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Theory of the soliton self-frequency shift compensation by the resonant radiation
in photonic crystal fibers
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We develop a theory of the soliton self-frequency shift compensation by the resonant radiation recently
observed in photonic crystal fibers. Our approach is based on the calculation of the soliton plus radiation
solution of the generalized nonlinear Schroding®NLS) equation and on subsequent use of the adiabatic
theory leading to a system of equations governing evolution of the soliton parameters in the presence of the
Raman effect and radiation. Our theoretical results are found to be in good agreement with direct numerical
modeling of the GNLS equation.
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I. INTRODUCTION interval of the anomalous GVD has a very stagmative
GVD slope. This interval is located on the red side of the
. dspectral window with anomalous GVD. Therefore, the Ra-

research in different branches of nonlinear optics. The prim\gan effect[23,24 unavoidably pulls the femtosecond soll-

reason for this is that PCFs offer numerous ways to contromnsamgo L?\itr;?r:c;rt])lgf itrrmles?;r?;letxlr\(/je t(;\é Eoiogzéghiren;mrés
their nonlinear and dispersive characteristics, for reviews sefd y

Refs. [1-5]. For example, in silica core PCFs nonlinearity takes placg7]. Under these conditions the solitons generate

can be enhanced by the small modal area and group veloci{he exponentially growing redshifted radiation band. The

dispersionGVD) can be controlled by the engineering of the fké]gsshc;flft%% rsaed|:‘z_i]}rlgnui);irtssEirf?SS(;rsec%%thgngglggnaﬁigtagﬁ
photonic crystal cladding6,7]. The hollow-core band-gap q y g P

guiding PCFs can be filled with different gases and used foi”‘CtIy [7]. The primary objective of this work is to develop a

a variety of nonlinear optical experiments in the low loss and” Qmprehenswe theory of the effects reported in iR8f. Ra-

diffraction free geometries with very long interaction dis- diation pressure on the soliton leading to the drift of the
tances8—10. mean soliton frequency and group velocity, also known as

One of the widely used applications of solid-core PCFs i the spectral recoil effect, has been previously reported in

in generation of optical supercontinuurhl-14. Full theo- 3[19_2g, However, analysis of the combined action of the

retical understanding of this process is still lacking and its[?CS;l ﬁ[r;?aieuizalguelrifrfdzfatrr)]%egcrjittoonbf? emLSeS:ég IE tr;ﬁekréo;i/n
possible connections with turbulence theories in Hamiltonian : 9 q y by

models[15] are waiting to be established. Another interest-1 12" effect towards the zero GVD point has been previously

ing and nontrivial nonlinear effect which has been recentlysugge.Sted as the mechanism for the adiabatic sollton. com-

observed in PCFs with ultrasmall silica cores is the cancelpreiS'orIij' However, Re;‘[Zb]hand subsclaquen_tl theoretical

lation of the Raman self-frequency shift of the solitons ac-Vor [18] do not account for the spectral recol ar!d do not

companied by the exponential amplification of the resonan{eport the_ soliton self-freq_uency shift compensation effect
observed in7] and theoretically analyzed below.

radiation[7]. The resonant radiation emitted by the fiber soli-

tons in the presence of the higher order dispersions has beeqWe organize this paper in the foIIov_vmg way. First, we .
known for more than a decade, see, €6-23 and it has introduce the model equation and derive resonance condi-

been recently shown to play a role in the formation of thet|ons for fibers with frequency dependent GVD. After this we

blue wing of the supercontinuum spectra generated in PCF%a!CUIate analytically the a.m.p"t“de pf the ¢m|tted rad|;1t|on
[12]. using an approach generalizing and improving the previously

Telecom fibers have reasonably flat GVD profiles in theknown. Then, knowing dependence of the radiation ampli-

. it tude and frequency on the soliton parameters, we develop an
practically relevant frequency range, and s ItiveGVD adiabatic theory of the soliton evolution, explaining the self-

slopes in these fibers do not lead to substantial radiatior}.re uency shift compensation observed in R@l. Finall
Therefore, the resonant radiation effect on solitons in tele- q y P X Y,

com fibers has been considered so far as merely one of mar\{ve_concluc_ie by putting our results into the context _Of the
loss mechanisms. The distinct feature of the PCE used ix)iirrlous soliton theories and of recent and past experimental
. efforts.

Ref.[7] is that it has two zero GVD points and the frequency

1. MODEL EQUATION

* Author to whom correspondence should be addressed. We assume that dynamics of the dimensionless amplitude
URL: http://staff.bath.ac.uk/pysdvs A(t,z) of the fundamental fiber mode is governed by the
Electronic address: d.v.skryabin@bath.ac.uk generalized NLS equation
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+o0 A=F e—i55t+i[DS+q]z, =t- D'Z,
,A=ID(Id)A +iA f R(t)At-t",2/dt’. (1) © ¢ s
. o : _ - 3 - D%
To avoid any ambiguity in the analytical expressions we F(¢§)=V2qsech =], w=+/—, (4)
adopt the convention of using round brackets to indicate w 29
arguments of functions or operators gnd, {- -} for all other  for the approximate soliton solution of E¢fL), where GVD
purposes. The dispersion operator in Eb.is given by varies with frequency. Physical pulse duration is given by
M o-mm-2 7W. 8s=[ws— wo] 7 is the detuning of the soliton frequenay
Diigy="3 LA 'BZ(wO)[iﬁt]m, ®) from the reference frequenay,. Condition|d| =1 deter-

= m!|By(wp)] mines practically convenient choice af. Ds=D(4dy) is the

) o __normalized wave number shifd,=d;D () characterizes the
where is the characteristic time close to the pulse q”ra_t',ongroup velocity shift, and”=¢?D(8) <0 is the GVD at the
R(t) is the response function of the material, which is s'l'casoliton frequency. Physical group velockyat the frequency
glass in our case: w=wy+ 8l 7is given by

R DV
R(t)=[1-60]A(t) + 6 OeVzsin—.  (3) _ Vo
7 m V) oLy daD (@ ®)

Here, A(t) and O(t) are, respectively, delta and Heaviside The solution[Eq. (4)] is fully characterized by the param-

functions. Equatior3) includes the instantaneous electronic etersq>0 andé,, and is an exact solution of E¢l) provid-

and delayed Raman contributions witt#=0.18, 71 ing that:(i) #=0 and(ii) all derivatives of the functiofF (&)

=12.X%s/ 1, and7,=32fs/ 7 [24]. t is the time in the reference higher than second are disregarded.

frame moving with group velocity=v(wo) and measured  “1q proceed further we fi¥=0 and present solution of Eq.

in the units of 71 t=[T~2/vo]/7, whereT is the physical (1) in the form

time. z=Z/Ly,q, WhereZ is the distance along the fiber and S Dralis ,

Lgoa=72/|Ba(wo)| is the GVD length. Field amplitudé is A=[F(9) +9g(z, 9] P g=t-2zD/.  (6)

measured in the units diVPo=N/vyLg,q, Wherey is the  agquming thag is small we disregard all the terms nonlinear

nonlinear parameter of the fibg24]. N° is the ratio of the g and derive

peak power of the pump pulse to thg, which is the peak

power of a fundamental soliton with duration iP=0G+iG §=[gg 1. 7)
Let us stress here, the dispersion oper&ointroduced

above is not necessarily a Taylor expansion near the refeHere

ence frequency, but it can be considered as a numerical fit - 2
into the experimentally measured fiber GVD characteristic. ~_| W~ F

] : . . : L= -~ | 8
Therefore, it correctly describes dispersion of a wave which F2 _\W

is either detuned initially or drifts gradually to the spectral

regions lying arbitrarily far fromw,. If the GVD profile is  where

given by B,(w), then it can be fitted with a polynomial func- 1

tion: ﬁz(w):Em:Ob2+m[w—wo]m, wherewg is an arbitrary ref- W= q+ —D’s’g? - 2|F|?- [D(idg+ 89 = Dyid9],  (9)
erence frequency. Equations similar to E@) have been 2

previously used in several studies of pulse propagation inq

fibers, see, e.g., Reff5,7,13,26 and references therein, and

have demonstrated reliable replication of the experimental I;’:[p,—p*]T, p=[D(id;+ &) - Dyliap)IF,  (10)
measurements in PCKS,7,13. Compared with Refd6,7]

we have neglected here the self-steepening {@dh This is 1

because, as our numerical modeling has demonstrated, it has D,(idg) = Dg+iD {3~ ‘D's'ﬂé- (11
no qualitative and only small quantitative effect on the re- 2

sults described below, see also Sec. V. > . . . .
P is localized in¢ and in order for Eq(7) to have a localized

solution it is enough that the null subspace of the operator

adjoint to £ is orthogonal toP. The dispersion operator is a
A. Resonance frequencies polynomial and therefore it is possible to show tiixid,

In order to describe influence of the Raman effect on thet 8)=Da(id) +=_5i™/m! ng]ﬁ?- CoefficientsD!™ /m! for
radiating soliton we first find the radiation field and then m=3, whereD\™=47D(s,), should be considered as small
consider soliton dressed by the radiation as the zero ordgrarameters by virtue of the assumption that E.is the
approximation to the solution of E@l) treating the Raman solution in the main order of the perturbation theory. How-

III. SOLITON DRESSED BY THE RADIATION

term as a perturbation, see Sec. IV. ever, frequency of the perturbatigrcan be large. Therefore,
Generalization of the single soliton solution of the idealthird and higher order derivatives can counterbalance small-
NLS equation gives the following expression: ness of the dispersion coefficients. That is why the higher
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. . . g -6
order corrections to the dispersion are kept not onli,ibut wavelengthx 10 [m]
N A ) 2.0 15 12 1.0 086 075 067 06
also insideL. For all terms inL to be balanced we require

1
D7+ 8) = Dalid9]gl = 5|D5 gl (12

Practically Eq(12) imposes upper boundary on the values of
the frequency detuning between the soliton and the perturba
tion g correctly described by Eq.7). For example, forM

=3, see EQ.2), and fixing the time dependence gfas
€% we find that for Eq(12) to work we have to require
|e[ 8- 84| =|DZ/2| ~0O(1), where

0
B o)
€= A i (13) 50 /
67]B2(wo)|
~ -100 . . f .
Keeping onlyag in £ already makes existence of the lo- 150 200 250 300 850 400 450 500
calizedg impossible[16,19,20,22 This is becaus@}-term @ frequency; a/(Zn): [TH2
adds an extra zero eigenvalue to the continuous spectrum ¢ 2
L1 with the corresponding eigenfunction not being orthogo- 8030 15 1,¥ave'%'ﬁ§thx 1ol(.)ee [m]qjs 067 06

nal toP. The correspondingesonantfrequency can be found
if one seeks the eigenfunction of the continuum in the form .,
e#il=9l¢ then the eigenvalues are given by

telecom fiber

[}

(=}

=]
T

-N=q+Ds-[8- 8D, —D(9). (14 |
Physically the resonance is achieved when the soliton and i '
dispersive wave have the same wave number,N2Q, and

therefore

500

I
I
I
telecom fibér PCF !
I
I
1

q+Ds_[5s_ 5r]Dé:D(5r)- (15)

Equation(15) is an equation foi,. Real §,'s correspond to
the resonant nonlocalized waves afidr is the frequency 200
detuning fromwy. Geometrical meaning of E@15) is clear. |
Its left-hand side is a tangent to ti¥6) curve taken a® i ) , . , ; - |
= s and shifted up by;. Remembering thad? must be nega- fso 200 250 it 3$° 350 ™ 400 400 300
tive for the soliton to exist, one can show that the pairs of® salfiantregpency|The]
r?a‘.' a; and 3, satisfying Eq:(15)_ can always be found pro- FIG. 1. (a) Electron micrographs of the PCF from R¢§T] and
viding thgtoﬁD(é) changes its sign. All complex roots of _the correspondings,(w) and By(w) for the telecom fibe(SMF28 is
polynomial Eq.(15) correspond to the waves exponentially 5156 shown. The core diameter of the PCF showsis2 um, (b)
decaying for¢ tending to either s or +« and describe 10-  gependencies of the resonance frequengiesom the soliton fre-
calized corrections to the solita#) [21]. quencyé,. Vertical dashed lines mark the zero GVD points in the

GVD changes its sign at least once in most optical fiberCF. The diagonal line marks the boundary where the radiation and
including PCFs. The PCF used in REf] changes GVD sign  soliton frequencies coincide. The radiation branches above/below
twice, similar to the fiber described in R¢R5], and there- the diagonal line are, respectively, blue/redshifted relative to the
fore has the finite spectral range with anomalous GVD, seeoliton carrier frequency. Radiation frequency in the telecom fiber is
Fig. 1(a). The corresponding dependencies of the real rescalso shown.
nant frequencieg, from the soliton frequencys are shown
in Fig. 1(b). An important feature of Fig. (b) is that|s,
- &/ reaches its minimum values, when the soliton frequency
approaches the zero GVD points.

For qualitative understanding of the resonances shown in
Fig. (b it is sufficient to consider cubic approximation for
D(9) where  Y=8X+6e60[X—-54q€2], X=1-185.e+ 108y

&2 +1085262-21653€%. The only real value o8, is selected by
D(o)=- >t €8, (16)  choosing the appropriate branch 6>,
Assuminge<1, |5, - & e~0O(1) one can calculate an ap-

where sgnB,(wg)=—1. Using the Cardano’s formula, we get proximate analytical expression for the resonant frequency
the expression fob;: [16,22:

radiation frequency [THz]

1
8= [l2+ 4L~ Be5)2Y 3+ Y], (17
€
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cubic dispersior{16) one can represent the radiation field in
the form

r

0(z,&) = G(z,§)e o], (19

The assumption enabling us to advance the previously devel-
oped methods is that the amplitu@eis a slow function of¢
compared to the oscillating exponential factor. After substi-
tution of Eq.(19) into Eq.(7) we neglect alk-derivatives of

G higher than first and find tha obeys

-i9,G +i{D{ - D/}9,G - F¥2G + G"e*3%l=K (¢),

radiation frequency &

-50f . . . ] (20
-10 -5 . 0 5 10
soliton frequency §_ where
FIG. 2. Resonant frequenc§ as function of the soliton fre- K(&) = 4o %[D(ig, + 8) - Do(id,) IF. (21)

quencyd; for the dispersion profil€l6): g=10 ande=+0.015. The o PP .
diagonal line marks the boundary where the radiation and soli'[org:on.mbUtIon of the term (.:omamm@ Into th? effective po- .
frequencies coincide tential created by the soliton also can be disregarded provid-
" H ! ! -2 3 H

ing thatq<|s,—&||Ds—D; | ~ €% By neglecting this term
we are actually neglecting one of the two fundamental solu-
Yy - 1 +0(1). (18) tions to the left-hand side of E@20). The inequality stated

r 26 above ensures that the frequency of the driving t€2d) is

detuned far from the frequency of the neglected fundamental

For example, ah=1.15um, i.e., =27 X 239 THz, the fi- solution. Thus our final equation is

ber in Fig. 1a) has 8,=-47 pg/km and 8;=-0.5 ps/km,

which givese=-0.015 for 7=120 fs. It is clear from Eq. ~i9,G +i{D, - D/}3,G - 2F2G = K(¥). (22)

(18) that the positive/negative slopes Bf(w) are respon-

sible for the radiation bands, which are blue/redshifted fromOne can easily see that the resonance frequency for this

the soliton. Figure 2 shows graphs®fvs & as given by Eq.  equation is zero, which reflects that we have accounted only

(17). The above consideration of the cubic dispersion alsdor one real root of Eq15). Inclusion of all the higher order

explains why the two radiation bands exist in the fibers withderivatives ofG will recover the exact fiber dispersion to-

B-(w) having two zeros, see Fig. 1. Note, that the conditiongether with all the disregarded complex and real resonances.

(12) is satisfied for(18). The exact solution of Eq22) obeying zero initial condi-
tions atz=0 can be found in the integral form:

B. Amplitude of the radiation field e is(® 3

- 1 AIS(E") ’
Finding the amplitude of the emitted wave is a technically Glé,2) = i[D.-D/] §+[D,_D,]Zd§ KD, (23

involved problem. Previous semiexplicit results by \&Waal.
[16] and by Karpman[19,2Q include undetermined con- where
stants, which can be computed only numerically. Our mod-

eling indicates that the fully explicit analytical answers de- _2\- 2qD’s’th( 5)

rived by Akhmediev a}nd Karlso[Q_Z] and Kgrpmar{Zl] do 6 = [D.-D/] W (24)
not match with the direct numerical solution of Ed,) for . . o
parameters relevant for the experimght The primary rea- The integral(23) cannot be taken in the explicit form.

son for this is that the theories in Ref®1,22 do not ac- However the limit values ofc can be found. Fixind{Dg
count for the importanf? terms inside£. Therefore, we -Dy}z/¢>1, one can show that fdb;-D, > 0:

develop our own approach, which further advances the meth- _ ris=)
odology used if19-27 and leads to the results, which agree im G=—, im G=0, (25)
well with direct modeling of Eq(1). zom oo I[Dg=D/]  zoe,gme

It is clear that the radiation takes energy from the soliton .
and efficiency of this transfer increases as detuning of th&nd forDg—D; <0

radiation from the soliton carrier frequency decreases. If the ei1S() T

radiation is far detuned from the spectral center of the soli- lim G=0, lim G=——, (26)
ton, then it should be weak and negligible. Therefore, con- e Z—00,E—0 i[D¢ = Dy]

sidering the PCF example shown in Fig. 1 we can assume,

that the blueshifted radiation emitted by the soliton with the

carrier frequency close to the left zero GVD point can be 2\’,W

safely disregarded compared to the redshifted radiation, see S(+w) = + /—,5 (27)
Fig. 1(b). Thus, in this case and obviously in the case of the Ds— Dy
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0
1.6 5 -Lr Raman effect off
= 1.4} ] -
9 r s w"’ _2
8 1.2} gLl \N\ =
=] c 2 \ =
£ g =
g 1 g 41/
o Exact integral = ~ Raman effect on
S 0.8 g -5 \\\\ &£ 0
3 5 ~Iisal .
g 06 Q=5-5_+4qID’ D’ ] ® 6 = -
0.4} Tt e=0
0.2} 3 . . . . .
. 0 2 4 6 8 10 12
_?2 10 n - > 0 2 (a) propagation distance z
soliton frequency 5s
) ) _ 16
FIG. 3. Amplitude of the emitted waJ&| calculated using Eqgs.
(25) and(28)—dashed line; using Eq$25) and (29) with Q given 14 Raman effect off "
by Eq. (30)—full line; using Eqgs.(25) and (29), but with Q=4 12 i
- 6—full line, e=-0.015 andy=3.5. 10 \
o0 7 8
I= f déeSoOK(&). (29) 6
—0 4 ~\\~,\ ~— 4
The influence of the potential term on the amplitude is two- 2 Rag’an effemn/* """""" )
fold. First, it affects the asymptotic value of the phase of the 0 = . . . .
emitted wave. Second, and more important, it rotates the 0 2 4 6 8 10 12

phase of the expression under the integral, which changes the propagation distance 2

amplitu_de of the emitted wave. In_side the area of localization 5 4 (a) Soliton frequencys, as function ofz (b) soliton
of the mtegr_an(_jK(g) _the th fun_ct|or_1 e”te””gs(f_) can be parameterq as function ofz. Numerical modeling of Eq(l) is
replaced by its linear i§ approximation, thed is simply the  shown by the full lines and of Eqg34) and (35) by the dashed
Fourier amplitude of the source terk calculated at the |ines: e=-0.015.
frequency():
be obtained only calculating the next order correction to the
Q) = - ms"——D’S’[D(Q+ 5 - DZ(Q)]sed(W—WQ), radiafcion field, but this goes beyond our present scope and
2 we simply rely on a good agreement of our analytical and
(29) numerical results, see Fig. 3 and Sec. IV. In Fig. 3 we show
the dependence of the amplitude of the emitted wave versus
where & calculated using Eq$25) and(28), using the approxima-
tion (29) and (30) and using(29), but with Q=46,-46,, i.e.,
4q disregarding contribution from the potential. One can see
D.-D/’ (30 that asé, approaches; the discrepancy between the formu-
las taking or disregarding the?-potential increases. For ex-
Taking the cubic dispersion E@16) one can show that ample, fors,=—6, which is the value taken from the numeri-
D(Q+8)-D,(2)=€Q® and D{-D;=-1/[2€]+O(1). From  cal results shown in Figs(d) and Ga), use of Eq(30) gives
the latter it follows that, when the detuning of the radiation|G| =0.25 and use of)=6,- & gives |G| =0.12. This im-
from the soliton frequency is large enough the last term irplies that our results and results [@f1,22 differ by the fac-
Eq. (30) is much smaller thais, — &J. Thus, the importance tor =2 for this particular choice of parameters.
of the potential term increases when the radiation and soliton Note here that if one solves E@l) initialized with a
frequencies become closer, see Figb) &nd 2. It is crucial, soliton having some chosen valuespfind &, then it be-
however, thatZ has an exponential sensitivity . There-  comes clear that parameters of the soliton and parameters of
fore the higher order corrections & which are small rela- the radiation are changing with propagation. Therefore in
tive to |5,— 484 can and indeed result far from negligible order for the analytics to be properly compared with numer-
changes ofl. Therefore only absolutely small, i.e<1, cor-  ics we should generalize the former by allowing adiabatic
rections to{) can be disregarded. Parameters close to theéependence of the soliton parameters.
experimental conditions of Ref.7] and to the numerical
modeling carried out below givps,—&,| ~10 and 4j/[D., IV. COMPENSATION OF THE SOLITON
-D/]~1. The next order correction 8 is expected to be SELF-FREQUENCY SHIFT
<1 and therefore it should indeed have small effect on the It has been demonstrated previougl®,22 that solitons
radiation amplitude. Obviously the rigorous proof of this canemitting resonant radiation lose energy slowile., nonex-

O=8-6+
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ponentially transferring it to the resonant dispersive wave. Using Eqgs.(6), (25), and(28) and the conservation law

To conserve the momentum integral the carrier frequency 08,Q=0 we find in the leading approximation the equation
the radiating soliton gets shifted in the spectral direction op-governing evolution of the soliton parametgr

posite to that of the radiation. This is the so-called spectral 5

recoil effect[22]. This process, however, is expected to be aq=— 2 _
frustrated by the soliton self-frequency shift towards the red z anS|Dg -D/|

part of the spectrum due to the Raman effect. The Raman. . - .
shift is known to be a strong effect for pico- and femtosec—g'm'larly' substituting EqQs(6), (25), and(28) into Eq. (32)

ond pulseg24]. we find the equation for the soliton frequency:

(34)

The amplitude of the resonant wave has exponential de- Qud,0:=[ 65— 510,Q, - a. (35)
pendence oné, - &4, see sech function in E¢29). The red
Raman shift of the soliton carrier frequency, is directly pro-Here a=47(20)*?/[15|Dg["/2], r,=3fs/ r characterizes the
portional to the propagation distanz¢23,24), therefore for  slope_of the Raman gain spectrui24], Qs=/[d¢|F[?
fibers with the negative slope ¢8,(w), the Raman effect =2vy2q|D|, Q,=z|Z]?/|D{-D,|, and,Q,=|Z]?/|D{-D]|.
automatically reducelss, — 5, see Figs. () and 2, and leads By neglecting the first term on the right-hand side of Eq.
to the exponential irz increase of the radiation amplitude (35) one reproduces the standard formula for the Raman in-
with the rate =|d[w(Q]|/2. The growing red radiation, duced soliton self-frequency shif€3,24, while the 9,Q,
however, presses the soliton towards the blue side of thterm describes evolution of the soliton frequency due to ra-
spectrum. Thus, there exists the possibility of a balance bediation pressure. Taking separately, the influence of the ra-
tween the red frequency shift due to the Raman effect andiation and the Raman effect on the soliton frequency have
the blueshift coming from the radiation pressure. This effecPeen reported in Ref$22,23, respectively. The possibility
has been suggested and considered as the prime reason f@f them to balance each other has been recently demon-
the existence of the solitary pulses with the compensategtrated experimentally and numerically [if]. Equation(35)
Raman self-frequency shift and the growing tail of the resofrovides analytical interpretation of the results of Ref.
nant radiation observed in RdfZ]. The theory of this effect Indeed, fords—4,>0, i.e., for the redshifted radiation, the
based on the results of Secs. Il and Il is deve|0ped below.terms on the right-hand side can counterbalance one another.
The balance clearly critically depends on the soliton fre-
A. Adiabatic theory quency. However, one cannot expect exact frequency lock-

The essence of our approach is the standard assumptidf - %20s=0, for & satisfying a=[ s~ &]|7[*/|Dg =Dy
that the soliton parameted andq vary slowly inz Then | NiS is because is not constant, see E¢34), but decays
using evolution equations for the momentum and power inywth z due to leakage of the radiation out of the soliton.
tegrals we derive a system of ordinary differential equations
governing dynamics o, andq.

The momentum integral

B. Numerical results

Throughout this subsection we present results of the direct
numerical modeling of Eq¢l) and Eqgs.(34) and (35) with
dispersion(16) and e=—0.015. Approximation of the cubic
dispersion is sufficient for the qualitative explanation of the
%‘xperimental observations of R¢¥] and in addition it sig-
nificantly simplifies handling of the right-hand sides of Egs.
(34) and(35). The latter is because for the cubic dispersion

we know the exact analytical dependencesobn g and &,
M :—f dt{at|A|2f dt’[R(t—t’)—A(t—t’)]|A(t’)|2dt’}. see Eq(17).
Figure 4 shows evolution of the soliton paramet&rand
(32 g calculated directly from Eq) and from the coupled sys-
tem of the adiabatic Eq$34) and(35). We show three dif-
ferent cases. The first case is with the Raman effect switched
off and e=-0.015. Then the radiation action on the soliton
Q= f dt/A? (33 naturally leads to the decay of the soliton amplitude and to
the blueshift of its frequency. The second case with the Ra-
is a conserved quantity even in the presence of the Ramanan effect on ané=0, i.e., there is no resonant radiation. In
effect. We now assume that the radiation tail is long enouglthis caseq is practically constant and the standard redshift of
so that contributions tM andQ originating from the overlap the soliton frequency is observed. The third and last case is
between the radiation and soliton are negligible compared tavhen both Raman and radiation effects are switched on. One
the momenta and power of the radiation and soliton takemran see that in this case the soliton amplitude drops faster
separately. Them andQ can be approximated byl =M,  than with the Raman effect off, and that the rate of change of
+M, andQ=Q,+Q,, whereM,, andQ;, are momenta and the soliton frequency is much less than the Raman only rate.
powers of the soliton and radiation parts of the field, respecThe faster decrease gf happens because for smalmore
tively. and more photons are transferred to the radiation because

1 * *
M= J dt|A[29, arg A= > f d{A GA-AJA] (31

has physical meaning of the average frequency and is a co
served quantity of Eq2), i.e.,d,M =0, only if Raman effect
is disregarded. Using E@l) one can show that

The power integral
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FIG. 6. (Color online (a) z evolution of the amplitude of the
Fourier transform ofA as obtained from numerical modeling of
Egs. (1) and (16). Dashed lines are the results of the adiabatic
numerical modeling of Eqg1) and(16) with initial condition given  theory. Dashed-dotted line marks the zero GVD pdib},image of
by Eq. (4) and 84(z=0)=5, q(z=0)=10, e=-0.015. Gray shaded the amplitude of the Fourier transform Affor z=15; all parameters
region emerging from the soliton is the radiation field. The grayas for Fig. 5.

scale map used exaggerates the strength of the radiation in order to o _ )
show it clearly. Dashed lines mark the soliton trajectories with ra-cOmes parabolic, i.et/z*=const, which corresponds to the

diation and/or Raman effects switched aff) |A| as a function ot~ Soliton group velocity being inversely proportional
extracted from(a) at z=15. Dotted horizontal line indicates the [23,24. When the tail of the exponentially amplified radia-
analytical result for the radiation amplitude calculated from Eqs.tion appears in the case with<0 and the Raman effect on,
(26) and(28). The inset in(b) shows the fine details of Revst.  the soliton trajectory becomes straight again, which indicates
that the radiation and the Raman effect balance each other.
|8, — &4 is continuously reduced by the Raman effect. As am-Emergence of the strong radiation band, see F{@), 6s
plitude of the radiation increases so is the recoil on the soliaccompanied by the transition from the regime of the uncom-
ton, therefore the rates of changeand §; decrease sub- pensated Raman induced self-frequency shift to the regime
stantially for larger values oz With GVD having the where the latter is substantially depleted. As one can see, the
opposite slope, i.e., foe>0, the recoil effect pushes the results of the adiabatic theory predict evolution of the blue
soliton towards the red side of the spectrum and thereforedge of the radiation band, see Figa)6 This indicates that
acts in the same spectral direction as the Raman effect. Thearameters of the soliton taken for a giveretermine pa-
overall effect is thais,— &y is continuously increased and rameters of the radiation emitted at the samErequencies
therefore the radiation amplitude decreases with on the red edge and in the center of the radiation band have
Figures %a) and %b) show the soliton evolution in the been created by the soliton at the previous values when
(t,2)-plane and image of the absolute value of the field amthe soliton frequency was larger.
plitude for a giverz. Figures 6a) and §b) show the soliton Radiation tail appearing on the left from the soliton in the
evolution in the(8,z) plane and image of the absolute value (t,z)-plane implies that the red radiation propagates faster
of the spectral amplitude of the field. Fer0 and the Ra- than the soliton, i.e., that it is emitted forward. This happens
man effect switched off the soliton trajectory in the becauseD; <D/ andV(s,)>V(dy), see Eq(5). The Raman
(t,2)-plane is a straight line, i.et/z=const, with slope de- effect creates the negative acceleration and therefore causes
termined by the initial value ob;. The slope is preserved delay of the solitons. The redshifted radiation, however, cre-
with z due to Galilean invariance of the ideal NLS equationates positive acceleration and therefore tends to bend the
[20]. With the Raman effect on the soliton trajectory be-soliton trajectory in the opposite direction, which results in

(b)

FIG. 5. (a) Spatiotemporal evolution ofA| as obtained from
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the overall straightening of the trajectory. Oppositely, for the The most important feature of the resonant radiation emit-
positive GVD slope the radiation is blueshifted. It is emittedted by the soliton under the conditions considered above is
backwards,V(8,) <V(8), and causes negative accelerationthat it is exponentially amplified due to the combined action
to the soliton. of the Raman effect and the negative GVD slope. The idea is
Excellent qualitative and good quantitative agreement ofo use this effect for the parametric amplification with the
the results of the adiabatic theory and of the direct numericagignal frequency controlled by the GVD slope. Note, that
modeling of Eq.(1) confirms validity of our analytical re- generation of the resonant wave by the soliton is very differ-
sults for the radiation amplitude derived in Sec. Ill. Compari-ent from the standard four-wave mixing and does not exhibit
son of the results presented here for the model dispersioifie usual symmetry between the Stokes and anti-Stokes
(16) and results of Ref.7] for the real PCF dispersion show waves. This is because in the process of the emission of the
that using of Eq(16) captures the essential features neededesonant wave by the soliton the energy and momentum are
to explain the effect of the self-frequency shift compensatiorshared between the emerging wave on one side and the soli-
reported in Ref[7]. Overall, analytical and numerical results tonic pulse as a whole on the other, but not between several
reported above confirm that the effect reported in R&f.  continuous waves as in the usual four-wave mixing.
takes place indeed due to balance between the Raman in- Localized solutions closely related to the solitons emitting
duced soliton self-frequency shift and radiation pressure omesonant radiation are the solitons nesting on the top of the
the soliton. resonant wave extending frome-to +. These solitons are
often called quasisolitons, see, e.g., R¢36-37. If, for
some selected parameters, the background amplitude be-
comes zero, then the quasisolitons are called embedded
In Ref. [7] where the effect of the self-frequency shift solitons [37-41. Mathematical artificiality of the quasi-
compensation by the radiation pressure has been originallgolitons exhibits itself through the fact that they carry infinite
reported uses the term “cancellation” instead of “compensaenergy, but their relevance to the physical reality can be
tion.” However, as shown above analytically the exact caninferred from the results presented above. Indeed disre-
cellation is prevented because the soliton paramgtde-  garding thez derivative in Eq.(22) one can find its general
creases with the propagation distance. In practical termssolution in the formG=G;(¢)+BGy(¢), whereB is an arbi-
however, the compensation is very strong indeed. For extrary constantG;=exd —iS(¢)1/%,, d&’exgd-iS(£')]K(¢') and
ample, results shown in Figs. 4 and 6 being recalculated intG,=exd-iS(¢)]. Using boundary conditions G(+)
the physical units show that over the propagation distance G(-»)e’?¢, where is a constant phase shift, valid for the
=2 m the uncompensated Raman shift 0£&20 fs soliton  solitons on the infinite background, one can fiddand the
is =100 THz. However, in the regime when the frequency ofamplitude of the background at infinityG(+=)|=bZ/|D,
the soliton is quasilocked by the radiation, the frequency_Dr'|l whereb={2|sin (+») + ¢]|} 1. Thus, the amplitude of
shift over the same distance is ony5 THz. This agrees ine infinite background of the quasisolitons differs from the
well with experimental observations of R¢f]. amplitude of the semi-infinite background, emerging from
_ For the long propagation distances the soliton keeps 108 natural condition that initially there is no radiation, by the
ing its energy to radiation and gets broader, therefore botlycior b, cf. Eq. (25). Other differences between the two

recoil and Raman effects are weakening, but balance bgynes of quasisolitons have also been recently discussed in
tween the two preserves. For example for parameters of Figef, (42,

5 the soliton decay rates found from the direct numerical
modeling of Eq(1) and measured in the inverse propagation VI. SUMMARY
units are 0.5, 0.15, 0.04, and 0.02 for the propagation dis-

tances 6, 12, 25, and 50, respectively. The correspondin ) ' ; ,
values of the decrease rate of the soliton frequency are 0.18! the soliton self-frequency shift compensation by the radia-
ion pressure in fibers with the negative slopeBgfw). Our

0.06, 0.025, and 0.01. In our modeling we observed propat- , > ~Je )
gation of the soliton over more than 100 dispersion Iengthsfesuns provide analytical underpinning for the recent experi-

but its final fate cannot be unambiguously determined fronin€ntal observationg7]. Our approach to calculation of the -
our results, because radiation finally passes through or gefénplitude of the resonant radiation generalizes the previ-

reflected from the boundaries and feeds back into the solitoRUSlY known techniques by accounting for the potential cre-
itself. ated by the soliton, see Eg&3) and (25—29), which is

Previously reported methods to compensate the Ramagssential fqr achieving good matching between the analytical
induced soliton self-frequency shift in telecom fibers have®nd numerical results.
involved different techniques for achieving the frequency de-
pendent amplification or loss in the fibef87-3Q or in- ACKNOWLEDGMENTS
volved cross-phase modulation eff¢8t.,33. None of these The authors acknowledge J.C. Knight, F. Luan, P.St.J.
techniques have relied on the effect of the resonant radiatiolRussell, and A.G. Vladimirov for stimulating discussions.
For studies of the uncompensated soliton self-frequency shiftVe are grateful to F. Luan and N. Joly for the image of their
and Raman amplification in PCFs with the positive GVD fiber in Fig. Xa). This work is partially supported by the
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V. DISCUSSION

We have developed a comprehensive theory of the effect
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