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Abstract: Land cover mapping provides spatial information on the physical properties of the Earth’s
surface for various classes of wetlands, artificial surface and constructions, vineyards, water bodies,
etc. Having reliable information on land cover is crucial to developing solutions to a variety of
environmental problems, such as the destruction of important wetlands/forests, and loss of fish and
wildlife habitats. This has made land cover mapping become one of the most widespread applications
in remote sensing computational imaging. However, due to the differences between modalities in
terms of resolutions, content, and sensors, integrating complementary information that multi-modal
remote sensing imagery exhibits into a robust and accurate system still remains challenging, and
classical segmentation approaches generally do not give satisfactory results for land cover mapping.
In this paper, we propose a novel dynamic deep network architecture, AMM-FuseNet that promotes
the use of multi-modal remote sensing images for the purpose of land cover mapping. The proposed
network exploits the hybrid approach of the channel attention mechanism and densely connected
atrous spatial pyramid pooling (DenseASPP). In the experimental analysis, in order to verify the
validity of the proposed method, we test AMM-FuseNet with three datasets whilst comparing it
to the six state-of-the-art models of DeepLabV3+, PSPNet, UNet, SegNet, DenseASPP, and DANet.
In addition, we demonstrate the capability of AMM-FuseNet under minimal training supervision
(reduced number of training samples) compared to the state of the art, achieving less accuracy loss,
even for the case with 1/20 of the training samples.

Keywords: multi-modal fusion; channel attention; land cover mapping

1. Introduction

During the past few decades, human activities have posed serious threats to the
environment, such as over-logging, over mining, illegal hunting, plastic pollution [1],
which makes it necessary to monitor the Earth for the purpose of preventing damages to
the environment. With the rapid development of remote sensing technology in the last
couple of decades, various space- or air-borne remote sensing sensors have been made
available to provide useful and large-scope information about the Earth, such as forest
cover, glacier conditions, ocean surface, urban construction. Thus, utilizing remote sensing
images for the purpose of environmental applications has become a feasible solution, but
there are still many challenges for using remote sensing images in various environmental
applications. To name but a few, (1) it is expensive and challenging to obtain high-resolution
images for all possible problematic areas; (2) passive remote sensors (e.g., optical) are at the
mercy of the clouds and the amount of sunshine; and (3) the contents of remote sensing
images are generally very complicated and difficult to analyze.

In order to help overcome the aforementioned challenges and beyond, taking the
advantage of leveraging different remote sensing modalities is a potential solution. Vari-
ous environmental applications can benefit from multi-modal image fusion by exploiting
complementary features provided by different types of remote sensors. Specifically, for
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active-passive sensor data fusion, passive-optical sensors play the role of feeding the sys-
tem with high spectral resolution of the Earth surface, which are useful for image analysis.
However, for optical remote sensing imagery, in order to provide multi-spectral informa-
tion, they tend to reduce spatial resolution so as to maintain acceptable bandwidth [2,3].
Additionally, this type of sensor is subject to the weather conditions and only provide
useful information during the daytime and under clear weather conditions. On the con-
trary, active remote sensing sensors are able to acquire images without being affected by
inclement weather conditions, such as heavy fog, storm, sandstorm, snowstorm. Addi-
tionally, they usually provide sufficient textural and structural information of observed
objects [4]; however, they are mostly not capable of collecting color/spectral information.
Lastly, since synthetic aperture radar (SAR) images are obtained via wave reflection, they
have an important problem that degrades statistical inference, which is the presence of
multiplicative speckle noise. The received back-scattered signals sum up coherently and
then undergo nonlinear transformations. This in turn gives the resulting images a granular
appearance, which is referred to as speckle noise [5]. Considering all these advantages
and disadvantages, exploring remote sensing data coming from different modalities be-
comes crucial for many environmental applications via making use of the complementary
advantages of each type of sensors.

Land cover mapping is one of the most widespread and important remote sensing
applications in the literature. This is because, nowadays, decisions that concern the envi-
ronment made by governments, politicians or organizations highly depend on adequate
information for many complex interrelated aspects, where land cover/use is one such
aspect. Furthermore, an improved understanding of land cover can help act to solve envi-
ronmental problems, such as disorganized construction, loss of prime agricultural lands,
destruction of important wetlands or forests, and loss of fish and wildlife habitats [6].

Land cover classification or mapping is a long-established application area that has
been developing since the 1970s. The earliest Landsat land cover classification approach
was mostly based on visual and manual approaches. This was done by drawing boundaries
of different land cover types and marking each of the land cover classes [7]. In the late
1970s, with the development of computer technology, digital image analysis has become
more widespread, and some platforms such as geographic information systems (GIS)
were developed to make the analysis of remote sensing data more convenient. Following
this, utilizing computer-based approaches for the purpose of land cover classification has
become the common practice by geographic analysis specialists. In addition, due to the
development of early automatic image processing methods, such as smoothing, sharpening
and feature extraction [8], geographic experts have been able to use various traditional
image processing algorithms to help perform land cover classification. Although one can
generate digital land cover maps by using computers, manual annotation is generally
required, which is time consuming and labor intensive. Specifically, in cases when the
target scene accommodates plenty of objects to be classified, and the scene covers huge
areas, manual annotation becomes more challenging.

In recent years, with the great success of deep learning in computer vision, automated
land cover classification approaches have been significantly improved, which assign a class
for each pixel among many particular classes, such as artificial surfaces, cultivated areas,
and water bodies, as shown in Figure 1. Due to the similarity of land cover mapping and
semantic segmentation, researchers have started to use segmentation networks to perform
land cover mapping. Furthermore, machine learning based end-to-end frameworks make
use of remote sensing data (spatial and spectral information) to achieve better performance
in land cover classification compared to the traditional pixel-based methods [9]. How-
ever, considering the diversity and complexity of remote sensing data and along with
imbalanced training samples, it is still challenging to achieve high performance for land
cover classification.
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Figure 1. Land cover mapping example. Image taken from ESA (available online: https://www.esa.
int/ESA_Multimedia/Images/2020/03/Europe_land-cover_mapped_in_10_m_resolution, accessed
on 20 June 2022).

For the purpose of improving the performance of land cover classification, multi-modal
data fusion is an important choice whilst exploiting complementary features of different
modalities. Although, in the current circumstances, multi-modal remote sensing data are
available with the development of remote sensing sensors and observation techniques
(e.g., active and passive), the literature is still far from fully leveraging the advantages of
using multiple modalities for land cover classification. In order to successfully implement
multi-modal remote sensing image fusion for environmental applications, there generally
are two types of fusion approaches: (1) machine learning based; and (2) traditional methods,
such as component substitution (CS) and multi-scale decomposition (MSD).

Although classical/traditional image fusion methods have been well studied for a few
decades, there still are various challenges; for example, (i) precise and complex registration
processing is required before the fusion step; (ii) it is highly dependent on the correlation
between images being fused; and (iii) it is likely to lose information during the fusion
process while replacing a part of the component of the original data during the processing.

On the other hand, ML-based methods generally demonstrate more powerful out-
comes for image fusion. Thus, utilizing machine learning approaches in remote sensing
imagery related applications has become a hot topic in the literature. However, since the
contents in remote sensing images appear very different to the classical natural images,
widely used network structures for natural images are not capable of and optimal for

https://www.esa.int/ESA_Multimedia/Images/2020/03/Europe_land-cover_mapped_in_10_m_resolution
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processing remote sensing imagery. Meanwhile, the machine/deep learning approaches of
remote sensing data fusion, especially for the environmental applications, can still be seen
in early stages. Therefore, more robust and generalizable machine learning based methods,
specifically for remote sensing data fusion, need to be explored and developed in order to
provide suitable and accurate solutions for land cover applications, and beyond.

In this paper, we propose a novel dynamic deep network architecture, AMM-FuseNet,
for the purposes of the land cover mapping application. AMM-FuseNet promotes the use
of multi-modal remote sensing images whilst exploiting the hybrid approach of the channel
attention mechanism and densely connected atrous spatial pyramid pooling (DenseASPP).
In order to verify the validity of the proposed method, we test AMM-FuseNet under
four test cases from three datasets (Potsdam [10], DFC2020 [11] and Hunan [12]). A
comparative study is implemented to test AMM-FuseNet performance against six state-of-
the-art network architectures of DeepLab V3+ [13], PSPNet [14], UNet [15], SegNet [16],
DenseASPP [17], and DANet [18]. The contributions of this paper are as follow:

1. We design a novel encoder module, which combines a channel-attention mecha-
nism and densely connected atrous spatial pyramid pooling (DenseASPP) module.
This proposed feature extraction module enhances the representational power of
the network by successfully weighting the output features obtained by the atrous
convolution. This module can be easily extended to any other networks with an
encoder–decoder structure.

2. We propose a machine learning based land cover mapping method specifically suit-
able for multi-modal remote sensing image fusion. The proposed network extracts
information from multiple modalities in a parallel fashion, but performs training
with a single loss function to make use of their complementary features. Meanwhile,
the encoders in a parallel fashion show a better ability to cope with minimal (small
number of) training samples. This has been experimentally validated in a set of test
cases (Section 5.3), where we gradually reduce the number of training samples and
measure the model performance using the same test sample set.

3. The proposed hybrid network exploits and combines many advantages of existing
networks for the purpose of improving the performance of land cover mappings. The
encoder of the proposed network combines two feature extraction modules (ResNet
and Dense ASPP) in a parallel fashion to improve the feature extraction capabilities
for each modality. In order to make more efficient use of the extracted features, skip
connections are used to benefit from the low-, middle-, and high-level features at
the same time. The proposed multi-modal image fusion network shows competitive
performance for land cover mapping and outperforms the state of the art.

The rest of the paper is organized as follows: a general background and literature
review are presented in Section 2, whilst Section 3 presents the proposed method AMM-
FuseNet. Section 4 gives details of the datasets we have used, and Section 5 covers
the experimental analysis. Section 6 concludes the paper with a brief summary and
future works.

2. Related Work

Following the development in big data research area and its effects on computer
vision research, especially in recent years, multi-modal remote sensing data for various
applications have been made available under open-access licences (e.g., ESA Sentinel-
1/2, fusion contest datasets, including DEM, airborne/UAV-based optical data). Thanks
to their complementary features, multi-modal remote sensing imagery provides much
richer information compared to single modality, especially for land cover/use applica-
tions. However, in the literature, most of the land cover mapping papers still use single
modality data [19–21]. Along with the technical developments in computational imaging
and deep/machine learning research, the usage of multi-modal for land cover mapping
data [22,23], despite being in early stages and insufficient, have started to appear in some
works in the recent years.
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Considering the increasing demand for multi-modal information for land cover map-
ping in the literature, obviously, the key challenge of this research lies within answering
this research question: “how to make efficient use of complementary features in multi-modal
remote sensing data?”. One of the most common answer to this question in the literature is
to implement an image fusion approach which directly concatenates multi-modal images
and provide them as the input of land cover mapping networks. Furthermore, Land cover
mapping can be basically described as a classification application, which classifies each
pixel of remote sensing images to one of various categories (analogous to the semantic
segmentation). Especially in the last decade, semantic segmentation networks, such as
UNet [15], DeepLabv3+ [13], SegNet [16] and PSPNet [14], developed rapidly, and have
achieved great success for some natural imaging datasets, such as COCO [24] and PASCAL
VOC 2012 [25]. Thus, one can develop a machine learning approach built upon classical
semantic segmentation networks mentioned above and try to develop some improved
architectures for the purpose of land cover mapping application.

When it comes to pixel-level classification, either semantic segmentation in computer
vision or land cover classification/mapping in remote sensing, fully convolutional networks
(FCNs) [26] have made a considerable contribution, which have made these models and
their variants become the state of the art in the literature. SegNet [16] and UNet [15] adopt
a symmetrical encoder–decoder structure and skip connections, whilst making use of multi-
stage features in the encoder. Alternatively, PSPNet [14] proposes to use a pyramid pooling
structure, which provides a global contextual prior to pixel-level scene parsing. Instead of
leveraging from the traditional convolution layer used in the aforementioned networks,
atrous convolution and atrous spatial pyramid pooling (ASPP) are proposed in Deeplab
architecture [27]. This fact helps the DeepLab architecture to exploit the ability to perceive
multi-scale spatial information, even using fixed-size convolution kernels. Regardless of
the fact that the ASPP can benefit from acquiring information from multi-scale features,
DenseASPP [17] argues that the feature resolution in the scale-axis is not dense enough.
Thus, DenseASPP combined dense networks [28] and an Atrous convolution network to
generate densely scaled receptive fields. DeepLabv3+ [13] proposed an improved hybrid
approach that combines an encoder–decoder structure and the ASPP, which can control
the resolution of extracted encoder features, trade-off precision and runtime via setting
different dilation rates. Specifically, in DeepLabv3+, appending the ASPP module after a
backbone of ResNet makes the network exploit deeper levels and extract high-level features
with an aim of improving the performance around the segmentation boundaries [29,30].
However, DeepLabv3+ just simply concatenates the two levels of features that come from
the output of the first backbone layer and the output of the ASPP module in its decoder.
In this case, the network misses the features of the intermediate process of extracting
features, which basically reduces the classification performance.

Remote sensing imagery has more complex challenges compared to natural images,
such as (1) hardly separable land cover classes; (2) imbalanced class distributions; and (3) im-
agery content under strong random noise, such as speckle in radar imagery. These might
sometimes cause the aforementioned semantic segmentation networks to achieve unsatis-
factory results. For the purpose of finding solutions for the challenges mentioned above,
the literature includes some semantic segmentation networks for land cover classification
applications. Fusion-FCN [31] improves the FCN network and uses it for multi-modal
remote sensing for land cover classification, and this network is the winner of 2018 IEEE
GRSS Data Fusion Contest. DKDFN [12] is also based on FCN and collaboratively fuses
multimodal data and assimilates highly generalisable domain knowledge (e.g., remote
sensing indices such as NDVI, NDBI, and NDWI) at the same time. The performance of
DKDFN is better than that of some of these classical semantic segmentation networks such
as UNet, SegNet, PSPNet, DeepLab. It is worth noting that both Fusion-FCN and DKDFN
extract multi modal features with different encoders, and this use of multi-encoders also
appears in RGB-D fusion for the semantic segmentation of natural images [32]. DISNet [33]
is another network for land cover classification, which uses the DeepLabv3+ framework
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and only adds an attention-mechanism-based module in both the encoder and decoder of
the network. This change improves the performance of land cover classification compared
to the original DeepLabv3+ [13]. Xia [29] also implemented DeepLabv3+ and similarly
proposed the global attention based up-sample module in the networks. Xia’s network also
passes multi-level features to the decoder to obtain efficient segmentation with accurate
results. Similarly, Lei [34] proposed a multi-scale fusion network based on a variety of
attention mechanisms for land cover classification, which also shows competitive perfor-
mance. In order to combine the advantages of UNet and DeepLabv3+, ASPP-U-Net [35]
was proposed for land cover classification and showed better results compared to the UNet
and DeepLabv3+.

3. The Proposed AMM-FuseNet Architecture

In order to make use of multi-modal data for the purposes of land cover classification
application, we propose a deep neural network named AMM-FuseNet, which explores the
effect of channel attention on multi-modal data fusion. Specifically, a couple of channel
attention modules are applied in the main structure and we also propose a channel attention
based feature extractor called CADenseASPP. In the sequel, we explain the stages of the
proposed AMM-FuseNet.

3.1. Channel-Attention Module

Channel attention is a kind of squeeze-and-excitation block, which focuses on finding
channels that are meaningful and encourage decoders to use the most relevant features.
Generally, the outputs of various channel attention modules are a weighted combination
of input features according to the importance of each channel. Thus, the use of channel
attention modules is prone to enhance the representative power of networks, and channel
attention is able to make features more informative. Specifically, this paper adopts the
efficient channel attention (ECA-Net) [36] module, which spatially squeezes the feature
map and excites along the channel, as shown in Figure 2. Assume the feature map is

U = [u1, u2, · · · , uC], (1)

where ui ∈ RH×W refers to ith channel of the feature map.

Figure 2. Visual representation of the channel attention module (CA-Module). Aggregated features
are processed by average pooling to acquire the element for each channel. Channel weights are
obtained after 1-D convolution and applying the sigmoid function. Corresponding channel weights
and feature channels are shown in the figure by matching colors.

Spatially squeezing means applying a global average pooling operation to generate a
vector Z ∈ R1×1×C, where the number of corresponding channels is C. In order to consider
local cross-channel interaction, the vector will be input to a 1-dimensional convolution
layer W ∈ Rk×C, where k refers to the size of the convolutional kernel. Thus, the feature
values Z for each channel become
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Ẑ = WZ. (2)

Here, we use convolution layers rather than fully connected (FC) ones since the
convolution operation has much lower complexity compared to the FC, despite achieving
similar performance (recommended in [36]). Following this, a sigmoid layer σ(·) is used to
normalize the transformed vector Ẑ into [0, 1]. Finally, the channel attention will perform
excitation of the original feature map along the channel as

Û = Fc(U) = [σ(ẑ1)u1, σ(ẑ2)u2, · · · , σ(ẑC)uC]. (3)

It is worth noting that the value of σ(ẑi) is the attention score of the ith channel, which
represents the importance of the channel in the feature map.

3.2. CADenseASPP Module

This paper proposes a channel-attention-based dense atrous spatial pyramid pooling
(CADenseASPP) module (named after the DenseASPP [17] module) which is an extension
of DenseNet [28]. As is mentioned in Section 3.1, channel attention is able to produce
a weighted combination of features and make these derived features more informative.
This paper also explores the effect of the channel attention module for features obtained
by atrous convolution to promote better representation of features in the proposed model.
CADenseASPP combines DenseASPP and channel attention modules, and as shown in
Figure 3, channel attention modules are appended just after each Atrous convolution layer
to weight the output features by their channel importance scores. Following this, similar
with the DenseNet [28] architecture, all features obtained from each atrous convolution
branch are concatenated together with features from the additional pooling and identity
mapping layers. Due to its dense characteristics, the proposed module also shares the
advantages of DenseNet [28], including alleviating the gradient-vanishing problem and
having substantially fewer parameters.

Figure 3. Channel-attention-based densely connected atrous spatial pyramid pooling (CADenseA-
SPP). The atrous convolution layers and an average pooling layer are densely connected, and a
channel attention module is added just after each atrous convolution layer.

3.3. AMM-FuseNet

The proposed multi-modal land cover mapping architecture, AMM-FuseNet, exploits
the following:

• A dual structure for two modalities;
• Channel attention mechanism;
• CADenseASPP module;
• The use of low–mid–high-level features.
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As shown in Figure 4, the proposed network exploits the use of multi-modal imagery
via two encoders in a parallel fashion. AMM-FuseNet adopts ResNet-50 as its backbone and
implements CADenseASPP to extract information from low level features that are obtained
by the first convolution layer of the backbone. Additionally, in order to compensate for the
low resolution of high-level features and make use of feature maps from middle or early
layers, skip-connections are designed from encoder to decoder to make use of multi level
features. Additionally, all branches from the backbone are optimized by corresponding
channel attention modules. Then all features are up-sampled into the same spatial size
and concatenated together with features obtained by the CADenseASPP module. In the
AMM-FuseNet decoder, all features coming from both encoders are concatenated, and
finally a segmentation head, consisting of two convolution layers and a ReLu activation
function, carries out semantic segmentation.

Figure 4. Attention-based multi-modal image fusion network (AMM-FuseNet). Two encoders are
applied for two modalities, respectively. For each modality, there are two extractors used in parallel.
Skip connections from the encoders to the decoder are used in the network.

The proposed network, AMM-FuseNet, is specifically designed for two-modality data
fusion applications. The differences between multi-modal remote sensing data caused by
different technologies for obtaining information (e.g., Sentinel-2 data mainly focuses on
spectral information whilst DEM data mainly collects elevation of the objects) might cause
various problems. To name but a few, (i) low correlation between multi modal images;
(ii) registration error especially for large scale land cover data sets. Therefore, when two-
modality data have low correlation and strong registration error, sharing parameters of the
same encoder will not be optimal and cause severe performance degradation. In addition,
using two encoders for multi-modal data fusion has been proved to be more efficient in [37]
compared to various deep learning architectures. Thus, the proposed method splits each
modality into different encoders to promote their useful features in different network levels,
yet fusion operation of the multi-modal features has been performed in the later stages of
the architecture.

The proposed AMM-FuseNet promotes using two feature extractors in parallel for
each data modality to efficiently make use of low-, middle- and high-level features (grey
and green boxes in Figure 4). ResNet-50 (grey) provides the information that has a deeper
understanding of the semantic information. On the other hand, the CADenseASPP (green)
module is used for acquiring low-level features, which are helpful for the extraction of
textural features. Meanwhile, in order to avoid losing information in the process of the
forward propagation of ResNet-50, the proposed network also exploits features in each
stage of ResNet-50 to increase the semantic knowledge.
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Since there are many channels in remote sensing data, typically Sentinel-2 (13 bands),
the channel attention mechanism plays a key role in reducing the impact of redundant
data and in making use of information coming from the most relevant channels. On the
contrary, for natural images, e.g., RGB images only have 3 bands, exploiting all information
from all spectral bands is general practice in the literature. However, when the number of
channels of input data increases, channel attention becomes highly useful to make efficient
use of ‘important’ channels and reduce the role of ‘unimportant’ channels in order to obtain
accurate classification or segmentation results. In addition, the usage of multiple channel
attention module makes the proposed AMM-FuseNet a kind of dynamic neural network.
Since the channel attention module rescales the features with input-dependent soft attention,
applying the attention mechanism on features is equivalent to performing convolution with
dynamic weights, which has been proved to enhance the representation power of deep
networks [38]. Thus, we choose to use channel attention in the skip-connection branches
and feature extractors.

3.4. Methodological Framework

A methodological overview of the whole approach is given in Figure 5. Each dataset
used in this paper provides non-overlapping training and testing data. Both training and
testing data include multi-modal remote sensing images and corresponding labels. The
whole methodological approach consists of training and testing stages:

• In the training stage, shown in the upper branch of Figure 5, multi-modal images are
given as input to the deep learning networks followed by acquiring the land cover
prediction. Then, the prediction and corresponding ground truth are used to calculate
the loss by using some functions, such as cross entropy, mean square error and/or
Dice loss functions. Then, this loss value is used to update the parameters in the
networks by using optimizers, such as stochastic gradient descent (SGD) [39], which
is illustrated in detail in Section 5.1.

• In the testing stage, shown in the lower branch of Figure 5, multi-modal images are
given as input to the trained models, and the land cover mapping predictions are
obtained. Different from the training stage, the network will not be updated, and the
prediction and ground truth are used for calculating the performance of the utilized
network by using related assessment metrics of overall accuracy (OA), user’s accuracy
(UA), producer’s accuracy (PA), mean intersection over union (mIoU), and F1-score,
which are also stated in detail in Section 5.1.

Figure 5. Methodological framework of the land cover mapping application via using deep network
architectures. The related assessment metrics in the chart are overall accuracy (OA), user’s accuracy
(UA), producer’s accuracy (PA), mean intersection over union (mIoU), and F1-score.
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4. Data

In this paper, we use three open-access multi-modal data sets, which are constructed
for land cover classification application, namely (1) Hunan [12], (2) Potsdam [10] and
(3) DFC2020 [11] datasets. Although most of the open-access land cover mapping datasets
in the literature focus on single modality, all of the three datasets used in this paper are
multi-modal remote sensing image datasets for land cover mapping. In particular, the
DFC2020 and Potsdam datasets are highly representative and commonly used in the
literature, whilst the Hunan dataset is a new dataset published in 2022 [12]. It includes
three different remote sensing modalities for land cover mapping, which makes it highly
suitable for testing the proposed method’s performance. Some details regarding all three
utilized datasets are presented in Table 1, where we have the following:

• SRTM refers to Shuttle Radar Topography Mission Digital Elevation Model (DEM) data;
• TOP refers to the true orthophoto;
• DSM refers to a digital surface model.

Table 1. Dataset information.

Dataset Modality # of Bands Spatial
Resolution

# of
Samples

# of
Classes

Hunan [12] Sentinel-1/2, SRTM 2/13/1 10 m to
30 m

500
(256 × 256) 7

DFC2020 [11] Sentinel-1/2 2/13 10 m to
20 m

6114
(256 × 256) 10

Potsdam [10] TOP/DSM 4/1 5 cm 38
(6000 × 6000) 6

4.1. Hunan

Hunan [12] is a multi-modal dataset for land cover mapping of Hunan province in
China. This dataset consists of three remote sensing modalities of multi-spectral (Sentinel-2),
SAR (Sentinel-1) and SRTM digital elevation model data (DEM). Specifically, the temporal
resolutions of Sentinel-2 MSI and Sentinel-1 SAR imagery in Hunan are 5 and 6 days
(combined constellation), respectively [40,41], which were captured in 2017. The SRTM
(shuttle radar topography mission) is mounted on a space shuttle and obtains Earth surface
data by utilizing a synthetic aperture radar. During its 11-day flight, from 11 February
2000 to 22 February 2000, it obtained data covering 80% of the Earth’s surface [42]. The
obtained data were converted into digital elevation model (DEM) data, which provide
height information of the Earth surface. More details for this dataset are listed in Table 2.
All 13 bands in Sentinel-2 are used in our experiments. Sentinel-1 data in Hunan dataset
were pre-processed by thermal noise removal, radiometric calibration, terrain correction
and logarithmic conversion. There are two bands in Sentinel-1 data, corresponding to
dual-polarization of VV and VH, respectively. SRTM provides both elevation and slope
data, which provide extra topographic information, but only elevation data are used in our
experiments. The creators of the Hunan dataset resampled all data to a spatial resolution
of 10 m by the default resampling strategy nearest neighbor in GEE [12]. Since the Hunan
dataset contains three different modalities of remote sensing images as mentioned above,
we have therefore divided them into two fusion pairs of (i) Sentinel-2 and Sentinel-1, and
(ii) Sentinel-2 and DEM.
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Table 2. Details of Hunan data modalities.

Data Type Product Bands Spatial Resolution

Sentinel-2 Sentinel-2 MSI
B1, B2, B3, B4, B5, B6, B7,

B8, B8A, B9, B10, B11,
and B12

10 m to 20 m

Sentinel-1 Sentinel-1 SAR VV and VH 10 m

SRTM SRTM Digital Elevation
Data Version 4 Elevation and slope 30 m

The Hunan dataset consists of 500 image tiles for each modality, as well as their
corresponding land cover labels. The size of all the images is 256× 256. Geology experts
manually labeled the data according to the Sentinel-2 mosaic. This dataset contains 7
imbalanced class labels, which are cropland (23.34%), forest (42.37%), grassland (7.35%),
wetland (1.89%), water (13.35%), unused land (1.56%), and built-up area (10.14%). This
distribution of land cover classes is based on the data collected in Hunan province, China
in 2017.

4.2. DFC2020

DFC2020 is based on the SEN12MS dataset [43], which provides Sentinel-1 SAR
imagery, Sentinel-2 multispectral imagery, and corresponding land cover maps on 7 areas
(see Table 3) in the world between 2016 and 2017. The temporal resolution and collection
time of modalities in DFC2020 is listed in Table 4. The size of all patches is 256× 256 pixels.
The fine-grained IGBP classification scheme in SEN12MS was aggregated to 10 coarser-
grained classes, which are forest (11.3%), shrubland (6.9%), savanna (23.6%), grassland
(16.8%), wetlands (1.1%), croplands (17.9%), urban/built-up (10.6%), snow/ice (0.0%),
barren (5.2%), and water (6.5%). The class distributions are similar to the SEN12MS and
DFC2020 datasets. On the other hand, since the DFC2020 dataset is a subset of SEN12MS,
there is one class showing zero percentage. The comparison between the standard IGBP
classes of SEN12MS and DFC2020 label classes can be found in detail in [11].

Table 3. Study area and data collection time on DFC2020.

Area Collection Time

Mexico city, Mexico Winter—1 December 2016 to 28 February 2017
Kippa-Ring, Australia Winter—1 December 2016 to 28 February 2017

Khabarovsk, Russia Spring—1 March 2017 to 30 May 2017
Black Forest, Germany Summer—1 June 2017 to 31 August 2017

Mumbai, India Fall—1 September 2017 to 30 November 2017
Cape Town, South Africa Fall—1 September 2017 to 30 November 2017

Bandar Anzali, Iran Fall—1 September 2017 to 30 November 2017

Table 4. Temporal resolution and collection time of the modalities in DFC2020.

Temporal Resolution Year

Sentinel-2 MSI 5 days (combined constellation) [40] 2016–2017
Sentinel-1 SAR 6 days (combined constellation) [41] 2016–2017

4.3. ISPRS Potsdam

The ISPRS Potsdam Semantic Labeling dataset is an open-access benchmark dataset
provided by the International Society for Photogrammetry and Remote Sensing (ISPRS).
This dataset provides 38 multi-source patches (all of size 6000× 6000), which contains
infrared (IR), red, green and blue orthorectified optical images with corresponding dig-
ital surface models (DSM). For calculation purposes, we sub-divided all these data tiles
into 512× 512 patches, which leads to 3456 and 2016 samples for the training and test,
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respectively. The ground sampling distance of the two modalities of the true orthophoto
(TOP) and the DSM is 5 cm. This dataset was classified manually into six land cover classes,
which are impervious surfaces, buildings, low vegetation, trees, cars, clutter/background.

5. Experimental Results and Analysis
5.1. Implementation Details

We implemented our methods by using the Pytorch [44] environment. Following [13],
we used a mini-batch SGD optimizer and adopted a poly learning rate policy, where the

current learning rate equals the initial learning rate multiplied by
(

1− iter
max-iter

)power
.

We set the initial learning rate and power to 0.01 and 0.9, respectively. The batch size of the
input data was also set to 10. The objective function for training models is cross-entropy loss
function. All the experiments were performed in the GW4 Supercomputer Isambard [45],
the details of which are shown in Table 5.

Table 5. Experimental environment configuration.

Item Detail

CPU AMD EPYC 7543P
GPU NVIDIA A100-sxm

Deep Learning Framework Pytorch 1.10.2
Programming Language Python 3.7.11

In the comparison analysis, we compared the proposed AMM-FuseNet to six state-of-
the-art models of DeepLabv3+, Unet, SegNet, PSPNet, DenseASPP, and DANet. In order to
make the reference models suitable for loading multi-band images, the number of input
channels in the first convolution layer was set to the number of bands of each dataset.
By following the original papers of the reference models, we initiated the backbones of
DeepLabv3+, SegNet, PSPNet, DANet with pretrained weights on ImageNet. The AMM-
FuseNet has two experimental versions, namely the initial backbone with and without
pretrained weights on ImageNet.

We comprehensively analyzed all the models by quantifying performance via class-related
measures, such as overall accuracy (OA), user’s accuracy (UA), producer’s accuracy (PA), mean
intersection over union (mIoU), and F1-score. It is worth noting that the UA represents
correct positive predictions relative to the total positive predictions, whilst the PA repre-
sents correct positive predictions relative to total actual positives. Expressions of all five
performance metrics are given as follows:

OA =
TP + TN

TP + TN + FP + FN
(4)

UA =
TP

TP + FP
(5)

PA =
TP

TP + FN
(6)

IoU =
|TP|

|TP + FN + FP| (7)

F1 =
2 · PA ·UA
PA + UA

(8)

where TP, TN, FP, and FN refer to the numbers of pixels that are true positives, true
negatives, false positives, and false negatives for each class, respectively.

5.2. Quantitative Results and Analysis

The proposed method was tested from two different perspectives:
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1. We first used four test data coming from the three data sets discussed in Section 4 in
order to promote the generalization capacity of the proposed method.

2. Subsequently, we tested the capabilities of AMM-FuseNet under minimal training
supervision in comparison to the reference methods.

For the first set of experiments, we first demonstrated the performance of all methods
for each land cover class from the Hunan data set (Sentinel 1/2). This analysis aims to
demonstrate the capabilities of each model for different land cover classes and different
multi-modal remote sensing data. Figure 6 depicts IoU values of each of the seven land
cover classes of the Hunan data set. Examining the bar plots in Figure 6, AMM-FuseNet
achieved the highest IoU values for five out of seven categories, with particular considerable
improvements for cropland, wetland and bare land. For the remaining two classes (forest
and grassland), the IoU results are closer for each model, whilst SegNet, UNet, DeepLabv3+
and AMM-FuseNet compete to become the best performing method.

Figure 6. IoU of each land cover class on the Hunan dataset (Sentinel-2 and Sentinel-1).

In order to test the overall performance of each model, as mentioned above, we created
four pairs of two-modality remote sensing data from three data sets. In order to reflect a
better comprehensive performance of the models, we used mIoU, average OA, UA, PA and F1
of all land cover classes for each model. We present these values in Tables 6–9. Please note
that in our initial analysis, pretraining on ImageNet does not yield a consistent result due
to the different characteristics of each dataset. Hence, we decided to test each model with
both a pretrained backbone and a backbone that was not pretrained, and then only share
the best performing result for each with an indicator in the “PT” columns in each table.
Furthermore, in order to provide visual evidence for the performance metrics presented in
Tables 6–9, we plotted land cover mapping outputs of each model for a randomly selected
image from each of the two-modality data pairs in Figure 7–10.

Examining the performance metrics in Table 6, the proposed AMM-FuseNet showed
the best performance on the first two-modality Hunan (Sentinel 1/2) data set for most of
the cases. In particular, AMM-FuseNet obtained 4% UA gain compared to the second best
model. Furthermore, the mIoU value of AMM-FuseNet is about 3 % higher than that of
the second best model whilst PSPNet is slightly better than AMM-FuseNet in terms of the
PA value.
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Table 6. Performance comparison for Hunan (Sentinel-2 and Sentinel-1) dataset. (X: pre-trained (PT)
and ×: not PT backbone).

PT mIoU OA UA PA F1

DeepLabv3+ [13] X 43.38% 78.34% 52.74% 62.64% 57.27%
PSPNet [14] X 39.26% 74.81% 48.61% 62.75% 54.78%
UNet [15] × 42.91% 77.77% 52.97% 56.86% 54.84%
SegNet [16] X 41.24% 76.64% 50.67% 59.92% 54.91%
DenseASPP [17] × 39.94% 75.79% 49.45% 58.27% 53.50%
DANet [18] X 38.65% 75.61% 47.64% 57.38% 52.06%
AMM-FuseNet × 46.31% 79.06% 57.35% 61.04% 59.13%

The second two-modality data set consists of Sentinel-2 and DEM modalities, which
also come from the Hunan data set. AMM-FuseNet shows the best performance in terms
of all performance metrics presented in Table 7. The proposed network has a consider-
able mIoU improvement of more than 4% when compared with the second best model,
UNet, whilst around 5% improvement is obtained in terms of F1 score compared to the
DeepLabV3+.

Table 7. Performance comparison for Hunan (Sentinel-2 and DEM) dataset. (X: pre-trained (PT) and
×: not PT backbone).

PT mIoU OA UA PA F1

DeepLabv3+ [13] X 40.83% 77.15% 50.02% 59.15% 54.20%
PSPNet [14] X 37.35% 74.15% 46.83% 56.96% 51.40%
UNet [15] × 41.42% 76.92% 51.12% 56.64% 53.74%
SegNet [16] X 39.05% 75.56% 48.47% 55.04% 51.54%
DenseASPP [17] × 38.72% 75.06% 48.29% 56.22% 51.95%
DANet [18] X 37.28% 73.99% 46.46% 59.07% 52.01%
AMM-FuseNet × 45.70% 78.64% 56.31% 61.09% 58.61%

From the two experimental sets of Hunan dataset presented in Tables 6 and 7, the state-
of-the-art models show instabilities when dealing with different combinations of multi-
modal imagery. For example, apart from AMM-FuseNet, DeepLabv3+ achieved the second
best performance for most of the metrics on Sentinel 1/2 fusion whereas, in terms of
Sentinel-2 and DEM fusion, UNet appeared to beat DeeplabV3+ and became the best.
Despite these inconsistencies of the state-of-the-art models, the proposed AMM-FuseNet
has shown consistent performance with better generalisability. It showed competitive
performance either for Sentinel 1/2 or Sentinel-2/DEM fusion, even there are no pretrained
weights to initialize the network.

Similar to the first Hunan dataset, the DFC2020 dataset also provides Sentinel 1/2
imagery. Examining the performance results presented in Table 8, AMM-FuseNet showed
a competitive performance on the DFC2020 dataset in terms of all performance metrics.
AMM-FuseNet improved slightly for all metrics compared to the second best network, Unet.
Furthermore, the performance difference between the AMM-FuseNet and the remaining
networks is relatively high. For example, there are more than 6% and 2% improvements in
terms of mIoU and OA, respectively, between the proposed network and PSPNet.
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Table 8. Performance comparison for DFC2020 (Sentinel-2 and Sentinel-1) dataset. (X: pre-trained
(PT) and ×: not PT backbone).

PT mIoU OA UA PA F1

DeepLabv3+ [13] X 78.67% 92.94% 88.97% 85.88% 87.39%
PSPNet [14] X 76.99% 92.29% 87.51% 84.92% 86.19%
UNet [15] × 82.47% 94.31% 90.20% 89.40% 89.79%
SegNet [16] X 80.28% 93.53% 88.47% 88.15% 88.31%
DenseASPP [17] × 76.20% 92.54% 85.09% 85.51% 85.30%
DANet [18] X 77.50% 92.50% 87.36% 85.62% 86.48%
AMM-FuseNet X 83.14% 94.56% 91.15% 89.53% 90.33%

As of the last analysis of the first set of experiments, we tested all models on the
Potsdam dataset which consists of IRRGB and DEM imagery. Unlike previous datasets,
the proposed AMM-FuseNet has not shown the best performance when compared to the
other networks. AMM-FuseNet is about 1% lower than the best model as shown in Table 9.
Our first thought on this result is based on the dramatic, significant differences between
the Potsdam dataset and the three previously used test cases in terms of frequency bands,
semantic details and spatial resolution. We are going to discuss this in the next section in
more detail.

Table 9. Performance comparison for Potsdam dataset. (X: pre-trained (PT) and×: not PT backbone).

PT mIoU OA UA PA F1

DeepLabv3+ [13] X 67.12% 84.60% 77.23% 79.84% 78.52%
PSPNet [14] X 69.10% 85.85% 78.79% 82.09% 80.41%
UNet [15] × 67.01% 84.40% 77.06% 79.81% 78.41%
SegNet [16] X 67.79% 84.97% 77.78% 79.79% 78.77%
DenseASPP [17] × 67.03% 84.48% 77.33% 79.98% 78.63%
DANet [18] X 69.77% 86.12% 79.56% 82.15% 80.83%
AMM-FuseNet X 68.40% 85.28% 78.29% 80.36% 79.31%

In order to demonstrate results visually and provide visual evidence for the per-
formance metrics presented in the tables above, we chose to show four cases from each
two-modality data sets. As shown in Figures 7–10, we depict the RGB imagery, ground truth
land cover labels and results predicted by all the models. On each example of land cover
mapping results, we draw a rectangular box to help readers to compare the differences
between different models.

For the Hunan dataset, the prediction of AMM-FuseNet is visually closer to the
ground truth compared with other predictions. Additionally, for DFC2020, the prediction
of AMM-FuseNet is more accurate when compared to other models. Similarly, for Potsdam,
AMM-FuseNet shows the ability to understand the data more deeply. Only AMM-FuseNet
and UNet correctly recognize the single tree structure (green area in the rectangular box) in
the Potsdam case, where all other networks incorrectly detect more tree related regions.
Additionally, the UNet prediction shows a redundant and incorrect classification in the
upper right part of the rectangular box (red pixels).
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Figure 7. Results on the Hunan dataset (Sentinel-2 and Sentinel-1). Values between parentheses refer
to mIoU in percentages for the example image for each model, where the best model is shown in red.

Figure 8. Results on the Hunan dataset (Sentinel-2 and DEM) values between parentheses refer to
mIoU in percentages for the example image for each model, where the best model is shown in red.
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Figure 9. Results on the DFC2020 dataset. Values between parentheses refer to mIoU in percentages
for the example image for each model, where the best model is shown in red.

Figure 10. Results on the Potsdam dataset. Values between parentheses refer to mIoU in percentages
for the example image for each model, where the best model is shown in red.

5.3. Minimal Supervision Analysis

As we mentioned in the previous section, all the models showed similar performance
for the Potsdam dataset, where the proposed AMM-FuseNet could not manage to obtain
the best performance outcome in terms of all five metrics. We consider three categories of
potential reasons for these results.
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1. Due to the lower number of spectral bands in the data set, AMM-FuseNet’s ability to
extract useful information was affected and became closer to the state of the art.

2. Since all imagery is collected in an urban area with very high spatial resolution
(5 cm), discrimination between the objects becomes much easier compared to the
other datasets, which leads to all methods performing at a similar level.

3. The Potsdam dataset has a relatively high number of training samples compared to
the other datasets (around four times compared to DFC2020 considering the input
image size of 512 × 512). This has given the state-of-the-art networks enough data
samples to fully learn.

Considering remote sensing imagery applications mostly having highly limited num-
ber of labeled samples (as in the case of Hunan dataset), the Potsdam experimental analysis
cannot directly lead to correct conclusions for the purposes of remote sensing imagery
applications.

Our purpose whilst developing AMM-FuseNet (along with having good performance
in land cover mapping applications) is to make it suitable for minimal training supervision
cases. AMM-FuseNet separates each modality into different encoders via utilising the
same ground truth information, for the purpose of inheriting the advantages of consistency
regularization [46], which shows considerable success in minimal supervision cases in the
literature [47,48]. The key idea of consistency regularization is to force perturbed models
(or perturbed inputs) to have consistent outputs to supervise each other, even when there
is a very small number of labeled data. In this case, one modality can be regarded as a
perturbed version of another modality and they are expected to have the same output.
Thus, the weights in two encoders are supervised by each other during the training.

In order to experimentally prove this point and provide numerical evidence, we
gradually reduced the number of training samples of the Potsdam dataset. Although the
number of training samples is reduced, the class distributions in each minimal supervision
test case is kept relatively unchanged. In addition, we used the same fixed set of test data
samples for all the minimal supervision test cases so as to enable a consistent comparison
of the results. Details of each test case in this set of experiments are shown in Table 10.

Table 10. Minimal training supervision test cases and class distributions.

Class Distributions for Training

Fraction Training
Samples

Test
Samples Class

1
Class
2

Class
3

Class
4

Class
5

Class
6

1 3456 2016 9.12% 27.11% 25.36% 22.54% 14.31% 1.56%
1/2 1728 2016 8.89% 27.41% 25.47% 22.41% 14.28% 1.55%
1/4 864 2016 9.41% 26.92% 25.07% 23.00% 13.93% 1.68%
1/6 576 2016 9.43% 27.09% 25.21% 21.91% 14.75% 1.61%
1/8 432 2016 8.80% 27.47% 25.45% 22.49% 14.26% 1.53%

1/10 346 2016 9.40% 26.47% 26.19% 21.81% 14.58% 1.55%
1/12 288 2016 8.75% 27.91% 24.97% 22.65% 14.16% 1.55%
1/15 230 2016 9.26% 27.37% 24.61% 22.94% 14.08% 1.73%
1/20 173 2016 8.92% 27.50% 25.30% 22.80% 13.88% 1.60%

The results of each minimal training supervision test cases for 1
2 −

1
20 are shown in

Tables 11 and 12. Whilst gradually reducing the number of training samples, AMM-FuseNet
starts to show its capability to work with smaller number of training samples. In contrast,
the state-of-the-art approaches are affected by the small number of training samples and
their results deteriorated dramatically. In particular, from ratio 1

6 , namely 576 training
samples, AMM-FuseNet starts to be the best model in terms of mIoU and overall accuracy
on the Potsdam dataset by having lesser performance loss. Even for only 173 training
samples for the 1

20 case, the proposed AMM-FuseNet obtained more than 60% mIoU and
80% overall accuracy values.
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Table 11. Performance comparison of different methods on the Potsdam dataset for reduced training
samples in terms of mIoU and accuracy (X: Initial backbone with pre-trained (PT) weights on
ImageNet. ×: Initial backbone Randomly).

1/2 1/4 1/6 1/8

PT mIoU Accuracy mIoU Accuracy mIoU Accuracy mIoU Accuracy

DeepLabv3+ [13] X 64.98% 83.46% 62.24% 82.02% 58.85% 79.40% 58.08% 79.57%
PSPNet [14] X 67.45% 84.95% 65.01% 83.53% 62.22% 82.21% 62.20% 82.17%
UNet [15] × 64.69% 83.02% 61.98% 81.19% 58.97% 79.25% 57.96% 78.69%
SegNet [16] X 65.91% 83.93% 65.14% 83.45% 62.68% 82.13% 61.16% 81.33%
DenseASPP [17] × 65.15% 83.66% 62.48% 82.11% 60.02% 80.68% 59.18% 80.29%
DANet [18] X 68.45% 85.51% 66.03% 84.01% 62.62% 82.52% 62.39% 81.97%
AMM-FuseNet X 66.49% 84.28% 65.06% 83.49% 63.53% 82.55% 63.48% 82.63%

Table 12. Performance comparison of different methods on the Potsdam data for reduced number of
training samples in terms of mIoU and accuracy (X: Initial backbone with pre-trained (PT) weights
on ImageNet. ×: Initial backbone Randomly).

1/10 1/12 1/15 1/20

PT mIoU Accuracy mIoU Accuracy mIoU Accuracy mIoU Accuracy

DeepLabv3+ [13] X 57.80% 78.54% 56.02% 77.84% 54.56% 76.81% 54.06% 76.86%
PSPNet [14] X 61.41% 81.13% 60.28% 80.84% 58.59% 79.99% 58.28% 79.71%
UNet [15] × 58.75% 79.17% 57.49% 78.26% 55.84% 76.94% 56.10% 78.02%
SegNet [16] X 60.15% 80.72% 58.67% 80.00% 58.27% 79.26% 57.51% 79.20%
DenseASPP [17] × 58.54% 79.67% 57.72% 79.29% 56.15% 78.01% 55.71% 77.92%
DANet [18] X 61.41% 81.65% 60.52% 80.93% 58.99% 79.93% 57.81% 79.17%
AMM-FuseNet X 62.06% 81.73% 61.60% 81.30% 61.38% 81.06% 60.05% 80.62%

In order to visually draw a conclusion on the values in the tables, we depict two graphs
(Figures 11 and 12) of percentage decreases on mIoU and accuracy for different partitions
of the Potsdam training samples for each network. It is clear to see that performance loss of
AMM-FuseNet is 8% in terms of mIoU and 4% of accuracy even though the training set is
20 times smaller than the original dataset. This provides numerical/experimental evidence
to our remark that the proposed AMM-FuseNet architecture is better able to cope with
cases where the data set has few training samples, and its performance improvement can be
seen better under test cases with a small number of training samples. It is also evident that
single-encoder architectures show drastic performance drops when the number of training
samples is reduced. It is also important to note that methods such as DeepLabV3+ and
Unet, which are two of the best approaches on the Hunan and DFC2020 datasets, have the
highest performance drops in terms of both mIoU and accuracy, showing they are highly
sensitive to the number of training samples.

Figure 11. Percentage decrease on mIoU for different partitions of the Potsdam dataset for each network.



Remote Sens. 2022, 14, 4458 20 of 22

Figure 12. Percentage decrease on accuracy for different partitions of the Potsdam dataset for
each network.

6. Conclusions

In this work, we proposed a channel-attention based multi modal image fusion net-
work, AMM-FuseNet, constructed with a proposed novel feature extraction module, CA-
DenseASPP. The proposed network showed competitive performance when compared to
the state-of-the-art segmentation networks, such as DeepLabv3+, SegNet and Unet, and
appeared to be more robust and generalisable when applied to various multi-modal remote
sensing data sets. For most of the cases with different remote sensing modalities of RGB,
multi-spectral, SAR and DEM, the AMM-FuseNet showed a consistent performance by
being the best model in terms of various performance metrics.

In presenting the proposed approach AMM-FuseNet in this paper,

• We contributed to the literature with a multi-modal attention-based deep network
architecture with improved land cover mapping/classification performance compared
to the state of the art.

• The parallel feed of multi-modal remote sensing information into the hybrid pro-
posed encoder module of CADenseASPP improved the segmentation performance
dramatically via weighting features in a dense atrous convolution operation.

• It was experimentally proven by using the Potsdam data that the proposed network
showed more powerful performance under small number of training sample (minimal
training supervision) despite its relatively complex structure due to having two parallel
encoders. This issue proved our contribution to the literature that the proposed
approach could be a great choice for the segmentation applications that only have a
small amount of labeled information.

• As it stands, AMM-FuseNet appears as a candidate model to be a high-performing
approach for other segmentation tasks in remote sensing and computer vision beyond
the land cover mapping application.

The indistinguishable performance of all models under the full-Potsdam dataset has
shown us future research directions in terms of the AMM-FuseNet architecture. Ongoing
work includes performing a detailed complexity analysis, and exploring AMM-FuseNet’s
capabilities (i) to deal with minimal supervision, as well as (ii) extracting useful information
from higher spatial resolution imagery.
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