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Abstract

Calcium (Ca2+) signalling plays a crucial, diverse role in the body (Berridge et al., 2003).
We focus on the role of Ca2+ signalling in the fertilisation of mammalian eggs (Sanders et
al., 2018). Many models of Ca2+ signalling rely on inaccurate dynamics of the inositol
1,4,5-triphosphate receptor (IP3R) on the Endoplasmic Reticulum (ER) (Theodoridou et
al., 2013). It is also frequently assumed that Ca2+ oscillations are driven by the emptying of
the ER Ca2+ store and not by the IP3R dynamics. Here, we develop a new ‘gating’ model
for Ca2+ signalling in fertilisation that more accurately captures the open probability of the
IP3R dynamics, as a function of Ca2+ and IP3, as determined by Mak et al. (1998).

To develop a detailed understanding of gating models, we first study the models of Atri
et al. (1993) and Li and Rinzel (1994). Subsequently, we study Mak et al. (1998), which
includes the most up-to-date experimental data on the IP3R dynamics. We also review how
these data have been incorporated into a model by Kowalewski et al. (2006), though the
latter is not a model for Ca2+ signalling in fertilisation.

Our model combines features of the Atri et al. (1993) model with the IP3R data by
Mak et al. (1998). It contains one ODE for [Ca2+] in the cytosol and another ODE for
the percentage of non inactivated IP3R. We perform linear stability analysis and solve
the model numerically, varying [IP3] as the bifurcation parameter. This model accurately
reproduces key experimental features, including the low frequency and large amplitude of
Ca2+ oscillations in fertilisation. The model also captures that frequency and amplitude of
Ca2+ oscillations increase as [IP3] is increased (Sanders et al., 2018). With this model, we
hope to guide future experiments that could eventually improve clinical practice in In-Vitro
Fertilisation.
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Chapter 1

Introduction

Calcium in the form of Ca2+ ions is a life and death signal, acting as an intracellular mes-
senger in the body, carrying information in cells to regulate their activity (Berridge et al.,
2003). Ca2+ signals are relevant to many cell functions, for example muscle contractions and
cell adhesion (Berridge et al., 2003). In this project, we study mathematical modelling of
Ca2+ signalling in fertilisation of the mammalian egg. Our focus will be on deterministic,
spatially homogeneous models, paying close attention to the dynamics of the IP3 receptors
(IP3R). After studying the existing models and experimental data available, we derive a
new model that successfully captures many of the key features that regulate Ca2+ signalling
in a fertilising egg.

1.1 Ca2+ signalling in fertilisation

The cytosolic Ca2+ concentration in almost every cell type is carefully controlled by sophis-
ticated mechanisms (Berridge et al., 2000). As a result, the Ca2+ shows complex spatiotem-
poral behaviour (Atri et al., 1993; Swann & Lai, 2013; Wallingford et al., 2001). These
behaviours range from stochastic spiking, to regular oscillations, periodic waves, and spi-
ral waves. The ECF has a Ca2+ concentration of around 1mM , while active pumps and
exchangers maintain the concentration of cytoplasmic Ca2+ at around 0.1 µM. Some intra-
cellular compartments, for example the endoplasmic reticulum (ER) and mitochondria, have
a comparatively high concentration of 100 − 800µM (Carreras-Sureda et al., 2018). High
levels of cytosolic Ca2+ for prolonged periods of time can be cytotoxic (Berridge et al., 2000),
hence Ca2+ regulation is very important. In this project, we aim to model Ca2+ signalling
in fertilising eggs. During fertilisation, Ca2+ oscillations are triggered by PLCζ and are the
essential trigger of embryo development. PLCζ is a testes-specific isoform of phospholipase
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C (PLC) and is located in the sperm cytoplasm. PLC is an enzyme that is restricted to
the plasma membrane. The number of Ca2+ oscillations influences the rate of embryo de-
velopment (Swann & Lai, 2016). These Ca2+ oscillations have a large amplitude (1µM) and
low frequency (time period >10 mins). The initial Ca2+ increase lasts approximately five
minutes. Each subsequent Ca2+ rise is very rapid (1 sec) and the Ca2+ increases last for
about 1 minute. Ca2+ oscillations in a fertilising mouse egg can be seen in Figure 1.1.

Figure 1.1: Intracellular Ca2+ oscillations in a fertilising mouse egg. This is measured by the
fluorescence of the Ca2+-sensitive dye Rhod dextran. The fluorescence is plotted as a ratio of
the fluorescence versus time divided by the starting fluorescence. Once the sperm is added
there are large increases in fluorescence ratio indicating Ca2+ increases in the cytoplasm.
The amplitude of the Ca2+ oscillations is variable and likely to be in the range of 1− 2µM
(Swann & Lai, 2013). Source: Swann and Lai (2013).
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1.1.1 Agonists, receptors and second messengers

The most important of the signalling pathways is the phosphatidylinositol signalling path-
way (Berridge et al., 2000). Here, in a somatic cell, phospholipase C (PLC) is activated
and splits another membrane molecule, phosphatidylinositol 4,5-bisphosphate (PIP2), into
inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). The IP3 that is released into the
cytosoplasm then binds to IP3 receptors (IP3R) which lie on the membrane of the endoplas-
mic/sarcoplasmic reticulum (ER/SR). The IP3R are channels that release Ca2+ from the
ER to the cytosol (Parys & Bezprozvanny, 1995).

In fertilisation, once sperm has fused with the egg membrane, the sperm PLCζ (an
isoform of PLC) diffuses into the egg cytoplasm. Here, the PLCζ binds to PIP2 which leads
to the generation of IP3. This IP3 binds to the IP3R on the ER, causing the ER to release
Ca2+. The increase in [Ca2+] in the cytosol then stimulates the activity of PLCζ to generate
more IP3. Therefore, as PLCζ diffuses across the egg, this positive feedback loop occurs
throughout the cytoplasm (Swann & Lai, 2016).

Figure 1.2: A schematic of the PLC pathway for Ca2+ signalling. R - Receptor, G - GPCR.
Source: Sneyd (2007).
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Figure 1.3: A schematic diagram showing the proposed mechanism of action of PLCζ during
fertilisation. Once sperm has fused with the egg membrane, the sperm PLCζ diffuses into
the cytoplasm. It then binds to PIP2 and this leads to the generation of IP3. IP3 binds
to the IP3R on the ER and this causes Ca2+ release from the ER. Source: Swann and Lai
(2016).
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1.1.2 Internal compartments

The most significant of intracellular compartments when it comes to Ca2+ signalling is the
ER (Berridge & Galione, 1988). Its main function concerns protein synthesis, and it makes
up approximately 10% of the total cellular volume. The ER is able to store a substantial
amount of Ca2+, and release it into the cytosol very quickly. The large amount of Ca2+

enters the ER via the sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) pumps,
and escapes through two major types of receptor Ca2+ channels (Marks, 1997). These are
the IP3R and the ryandine receptor (RyR).

The mitochondria in the cell are responsible for producing adenosine triphosphate (ATP)
and also act as a Ca2+ store. It is still not well understood how the mitochondria interact
with cytosolic Ca2+. It is highly suspected that the ER is the main driving force for the
intracellular Ca2+ fluxes, while the mitochondria might play a more passive modulatory role
(Jouaville et al., 1995).

1.1.3 Internal calcium channels

As described above, Ca2+ is released from the ER through two types of receptors. The RyR
is the largest known ion channel (Van Petegem, 2012; Fill & Copello, 2002). It is mainly
found in cells other than eggs, such as cardiac cells and skeletal muscle cells. For this reason
we do not go into further depth regarding this channel.

The second major intracellular Ca2+ channel is the IP3 receptor (IP3R) (Joseph, 1996;
Patel et al., 1999; Taylor & Laude, 2002; Foskett et al., 2007; Mak & Foskett, 2015). The
probability of the IP3R being open is referred to throughout this thesis as the ‘open prob-
ability’ (PO). At low cytosolic Ca2+ levels, an increase in the Ca2+ concentration leads to
an increase in PO. This starts a positive feedback process of Ca2+, known as Ca2+-induced
Ca2+ release (CICR). At higher levels of Ca2+ concentration, PO begins to decrease. In
other words, the steady-state value of PO is a biphasic function of Ca2+ (Parys et al., 1992).
Figure 1.4 shows a graph of this based on experimental data (Mak et al., 1998). The IP3R

is also affected by IP3. An increase in cytosolic IP3 concentration also increases PO. We
will go into further detail about this later as the IP3R mechanisms and dynamics are a main
feature of this thesis.

We have touched on the basics of Ca2+ signalling, and the schematic in Figure 1.3
provides a visual description of those. However, other aspects are specific to the type of cell
considered.

Many studies and experiments have been carried out on the fertilisation of an aquatic
frog (Xenopus Laevis), for example Busa and Nuccitelli (1985); Nuccitelli et al. (1993);
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Figure 1.4: The open probability of the IP3R, PO, as a function of the cytosolic Ca2+

concentration (µM). This was plotted at an IP3 concentration of 0.1µM using the equation
for PO and data from Mak et al. (1998). Software: MATLAB.

Fontanilla and Nuccitelli (1998). The diameter of their oocytes can be larger than 600µM ,
around 50 − 100 times larger than an average cell ((Dupont et al., 2016), page 23). Their
greater size means they are perfect for experimental investigations of Ca2+ signalling. Im-
mature Xenopus oocytes show complex spatiotemporal organisation (Lechleiter et al., 1991),
forming concentric circles and multiple spirals. A typical Ca2+ wave in a smaller cell cannot
be observed in its entirety. Furthermore, there is not enough room for a spiral to form, and
so Ca2+ waves take a form that is almost planar. In a larger cell like the Xenopus oocyte, it
is possible to observe both the wave front and wave back, as well as spiral waves. Ca2+ blips
and puffs are evoked by very low levels of IP3, while oscillations are observed in immature
oocytes in response to sufficient amount of caged IP3 (Marchant et al., 1999). These oscil-
lations correspond to the repetitive Ca2+ waves that propagate throughout the cell during
fertilisation (Berridge & Dupont, 1994; Thomas et al., 1996).

Upon fertilisation of an egg, sperm-egg fusion yields an alternative type of Ca2+ response
in the way of a single slow Ca2+ wave inside the egg. It takes about four minutes for the
wave to traverse the egg, with a high level of Ca2+ concentration maintained for the next
5−6 minutes after the propagation (Fontanilla & Nuccitelli, 1998). It is fortunate that there
are detailed experimental data on Xenopus oocytes and on the elements of the Ca2+ toolbox
that are relevant for eggs. The Xenopus egg is very similar to mammalian eggs, particularly
in the type of IP3R present which is a type 1 IP3R. We also have accurate data of the IP3R
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dynamics (Mak et al., 1998). These data provide us with the opportunity to develop a new
model that captures key features of the Ca2+ dynamics in the fertilisation of a mammalian
egg. Such a model, to the best of our knowledge, does not exist in the literature.

1.2 Mathematical models for Ca2+ signalling

Models of Ca2+ signalling can be divided into four major subgroups. Firstly, they can be
divided into deterministic and stochastic models, and secondly they can be divided into
spatially homogeneous (ordinary differential equations, or ODEs) and spatially distributed
models (partial differential equations, or PDEs). Ca2+ signalling is intrinsically stochastic
and spatially distributed (Sun et al., 1998; Callamaras & Parker, 2000; Falcke, 2003). This
makes the mathematical analysis of Ca2+ signals quite difficult. However, deterministic
models can be useful for making predictions while they are easier to solve numerically than
analogous stochastic models and so they remain a highly useful tool. In many cases, these
predictions can (and have been) supported by experimental evidence and have been used
extensively (Atri et al., 1993; De Young & Keizer, 1992; Dupont, 1998). For example, in
Shuai and Jung (2002) the deterministic Li and Rinzel (1994) model is compared to two
stochastic models and found to agree well when the number of IP3R is large enough.

There is a spatial aspect to the Ca2+ oscillations at fertilisation, but the purely IP3

induced Ca2+ oscillations, in oocytes, that we will model are uniform across the egg with
no obvious wave. This was shown in imaging experiments (Carroll et al., 1994). We will
therefore focus on deterministic, spatially homogeneous models, as a first approach to our
challenge of creating a new model for Ca2+ signalling in fertilising eggs.

Figure 1.5 shows the Ca2+ fluxes in a cell. These fluxes are the following: into the cytosol
through IP3R from the ER (Jchannel), out of the cytosol into the ER (Jpump), into cytosol
through leak from the ER (Jleak), into the cell (Jin), and out of the cell (Jpm). We can
define an ODE which represents the change in Ca2+ concentration in the cytosol over time,
as follows:

dc

dt
= Jchannel − Jpump + Jleak + (Jin − Jpm), (1.1)

where c represents the cytosolic Ca2+ concentration (µM). In the ODE above, each J flux
represents the impact on the concentration within the cell due to the flux into or out of the
cell, rather than the true flux that we see in Figure 1.5. The units of flux in the ODE are
µMs−1. We later show how true fluxes are translated into changes in concentration due to
those fluxes using equation (2.3). Note that throughout this project, when referring to Ca2+
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concentration, we are referring to the concentration in the cytosol unless stated otherwise.
Each type of flux can actually be modelled in different ways (Sneyd, 2007), depending on
which elements are relevant.

In this thesis, we pay close attention to the so-called gating models. These are models
which include one ODE for [Ca2+], as given in equation (1.1), and an ODE that models the
proportion of non inactivated (or ‘openable’) IP3R, n. This means that some IP3R are fully
inactivated (and cannot be opened), and the other IP3R are closed but not inactivated, so
can be opened. We wish to avoid the cytosolic Ca2+ oscillations depending on the ER Ca2+

store depleting as experimental evidence suggests that this does not drive oscillations during
fertilisation (Sanders et al., 2018; Wakai et al., 2013). The equation for the proportion of
non inactivated IP3R, n, is given as follows:

τn
dn

dt
= n∞(c)− n, (1.2)

where n∞ represents the steady state of n as a function of c, and τn is a time scale.
Alternatively, equation (1.1) is commonly coupled with a second ODE to account for the

change in Ca2+ in the ER over time but this is not appropriate for modelling Ca2+ signalling
in fertilisation since oscillations should not be driven by the Ca2+ store in the ER emptying
(Sanders et al., 2018; Wakai et al., 2013). This equation is presented as follows:

dce
dt

= γ(−Jchannel + Jpump − Jleak), (1.3)

where ce represents Ca2+ concentration in the ER. Ca2+ in the ER oscillates passively in
the case of fertilisation, so parameter values can be tuned such that (1.3) is approximately
in steady state. The parameter γ represents the ratio of the volume of cytoplasm over the
volume of the ER. This parameter is necessary since the volume of the ER is far less than
that of the cytoplasm, making up just 10% of the total volume of the cell. This means that
the flow of Ca2+ into the ER will cause a larger change in concentration in the ER than the
flow of Ca2+ into the cytoplasm.

Generally, the ODEs (1.1), (1.2) and/or (1.3) can be coupled with other equations that
could represent the state of the IP3R, the states of the ATPase pumps, the Ca2+ buffers, or
the IP3 concentration, amongst others (Atri et al., 1993; De Young & Keizer, 1992; Dupont
et al., 1991; Höfer, 1999).

We now briefly discuss the collection of models that have been constructed for Ca2+

signalling. One type of model for Ca2+ signalling is based on the assumption that the Ca2+

concentration in the ER remains constant as the store is quickly refilled from the cytoplasm
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Figure 1.5: A diagram illustrating the fluxes in and out of the cell’s cytoplasm typically
modelled in a gating model, as in ODEs (1.1) and (1.2). Flux into the cytosol through IP3R
from the ER is represented by Jchannel. Flux out of the cytosol back into the ER through
SERCA pumps is represented by Jpump. There is also a leak of Ca2+ from the ER into
the cytosol represented by Jleak. Flux into and out of the cytoplasm over the cell plasma
membrane is represented by Jin and Jpm, respectively.
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(Dupont et al. (2016), page 104). A model based on the ER refilling was derived by Dupont
and Goldbeter (1993). Positive feedback of Ca2+ release is assumed, and this drives the
Ca2+ oscillations. This type of model was developed before the dynamics of the IP3R were
discovered and therefore does not account for any Ca2+-dependent inactivation of the IP3R.
The model relies on depletion of the ER Ca2+ store and the time period for oscillations is
based on the time taken to refill the ER. One major problem that commonly occurs still in
modern models is that the oscillations are assumed to emerge due to the ER store depleting
and refilling. Experimental data from Sanders et al. (2018); Wakai et al. (2013) suggests
that this is not the case for eggs.

One of the early models for the Xenopus oocyte was a gating model by Atri et al. (1993).
We will refer to this as the ‘Atri model’ throughout this thesis. It is a simple, non-linear
two–variable ODE model that gives rise to Ca2+ oscillations. The model is highly cited and
still regarded to be very relevant today. The model is studied in detail in Chapter 2.

De Young and Keizer (1992) derived a model which we refer to as the ‘De Young-Keizer
model’. Their kinetic model was based on experimental data on the IP3R. It reproduces
several in-vivo and in-vitro experimental results (Berridge, 1989; Mouillac et al., 1990; Sm-
rcka et al., 1991). It has nine variables and assumes a positive-feedback mechanism of Ca2+

on IP3 production.
Li and Rinzel developed a gating model by reducing the De Young-Keizer model, using

the multiple scales method, to just two ODEs (Li & Rinzel, 1994). We refer to this as the
‘Li-Rinzel model’. Like in the Atri model, the variables are the cytosolic Ca2+ concentration
and the proportion of non-inactivated IP3R. This is another well-known gating model. The
derived model retains the key features of the original De Young-Keizer model. We will take
a thorough look at the Li-Rinzel model also in Chapter 2.

In the Xenopus oocyte, the intracellular waves exhibit complex spatiotemporal organisa-
tion (Lechleiter et al., 1991). In order to take the first step towards modelling Ca2+ waves
in fertilising eggs, here we develop a deterministic gating (ODE) model for Ca2+ oscillations
which accurately reproduces key experimental features in fertilising eggs. Previously, all
models have incorporated IP3R dynamics that depend on [Ca2+] and [IP3] in an inaccurate
manner, and some rely on the ER store depleting and refilling to drive oscillations. Evidence
(Sanders et al., 2018; Wakai et al., 2013) suggests that this refilling is not the main driving
force for oscillations in fertilisation and that they are mainly driven by the IP3R dynamics as
published by Mak et al. (1998). We will derive a new model that incorporates the dynamics
based on this more accurate data for how the IP3R dynamics depend on [Ca2+] and IP3.
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1.3 Project aims

In this thesis we study a series of the well-known deterministic, spatially homogeneous Ca2+

signalling models. We investigate how they work, paying close attention to the IP3R dy-
namics that are known to be the driving force for oscillations. There is currently, to our
knowledge, no Ca2+ model for fertilisation that contains the accurate type 1 IP3R dynamics
depending on [Ca2+] and [IP3] according to the data from Mak et al. (1998). Instead, many
models for fertilisation rely on incorrect IP3R dynamics and the ER Ca2+ store emptying
to drive oscillations.

Our ultimate aim for this project is to develop a realistic model for Ca2+ oscillations
that occur during fertilisation in mammalian eggs. The model should use the most current
understanding of the mechanism of action of the type 1 IP3R and of PLCζ . It should also
reproduce the low frequency, large amplitude oscillations characteristic of fertilising mam-
malian eggs (shown in Figure 1.1). The type 1 IP3R dynamics from Mak et al. (1998), that
accurately show how the open probability depends on [Ca2+] and [IP3], must be incorpo-
rated. The model should not rely on the emptying of Ca2+ stores to drive the cytosolic Ca2+

oscillations. (Sanders et al., 2018). We aim to obtain such a model where the amplitude and
frequency of Ca2+ oscillations increase as [IP3] increases, as per the experimental data from
Sanders et al. (2018) and Sneyd et al. (2006).

This will be achieved by first studying several existing Ca2+ signalling models, out of the
hundreds in the literature (Dupont et al., 2016). A subset of these are related to fertilisation
(Atri et al., 1993; Sanders et al., 2018; Theodoridou et al., 2013). Many of these models
appear to work well, but assume inaccurate IP3R dynamics (Politi et al., 2006; Theodoridou
et al., 2013; Sanders et al., 2018), and rely solely on the concept of ER store refilling as the
driving force of the Ca2+ oscillations. We will take a step back from these recent models,
many of which have three, or more, dynamic variables, and more parameters capturing other
complex processes happening in the cell. We aim to develop a simple, two–variable model
that incorporates experimental data for the open probability of the IP3R by Mak et al.
(1998). The Atri model was the first model developed for the Xenopus oocyte, but it is still
a good model to start from as it captures the Ca2+ induced Ca2+ release mechanism operated
by the ER, though depends on inaccurate data for how the IP3R depends on Ca2+ and IP3.
It is also a gating model with Ca2+ oscillations not driven by the ER store depleting, but
by the presence of an ODE for the proportion of non-inactivated IP3R, as required.

The IP3R are channels that open and close to allow Ca2+ to pass from the ER into
the cytosol. The flux of Ca2+ through the IP3R is controlled by the probability of a single
channel being open. The mechanism for the open probability of the IP3R was identified by
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Mak et al. (1998). These data have not been however, acknowledged sufficiently in recent
Ca2+ modelling. They display some interesting features in regards to the dependence of the
open probability on Ca2+ and IP3. We will deepen our understanding of these dynamics
and explore how they can be incorporated into a Ca2+ model. We have been collaborating
with Professor Karl Swann (Cardiff University), and his involvement has been crucial in this
project. With insights from the Swann lab, we aim to present a new model, that accurately
captures the Ca2+ oscillations, while using the correct dynamics from Mak et al. (1998).
This will emulate the data from Sanders et al. (2018) and Sneyd et al. (2006) that tell us
how the frequency and amplitude of Ca2+ oscillations behaves when [IP3] is increased. In
this way, we aim to capture some of the complex features of Ca2+ signalling in eggs and in
particular Ca2+ oscillations.

The experimental data from the Swann lab (see Sanders et al. (2018)) show that having
IP3 concentration as a dynamic variable is essential in a future model. In this work we set
out to complete the initial important step towards this by deriving a two–variable model
for Ca2+ signalling in fertilising eggs with the inclusion of the IP3R dynamics from Mak et
al. (1998) where IP3 is a bifurcation parameter. This is the first step to reaching a three–
variable model (with IP3) that could inform future experiments and ultimately IVF clinical
practice.

1.4 Thesis overview

We follow an incremental approach in this thesis. Firstly, we review current Ca2+ models
and identify strengths and areas of improvement. We then analyse the true IP3R dynamics
in accordance with the data from Mak et al. (1998), and the equation that describes them.
With this, we will then derive a system, based on an existing model, ensuring the addition
of the accurate IP3R dynamics.

In Chapter 2 we review and analyse several existing Ca2+ models, paying particular
attention to those of Atri et al. (1993) and Li and Rinzel (1994). In this literature review we
take note of the key features of each model, including investigating the IP3R dynamics and
its open probability. We also recognise the role of IP3 as a bifurcation parameter. This is
an essential feature that has to be included in any future Ca2+ model. In Chapter 3 we take
a close look at the correct dynamics of the IP3R as determined by Mak et al. (1998). We
examine the data and the fairly complex ‘biphasic Hill function’ used in Mak et al. (1998)
to describe these data. We acknowledge previous inaccuracies in the modelling of the IP3R

and improve them. In Chapter 4 we take a brief look at one model that has incorporated
these dynamics already (Kowalewski et al., 2006) and discuss the relevance to our project.
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In Chapter 5 we derive a new model - based on the Atri model but with the correct
open probability equation derived from the data in Mak et al. (1998). Deriving this new
model requires careful and thorough analysis of both the Atri model and the equation for
the open probability. We solve the two–variable model numerically and we also perform
linear stability analysis. This model matches key features of data from Sanders et al. (2018)
and Sneyd et al. (2006) which show that the frequency and amplitude of Ca2+ oscillations
increase as [IP3] is increases. In Chapter 6 we summarize our results propose future research
directions.

17



Chapter 2

Ca2+ signalling models for fertilisation

There are many models of Ca2+ signalling available, including those derived by Theodoridou
et al. (2013) and Politi et al. (2006). Sanders et al. (2018) is also based on these models. In
the model by Theodoridou et al. (2013) there are three equations for cytosolic Ca2+ concen-
tration, represented by c, Ca2+ concentration in the ER, represented by ce, and cytosolic IP3

concentration, represented by p. Since ce plays more of a passive role (Sanders et al., 2018;
Wakai et al., 2013), one should be able to replace it with a constant, with the system contin-
uing to oscillate. In many models the IP3R dynamics have been considered in the modelling
of the flux of Ca2+ from the ER into the cytosol. However, these can be eliminated, or
disregarded, in many instances with the systems still producing oscillations. For the model
by Sanders et al. (2018) upon numerical experimentation, we found that oscillations are lost
when ce is taken out. This can be seen in Figure 2.1. This implies a dependence on ER store
refilling, rather than IP3R dynamics. By considering a gating model instead, for example
the model by Atri et al. (1993), we have a two–variable model that does not consider Ca2+

in the ER as a dynamic variable. Regardless of this, it is still necessary that the model incor-
porates the correct IP3R dynamics. The most recent data for IP3R dynamics are discussed
in Chapter 3, where we review the paper by Mak et al. (1998).

Taking the recent models mentioned as our starting point we resolve issues and correct
the dependence on the IP3R dynamics. We should avoid oscillations that depend on the
ER store depletion. We are motivated to go back to basics and identify how to incorporate
the open probability equation by Mak et al. (1998). We have briefly mentioned some well-
established models for Ca2+ signalling in our introduction. Here we revisit these models in a
detailed manner and decide which model would be suitable to incorporate the correct IP3R

dynamics into.
Below we study two key deterministic models for Ca2+ oscillations. We explore how they

work, especially what drives the Ca2+ oscillations, and their biological representation. We
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Figure 2.1: Ca2+ oscillations arising as solutions to the (Sanders et al., 2018) model. (A)
Cytosolic Ca2+, IP3, and Ca2+ in the ER oscillating. (B) A non oscillatory system of
cytosolic Ca2+ and IP3, with the equation for Ca2+ in the ER having been taken out. This
implies that oscillations depend on the ER store refilling. Software: MATLAB.

begin by looking at model by Atri et al. (1993) and the model by Li and Rinzel (1994).

2.1 The Atri et al. model

The first model we review was developed by Atri et al. (1993). It is the first deterministic
Ca2+ model for the Xenopus oocyte. This model displays a fairly realistic representation of
Ca2+ signals that occur during fertilisation. The model is based on experimental evidence
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Figure 2.2: Ca2+ oscillations as solutions to the Atri Model, (2.5), (2.6), with µ(p) = 0.3
(within oscillatory range). Parameter values are shown in Table B.1. Initial values of 0.1µM
and 0.5 were taken for c and n respectively. Oscillations over time of 50 seconds. Software:
MATLAB.

that the IP3R is regulated by the cytosolic Ca2+ level in a biphasic manner (Finch et al.,
1991). It is apparent in the experiments that Ca2+ release is inhibited by both low and
high levels of cytosolic Ca2+, and encouraged by intermediate levels of cytosolic Ca2+. The
inactivation of the IP3R is a slower process than the activation (Finch et al., 1991). The
model produces Ca2+ oscillations and travelling waves in the Xenopus Laevis oocyte with
IP3 concentration at a constant level.

The model consists of two ODEs, (2.1) and (2.2), where c represents cytosolic Ca2+

concentration (in µM) and n represents the proportion of non inactivated IP3 receptors.
The ODEs are:

dc

dt
= Jchannel − Jpump + Jleakage, (2.1)

τn
dn

dt
=

K2
inh

K2
inh + c2

− n. (2.2)
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The fluxes above are given by

Jchannel = kfluxn

(
p+ µ0KIP3

KIP3 + p

)(
Kactb+ c

Kact + c

)
,

Jpump =
Vec

Ke + c
,

Jleakage = δ.

The Ca2+ flux from the ER through the IP3R into the cell cytosol is represented by Jchannel.
The Ca2+ flux by SERCA pumps from the cytosol to the cell’s ER is represented by Jpump.
The small flux of Ca2+ leaking out of the ER is represented by Jleakage. Parameter values
and biological descriptions are given in Table B.1.

2.1.1 Model assumptions

The single channel model

A few assumptions are made about the IP3R in the Appendix of Atri et al. (1993). These
are:

• The IP3R consists of three independent binding sites.

• A single molecule of IP3 binds to the IP3 activation site (site 1). A single molecule of
Ca2+ binds to the Ca2+ activation site (site 2), and two molecules of Ca2+ bind to the
Ca2+ inhibitory site (site 3).

• Activation of sites 1 and 2, and inactivation of site 3 together permits Ca2+ to pass
through the IP3R. Hence Ca2+ is involved in both positive and negative feedback.

• When Ca2+ and IP3 levels are zero, basal flux through the IP3R is still assumed as
there is still a nonzero probability of activation of sites 1 and 2.

• The number of open channels is responsible for the total flux of Ca2+ from the ER to
the cytosol.

In Jchannel there are three terms multiplying each other, p1, p2, and p3, which give the
probability that a single channel is open. p1 and p2 represent the probabilities that sites 1 and
2 are activated, respectively. The probability that Ca2+ is not bound to site 3 (inactivation
site) is represented by p3. We can, therefore, say that the total steady-state Ca2+ flux
through IP3R is given by the following:

IT = Nip1p2p3,
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where i is the Ca2+ current through a single open IP3R and N is the total number of IP3R.
In this paper it is assumed that the volume of a channel, V , is constant. By this assump-

tion, we can convert the Ca2+ current to an impact of the flux on the concentration in the
cytosol, given by Jchannel:

Jchannel =
Nip1p2p3
2FV

, (2.3)

where F represents Faraday’s constant. Jchannel is the Ca2+ flux through the ER into the
cytosol and has units µMs−1. It is directly proportional to the number of IP3R on the
ER, N . The units of F are CM−1 and the units of i are µCs−1. N is dimenionless and V

has units of volume. p1, p2, and p3 are true fluxes, in number of molecules per channel per
second. To get to the final form of Jchannel, let kflux = Ni/2FV . Each of p1, p2, and p3

are modelled as functions of Ca2+ and IP3, as labelled below. Note that we refer to p1 as a
function µ(p).

At steady state,

Jchannel = kflux

(
p+ µ0KIP3

KIP3 + p

)
︸ ︷︷ ︸

p1=µ(p)

(
Kactb+ c

Kact + c

)
︸ ︷︷ ︸

=p2

(
K2

inh

K2
inh + c2

)
︸ ︷︷ ︸

=p3

. (2.4)

It is an assumption of the Atri model that the expression for Jchannel valid at steady state
also holds for the temporarily evolving system and this allows us to write ODEs (2.1) and
(2.2). It is not our intention in this work to question this assumption.

In this thesis, we aim to derive a more accurate model for Ca2+ signalling at fertilisation.
An area to focus and improve is the incorporation of IP3R dynamics. The Atri model
uses data (Parys et al., 1992) that inaccurately capture how the IP3R dynamics depend on
[Ca2+] and [IP3] during fertilisation. We now have more accurate data for this from Mak et
al. (1998). It is therefore necessary to look closely at the components p1, p2, and p3, as they
synthesize the open probability of the IP3R.

We can begin by studying p1 further. As labelled above, we have called this µ(p). µp is
the probability that a single molecule of IP3 binds to site 1. From experimental data, this
probability is given to be µ0 = 0.567 when IP3 = 0. The model then assumes that for non-
zero [IP3] the probability increases according to a Hill function and saturates at the value
1. This Hill function is not fitted experimentally. The half-maximal activation constant for
IP3 is given by KIP3 . Note that µ0 + µ1 = 1, where µ1 is the proportion of IP3R that are
not activated at IP3 = 0µM .

Next, p2 is the probability that Ca2+ binds to activation site 2. The half-activation
constant (the proportion of IP3R that are activated by the binding of Ca2+) here is given
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by Kact. The parameter b is the proportion of IP3R that have site 2 activated in the absence
of bound Ca2+ and represents a basal current through the IP3R.

Finally, the last component accountable for the opening of the IP3R is p3, which repre-
sents the probability that Ca2+ is not bound to inhibitory site 3. The half-maximal inacti-
vation constant is Kinh. In p3, the Hill coefficient of 2 shows that this is a more cooperative
process than the binding in sites 1 and 2 (in p1 and p2), according to the data collected.
According to the experiments, when Ca2+ increases quickly, the IP3R is activated quickly
and is deactivated very slowly. This is why site 3 takes a while to reach its steady state,
hence the constant time scale, τn = 2s in equation (2.2). This is despite the fact that sites
1 and 2 obtain a fast equilibrium with IP3 and Ca2+.

The parameters b, Kact, and Kinh for this model were all chosen by fitting to the exper-
imental data in Parys et al. (1992). We will revisit the functions of p1, p2, and p3 and the
way the open probability is modelled in Chapter 4, where we derive a new model.

Dynamic behaviour of the IP3R

Equation (2.4) represents the steady flux through the IP3R for fixed Ca2+, but we must note
that the channel reacts in a certain manner to a varying cytosolic Ca2+ level. It is evident
from the data in Finch et al. (1991) that when the cytosolic Ca2+ concentration rapidly
increases, the IP3R activates quickly and deactivates at a slower pace. This motivates the
assumption that the binding of sites 1 and 2 quickly reach an equilibrium with IP3 and
cytosolic Ca2+, while site 3 reaches its steady state proportional to the time constant τn.
We obtain equation (2.1) when we write p3 as n for notational convenience in equation
(2.4). Note that the way in which the IP3R has been modelled shares similarities with
the modelling of the IP3R subunits in the Hodgkin and Huxley (1952) model of electrical
impulse propagation in the nerve axon, hence the Atri model is considered a gating model.
In both models, constants were chosen in order to reproduce a specific steady-state curve
for the open probability of the specific channels. In the Hodgkin-Huxley equations, these
are the sodium and potassium channels as a function of voltage, and in the Atri model,
this is the IP3R as a function of Ca2+ and IP3. The variable n, for the proportion of non
inactivated IP3R, is directly analogous to the inactivation variable h in the Hodgkin-Huxley
equations. Time constants in the equations for n and h account for the delay in activation
and inactivation after changes in [Ca2+] and voltage, respectively.

The modelling of the IP3R in the Atri model is very similar to other models, particularly
the model by De Young and Keizer (1992). Both of the models show similar results. Both
feature a separation of time scales of Ca2+-dependent activation and inactivation of the
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IP3R, where activation takes places faster than inactivation (Finch et al., 1991).
We have discussed which parts of this model represent Ca2+ flux through to the cytosol

(in Jchannel), and that Jpump represents the SERCA pumps back into the ER. The latter is
given by the Michaelis-Menten function. It is acknowledged in the paper by Atri et al. (1993)
that incorporation of more detail in this term would be beneficial to the model when more
experimental evidence is available. The model is not driven by ER Ca2+ depletion as the ER
concentration is assumed to remain constant (and high). This emphasizes the importance of
the role that the IP3R dynamics and the IP3 concentration play in facilitating the cytosolic
Ca2+ oscillations. That being said, as we see later, the IP3R dynamics that are used in
the Atri model are based on outdated experimental data. A replacement in the dynamics is
therefore due. We will do this in Chapter 3 with updated data from Mak et al. (1998).

2.1.2 Non-dimensionalisation of the Atri et al. model

We non-dimensionalise equations (2.1) and (2.2) by substituting in c = Kactc̄, t = τnt̄, and
n = n̄, as in Kaouri et al. (2019). The process of non-dimensionalisation is discussed in
Murray (1989). Dropping the bars for notational purposes, we get the following:

dc

dt
= µ(p)K1n

(
b+ c

1 + c

)
− V c

K + c
, (2.5)

dn

dt
=

K2
2

K2
2 + c2

− n, (2.6)

where K1 = Kfτn/Kact, V = Veτn/Kact, K = Ke/Kact and K2 = Kinh/Kact. Note that the
Jleakage term has been ignored now since τnδ/Kact is of a much lower order of magnitude in
comparison to the other terms. Parameter values are given in Table B.1.

As discussed above, oscillations emerge when IP3 is at an appropriate level - not too low
or too high. This means that µ(p) = p1 is a bifurcation parameter. In Figure 2.5, we see a
solution of the equations (2.5) and (2.6) with µ(p) = 0.3, which is within oscillatory range.
Figure 2.6 shows what happens when µ(p) has a value of 0.2886 and 0.6 respectively. When
µ(p) = 0.2886, the variables c and n almost immediately reach their steady state values. As
the parameter is increased to µ(p) = 0.6 the simulation begins with oscillations that slowly
decay over time until c and n reach their steady states.

From the non-dimensionalisation, we have reduced the system down to seven parameters.
We will go on to find the equilibria of equations (2.5) and (2.6) as well linearise the equations,
and find the stability of the equilibria.
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2.1.3 Linear stability analysis

To begin our linear stability analysis, we look for the steady states (equilibria) of the equa-
tions, which are nodes, given at the points where dc/dt = 0 and dh/dt = 0. This leads to a
fourth-order polynomial. On solving for our bifurcation parameter, µ(p), we get

µ(p) =
V c(c3 + c2 + c+ 1)

K1c2 +K1(b+K)c+K1bK
,

as in Kaouri et al. (2019). We can find a range of values for c and µ(p) that result in
oscillations by evaluating the expression above. We can find this range by solving dµ(p)/dc =

0. We get the following two fold bifurcation points:

c = 0.22281 ⇒ µ(p) = 0.28925,

c = 0.33374 ⇒ µ(p) = 0.28814.

Figure 2.3: A graph that shows the steady states of the non-dimensionalised form of the
model, (2.5), (2.6). The steady states are shown as a function of the bifurcation parameter
µ(p). We can see that as µ(p) increases, there is one steady state. There is a double
(degenerate) steady state at µ(p) = 0.28814. There are then three steady states, followed by
another double (degenerate) steady state at µ(p) = 0.28925. Finally, there is just one steady
state for all µ(p) > 0.28925. Source: Kaouri et al. (2019).

To identify the bifurcations of the Atri model, we start by linearising the system near its
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steady states. Then, for each steady state we compute the Jacobian matrix. Let

dc

dt
= F (c, n),

dn

dt
= G(c, n).

The Jacobian matrix is given by

J =

(
J1,1 J1,2

J2,1 J2,2

)
,

where

J1,1 =
∂F

∂c
, J1,2 =

∂F

∂n
, J2,1 =

∂G

∂c
, J2,2 =

∂G

∂n
,

are evaluated at steady-state. The characteristic polynomial of the system is given by

λ2 − T (J)λ+D(J) = 0,

where the trace, determinant and discriminant are defined respectively as follows:

T (J) =J1,1 + J2,2,

D(J) =J1,1J2,2 − J1,2J2,1,

Disc(J) =(T (J))2 − 4D(J).

The trace, determinant and discriminant are important in the understanding of the qualita-
tive behaviour of the system. Our trace and determinant are given by

T (J) =
µ(p)K1n

c+ 1
− µ(p)K1n(b+ c)

(c+ 1)2
− V

K + c
+

V c

(K + c)2
− 1,

D(J) =− µ(p)K1n

c+ 1
+

µ(p)K1n(b+ c)

(c+ 1)2
+

V

K + c
− V c

(K + c)2
+

2µ(p)K1(b+ c)c

(c+ 1)(c2 + 1)2
,

where λ represents the eigenvalues. We can therefore solve the characteristic polynomial to
find these eigenvalues. Eigenvalues, λ, are given by the following:

λ =
T (J)±

√
T (J)2 − 4D(J)

2
.

In Kaouri et al. (2019) is a complete list of bifurcations of the system. These are found by
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determining the nature of the roots of the polynomial over a range of values for µ(p). The
list of bifurcations from Kaouri et al. (2019) is as follows.

• 0 < µ < 0.27828: one stable node.

• µ = 0.27828: the stable node becomes a stable spiral (bifurcation Disc = 0)

• µ = 0.28814: Stable spiral present. Also, a saddle and an unstable node emerge
(bifurcation Det = 0, fold point)

• µ = 0.28900: the stable spiral becomes an unstable spiral. The other two steady states
are still a saddle and an unstable node. (Tr = 0, Hopf bifurcation)

• µ = 0.28924 the unstable spiral becomes an unstable node, and we have two unstable
nodes and a saddle (Disc = 0)

• µ = 0.28925: one unstable node (Det = 0, fold point)

• µ = 0.28950: the unstable node becomes an unstable spiral (Disc = 0)

• µ = 0.49500: the unstable spiral becomes a stable spiral. (Tr = 0, Hopf bifurcation)

2.1.4 Simulations

We now look at the simulations of the Atri model in different bifurcation regimes. We use
the ode45 function in MATLAB (MathWorks, 2020) to solve the reduced equations, (2.5)
and (2.6), with various values of µ(p). Figure 2.5 shows Ca2+ oscillations as solutions to the
Atri Model, (2.5), (2.6), with µ(p) = 0.3 (within oscillatory range). Figure 2.6 also shows
Ca2+ oscillations as solutions to the Atri model (2.5), (2.6). In A, there is a simulation with
µ(p) = 0.2886 (too low to be in the oscillatory range). Here, both c and n quickly go to their
respective steady state values. In B, there is a simulation with µ(p) = 0.6 (too high to be
in the oscillatory range). Oscillations start with a large amplitude and dampen over time.

Bifurcation diagram

Non-dimensionalisation has reduced the number of parameters in the system. Equations
(2.5) and (2.6) can be used to generate a bifurcation diagram for µ(p) against c. Figure 2.4
(Kaouri et al., 2019) shows the changes in the qualitative behaviour of the system as µ(p)

increases, generated with the XPPAUT continuation software (Ermentrout, 2002). They
show the amplitude and frequency of limit cycles, respectively, as the bifurcation parameter
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Figure 2.4: Bifurcation diagrams for the non-dimensionalised Atri model (2.5), (2.6) as µ(p)
increases. (a) Amplitude of calcium oscillations (limit cycles). The blue dots show the stable
limit cycles while the green dashes show the unstable limit cycles. Note the presence of the
left Hopf point (LHP) and the right Hopf point (RHP). (b) Frequency of the limit cycles.
Source: Kaouri et al. (2019).
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Figure 2.5: Ca2+ oscillations as solutions to the Atri Model, (2.5), (2.6), with µ(p) = 0.3
(within oscillatory range). Parameter values are shown in Table B.1. Initial values of 0.1µM
and 0.5 were taken for c and n respectively. Oscillations over time of 50 seconds. Software:
MATLAB.

µ(p) increases. In Figure 2.4a we see for what values of µ(p) we have stable and unstable
limit cycles, and the two Hopf points. The figures show that as µ(p) is increased, oscilla-
tions increase more in amplitude than they do in frequency. The range of µ(p) that gives
oscillations is 0.289 < µ < 0.495.

We have now presented in detail the Atri et al. (1993) model and its derivation, linear
stability analysis and bifurcation analysis. This model captures key Ca2+ signalling features
but uses outdated data to model the IP3R dynamics. More recent experiments and data
have shown that the probabilities p1, p2, and p3 are more accurately modelled by Mak et al.
(1998). We will incorporate the latter IP3R dynamics in a model later in the thesis.

Next, we present in detail the Li-Rinzel model and we compare it to the Atri model.

2.2 The Li-Rinzel model

The Li and Rinzel (1994) model shares many key features with the Atri model. It is also a
two–variable gating model obtained by reducing the 9–variable De Young and Keizer (1992)
model for Ca2+ oscillations mediated by IP3R. It is based on the assumption of there be-
ing three binding sites for the IP3R - those are the sites responsible for IP3 regulation,
Ca2+ activation and Ca2+ inactivation. The Li-Rinzel model has a bifurcation diagram al-
most identical to that of the De Young-Keizer model, and is analogous in its form to the
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Figure 2.6: Ca2+ oscillations as solutions to the Atri model (2.5), (2.6). Parameter values
are shown in Table B.1. Initial values of 0.1 and 0.5 were taken for c and n, respectively. (A)
Simulation with µ(p) = 0.2886 (too low to be within oscillatory range). Here, both c and n
quickly go to their respective steady state values. (B) Simulation with µ(p) = 0.6 (too high
to be within oscillatory range). Oscillations start with a large amplitude and dampen over
time. Software: MATLAB.
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Hodgkin-Huxley equations (Hodgkin & Huxley, 1952), a gating model for plasma membrane
electrical excitability. The bifurcation diagram for the Li-Rinzel model also compares closely
to the bifurcation diagram of the Atri model. The Li-Rinzel model retains the most impor-
tant dynamic features of the De Young-Keizer model and is able to reproduce experimental
observations (Bezprozvanny et al., 1991; Watras et al., 1991). The two–variable Li-Rinzel
model is as follows:

dc

dt
=

(
v1

(
p

p+KIP3

)3(
c

c+Kact

)3

n3 + ϵ

)
(c0 − (1 + c1)c)−

Vec
2

K2
e + c2

, (2.7)

dn

dt
=A(c+Kinh)

(
Kinh

c+Kinh

− n

)
, (2.8)

where c is the cytosolic Ca2+ concentration and n is the proportion of non inactivated
IP3R. The maximal rate of Ca2+ release is given by v1. The half-activation constant for
IP3 binding to activation site 1 is given by KIP3 . In all cells, there are SERCA pumps on
the ER which allow Ca2+ to be pumped back into the ER. Here, this flux is assumed to
be governed by a Hill function which saturates for a sufficiently high value of Ca2+. The
maximal SERCA pump rate is given by Ve, and the half-activation constant for the SERCA
pumps is Ke. A parameter to characterize the slow time scale of Ca2+ inactivation is given
by A. The half-maximal inactivation constant for Ca2+ binding to the inhibitory site 3 is
Kinh. Finally, ϵ represents the Ca2+ leak out of the ER.

Model assumptions

The Ca2+ permeability of the IP3R is its maximum permeability times the channels open
probability. The Li-Rinzel model (2.7), (2.8), is built on assuming the existence of three
binding sites on each subunit of the channel. Similarly to the model assumptions for the
Atri model, we have the sites for:

• A single molecule of IP3 binds to the IP3 activation site (site 1).

• A single molecule of Ca2+ binds to the Ca2+ activation site (site 2).

• Two molecules of Ca2+ bind to the Ca2+ inhibitory site (site 3).

These three binding processes are not necessarily assumed to be independent. Firstly,
IP3 binding depends on whether the Ca2+ inhibitory site is occupied, while Ca2+ binding to
its inhibitory site also depends on whether the receptor already has an IP3 molecule bound.
However, these two processes are independent of Ca2+ binding to its activation site. This
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independence gives rise to some symmetries in the binding rate constants. For generality,
we assume that three binding processes depend on each other, with no symmetry assumed.

The channel’s open probability at equilibrium is expressed as(
p

p+KIP3

)3(
c

c+Kact

)3(
Kinh

Kinh + c

)3

. (2.9)

This fits to experimental data of the bell-shaped Ca2+ dependence and the sigmoidal IP3 de-
pendence of the IP3R open probability at equilibrium (Bezprozvanny et al., 1991; De Young
& Keizer, 1992).

Dynamic behaviour of the IP3R

The De Young-Keizer model was reduced to the two–variable Li-Rinzel model. As a con-
sequence of time scale separation, it turns out that the effect of specific gating processes
are independent of the kinetics of a slower gating process but dependent on all faster gating
processes. This means that the channel opening by IP3 seems to be independent of Ca2+

binding to either the activation or inhibitory site since it is faster than those processes.
The Li-Rinzel model can be compared to the Atri model. They hold many similarities

and are still widely used by modellers today. The equation for n is almost identical in the
Atri model and the Li-Rinzel model. The equations for c hold very similar structures in both
of these models. Equation (2.7) represents cytosolic Ca2+ concentration (µM) and can be
compared to equation (2.1) from the Atri model. Equation (2.8) represents the proportion of
non inactivated IP3R and can be compared to equation (2.2). Like equation (2.1), equation
(2.7) has a positive term for Ca2+ flux into the cytosol, with Hill functions of order 1. We
can compare p1, p2, p3 from the Atri model to the equivalent terms here. The probability
of IP3 binding to its activation site is represented again by a Hill equation, p/(p + KIP3).
This implies that no IP3R are activated when there is no IP3 present, or in other words
the open probability of the IP3R is 0. The term here corresponds to p1 in the Atri model.
The probability of Ca2+ binding to its activation site is represented by c/(c + Kact). This
term corresponds to p2 in the Atri model. Finally, the probability that Ca2+ is not bound
to its inhibitory site is represented by Kinh/(Kinh + c). This is a Hill function of order 1,
in comparison to p3 in the Atri model being a Hill function of order 2. The three terms
for probabilities p1, p2 and p3 are raised to the third power in the Li-Rinzel model. As
discussed, these probabilities are all modelled by Hill functions. The simplified equation is
analogous, mathematically, to the Hodgkin and Huxley (1952) model of plasma membrane
electrical excitability. In the Li-Rinzel model, c (analogous to the membrane voltage) is the
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major regulator of the IP3R and the concentration gradient c− c0 (analogous to the voltage
deviation from the Nernst reversal potential) is the driving force for oscillations. In both
models, channel activation and inactivation appear as separate factors with first-order gating
kinetics. There is also a negative term in equation (2.7) representing Ca2+ being pumped
back into the ER. This term for the SERCA pumps is a Hill function of order 2. This is
similar to what we have in the Atri model in equation (2.1).

2.2.1 Simulations

In Figure 2.7 we present the bifurcation diagram from the Li-Rinzel model (2.7)-(2.8). This
bifurcation diagram shows good agreement between the Li-Rinzel model and the De Young-
Keizer model. The reduction from nine to two variables is therefore appropriate. The
reduction in the number of variables is useful because the model can then be very quickly
studied and intuition about the system dynamics can be extracted easily.

Figure 2.7: Bifurcation diagram with bifurcation parameter p for the Li-Rinzel model, (2.7)-
(2.8). Source: Li and Rinzel (1994).

Presented in Figure 2.8 are the Ca2+ oscillations arising as solutions to the Li-Rinzel
model (2.7)-(2.8). These oscillations occur with IP3 concentration at 0.6µM . Parameter
values are given in Table B.2. There is a range of concentration for IP3 for which we
obtain oscillations. Shown in Figure 2.9 are graphs where the IP3 concentration is too
low (0.2µM) to obtain oscillations, and too high to obtain oscillations (1µM), respectively.
When [IP3] < 0.47325µM , the solution reaches steady state. Where the IP3 concentration
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is too high, the solution decays to the steady state in an oscillatory manner.

Figure 2.8: Cytosolic Ca2+ oscillations arising as solutions to the Li-Rinzel model, (2.7),
(2.8). Parameter values used are in Table 2.8. To be within oscillatory range, the IP3 level,
p, was chosen to be 0.6µM . Initial conditions applied were 0.2µM and 0.5µM for cytosolic
Ca2+ and for the proportion of non inactivated IP3R, respectively. Software: MATLAB.

We have now studied two famous gating models - the Atri model and the Li-Rinzel model.
As discussed in the Introduction, many modellers have built on these two–variable models
to derive more complex Ca2+ signalling models. Having studied the IP3R dynamics in these
models, in the next chapter we go on to review more up-to-date data of these dynamics from
experiments carried out by Mak et al. (1998), and how these data were fitted to an equation
for the open probability of the IP3R. Our aim is to eventually find a way to incorporate
these more detailed and exact IP3R dynamics into a model for Ca2+ signalling in fertilising
eggs.
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Figure 2.9: Decaying Ca2+ oscillations arising as solutions to the two–variable minimal
model by Li and Rinzel (1994), (2.7)-(2.8). Parameter values used are shown in Table 2.8.
Initial conditions applied were 0.2µM and 0.5 for cytosolic Ca2+ and the proportion of non
inactivated IP3R respectively. (A) IP3 = 0.2µM , too low to be within oscillatory range.
(B) IP3 = 1µM , too high to be within oscillatory range. Software: MATLAB.
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Chapter 3

Experimental data on IP3R dynamics
(Mak et al.)

There is an abundance of models for Ca2+ signalling, as discussed. In this work we aim
to develop an accurate model for Ca2+ signalling occurring in the mammalian egg at fer-
tilisation. We are therefore concerned with modelling the IP3R on the ER accurately. For
an oocyte, the only Ca2+-releasing channels are the IP3R as the RyR are not expressed in
the ER membrane (Dupont et al., 2016). The open probability of the IP3R is controlled by
several ligands, the most significant of which are IP3 and Ca2+. Henceforth, we will refer to
the open probability of the IP3R as PO. PO is given as follows:

PO = p1p2p3, (3.1)

where p1 and p2, respectively, represent the probabilities that sites 1 and 2 (for IP3 and
Ca2+) are activated, and p3 is the probability that Ca2+ is not bound to site 3, as in Atri
et al. (1993). This relatively simple equation presented in Atri et al. (1993) is shown in
equation (2.4). Constants were chosen in order to reproduce the steady-state curve for PO,
based on data by Parys et al. (1992). The time constant in equation (1.2) for n accounts
for the delay between activation and inactivation. A typical timescale for activation of site
3 used in gating models like those of Atri et al. (1993) and Li and Rinzel (1994) is 1-2
seconds. These can be seen in equations (2.1) and (2.7). This estimate is based on older
data from Finch et al. (1991), Combettes et al. (1994), Dufour et al. (1997), and Marchant
and Taylor (1998). However, we now have at our disposal experimental data from Mak et al.
(1998) that accurately capture how the IP3R dynamics depend on [Ca2+] and [IP3] during
fertilisation. The newer data confirm the accuracy of this estimate of 1-2 seconds for the
measurement of the time dependence but give more details on how the open probability
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depends on both Ca2+ and IP3. To fully understand how the open probability of the IP3R

behaves, it is important to study the steady-state open probability as a function of IP3 and
Ca2+. For fixed IP3 concentration, the shape of PO is a bell-shaped function of cytosolic
Ca2+ concentration. PO increases at low Ca2+, reaches a peak, and then decreases at high
Ca2+. This can be seen in Figure 3.3. The precise shape of this curve is dependent upon the
IP3R type and the cell type in some cases. Old data from Kaftan et al. (1997) and Hagar
et al. (1998) suggest a maximum PO of less than 0.1. This statistic contradicts more recent
studies that estimate to be PO from 0.3 to 0.8 (Mak et al., 1998). The data in Mak et al.
(1998) are single channel data from native membranes as opposed to some artificial system
where we cannot say if the exact conditions mimic the cell. This means that we have data
which show a very close replicate of how a real egg behaves.

The experimental data provided by Mak et al. (1998) provide detailed information about
the IP3R gating mechanisms as Ca2+ and IP3 bind to the IP3R, activating Ca2+ release from
the ER. These dynamics drive complicated cytoplasmic Ca2+ signals, including temporal
oscillations and propagating waves. It is evident that both positive and negative feedback
of cytosolic Ca2+ controls the IP3-mediated Ca2+ release. The experiment was carried out
under rigorously defined conditions using patch clamp of the IP3R in the ER membrane
of isolated Xenopus Laevis oocyte nuclei. The results provided detailed information about
how the IP3R works and the dependence on cytosolic Ca2+ and IP3. In Figure 3.1 typical
traces of single-channel current for different levels of Ca2+ are shown. When cytosolic Ca2+

concentration is at steady-state (0.01− 0.1µM), PO was low, and some short open intervals
of τO < 3ms are observed. These open intervals were interlaced with much longer closed
intervals of approximately τC = 100ms, as seen in Figure 3.2. As the Ca2+ level rose from
0.1µM to 1µM , PO drastically increases up to 0.8, with τO increasing to around 10ms and
τC decreasing to around 2ms. Figure 3.2 from Mak et al. (1998) shows the mean time of
closed-channel (τC) and open-channel (τO), as a function of the cytosolic Ca2+ level.

Ca2+ dependence of the gating of the IP3R

In the experiment, Mak et al. (1998) expected to observe a narrow bell-shaped curve for PO

when the cytosolic Ca2+ is approximately 300nM − 1µM (Bezprozvanny & Ehrlich, 1995;
Bezprozvanny et al., 1991; Stehno-Bittel et al., 1995; Masamitsu, 1990). However, the results
clearly showed that the open probability of the gate remained elevated at approximately 0.8

with saturating levels of IP3 (10µM) applied to the cytosol to fully stimulate at various levels
of Ca2+ concentrations. This can be seen in Figure 3.3. It was only upon increasing the
Ca2+ levels above 20µM that the open probability, PO, drastically started to decrease. This
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Figure 3.1: Closed-channel current levels in each trace recorded at various levels of Ca2+:
80nM , 429nM , 4.4µM and 57.5µM , in the presence of 10µM of IP3. Source: Mak et al.
(1998).

Figure 3.2: Mean time of closed-channel (τC) and open-channel (τO), in the presence of
10µM of IP3, as a function of the cytosolic Ca2+ level. Source: Mak et al. (1998).
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is due to the two distinct types of functional Ca2+ binding sites, activating and inhibitory
ones.

Mak et al. (1998) derived an equation to accurately model their experimental data for
the open probability of the IP3R. This equation for PO is considered a breakthrough in the
modelling of the IP3R dynamics. It is formatted slightly differently to the open probability
in other models, as follows.

PO = Pmax

(
1

1 +
(
Kact

c

)Hact

) 1

1 +
(

c
Kinh

)Hinh

, (3.2)

where

Kinh = K∞

 1

1 +
(

KIP3

p

)HIP3

 . (3.3)

This equation is phenomenological, based on experimental data obtained for the single chan-
nel IP3R. The first parenthesis in equation (3.2) models Ca2+ binding to the activation site.
The second parenthesis models Ca2+ binding to the inhibitory site. Kinh depends on IP3

binding to its activation site. Recall that previous models, (2.1)-(2.2) and (2.7)-(2.8), had
these terms for the three sites as three separate parentheses.

Equation (3.2) is a ‘biphasic Hill equation’, as referred to in Mak et al. (1998). The
shape of this as a graph has PO increasing, reaching a peak, and then decreasing. This can
be seen fitting to the data in Figure 3.3. Parameter values are given in Table B.4. The
maximum probability of the IP3R channel being open, Pmax, is given as 0.81. This was
chosen based on the experimental data where 0.81 was shown to be the maximum value, as
seen in Figure 3.3. This equation models the two distinct types of binding sites for Ca2+ - the
activation and inhibitory sites. The activation and inhibition of the IP3R by Ca2+ are very
cooperative processes and this is represented by the Hill coefficients chosen, Hact = 1.9± 0.3

and Hinh = 3.9± 0.7. These also suggest that it is necessary for Ca2+ to bind to two of four
monomers to open the IP3R channel in the presence of IP3, and for Ca2+ to bind to all four
monomers to prevent opening of the channel (Mak et al., 1998).

Lowering the IP3 concentration did not affect Ca2+ activation parameters or the Hill
coefficient for the term representing Ca2+ binding to the inhibitory site, Hinh. This did
however decrease the half-maximal inhibitory Ca2+, Kinh. Also observed was a functional
half-maximal activating IP3 concentration, KIP3 , at 50nM and a corresponding Hill coeffi-
cient, HIP3 , at 4 for IP3. From these results it is apparent that Ca2+ is a receptor agonist,
as it stimulates the opening of the channel with sufficient IP3 present (Berridge et al., 2000).
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The evidence suggests that the sole function of IP3 is to relieve Ca2+ inhibition. The results
of the experiments are shown in Figure 3.3.

Dependence of PO on IP3

The results of the experimental data in Mak et al. (1998) suggest that the open probability
of the IP3R is relatively insensitive to Ca2+ until it reaches a quite high concentration. This
insensitivity is in contrast to previous models which have assumed a higher affinity of Ca2+

binding to the inhibitory site. This was, therefore, further investigated by Mak et al. (1998)
but there was evidently no change in Ca2+ dependence with ranging concentration of IP3.
This is proof that the IP3R has a low-affinity IP3 binding site with binding coefficients
greater than 0.1µM . There are many biochemical data that match this (Mauger et al., 1994;
Taylor & Traynor, 1995; Taylor & Richardson, 1991; Joseph, 1996). As IP3 was lowered to
less than 0.1µM , the channel became more sensitive to Ca2+ inhibition, as seen in Figure
3.3. For example, at 0.033µM of IP3, Kinh was brought all the way down to 9.5µM , though
constants for Ca2+ binding to the activation site were unaffected. In comparison, at an IP3

concentration of 10µM , Kinh lies at 54µM . When much lower levels of IP3 were applied,
there was a significant reduction in both the maximum open probability, Pmax and the range
of Ca2+ for which the channel was active. With Kinh as the only IP3-sensitive parameter,
equation (3.3), accurately fits with experimental data carried out for a wide range of IP3

concentrations. Mak et al. (1998) concluded that the effect of IP3 binding is not to enable
Ca2+ binding to the activation site, but to ameliorate Ca2+ binding to the inhibitory site.
Previously, it was thought that the effect of the binding was to enable activation of the IP3R

by Ca2+ (Mauger et al., 1994; Taylor & Richardson, 1991; Taylor & Traynor, 1995; Joseph,
1996), but the data from Mak et al. (1998) suggest otherwise. The dependence of Kinh on
the IP3 concentration is described with the Hill equation (3.1). Figure 3.4 shows PO against
Ca2+ concentration with various chosen levels of IP3 (and the respective values for Kinh

according to equation (3.2)). Figure 3.3 shows how the derived equation for PO fits the data
well.

As discussed, the only IP3-concentration-sensitive parameter here is Kinh. This param-
eter was shown to decrease with decreasing IP3. The equation for Kinh indicates that the
IP3R has a single class of functional IP3 binding sites. Figure 3.5 demonstrates how Kinh

varies with increasing IP3. Table 3.1 presents a range of numerical values computed for
Kinh at fixed IP3. Also shown in Figure 3.5 are examples of the bell shape attained with
normalised PO vs. Ca2+. These were computed from equation (3.2) with three different
values for IP3 chosen.
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Figure 3.3: PO as Ca2+ varies, at different levels of IP3. We can see how the equation (3.2)
fits the data well. Source: Mak et al. (1998).

IP3 (µM) Kinh (µM)
180 ∼ 42
10 54
0.1 59
0.033 9.5
0.02 0.21
0.01 0.16

Table 3.1: Kinh (µM) for given IP3 concentrations (µM) from equation (3.3). See also
Figure 3.5.
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Figure 3.4: The open probability (3.2) of IP3, PO, as a function of the cytosolic Ca2+ for a
series of IP3 values. Parameters used are shown in Table B.4. Software: MATLAB.

Figure 3.5: (Left) Kinh for increasing IP3 concentration (µM). (Right) Bell-shaped nor-
malised PO vs. cytosolic Ca2+ concentration, from equation (3.2). The blue solid line is for
IP3 = 0.01µM , with a maximum point of 0.09. The red dashed line is for IP3 = 0.015µM ,
with a maximum point of 0.49. Finally, the yellow dotted line is for IP3 = 0.02, with a
maximum at 0.71 (Mak et al., 1998). Software: MATLAB.

The maximum inhibitory Ca2+ binding coefficient is given by K∞. This parameter was
assigned a value of 52± 4µM at a saturating IP3 concentration. The value of KIP3 derived
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is a close match to the dissociation constant in IP3 binding assays as well as the necessary
IP3 concentration needed to stimulate Ca2+ release (Mauger et al., 1994; Taylor & Traynor,
1995; Joseph, 1996; Meyer et al., 1988). The large Hill coefficient of 4 ± 0.5 for HIP3 in
equation (3.3) is due to IP3 activation of the IP3R being a very cooperative process (Meyer
et al., 1988; Finch et al., 1991; Carter & Ogden, 1997; Dufour et al., 1997). This means
that we require IP3 binding to all four monomers to open the gate of the channel through
relieving Ca2+ inhibition. Figure 3.6 portrays the theoretical PO equation, (3.2), for different
levels of Ca2+ as IP3 is increased.

Figure 3.6: Replication of Figure 3c in Mak et al. (1998). It displays PO from equation
(3.2) vs. cytosolic IP3 concentrations, at various levels of cytosolic Ca2+ concentrations.
Software: MATLAB.

As seen in Figure 3.4, the data from Mak et al. (1998) clearly show a bell-shaped rela-
tionship between PO and Ca2+ with a sharp peak for Ca2+ < 1µM at low (< 0.02µM) IP3.
The experiments imply that although cytosolic Ca2+ (at low concentrations) and IP3 both
activate the IP3R channel, they do so in different ways. Like a conventional agonist, Ca2+

binding at low levels directly activates the channel. When the IP3 concentration is low,
Ca2+ is more likely to bind to the inhibitory site because of its higher affinity (Kinh < Kact).
When the IP3 concentration is higher, this is reversed. A visual representation of this is
shown in Figure 3.7 (Mak et al., 1998).

The experimental data and corresponding equation fitted to them in Mak et al. (1998),
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Figure 3.7: PO vs. IP3 vs. Ca2+. PO works at low, ‘activating’, levels of Ca2+. PO varies
with changing IP3 concentration. We can also see the effects on PO at high, ‘inhibitory’,
levels of Ca2+. Parameter values used are shown in Table B.4 (Mak et al., 1998). Software:
MATLAB.

(3.2), is the most up to date equation for the open probability of the IP3R, capturing that
IP3 mediates its effects by modulating the affinity of Ca2+ inhibitory sites (Mak et al., 1998).
It is thus, a vital component of a Ca2+ signalling model at fertilisation. We will therefore
endeavor to develop a model with this PO, using the structure of the Atri model. To achieve
this we must study carefully the Atri model and see how we can replace appropriately the
components modelling Ca2+ binding to its activation site, Ca2+ binding to its inhibitory
site, and IP3 binding to its activation site.

Before doing so, we study the model by Kowalewski et al. (2006) where they have incor-
porated the open probability curve by Mak et al. (1998) into a Ca2+ signalling model. We
present a summary of this model in the following chapter.
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Chapter 4

A model incorporating the experimental
data by Mak et al.

A Ca2+ signalling model derived by Kowalewski et al. (2006) is currently the only model that
includes the open probability, PO, as modelled in (3.2) by Mak et al. (1998). As discussed
previously, the open probability is the probability of the IP3R being open at any time.
Kowalewski et al. (2006) derived two models that differed in the way that the opening and
closing of the IP3R worked. These models are based on the model in De Young and Keizer
(1992), and the data for the open probability in Mak et al. (1998). Each model by Kowalewski
et al. (2006) produces Ca2+ oscillations with different frequencies and amplitudes.

The motivation for their work was to derive a model, based on previous experimental
studies, of Ca2+ signalling in renal proximal tubular cells following exposure to ouabain
(Aizman et al., 2001; Miyakawa-Naito et al., 2003) and after bacterial infection that may
cause a fairly common and severe kidney disease in infants (Uhlén et al., 2000). The paper
aims at modelling the impact of store-operated Ca2+ on the intracellular Ca2+ oscillations,
assuming a large concentration gradient between Ca2+ in the ER and the cytosol. A large
concentration gradient is generally assumed in models of Ca2+ signalling (Berridge et al.,
2003), though for oocytes the depletion of the ER is not an essential driving force for os-
cillations (Sanders et al., 2018; Wakai et al., 2013). As discussed in the previous chapter,
the Ca2+ signals in oocytes are driven by the open probability of the IP3R and hence the
IP3R dynamics (Mak et al., 1998). In Kowalewski et al. (2006) it is acknowledged that the
IP3R are a key mediator of the Ca2+ signals (Patterson et al., 2004), but it is assumed
the oscillations are mainly driven by depletion of the Ca2+ stored in the ER. The model,
therefore, depends upon the activation of store-operated channels on the plasma membrane,
rather than receptor-operated channels on the ER, which allow entry of external Ca2+ ions
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into the cytoplasm (Putney et al., 2001; Parekh & Penner, 1997; Parekh & Putney Jr, 2005;
Katrik et al., 2002; Berridge, 1995). As a result, they arrive at a reasonably complex model,
with a large number of variables. We study this model below and analyse the way in which
the experimental data for PO, see equation (3.2), has been used.

The model consists of eight ODEs, with the following eight variables : cytosolic Ca2+,
c, Ca2+ in the ER, ce, Ca2+ in the extracellular volume, cEC , cytosolic IP3, p, cytosolic
G proteins, G, store-operated channels in the plasma membrane, (SOC), cytosolic Ca2+

influx factor, (CIFcyt), and in the ER, (CIFER). The extracellular volume is assumed to be
infinite. The model is as follows:

dc

dt
=

SER

VER

β(Jchannel −XJpump)−
SPM

Vcyt

β(Y Jin − Jpm), (4.1)

dce
dt

=
SER

VER

β(−Jchannel +XJpump), (4.2)

dcEC

dt
= 0 (The extracellular volume is ‘infinite’), (4.3)

dp

dt
=

GsignalIdegpmax − Idegp, if t > t0.

−Idegp, otherwise.
(4.4)

dG

dt
= kGc− IGG, (4.5)

d(SOC)

dt
=

SPM

Vcyt

kSOCCIFcyt − ISOCSOC, (4.6)

d(CIFcyt)

dt
=

SER

VER

θcevCIF (CIFER − CIFcyt)−
SPM

Vcyt

kSOCCIFcyt, (4.7)

d(CIFER)

dt
= − SER

VERrER

θcevCIF . (4.8)
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The Ca2+ fluxes are given by

Jchannel = (VIP3R + VleakER)(ce − c), (4.9)

Jpump =
Vec

Ke + c
,

Jin =
Vpc

2

K2
p + c2

,

Jpm = (VSOC + VleakPM)(cEC − c),

Gsignal = 1− Gn

Gn +Kn
1/2,G

,

VSOC = vSOCSOC,

θ =

1, if ce < ce,min.

0, otherwise.

The biological representations and values of each parameter is given in Table B.5. Flux
through the IP3R is represented by Jchannel. Flux across the cell plasma membrane is repre-
sented by Jin, and is dependent on the CIF and the SOC channel activity. The two different
functions for the VIP3R term (coloured in blue in equation (4.9)) are presented in equations
(4.10) and (4.11). They are based on the IP3R dynamics in the De Young-Keizer model
and on the Mak et al. (1998) equation for PO (equation (3.2)), respectively. For VIP3R they
choose either

VIP3R1 = v1

(
cpd2

(cp+ pd2 + d1d2 + cd3)(c+ d5)

)
, (4.10)

or

VIP3R2 = vIP3RPO. (4.11)

We have equations for cytosolic Ca2+ and Ca2+ in the ER given by (4.1) and (4.2) respec-
tively.

The first model in Kowalewski et al. (2006) uses equation (4.10), which was also used
in Baker et al. (2002). This is not specific to any subtype of IP3R. The second model
uses equation (4.11) with PO, as derived by Mak et al. (1998). We examine how this was
implemented and if it fits with the biological representation intended. VIP3R vs. IP3 and
[Ca2+], for equations (4.10) and (4.11) respectively, are compared in Figures 4.1A and B.
The graphs show how the fluxes VIP3R1 and VIP3R2 = vIP3RPO depend on the IP3 and Ca2+
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concentrations, respectively. The graphs are quite different. In Figure 4.1B we can see that
the IP3 concentration saturates at around 0.03µM . When [IP3] > 0.3µM , the behaviour
of VIP3R2 does not change significantly as [Ca2+] changes. This is in contrast to Figure
4.1A where there is a strong IP3 dependence and the flux is inhibited by very high levels of
Ca2+. As [IP3] increases beyond 0.1µM , the maximum point in the graph in Figure 4.1A
would continue to grow in a linear manner. However, as we can see in Figure 4.1B, the bell-
shaped curve has reached a plataeu upon increasing levels of [IP3]. Although the first model
presented in Kowalewski et al. (2006) used the IP3R dynamics from the De Young-Keizer
model (4.10), these were implemented in a different way, as the De Young and Keizer (1992)
model is not a gating model. Both models in Kowalewski et al. (2006) included the open
probabilities (from equations (4.10) and (4.11)) in Jchannel.

Figure 4.1: (A) VIP3R1 vs. [IP3] and [Ca2+] (µM). (B) VIP3R2 vs. [IP3] and [Ca2+] (µM).
(Kowalewski et al., 2006; De Young & Keizer, 1992; Mak et al., 1998) Software: MATLAB.

The two models by Kowalewski et al. (2006) exhibit different oscillatory responses for
Ca2+, as seen in Figure 4.2. With equation (4.10), Ca2+ oscillations with a higher frequency
and lower amplitude are generated. A fundamental difference is that the model with equa-
tion (4.11) has Ca2+ oscillating for all IP3 concentrations higher than 0.012µM , whereas
with equation (4.10) these oscillations were triggered only between 0.030 and 0.043µM

(Kowalewski et al., 2006).
Taking a closer at look the equation for IP3, (4.4), the IP3 concentration starts off at

an extremely low level. (See also Table 4.1). After a certain amount of time, t0 = 500s, a
reaction is assumed to begin. IP3 has been modelled to degrade linearly with a time constant
1/Ideg. Meanwhile, it is also produced by a reaction controlled by the signal Gsignal. The
Gsignal lies between 0 and 1, and [IP3] lies between 0 and IP3,max. In this model, [IP3]

depends on G (a hypothetical species), that depends on [Ca2+]. This is because production
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Figure 4.2: Ca2+ oscillations arising from the two different models by Kowalewski et al.
(2006). The ‘De Young and Keizer model ’ uses equation (4.10) (De Young & Keizer,
1992). The ‘Mak-McBride-Foskett model ’ uses equation (4.11) (Mak et al., 1998). Source:
Kowalewski et al. (2006). The large difference in their transits is due to the parameters v1
and vIP3R chosen which represent the maximum Ca2+ permeability across the IP3R.
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of G is proportional to Ca2+ and degradation happens at the rate of IG[G]. The parameter
K1/2,G is the inactivation constant for the signalling mechanism (Kowalewski et al., 2006).

A phenomenological model for activating the SOC has been used as the exact mechanism
has not yet been identified. The model by Kowalewski et al. (2006) has a diffusible messenger
and a CIF, and is built upon the idea that CIF exits the ER and binds to a plasma membrane
channel. CIF leaves the ER fast and the Ca2+ concentration in there decreases. When
reaching the plasma membrane, CIF then binds to and activates SOC. The SOC are then
deactivated after a while so long as more CIF has not been released into the cytosol. Within
the ER CIF is regenerated at a slow pace but only let out when the ER Ca2+ level is lower
than the threshold of 10µM (Kowalewski et al., 2006).

Variable Initial value
Cytosolic IP3 1pM

ER Ca2+ 100µM
ER CIF 0.1µM

Cytosolic G 0
Cytosolic Ca2+ 95nM

Extracellular Ca2+ 950µM
Cytosolic CIF 0

Active SOC in plasma membrane 0

Table 4.1: Initial values used for the models in Kowalewski et al (Kowalewski et al., 2006).

Both models in Kowalewski et al. (2006) generate Ca2+ oscillations (see Figure 4.2).
However, it is difficult to compare these oscillations to Ca2+ oscillations at fertilisation as
many other variables (that are not relevant to the cell type we are looking at) are included.
The models rely on the existence of SOC, for example. One explanation for the activation
of SOC is the assumed depletion of Ca2+ from the ER. As previously discussed, a model
where Ca2+ released from the ER is a driving force for oscillations is not appropriate for
Ca2+ signalling in fertilisation. Experimental data in Sanders et al. (2018); Wakai et al.
(2013) suggest that cytosolic Ca2+ oscillations in an egg rely on the IP3R dynamics to be
the main driving force, and that ER store depletion plays a much less significant role. The
model by Kowalewski et al. (2006) is therefore not appropriate for the mammalian egg. We
must derive a new model that is appropriate incorporating the data from Mak et al. (1998).

We hence face the challenge of appropriately incorporating the open probability from
equation (3.2) into a new model that does not strongly depend on depletion of Ca2+ from
the ER. We will use the knowledge acquired from this chapter and our literature review to
derive a new such model in Chapter 5.
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Chapter 5

A new model for Ca2+ signalling in
fertilisation

We have completed, in Chapter 2, a literature review of several Ca2+ signalling models,
focusing on the models by Atri et al. (1993) and by Li and Rinzel (1994). These are two
minimal gating models that are still widely used. We have also studied in Chapter 3 the
work by Mak et al. (1998) which gives accurate data for the open probability of the IP3R,
PO, as [IP3] and [Ca2+] vary. In this chapter we are going to present the derivation of a
new model for Ca2+ signalling in fertilisation. This will also be a gating model but, in an
appropriate manner, it will incorporate for the first time the most up-to-date IP3R dynamics
from Mak et al. (1998).

The Atri et al. (1993) model is a good starting point for creating a new gating model since
it is a minimal model capturing many of the salient features of Ca2+ signalling while not
including an equation for [Ca2+] in the ER. Deciding how to best incorporate the equation
for PO from Mak et al. (1998) is not straightforward so we have explored several options.
In the model by Kowalewski et al. (2006), PO was inserted into the equation for cytosolic
Ca2+ as a multiplicative term for the flux entering the cytosol from the ER. This term is
referred to as Jchannel in Chapter 4 (see equation (4.9)). We explored this idea but it does not
quite fit in a gating model, as gating models include terms for the IP3R dynamics in both
ODEs, rather than just the equation for Ca2+. We, therefore, chose an alternative approach
of splitting up the equation for PO given in Mak et al. (1998) in an appropriate manner, as
detailed below.

Revisiting the biological representation behind each term in the Atri model, (2.1)-(2.2),
the probability of IP3 binding to its activation site on the IP3R is represented by p1, the
probability of Ca2+ binding to its activation site on the IP3R is represented by p2, and the
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probability of Ca2+ binding to the inhibitory site is represented by p3. As given in Chapter
2, these probabilities are, respectively, given as follows:

p1 =
p+ µ0KIP3

KIP3 + p
, p2 =

Kactb+ c

Kact + c
, p3 =

K2
inh

K2
inh + c2

.

To construct a new Ca2+ signalling model, we split up the equation for PO in Mak et al.
(1998), as follows:

PO1 =

(
cHact

cHact +KHact
act

)
,

PO2 =

(
KHinh

inh

KHinh
inh + cHinh

)
,

where

Kinh = K∞

(
pHIP3

pHIP3 +K
HIP3
IP3

)
.

Here, PO1 represents the probability of Ca2+ binding to the activation site on the IP3R

and depends on the half-maximal activation constant, Kact, and on the Hill coefficient,
Hact = 1.9 ± 0.3. PO1 increases with Ca2+. PO2 represents the probability of Ca2+ binding
to its inhibitory site. This depends on Ca2+ and Kinh, where Kinh depends on IP3. As
[Ca2+] increases, PO2 decreases. As [IP3] increases, Kinh increases, and hence PO2 increases.
Plots of PO1 as a function of Ca2+ and PO2 as a function of Ca2+ and IP3 can be seen in
Figures 5.1A and 5.1C.

To construct a new Ca2+ signalling model from the Atri model, we replace p1p2 in Jchannel

(in equation (2.1) for cytosolic Ca2+) with PO1. Moreover, we replace p3 (in equation (2.2) for
the proportion of non inactivated IP3R) with PO2. Plotting p1, p2, p3, PO1, PO2 as functions
of Ca2+ and IP3 in Figure 5.1, we observe similarities and differences. In Figures 5.1A and
5.1B, we see that PO1 behaves similarly to p1p2. Note that the scales are slightly different here
as kflux is a multiplicative factor in the Jchannel term in the Atri model. However, in Figures
5.1C and 5.1D, we see that PO2 and p3 behave very differently. As the IP3 concentration
increases, p3 does not change very much. In contrast, there is a far more significant change
in PO2 as [IP3] increases, particularly for lower levels of IP3. This IP3R behaviour emerging
from the experiments in Mak et al. (1998) is a crucial feature included in our new model.
Figure 5.1F shows p1p2p3 vs. IP3 for different levels of Ca2+. For lower levels of Ca2+,
p1p2p3 barely changes as [IP3] changes. The dependence on higher levels of Ca2+ is also very
minimal. In comparison, there is clearly far more change in PO1PO2 as [Ca2+] and [IP3] vary,
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as seen in Figure 5.1E. Similarly, in Figure 5.2A we plot p1p2p3 vs. IP3 for selected levels
of Ca2+ and this can be compared to Figure 5.2B where we plot PO vs. Ca2+ and IP3. We
see once again that p1p2p3 from the Atri model does not change significantly with increasing
levels of IP3, whereas PO1PO2 from Mak et al. (1998) does.

Figure 5.1: (A) PO1 vs. [Ca2+] and [IP3]. (B) p1p2 vs. [Ca2+] and [IP3]. (C) PO2 vs. [Ca2+]
and [IP3]. (D) p3 vs. [Ca2+] and [IP3]. (E) PO = PO1PO2 vs. Ca2+ and IP3. (F) p1p2p3 vs.
Ca2+ and IP3. PO1 and PO2 are from Mak et al. (1998). p1, p2 and p3 are from Atri et al.
(1993). Software: MATLAB.

Finally, Figures 5.3A and 5.3B are compared. In the former, p1p2p3 is plotted as [Ca2+]

increases for different levels of [IP3]. We see that p1p2p3 does not change as [IP3] goes from
0.01µM to 0.1µM . It does change significantly when [IP3] reaches 10µM though. This once
again illustrates that in the Atri model, the open probability of the IP3R does not vary much
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Figure 5.2: (A) p1p2p3 (Atri model) vs. cytosolic IP3 concentrations at various levels of
cytosolic [Ca2+]. Parameter values used are shown in Table B.1. (B) PO1PO2 (Mak et al.,
1998) vs. cytosolic IP3 concentrations at various levels of cytosolic [Ca2+]. Parameter values
used are shown in Table B.4. The Ca2+ values here were chosen to mirror the ones used in
figure 3c in Mak et al. (1998). Software: MATLAB.
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at low levels of [IP3]. In contrast, the IP3R dynamics derived in Mak et al. (1998) depend
on [IP3] and [Ca2+] significantly, as seen in Figure 5.3B. These comparisons demonstrate
the importance of implementing the IP3R dynamics from Mak et al. (1998) in a new model.

One less researched Ca2+ flux is that of the SERCA pump, modelled by Jpump in equation
(2.1). Atri et al. (1993) used a simple Hill function to model it and acknowledged it could be
improved when more experimental data would be made available. For this reason we use more
recent Ca2+ models to improve this term. In particular, we use the expression Vec

2/(K2
e +c2)

from Politi et al. (2006) who derived a sophisticated gating model with cytosolic Ca2+, the
proportion of non inactivated IP3R, Ca2+ in the ER and IP3 as dynamic variables. They
used a SERCA pump flux term with a Hill coefficient of 2, and the half-activation constant
was given as Ke = 0.1µMs−1. These parameter values are based on Lytton et al. (1992) and
Camello et al. (1996).

Summarising, the inclusion of the IP3R dynamics from Mak et al. (1998) and the SERCA
pump flux term from Politi et al. (2006) leads us to a new model for Ca2+ signalling in
fertilisation:

dc

dt
=KfluxnPO1 −

Vec
2

K2
e + c2

, (5.1)

dn

dt
=g(PO2 − n). (5.2)

This model has qualitative agreement to the data (Mak et al., 1998). Note that mouse eggs
oscillate for some time in a Ca2+-free medium (Sanders et al., 2018). One can ‘isolate’ mouse
eggs so that no efflux or influx takes place and in this case, they can oscillate for many hours
(Wakai et al., 2013). This implies that Ca2+ exchange with the extracellular medium is not
necessary for Ca2+ oscillations (page 246 in Dupont et al. (2016)), (Yao & Parker, 1994).
Hence, in the Atri model, the Jleakage term is not essential for Ca2+ oscillations. We therefore
disregard any leakage flux component in our model.

The next step is to perform a linear stability analysis of the model (5.1)-(5.2) and show
that the model can generate oscillations for a range of IP3 values that are compatible with
experimental findings.

5.1 Linear stability analysis

We will now carry out the linear stability analysis of our new model (5.1)-(5.2) in order to
determine if an oscillatory regime exists and for which IP3 values. In Mak et al. (1998) a
range for each parameter value is given. We use values in these ranges, and we also use the
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Figure 5.3: (A) p1p2p3 (from the Atri model) as a function of cytosolic Ca2+ for various IP3

levels of interest. Parameter values used are shown in Table B.1. (B) PO1PO2 (from Mak et
al., 1998) as a function of cytosolic Ca2+ for various IP3 levels of interest. Parameter values
used are shown in Table B.4. Software: MATLAB.
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half-activation constant in Jpump as in the Politi et al. (2006) model. We leave kflux and Ve

undetermined mutually. We know that kflux measures the maximum flux from the ER to
the cytosol, and Ve measures the maximum flux from the cytosol to ER. We assume that
proteins are constant in a cell over the period of oscillations. We can also expect steady
states of around 0.1µM for Ca2+ (Berridge et al., 2003; Kline & Kline, 1992), and n varies
between 0 and 1 since it represents a proportion. Additionally, we must ensure a steady
state value of approximately 0.01µM for IP3 (Mak et al., 1998; Swann, 2021). This is a
reasonable assumption since it is below the level that stimulates the opening of the IP3R.

We set dc/dt = dn/dt = 0 to find the steady states. We have

F (c, n) =kfluxn

(
cHact

cHact +KHact
act

)
− Vec

2

K2
e + c2

=0, (5.3)

G(c, n) =g

(
KHinh

inh

KHinh
inh + cHinh

− n

)
=0, (5.4)

where

Kinh = K∞
phIP3

phIP3 + k
hIP3
IP3

,

where we have four unknowns: c, n, kflux, and Ve.
We then determine the Trace, Determinant, and Discriminant of the Jacobian matrix of

the system (5.3) and (5.4). The partial derivatives are

∂F

∂c
=

kfluxnc
HactHact

c(cHact +Kact
Hact)

− kfluxn(c
Hact)2Hact

(cHact +Kact
Hact)2c

− 2Vec

Ke
2 + c2

+
2Vec

3

(Ke
2 + c2)2

, (5.5)

∂F

∂n
=

kfluxc
Hact

cHact +Kact
Hact

, (5.6)

∂G

∂c
=− g

(
K∞p

hIP3

p
hIP3+kIP3

hIP3

)Hinh

cHinhHinh((
K∞p

hIP3

p
hIP3+kIP3

hIP3

)Hinh

+ cHinh

)2

c

, (5.7)

∂G

∂n
=− g. (5.8)
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Hence, the Trace, Determinant and Discriminant are defined respectively as follows:

T (c, n) =
∂F

∂c
+

∂G

∂n
,

D(c, n) =
∂F

∂c

∂G

∂n
− ∂F

∂n

∂G

∂c
,

Disc(c, n) = (T (c, n))2 − 4D(c, n).

Solving equations (5.3) and (5.4) and setting constraints so that T (c, n) > 0, D(c, n) > 0,
Disc(c, n) < 0, we obtain appropriate steady state values and parameters values for kflux and
Ve. The steady states obtained are cs = 0.08µM and ns = 0.60 (which are within a reasonable
range (Berridge et al., 2003; Kline & Kline, 1992; Swann, 2021)) when kflux = 4.89, Ve = 1.

Figure 5.4: The nullclines of the system (5.3)-(5.4), with kflux = 4.89, Ve = 1 and parameter
values as given in Table 5.1. The steady state is where the lines intersect. Arrows indicate
the vector field. Software: Maplesoft.

Evaluating the Trace, Determinant and Discriminant at the steady state value c = 0.08
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gives:

T (cs, ns) = 1.79,

D(cs, ns) = 2.74,

Disc(cs, ns) = −7.76.

5.2 Simulations

We have completed the linear stability analysis, and decided on parameter values shown in
Table 5.1.

Figure 5.5: Ca2+ oscillations arising from the system (5.1)-(5.2), blue solid lines, with p =
0.01µM . The proportion of non inactivated IP3R is also plotted, with a red dashed line.
Parameter values are given in Table 5.1. Software: MATLAB.

Oscillations generated by the model (5.1)-(5.2) can be seen in Figure 5.5, where p =

0.01µM . Our model reproduces the low frequency, large amplitude oscillations characteristic
of fertilising mammalian eggs (shown in Figure 1.1). We need to examine the exact range of
values of p for which these oscillations exist, if the oscillations change in that range, and if
the experimental findings in Sanders et al. (2018) are replicated.
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We can determine the range of p for which the ODE system (5.1)-(5.2) yields oscillations
by plotting the Trace, Determinant, and Discriminant at the steady states, and determining
the range for which T > 0, D > 0, and Disc < 0 (unstable spiral). We find that this range
is 0.0085 ≤ p ≤ 0.014 which is extremely small. This can be seen in Figure 5.7.

Figure 5.6: Trace, Determinant, and Discriminant for the system of equations (5.3)-(5.4) for
varying bifurcation parameter p. Parameter values are as in Table 5.1. Software: MATLAB.

In order to enlarge the range of p to be 0.01µM ≤ [IP3] ≤ 1µM for which the sys-
tem is oscillatory, a non-linear scaling of equation (5.1) would be needed. Unfortunately,
this is beyond the scope of this project. This scaling should render the left Hopf point at
approximately [IP3] = 0.01µM , and the right Hopf point at [IP3] ≈ 1µM (Swann, 2021).

Regardless of the oscillatory range of p being an order of magnitude inaccurate, we
can still analyse the behaviour of the oscillations. Figure 5.7 shows the oscillations for
p = 0.0085 and p = 0.014, respectively, at each end of the oscillatory range. Both the
amplitude and frequency of oscillations increase as the IP3 concentration is increased, as seen
in experiments (Sanders et al., 2018). However, the amplitude increase is more pronounced
that the frequency increase.
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Figure 5.7: Ca2+ oscillations exhibited by new model (5.1)-(5.2), for (a) p = 0.0085 and (b)
p = 0.014. We observe both ends of oscillatory region. Software: MATLAB.

Our new model (5.1)-(5.2) produces Ca2+ oscillations of higher frequency when there is
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a higher concentration of IP3 present in the cytosol. This result is in agreement with the
experiments by Sanders et al. (2018). Previous models of Ca2+ signalling (Atri et al., 1993;
Li & Rinzel, 1994; De Young & Keizer, 1992; Sanders et al., 2018; Theodoridou et al., 2013)
have assumed outdated IP3R dynamics, and instead relied on the ER store refilling to drive
oscillations. We know that this is not the case for Ca2+ signalling in fertilisation (Sanders et
al., 2018; Wakai et al., 2013). We have managed to reproduce key aspects of the experimental
findings of Sanders et al. (2018) with our new two–variable model which incorporates the
correct IP3R dynamics from Mak et al. (1998). However, the data from Sanders et al.
(2018) and Sneyd et al. (2006) show that IP3 concentration is not constant and needs to be
a dynamic variable in a Ca2+ model for fertilising eggs. Obtaining a new model closer to
the data from Sanders et al. (2018) and Mak et al. (1998) was of foremost importance and
is the first step to reaching a more complex three–variable model with dynamic IP3. We
have derived a model that does not depend on the ER store emptying and refilling, as the
data from Sanders et al. (2018) and Wakai et al. (2013) suggest. We have also managed to
incorporate the IP3R dynamics for fertilisation, that accurately depend on [Ca2+] and [IP3],
as found by Mak et al. (1998). The next step of incorporating an ODE for IP3 is beyond
the scope of this project and is left for future work.

Note that the data from Sneyd et al. (2006) are in agreement with the data from Sanders
et al. (2018), though experiments were carried out on pancreatic acinar cells and airway
smooth muscle cells. Sneyd et al. (2006) also derived two models with an ODE for IP3,
based on the Atri model and the Li-Rinzel model. We study these models in Appendix A.

Parameters used in new model Value
Kflux 8.6 µMs−1

Kact 0.2 µM
Hact 2
Ve 1 µMs−1

Ke 0.1 µM
K∞ 52 µM
KIP3 0.05 µM
HIP3 4
g 0.5
h 0.5

Table 5.1: Parameters used in new model, (5.1)-(5.2).
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Chapter 6

Summary, Conclusions and Further work

In this project we studied several Ca2+ signalling models, focusing on the IP3R dynamics as
determined in the experiments of Mak et al. (1998). In Chapter 1 we introduced the basic
biological processes of Ca2+ signalling, focusing on those of a mammalian egg at fertilisa-
tion. We also briefly reviewed the Ca2+ models by Atri et al. (1993), Li and Rinzel (1994),
Dupont and Goldbeter (1993) and De Young and Keizer (1992). Different models have been
developed for different cell types. Many models and a substantial amount of experimental
data are available for the Xenopus oocyte, which is similar to a mammalian egg. The most
recent Ca2+ models for fertilisation (Theodoridou et al., 2013; Sanders et al., 2018; Politi et
al., 2006) are not built with the correct IP3R dynamics determined by Mak et al. (1998).
Many models rely on the refilling of the ER store to drive Ca2+ oscillations, which is not the
case for fertilisation (Sanders et al., 2018; Wakai et al., 2013). We have thus developed a
new gating model where we do not have Ca2+ in the ER as a dynamic variable. This model
reproduces key experimental features from Sanders et al. (2018) and Mak et al. (1998) as
the frequency and amplitude of Ca2+ oscillations increase as [IP3] increases. The model also
uses the data and fitted equation from Mak et al. (1998), and relies on the IP3R dynamics
to drive Ca2+ oscillations.

In Chapter 2, we analysed in detail two well-established gating models; the model by
Atri et al. (1993) and the model by Li and Rinzel (1994). We paid close attention to
key features, varying the IP3 concentration as a bifurcation parameter and how the Ca2+

behaviour changes accordingly. We studied in detail the bifurcation diagrams of both models
(Kaouri et al., 2019; Li & Rinzel, 1994). We also looked in depth at the individual terms in
these models, particularly those that describe the open probability for the IP3R.

In Chapter 3 we studied the open probability equation by Mak et al. (1998). This involved
studying how the three binding cites on an IP3R work (the activation of site 1 by IP3, the
activation of site 2 by Ca2+, and the deactivation of site 3 by Ca2+) work. These three
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binding processes occur with a certain probability, and these probabilities determine the
overall probability of the IP3R being open and allowing Ca2+ to pass through from the ER
to the cytosol. The net flux of Ca2+ out of the ER is determined by the number of open
IP3R. We examined the experimental data (Mak et al., 1998) which were approximated by
equation (3.2) derived for PO.

In Chapter 4 we studied the model by Kowalewski et al. (2006). They used the equation
for PO by Mak et al. (1998), but the latter model relied upon store depletion of the ER to
drive oscillations, rather than the opening and closing of the IP3R. We require the opening
and closing of the IP3R to actually be the driving force for Ca2+ oscillations in our model,
as previously discussed and thus, the model by Kowalewski et al. (2006) is therefore not
appropriate for Ca2+ signalling in fertilisation.

In Chapter 5, we derived a new Ca2+ signalling model for fertilisation, (5.1)-(5.2). We
used the Atri model (2.1)-(2.2), and the open probability equation for the IP3R, PO, by
Mak et al. (1998), (3.2). We implemented PO into the Atri model by splitting it into two
terms PO1 and PO2, given in equation (3.2), and substituted these into the Atri system
in the place of the corresponding binding probabilities. PO1 represents the probability of
Ca2+ binding to the activation site on the IP3R, and PO2 represents the probability of
Ca2+ binding to its inhibitory site. We also used the half-activation constant in Jpump as
in the Politi et al. (2006) model. Our model reproduced the low frequency, large amplitude
oscillations characteristic of fertilising mammalian eggs. We then performed simulations
with increasing IP3 concentration and parameter values as in Table 5.1. We showed that the
oscillation amplitude and frequency increase as IP3 concentration increases. The results are
in agreement, qualitatively, with experiments carried out by Sneyd et al. (2006) and Sanders
et al. (2018). The frequency of Ca2+ oscillations increases as [IP3] increases, as shown in
Figure 5.7. Sneyd et al. (2006) and Sanders et al. (2018) show what happens when a large
amount of IP3 is suddenly released in the cell. These data were also in agreement with
how our system behaves. Unfortunately, the range of IP3 giving rise to Ca2+ oscillations
in our model is between p = 0.0085 and p = 0.014. This should be adjusted to be between
approximately p = 0.01 and p > 1 (µM) (Mak et al., 1998; Swann, 2021) using a non-linear
scaling. A scaling is also needed for Ca2+ to oscillate between resting levels at 0.1µM , and
peaks at 1µM , but this is outside the scope of this work.

In further work, one could incorporate a third ODE for IP3 in a new model. We have
introduced the correct IP3R dynamics into our model and tested it with constant IP3.
Evidence from Sanders et al. (2018) suggests that there is a positive feedback of Ca2+ on
PLCζ , and this leads to oscillations of IP3. In Appendix A we briefly looked into modelling
this and studied higher dimensional models by Sneyd et al. (2006). Once a third ODE for
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IP3 has been incorporated, our new model could be used to make novel predictions for future
experiments.

Furthermore, stochastic modelling can be a direction for further work. As previously
discussed, Ca2+ signalling is intrinsically a stochastic process, so it is logical to develop
stochastic models. The IP3R either open or close and these states change depending on
random fluctuations induced by thermal noise. When many IP3R open, a global spike of
Ca2+ can occur (page 98 in Dupont et al. (2016)). Furthermore, one could look at modelling
spatially extended systems (PDEs) rather than spatially homogeneous (ODEs). Cells are
spatially distributed and Ca2+ concentration varies across the cell.
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Appendix A

A look into models with dynamic IP3

An avenue for further work from this project is to derive a model with an ODE for dynamic
IP3 concentration, as suggested in Chapter 5. Sneyd et al. (2006) produced experimental
data to prove that dynamic IP3 is necessary in models for Ca2+ signalling in airway smooth
muscle cells and pancreatic acinar cells. They also derived two models with IP3 as a dynamic
variable.

In Sneyd et al. (2006), an experiment was carried out where a artificial pulse of IP3 is
applied to two different types of cells. The results from the experiment on airway smooth
muscle (ASM) showed that Ca2+ oscillations were present with constant IP3, and the extra
pulse increased the frequency of oscillations. In pancreatic acinar cells (PAC), it was evident
that the IP3 concentration was oscillating. Once the pulse was added, IP3 then lay outside
the oscillatory range and there was a phase lag as the concentration of IP3 decreased. Sneyd
et al. (2006) studied a total of 13 different models and chose to illustrate their experimental
results using the models of Atri et al. (1993) and Li and Rinzel (1994). Both the Atri model
and Li-Rinzel model assume IP3 concentration to be constant, and thus is a parameter in
the system of equations. In both models, Ca2+ activates and inactivates the IP3R, and the
steady state of which follows the usual bell-shaped curve as a function of Ca2+. A third
equation for IP3 is used to extend both the Atri and Li-Rinzel models.

An adapted Atri model with dynamic IP3:

Let us first look at how the paper by Sneyd et al. (2006) extends the Atri et al. (1993) model.
The equations (2.1) and (2.2) are adjusted slightly to be as in equations (A.1) and (A.2)
below. An equation for Ca2+ in the ER is incorporated (shown in equation (A.3)), as well
as an equation for IP3 (shown in equation (A.4)). We can see that the IP3 concentration is
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modulated by Ca2+. The model is defined by

dc

dt
=Jchannel − Jpump + δ(Jin − Jpm), (A.1)

τn
dn

dt
=

K2
inh

K2
inh + c2

− n, (A.2)

γ
dce
dt

=− (Jchannel − Jpump), (A.3)

dp

dt
=v4

(
c+ (1− α)k4

c+ k4

)
− βoscp+ s(t). (A.4)

Fluxes are given by

Jchannel = kflux

(
p+ µ0KIP3

KIP3 + p

)
n

(
Kactb+ c

Kact + c

)
(ce − c),

Jpump =
Vec

Ke + c
,

Jin = α1 + α2v4,

Jpm =
Vpc

2

K2
p + c2

.

Parameter descriptions and values are given in Table B.6. Few parameter values have
been adjusted from the Atri model. The leakage term, Jleakage, is now a more complex
function dependent on cytosolic Ca2+. The variable ce, for Ca2+ in the ER, allows a coupling
between equations (A.1) and (A.3). Equation (A.4) is an IP3 production term (dependent
on Ca2+), a degradation term for IP3, and a source term, s(t). The source term was present
as a product of Heaviside step functions to model a pulse of IP3 being added and causing a
phase delay. The parameter γ is used to adjust the amplitude of the ER Ca2+ oscillations,
as we know it is oscillating very slightly in comparison, and is passive.

Figure A.1 shows a plot of equations (A.1)-(A.4). We can see that Ca2+ in the ER has
a very small amplitude in the oscillations. Therefore, for simplicity in the model one can
eliminate equation (A.3) and consider Ca2+ in the ER to be constant. Once eliminated, ER
Ca2+ can be taken as a value 14µM . Now, since this is an order of magnitude greater than
the range at which cytosolic Ca2+ oscillates, the term (ce − c) is actually doing very little in
contribution to the system. It can just be taken as ce on its own, which is a factor. When
Ca2+ in the ER is taken as constant, we get a decoupling with the equation (A.1). The plot
for this be seen in Figure A.1.

The model by Sneyd et al. (2006) is still based on the older data (Parys et al., 1992)
that the Atri model was based on, and so it does not incorporate the more accurate data
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on the IP3R dynamics obtained by Mak et al. (1998). The Sneyd et al. (2006) model is
one that should be taken into careful consideration for further work on the new model we
have derived. It would be insightful to see how an IP3 equation of this kind would work in
a system with the IP3R dynamics from Mak et al. (1998) incorporated.

A similar model was derived in the paper by adding the same ODE for IP3 to the Li-
Rinzel model. However, with this addition came the decision to consider n as a constant.
This is not so relevant to our model as the fact our new model works on a gating system is
crucial for the inclusion of the equation for PO (3.2).

The third model we took a look at with dynamic IP3 concentration was by Politi et al.
(2006). The model presented was based around Li and Rinzel (1994), Lytton et al. (1992),
and Camello et al. (1996). It is a system of four variables with cytosolic Ca2+ concentration,
Ca2+ concentration in the ER, cytosolic IP3 concentration, and the proportion of IP3R that
have not been inactivated by Ca2+. The model assumes the IP3 concentration to be highly
dynamic, with oscillations in line with Ca2+ oscillations. They show that there is both
positive and negative feedback of Ca2+, and that IP3 metabolism could mediate fluctuations
in IP3.

The model presented accounts for the Ca2+ fluxes across the ER and plasma membrane,
the IP3R dynamics, and the formation and degradation of IP3. The model is as follows.

dc

dt
= Jchannel − Jpump + Jleak, (A.5)

dce
dt

=
1

β
(−Jchannel + Jpump), (A.6)

τn
dn

dt
= 1− n

Kinh + c

Kinh

, (A.7)

τp
dp

dt
= vPLC − vdeg, (A.8)
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where

Jchannel =

(
v1

(
n

c

Kact + c

p

KIP3 + p

)3

+ ϵ

)
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Vec
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K2
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)
,
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c2

K2
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,
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(
k5P + k3K

c2

K2
3K + c2

)
.

Here we can see that Ca2+ flux through the IP3R, Jchannel, is modelled based on the Li
and Rinzel (1994) model, that we have studied in Chapter 2. The SERCA pumps, Jpump,
however, follows the model given in Lytton et al. (1992), and vout follows that in Camello
et al. (1996). The term Jpump is modelled with a Hill coefficient of 2, in contrast to 1 in
both the Atri and Li-Rinzel models. It is important that future models respect the data and
consider a Hill coefficient of 2. Ca2+ influx, vin, represents a leak into the cell as well as a
stimulation dependent influx. The parameter ϵ is a dimensionless constant that controls the
relative strength of the cell plasma membrane’s fluxes. This flux is cell type specific, or in
an isolated egg, non-existent.

PLC produces IP3 and depends on agonist dose and Ca2+. PLCβ’s sensitivity towards
Ca2+ is modelled by vPLC . Within this, VPLC depends on agonist concentration, and KPLC

characterizes the sensitivity of PLC to Ca2+. IP3 degradation happens through phospho-
rylation by IP3P and phosphorylation by IP3K, which is modelled by vdeg. Respectively,
k5P and k3K are the IP3 dephosphorylation and phosphorylation rate constants. The Ca2+

dependence of the IP3K is described by a Hill function with half-saturation constant K3K .
Here, the model assumes that the two enzymes are not saturated with IP3, so a linear rate
law in p is given. This assumption is based on the work of Fink et al. (1999) and Sims and
Allbritton (1998).

The modelling of the IP3 equation in this paper has been well thought out, and should be
considered in any future models. The Hill equation in vdeg is a necessary component in any
future model that assumes a dynamic IP3 concentration. It is agreed that IP3 production is
catalyzed by phosphoinositide-specfic phospholipase C isoforms (PLC), which are activated
by Ca2+. Furthermore, IP3 levels fall by dephosphorylation through IP35-phosphatase.
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However, IP3 degradation also happens by phosphorylation through IP33−kinase (IP3K).
This is activated by Ca2+, and hence in a mathematical model would need to show depen-
dence on Ca2+ (Politi et al., 2006).
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Figure A.1: The first graph shows Ca2+ and IP3 oscillations arising as solutions of the
equations (A.1)-(A.4). The second graph shows Ca2+ and IP3 oscillations arising as solutions
of the equations (A.1), (A.2) and (A.4) (Sneyd et al., 2006). Equation (A.3) for the Ca2+

concentration in the ER, ce, has been omitted and ce was set to 14µM . Other parameters
are taken as in Table B.6. Software: MATLAB.
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Appendix B

Parameter Tables

Parameter Biological representation Value in Atri et al.
kflux Maximum total Ca2+ flux through all IP3R 8.1 µMs−1

µ0 Proportion of IP3R that are activated at IP3 = 0µM 0.567
(site 1 activated in the absence of bound IP3)

kIP3 Half-activation term for binding of IP3 to site 1 4.0µM
Kact Half-activation term for binding of Ca2+ to site 2 0.7µM
b Proportion of IP3R that have site 2 0.111
Ve Maximal SERCA pump rate 2µMs−1

Ke Half-activation constant for SERCA term 0.1µM
δ Constant rate of Ca2+ influx into cytosol 0.01µMs−1

τn Time constant for dynamics of n (for activation of site 3) 2.0s
Kinh Half-deactivation constant for Ca2+ binding to site 3 0.7µM

Table B.1: Parameters used in the Atri et al. (1993) model, shown in equations (2.1), (2.2)
in Chapter 2. A typical value of p used is 0.8µM .
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Parameter Biological representation Value in Li-Rinzel
v1 Maximal rate of Ca2+ release 40s−1

kµ Half-activation constant for IP3 binding 0.2µM
k1 Half-activation constant for Ca2+ binding to 0.4µM

activation site
ϵ Ca2+ leak out of ER 0.02s−1

c1 Parameter used to adjust amplitude of ER 0.185
Ca2+ oscillations

Ve Maximal SERCA pump rate 0.6µMs−1

Ke Half-activation constant for SERCA pumps 0.18µM
A A parameter to characterize the slow time scale of 1s−1

Ca2+ inactivation
k2 Half-activation constant for Ca2+ 0.4µM

binding to inhibitory site

Table B.2: Parameters used the Li and Rinzel (1994) model, shown in equations (2.7), (2.8)
in Chapter 2.

Parameter Value in Li-Rinzel
δ 0.01
Jin 0.8µMs−1

Vp 1.8µMs−1

Kp 0.1µM

Table B.3: Parameters used in the Li and Rinzel (1994) Three–Variable model, (??)-(??) in
Chapter 2.
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Parameter Biological representation Value in Mak et al.
Pmax Maximal open probability of IP3R 0.81
Kact Half-activation constant for Ca2+ 0.21± 0.02µM

binding to activation site
Hact Hill coefficient for Ca2+ binding to activation site 1.9± 0.3
Kinh Half-activation constant for Ca2+

binding to inhibitory site
Hinh Hill coefficient for Ca2+ 3.9± 0.7

binding to inhibitory site
K∞ Maximal inhibitory Ca2+ concentration 52± 4µM
KIP3 Half-activation constant for IP3 50± 4µM

binding to activation site
HIP3 Hill coefficient for IP3 4± 0.5

binding to activation site

Table B.4: Parameters used in the equation for open probability of the IP3R by Mak et al.
(1998), (3.2), in Chapter 3.
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Parameter Biological representation Value in Kowalewski et al.
SER/VER Surface-to-volume ratio of the ER 1µM
SER/V cyt Surface-to-volume ratio of the cytoplasm 1µM

rER = VER/Vcyt Volume ratio of ER 0.185
β Buffering factor 1
X Relative amount of Ca2+ binding to SERCA 0.4
Y Relative amount of Ca2+ binding to PMCA 0.6
Ideg IP3 degradation constant 0.01s−1

t0 G signalling start time 500s
kG G production rate 0.2s−1

IG G degradation rate 0.5s−1

K1/2,G G signalling inactivation constant 0.5µM
vIP3R Maximum permeability across the IP3R 70nm/s
d1 IP3 dissociation 0.13µM
d2 Ca2+ inhibition dissociation 0.5µM
d3 IP3 dissociation 9.4nM
d5 Ca2+ activation dissociation 82.34nM
v1 Maximum Ca2+ channel permeability 10µM/s

VleakER Ca2+ leak permeability across the ER 2nm/s
membrane

vSOC SOC permeability, per µM 0.12nm/(sµM)
[Ca2+]ER,min Threshold concentration of ER Ca2+

VleakPM Ca2+ leak permeability across the cell 0.012nm/s
plasma membrane

kSOC SOC production constant 1.7µM/s
ISOC SOC degradation constant 0.002s−1

vCIF CIF permeability across the ER 1µm/s
membrane

kCIF CIF production rate 2x10−4s−1

[CIF ]max Maximum CIF concentration 0.1µM
Vp Maximum flux across PMCA 0.147µmµM/s
Ve Maximum flux across SERCA 1.9µmµM/s
Kp PMCA activation constant 0.2µM
Ke Half-activation for SERCA pump 0.5µM

Table B.5: Parameters used in the model by Kowalewski et al. (2006), (4.1)-(4.8), in Chapter
4.
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Parameter Biological representation Value in Sneyd et al.
kflux Maximum total Ca2+ flux through all IP3R 4.8
µ0 Proportion of IP3R that are activated at IP3 = 0µM 0.567

(domain 1 activated in the absence of bound IP3)
kµ Half-activation term for binding of IP3 for domain 1 4.0µM
k1 Half-activation term for binding of Ca2+ 0.7µM
b Proportion of IP3R that have domain 2 0.111
Ve Maximal serca pump rate 20µMs−1

Ke Half-activation constant for serca term 0.06µM
δ Constant rate of Ca2+ influx into cytosol 0.01µMs−1

α1 Constant influx 1µMs−1

α2 Stimulation dependent influx 0.2s−1

Vp Maximal rate of leak out of cytosol over 24µMs−1

plasma membrane
τn Time constant for dynamics of n 2.0s

(for activation of domain 3)
k2 Half-deactivation constant for n 0.7µM
γ Parameter used to adjust amplitude of ER

Ca2+ oscillations
v4 Maximum rate of IP3 production 6
k4 Ca2+ sensitivity of PLC activity 1.1
α 0.97
βosc Linear rate of IP3 breakdown/dephosphorylation 0.08s−1

rate

Table B.6: Parameters used in the model by Sneyd et al. (2006), (A.1)-(A.4) in Appendix
A.
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Appendix C

MATLAB Code

1 %Code used to simulate the Atri model

2

3 c0=0.1;

4 n0=0.5;

5

6 [t,y] = ode45(@ODE,[0,80],[c0,n0]);

7 plot(t,y(:,1),t,y(:,2),':','Linewidth', 2)

8

9 xlabel('Time (s)')

10 ylabel('Concentration (\muM)')

11 legend('Cytosolic Ca^2^+','Proportion of non inactivated IP_3Rs')

12 ylim([0 5])

13 set(gca, 'fontsize', 15)

14 function dydt=ODE(t,yy)

15 c=yy(1);

16 n=yy(2);

17

18 Kflux=8.1;

19 p=1;

20 kip=4;

21 mu0=0.567;

22 mu1=0.433;

23 mup=(p+mu0*kip)/(kip+p);

24 %mup=1.5;

25 %mup=1;

26 %mup=0.5;

27 kact=0.7;

28 b=0.111;
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29 V1=0.889;

30 Ve=2;

31 Ke=0.1;

32 B=0.01;

33 Jchannel=Kflux*n*((kact*b+(b+V1)*c)/(kact+c))*mup;

34 Jpump=Ve*c/(Ke+c);

35 Jleak=B;

36 kinh=0.7;

37 taun=2;

38

39 dydt= [Jchannel−Jpump+Jleak;

40 kinh^2/(2*(kinh^2+c^2))−n/taun];

41 end

Note that other MATLAB scripts written for this project using ode45 are structured simi-
larly.
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