variables in a single plot.

Statistical indicators

The statistical indicators used in this study include Pearson
product moment correlation coefficient (r), Spearman rank
correlation coefficient (rs), Nash-Sutcliffe efficiency (NSE)
and root mean square error (RMSE).

Pearson product moment correlation coefficient (r) is used
to assess the linear correlation between two variables, which
can be calculated by

r ¼ n ∑xiyið Þ− ∑xið Þ ∑yið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n∑x2i − ∑xið Þ2
h i

n∑y2i − ∑yið Þ2
h ir ð1Þ

where xi is the observed data and yi is the paired estimated
data; n is the number of data pair.

Spearman rank correlation coefficient (rs) is similar to r
except that it operates on the ranks of the data rather than

Fig. 3 Performance of SSM estimation using ΔSST in Brue with a calibration and b validation, respectively, and Stanley, with c calibration and d
validation, respectively
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the raw data (Gautheir 2001; Myers and Well 1991). It is used
as an indicator to select the time point for the highest correla-
tion between the SST and the SSM. The following equation is
used for its calculation:

rs ¼ 1−
6 ∑

n

i¼1
d2i

n3−n
ð2Þ

where di is the difference between ranks for each xi, yi data
pair.

Nash-Sutcliffe efficiency (NSE) is used widely in hydrolo-
gy and can be obtained by

NSE ¼ 1−
∑n

i¼1 yi−xið Þ2

∑n
i¼1 xi−x

� �2 ð3Þ

Root mean square error (RMSE) is a frequently used mea-
sure of residuals between the modelled and the actual obser-
vations, which can be calculated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑n

i¼1 yi−xið Þ2
r

ð4Þ

Results

SSM estimated from SST and ΔSST

The SST and ΔSST estimated SSM are evaluated compara-
tively in this section. For each catchment, the calibration and
validation groups are chosen firstly. For each month, the first
two thirds of the data are selected for calibration, and the
remaining data are used for validation purpose. This approach
ensures the seasonal representatives for both calibration and
validations datasets (Srivastava et al., 2015).

The performance of ΔSST is firstly examined. The accu-
racy is measured by NSE and RMSE. The daily maximum and
minimum SST are used for the ΔSST calculation (Idso et al.
1975). As shown in Fig. 2, it is interesting to notice that the
daily maximum SST for Brue is at 16:00 instead of the ex-
pected 13:00 for most days. Whereas, the time for Stanley’s
maximum SST is even later (i.e. 18:00). As to the minimum
temperature, the time is found in the early morning for Brue
(07:00) and 09:00 for Stanley. The possible reason for the
delayed maximum values of SST is that the incoming solar
radiation exceeds outgoing heat energy for many hours after
noon, and the equilibrium is usually reached from 15:00–

Fig. 4 Spearman correlations (rs)
between the 24-h SSM and the
24-h SST at a Brue and b Stanley
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17:00 or even later. The exact time points may also be affected
by many other factors such as water bodies, soil types, vege-
tation cover, wind, cloud cover, water vapour and soil mois-
ture. Those factors can also influence the time points of the
minimum values of SST. The performance of the ΔSST esti-
mated SSM is shown in Fig. 3. It is clear to see that the overall
calibration result in Brue is acceptable; however, for Stanley,
the outcome is rather poor. To further examine the linear and
non-linear modelling choices, both r and rs between the SSM
and the ΔSST are calculated (Shrivastava et al. 2013b). The
similar values obtained from r and rs indicate that the linear
model is fit for the SSM prediction from the ΔSST at both
catchments. As for the validation, the ΔSST-derived SSM

demonstrates some degree of match with the observed SSM
in the Brue catchment, while it is poor in Stanley.

Although absent from the literature, the SSM derived from
the SST is evaluated in this study. We hypothesise that when
the SST climbs up, there will be more evaporation to cause a
decline in the SSM. To test this hypothesis, the following
explorations are carried out. rs is again used as a statistical
indicator to find the time for the highest relationship between
the SST and the SSM. As illustrated in Fig. 4, it is interesting
to find that the time point selection for the SSM and the SST
can have a big impact on the correlation result (especially the
chosen time points of SST). In the Brue catchment, the SSM at
12:00 with the SST at 11:00 has the strongest correlation rs-
= − 0.84. Generally, SST during the sunrise (04:00–08:00)
shows the lowest correlation, while in the late morning to the
midnight (10:00–24:00), a better correlation is achieved. For
Stanley, the best correlation is found at 13:00 and 24:00 for the
SSM and the SST respectively (r

s
= − 0.37). On the other

hand, the weakest correlations are found during midmorning
(09:00–11:00), while relatively steady correlations are ex-
plored from afternoon to early morning (15:00–03:00).
These identified best time points are chosen to build a model
between the SSM and the SST, as presented in Fig. 5.
Compared with the performance of the ΔSST, the estimated
results by the SSTare evidently improved in both catchments.

Fig. 5 Performance of SSM estimation using SST in Brue with a calibration and b validation, respectively, and Stanley, with c calibration and d
validation, respectively

Table 1 Time points (24 h) for the best Spearman correlations obtained
between the SSM and the SST in four seasons

Brue Stanley

SSM SST SSM SST

Spring 02:00 12:00 11:00 20:00

Summer 01:00 12:00 03:00 20:00

Autumn 24:00 18:00 03:00 01:00

Winter 09:00 17:00 24:00 19:00
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In Brue, the calibration outcome is increased to r = − 0.87,
which is much better than that from the ΔSST test
(r = − 0.66). In Stanley, although the correlation with the
SST is still not satisfactory, it is improved from r = − 0.32 to
r = − 0.49. Moreover, the similar values calculated from rs
and r reveal that the linear fitting method is suitable in both
catchments. Furthermore, it is obvious to see that the val-
idation result in Brue shows a significant enhancement
(NSE = 0.85 and RMSE = 0.036) compared with the result
from the ΔSST method. However, the validation outcome
in Stanley remains poor; therefore, further exploration is
essential. For both catchments, the ΔSST-derived SSM
gives a very weak correlation with the observed SSM in-
dicating that ΔSST is less suitable for the estimation of
SSM. For this reason, the ΔSST datasets are not carried
forward to the rest of the study.

Seasonal based SSM estimation

To further improve the performance of the SST-modelled SSM,
an approach based on four seasons is introduced. This is be-
cause the relationships between the SST and the SSM can be-
have differently in various seasons. The splits of seasonal
datasets are based on spring (March–May), summer (June–
August), autumn (September–November) and winter
(December to February). The data selection procedure is similar
to that of the whole year study (i.e. for each month the first two
thirds of data are used for calibration and the remaining third for
validation). For the purpose of finding the time point for the
best correlation between the SST and the SSM, the Spearman
correlations are again calculated between the 24-h SSM and the
24-h SST for each season, and the results are shown in Table 1.
For both catchments, the choice of time points for the SSM is

Fig. 6 Seasonally based performance of SSM estimation using SST in Brue with a calibration and b validation, respectively, and Stanley, with c
calibration and d validation, respectively
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relatively random. However, the best time points for the SST is
progressively later from spring to winter in Brue (except the
winter data). Whereas for Stanley, all the time points for SST
are found during night time. These time points are then utilised
to build the relationship between the SSM and the SST. The
Pearson and Spearman correlations are calculated as shown in
Fig. 6. Since both indicators show similar results, a linear model
is again used to estimate SSM. As shown in Fig. 6, for Brue, it
is surprising to observe that the winter SSM has only little
fluctuation (~ 0.96–1.05 1/Hz) and shows a positive correlation
between the SSM and the SST during the calibration period,
which is distinct from the other seasons. Moreover, the SSM
estimation in the winter is the weakest among all seasons. This
is because in winter, there is very low evapotranspiration. It can
be as low as zero, and at most time stays around 0.1 mm/day.
Therefore, when it rains, the soil tends to stay wet. But, in
summer, the evapotranspiration can be almost 6 mm/day, so
any soaked rainfall can be quickly evaporated. This is why there
are two groups of data in winter (one during the winter rainy
period and one during the winter dry period) with few data in
between. As a result, in winter, the temperature relationship is
not ideal. Luckily, soil moisture data users are more interested
in the summer time when soil information is really needed (e.g.
for irrigation and other purposes). For the validation, the plot
shows a rather strong seasonal demarcation. It can be seen from
Table 2 that the best validation performance is obtained in the
spring (based on NSE indicator), while the worst result is from
the winter datasets. The seasonal equations are then combined
to examine the results for the whole period. The comparison
between the SST estimated SSM and the observed SSM shows
a very strong correlation (NSE = 0.90 and RMSE = 0.03). For
Stanley, the overall correlations are good during the calibration
period, especially the correlation in the autumn season.

However, the autumn has a positive correlation which is not
in line with the other three seasons. During the validation peri-
od, the winter season shows a similarly poor performance as in
the Brue catchment, which could also be caused by the frozen
soil. The combined seasonal algorithms give NSE = 0.40 and
RMSE = 1.55, which show a far better performance than the
whole-year algorithm.

Discussion and conclusions

Through the exploration, a high accuracy of SSM estimation
is achieved in the Brue catchment with the seasonally based
method. Although the performance in Stanley is also im-
proved remarkably, the overall result is still not as good as
the one in the Brue catchment. Here, an investigation is made
to further discuss the factors that may contribute to the differ-
ence between those two catchments:

– Precipitation: Rainfall data could be a significant factor
influencing SSM in Stanley. As seen from Fig. 7, the
rainfall amount in Brue is much larger than that in
Stanley, with a total annual rainfall of 854.7 mm in
Brue and 386.6 mm in Stanley. Moreover, the rainfall
events in Brue are rather evenly distributed; whereas in
Stanley, it is unevenly distributed. Therefore, in Stanley,
after a long period of drought, its SSM has already
reached its wilting point, such that the subsequent SSM
would vary slightly with respect to the SST changes.

– Climate: The Stanley microcatchment has temperate cli-
mate with big fluctuations in its precipitation and evapora-
tion amount during a year (Stern et al. 2000), whereas the
Brue catchment is within the typical temperate maritime
climate. Therefore, in Brue, the Atlantic depressions are
the major source bringing heavy and intense rainfall in
spring, autumn and winter. During summer time, convec-
tion can sometimes cause heavy rainfall (Metoffice 2013).
The annual potential evapotranspiration in Brue is calcu-
lated as 487 mm, while it is 1360 mm in Stanley. It is clear
that in Stanley, with much higher evapotranspiration and
less rainfall, the surface soil can easily become dry and
interrupt the relationship with the SST.

– Soil type: In Stanley, soils are predominantly basalt de-
rived, consisting of mostly sand- and silt-size material
(Sijing and Marinos 1997) with little cracking clays
(Wells and Christoph 2003). While, the major soil type
in Brue is clay. As classified by the US Department of
Agriculture, sand’s particle size is between 0.05 and
2.0 mm, while clay’s is smaller than 0.002 mm.
Generally, the smaller the soil particle size, the worse
the drainage ability is. Fine soil like clay in Brue tends
to hold water within the soil system for a longer time.
Oppositely in Stanley, the moisture absorbed by the sandy

Table 2 Statistical performances of SSM estimation using SST, during
calibration and validation

Calibration Validation

r rs NSE RMSE

Brue Whole year − 0.87 − 0.84 0.85 0.036

Spring − 0.73 − 0.80 0.68 0.034

Summer − 0.93 − 0.90 0.12 0.030

Autumn − 0.47 − 0.39 0.40 0.033

Winter 0.30 0.47 0.050 0.019

Four-season combined – – 0.90 0.030

Stanley Whole year − 0.49 − 0.37 − 0.17 2.24

Spring − 0.32 − 0.35 − 0.34 1.62

Summer − 0.68 − 0.65 − 2.47 0.66

Autumn 0.75 0.85 0.41 0.46

Winter − 0.66 − 0.48 − 1.63 2.76

Four-season combined – – 0.40 1.55
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soil (from rainfall and air humidity) can quickly percolate
into deeper soil layers. Therefore, with less rainfall, the
SSM in Stanley can easily reach its wilting point.

– Vegetation covers: The values of the annual mean
Normalised Difference Vegetation Index (NDVI) are re-
trieved from the AVHRR-FASIR dataset (Los et al. 2000;
Sellersetal.1996). It is foundthat theannualmeanNDVIfor

Brue is 0.67, which indicates dense vegetation. In contrast,
the annual mean NDVI for the Stanley catchment is 0.29,
which indicates only low to moderate vegetation cover.
Canopy is able to shade a certain amount of direct solar
radiation and retain the moist level in soil. Moreover, the
air temperature between the canopy and the earth surface is
lower than the bare soil and therefore further reduces

Fig. 7 Four seasons’ daily rainfall density plot for Brue (a–d) and Stanley (e–h), with the total annual rainfall of 854.7 mm in Brue and 386.6 mm in
Stanley
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evaporation amount. Hence, in Brue, the surface soil is able
to retainmore water content before it goes dry.

From these aforementioned four points, it can be noted
that the correlation between the SSM and the SST is
stronger in areas where the surface soil is usually wet.
Other factors such as wind speed, solar radiation and
model used could also have impacts on the results.
Further research over a variety of catchments will be nec-
essary to validate those speculations.

This study has found that SST is much better than
ΔSST in estimating SSM. For Brue, the validation re-
sult from the seasonally based analysis is very convinc-
ing. Such a high correlation could be useful for practical
applications, such as for the remote-sensing SSM esti-
mation. This is because the globally covered SST infor-
mation can be retrieved from the thermal infrared band
from many satellites, such as the Moderate Resolution
Imaging Spectroradiometer (MODIS) Level 3 land sur-
face temperature product, and the observations of the
solar energy reflected and absorbed by the earth from
the clouds and the Earth’s Radiant Energy System
(CERES). Furthermore, it is found that the selection of
SST time point is rather important for an accurate SSM
estimation. Therefore, the multi-temporal correlation re-
sults between the SST and the SSM can provide useful
information on selecting the most suitable satellites that
pass a specific study area. In addition, explorations at
more catchments with the consideration of adding pre-
cipitation, climate, soil and vegetation parameters
would be beneficial to further enhance the conclusion
of this paper.

It is noted that both SSTand SSM in this paper refer to the soil
sample at 5 cm below the surface. This is different to the satellite
land surface temperature. However, it is not correct to assume
that soil moisture at 5 cm below the surface has a better correla-
tion with the surface temperature than the soil temperature at
5 cm below the surface. This is because the soil moisture and
temperature are related to each other due to the varied heat ca-
pacity with the water content (water has a much higher heat
capacity than dry soil particles). Therefore, this paper is logically
valid to link the soil moisture and temperature at the same depth.
However, studies to explore the relationship between the satellite
land surface temperature and the soil moisture at 5 cm below the
surface will be carried out in the future.
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creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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