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Abstract 

In recent years, many novel sandwich structures with multilayer or graded lattice truss cores that 

exhibited superior structural performance have been proposed. However, only limited works have studied 

the nonlinear behavior of sandwich structures with unsymmetric lattice truss cores. This paper aims to 

provide an analytical study on the nonlinear vibration of the unsymmetric double-layer lattice truss core 

sandwich beams (LTCSBs). The double-layer LTCSB is designed to be unsymmetric and possess varying 

material property and structural geometry in each layer. In this study, six unsymmetric cases of LTCSB 

classified as two categories according to the midplane locations are considered. Subsequently, an 

analytical model for the unsymmetric double-layer LTCSB is developed based on the Allen’s model and 

von Kármán nonlinear theory. The axial displacement of the midplane of LTCSB is considered in the 

analytical model, therefore the proposed model is more generalized compared with previous models for 

the symmetric double-layer LTCSB. The Ritz method with a direct iterative procedure is applied to solve 

the nonlinear governing equations and determine the nonlinear frequencies for the unsymmetric double-

layer LTCSB. Finally, the effects of six unsymmetric cases of LTCSBs on the nonlinear frequency ratio 

versus amplitude curve under three different types of boundary conditions is discussed detailly. An 

interesting phenomenon of softening-spring nonlinearity is found for hinged-hinged and clamped-hinged 

sandwich beams with large bending-extension coupling. 
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1. Introduction 

Sandwich structures have been widely applied in many engineering fields. In recent years, cellular 

materials manufactured by advanced 3D printing technologies attract increasingly attentions due to their 

high stiffness and strength yet lightweight properties [1-3]. Previous research works have demonstrated 

that some newly developed lattice sandwich structures with three-dimensional truss cores exhibit 

prominent mechanical properties [4-7]. For example, lightweight multilayered graded lattice sandwich 

structures are designed to achieve superior impact resistance and energy absorption capacities for 

engineering applications [8, 9]. Increasing number of researchers are dedicated to developing advanced 

manufacturing technologies [10-14] and design methods [15-20] for lattice truss core sandwich structures, 

which will have wide applications in architectures, ships, high-speed trains, biomedical devices, aerospace, 

and many other engineering fields. 

Structural vibration problems are commonly existed in many engineering fields, which often 

accelerate the damaging process of the structures. The vibration problem of sandwich structures with a 

single-layer lattice truss core had been well studied in previous works using theoretical, experimental, and 

numerical methods [21-25]. Based on Allen’s model [26], Lou et al. [27] analyzed the linear vibration 

characteristics of sandwich beams with pyramidal truss cores. Xu and Qiu [28] obtained the natural 

frequency of composite sandwich beams with pyramidal and tetrahedral truss cores by a combined use of 

the Euler beam theory and Timoshenko beam theory. Zhao et al. [29] applied the assumed mode method 

and Hamilton’s principle to investigate the vibration of multi-span metal sandwich beams with Kagome 

and Pyramidal truss cores. However, up to now, only limited research works have been reported to study 

the nonlinear analysis of lattice truss core sandwich structures [30, 31]. Chai et al. [32] studied the 

nonlinear vibration behaviour and active control methods for the sandwich plates with a single-layer 

lattice. Nampally et al. [33] developed a novel nonlinear finite element model to study the nonlinear 

bending and linear free vibration of single-layer sandwich panels with a pyramid core. 

In recent years, sandwich structures with multilayer or graded lattice truss cores were studied and their 

mechanical behaviors were analyzed [34-39]. Li et al. [40] performed the linear vibration analysis of 

multilayer LTCSBs with simply supported boundary conditions using theoretical, numerical, and 

experimental methods. They also developed the novel deformation relations of symmetric multilayer 

sandwich beams with the lattice truss core in theory. Guo et al. [41] investigated the effect of structural 

and material parameters on the vibration control of double-layer hourglass sandwich beams using 
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improved theory method and finite element method (FEM). However, to the best of authors’ knowledge, 

there are no research works that had studied the nonlinear problems of sandwich structures with multilayer 

or graded lattice truss cores. 

In this paper, we study the nonlinear vibration behavior of double-layer LTCSBs that are designed to 

be unsymmetric about the midplane and have varying material property or structural geometry in each 

layer. Six unsymmetric cases for double-layer LTCSB are considered and classified as two categories 

according to the midplane location of the structure. Then, an analytical model based on Allen’s model and 

von Kármán nonlinear theory is developed for the unsymmetric double-layer LTCSBs. Unlike the model 

developed by Li et al. [40] for symmetric LTCSB, it is not appropriate to directly assume that the 

midplane is coincident with neutral plane for the unsymmetric LTCSBs when establishing the analytical 

model with respect to the midplane coordinate. Therefore, the axial displacement of the midplane is 

considered in this model to capture the nonlinear behavior of unsymmetric double-layer LTCSBs, 

accurately. Ritz method is applied to determine the linear and nonlinear vibration frequencies of the 

double-layer LTCSB under different boundary conditions. The analytical model is validated with the 

numerical results obtained by FEM. Finally, a parametric study is carried out to investigate the effects of 

material properties, geometry structures and boundary conditions on the nonlinear dynamic behavior of 

the double-layer LTCSB. 

 

2. Description of unsymmetric double-layer LTCSB 

Fig. 1 shows the sketch of an unsymmetric double-layer LTCSB with different unit cells in the top and 

bottom cores. This double-layer LTCSB is composed of top face sheet, mid-sheet, bottom face sheet, top 

and bottom cores. Three different unit cells in the cores, i.e., the pyramidal, Kagome, and hourglass unit 

cells are considered. L and H are the length and total thickness of the double-layer LTCSB, respectively; 

es
h  and 

qch ( ), , , ,e t b m q t b= =  are the thicknesses of sheets and cores, respectively; c
h , c

b  and c
d  are 

the height, width and length of the unit cell, respectively; c
r , c

L  and  are the radius, length and 

inclination angle of struts, respectively. Note, the subscripts t , b , m , s  and c , represent ‘top’ , ‘bottom’, 

‘middle’, ‘sheet’ and ‘core’ , respectively. The total thickness H  of the double-layer LTCSB is the sum of 

the thicknesses of all the sheets and cores, i.e., t ct m cb b
H h h h h h= + + + + . 

The unsymmetric features of double-layer LTCSBs with respect to the midplane are attributed to the 
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different material property or structural geometry of each layer. As shown in Fig. 2, six different cases for 

double-layer LTCSBs are considered in the present paper: 

Case I: The materials in two layers are different, bottom core and sheet are made of material 1 (Al2O3) and 

the rest part is made of material 2 (ZrO2 or aluminum (Al)). 

Case II: The thicknesses of top and bottom face sheets are different (hbs > hts, and hbs / hts is variable). 

Case III: The thicknesses of top and bottom cores are different (hbc > htc, hbc + htc is constant while hbc / htc 

is variable). 

Case IV: The lengths of unit cells in top and bottom cores are different (dbc ≠ dtc and dbc / dtc is variable). 

Case V: The struts radii of unit cells in top and bottom cores are different (rbc ≠ rtc and rbc / rtc is variable). 

Case VI: The types of unit cells in top and bottom cores are different, the unit cell in bottom core is cell 1 

(pyramidal cell) and the top core is consistent with the unit cell 2 (Kagome or hourglass unit cell). 

Except the differences that are listed in Table. 1 for cases I-VI, other parameters are the same for these two 

layers. Note, only pyramidal unit cell is applied in cases I-V and only Al2O3 is applied in cases II-VI. 

In the theoretical analysis, the lattice truss core is assumed as an equivalent layer of continuum [28]. 

Consequently, the equivalent density and the transverse shear modulus of the lattice truss core are 

expressed as [42] 

 c
  =  ,  (1) 

 
( )2sin 2

8
c

E
G

  
= , (2) 

where   and E  are the mass density and elastic modulus of base material, respectively;   denotes the 

relative density of the truss core, which is the ratio between the struts volume and the unit cell volume. For 

pyramidal, Kagome and hourglass truss cores, the relative densities are derived as [32, 43] 

 
( ) ( )

2

2 2

2

cos sin

pyr c

c

r

L


 

= , (3) 

 
( ) ( )

2

2 2

3

2 cos sin

Kag c

c

r

L


 

= , (4) 

 
( ) ( )

2

2 2

4

cos sin

hou c

c

r

L


 

= , (5) 

where   is the inclination angle for different cases and is determined by the geometric relations of a unit 

cell. 
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3. Formulations of nonlinear vibration problem 

When studying the lattice truss core sandwich structures, the following assumptions are applied 

generally [27]: (i) three sheets are modelled as Euler beams; (ii) transverse shear deformation in two core 

layers is considered; (iii) the sheets and the core layers have the same transverse displacements but 

different axial displacements and rotation angles; (iv) there is no slippage or movement between the 

interfaces. 

 

3.1 Energy functional 

Fig. 3 illustrates undeformed and deformed states of an infinitesimal element of the unsymmetric 

double-layer LTCSB. The displacements fields of double-layer LTCSBs for Fig. 3(a) and Fig. 3(b) are 

defined with respect to the midplane coordinate. For cases II and III, the midplane lies in the bottom core 

layer as shown in Fig. 3(a), while for cases I and IV-VI the midplane lies in the middle position of the 

middle sheet as shown in Fig. 3(b). According to the deformation relationships as illustrated in Fig. 3, the 

axial displacements of various points on the deformed infinitesimal element in Fig. 3(a) are given 

 ( ) ( )0 0 ,
ts

w
u u x t H z H

x
 

= − − −


, 
2 2

ts

H H
h z−   , (6) 

 ( ) ( ),
tc ms ms

w
u u x t h z h

x


= − − −


, 
1

2
ms ts

H
H h z h+   − , (7) 

 ( ) ( )1 1,
ms

w
u u x t H z H

x
 

= − − −


, 1 1 
ms

H z H h  + , (8) 

 ( ),
bc

u u x t z= − , 2 1 H z H−   , (9) 

 ( ) ( )2 2,
bs

w
u u x t H z H

x
 

= + − +


, 
2

2

H
z H−   − , (10) 

where 0 1 tc
H H h= + , 1 2

ts tc ms
H H h h h= − − −  and 2 2

bs
H H h− = − +  are z-axis coordinates; u  and 

w  are the displacement components in the midplane;   and w x   are the rotations of the lattice truss 

core and three sheets, respectively. es
u and 

qcu represent the axial displacement in sheets and cores, 

respectively. Similarly, the displacements fields of Fig. 3(b) are expressed as 

 ( ) ( ),
ts c c

w
u u x t h z h

x
 

= − − −


, 
2 2

H H
h z−   , (11) 

 ( ),
2 2

tc

h w h
u u x t z

x
  = − − −   

, 
2 2

c

h h
z h  + , (12) 

 ( ),
ms

w
u u x t z

x


= −


, 

2 2

h h
z−   , (13) 
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 ( ),
2 2

bc

h w h
u u x t z

x
  = + − +   

, 
2 2

c

h h
h z− −   − , (14) 

 ( ) ( ),
bs c c

w
u u x t h z h

x
 

= + − +


, 
2 2

c

H h
z h−   − − , (15) 

where c
h  ( )c tc bc

h h h= =  and h  ( )ts bs ms
h h h h= = =  are the thicknesses of the two cores and three 

sheets, respectively. In this analysis, the midplane of unsymmetric double-layer LTCSBs is likely to have 

an axial displacement, i.e., the midplane and neutral plane do not coincide. This assumption on the 

midplane of unsymmetric sandwich beams is different from other theoretical models [25, 40, 41]. 

With the von Kármán nonlinear geometric approximation, the strain-displacement relations of sheets 

and core layers of the LTCSB are defined as 

 

2
1

+
2

es
es

u w

x x
   =    

, (16) 

 
qc

w

x
 

= −


, (17) 

where es
  and 

qc  are the normal strain and shear strain, respectively.  

The normal and shear stresses are given by the elastic constitutive law 

 ,  es es es qc qc qcE G   = = . (18) 

Substituting Eqs. (16) and (17) into Eq. (18), the corresponding stresses ts
 , ms

 , bs
 , tc

 and bc
  are 

computed. Consequently, the force and bending moment resultants of the unsymmetric double-layer 

LTCSB are 

 ( )d + d + d
x ts ms bs

N B z z z  =    , (19) 

 ( )d + d + d
x ts ms bs

M B z z z z z z  =    , (20) 

where B is the width of double-layer LTCSB. Note, the ranges of integration in Eqs. (19) and (20) are 

different for different unsymmetric cases. 

Taking Fig. 3(a) as an example, the midplane is located at the bottom core layer. Then, the strain 

energy Q and kinetic energy J are expressed as [44] 

 
1 1 2

1 1 2

2 2

0
22

d + d + d + d d d
2

ts ms

msts

H H
L h H h H H

HH ts ts tc tc ms ms bc bc bs bs
H h H Hh

B
Q z z z z z x         

− + −

+ − −−

 
= + 

 
      , (21) 
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1

1

1

2 22 2

2 2

0
2

2 22 2

d + d
2

      d

ts

msts

ms

H H
L h

ts tc
H ts tc

H hh

H h
ms bc

ms bc
H

u uB w w
J z z

t t t t

u uw w
z

t t t t

 

 

−

+−

+

             = + +                          
          + + + +                   

  


1

2

2

2 2

2

d

                        d d

H

H

H
bs

H bs

z

u w
z x

t t


−

−

−




      + +           





. (22) 

Substituting Eqs. (6)-(10) and Eq. (18) into Eqs. (19)-(22), the maximum potential energy maxQ  

( max linear nonlinear
Q Q Q= + ), kinetic energy maxJ , force and bending moment resultants are given by 

 

( )

( ) ( )

22 2 2

11 13 11 13 12 1220

22 2
2

11 12 00 12 132 2

2 2
2

             2 + 2 2 d

L

linear

B u w u
Q A A D A B A

x x x x x

u w w w w
B A A B A x

x x x x x x

 

 

          = + + + − −              
        − − − + + −           


, (23) 

( )
4 2 2 2 2

11
11 12 11 12 20

d
2 4

L

nonlinear

AB w u w w w w
Q A A B A x

x x x x x x x

               = + − − −                       
 ,(24) 

 

( ) ( ) ( )

( ) ( )

22
2 2

max 11 12 24 31 12 22 32 13 21
0

2

11 13 23 25 12

+ 2 2 2
2

                        2 2 d

LB w w
J L u L L L L L L L L u

x x

w
L w L L u L L x

x



 

   = − + + − + + −   
 + − + + −  


, (25) 

 ( )
2 2

11 12 12 11 2

1

2
x

u w w
N A A A B

x x x x

     = + − + −        
, (26) 

 ( )
2 2

11 12 12 11 2

1

2
x

u w w
M B B B D

x x x x

     = + − + −        
, (27) 

where 

00 tc bc
A S S= + ; 11 ts ms bs

A A A A= + + , 12 0 1 2ts ms bs
A H A H A H A= + − , 

2 2 2

13 0 1 2 A ts ms bsH A H A H A= + + ; 

11 
ts ms bs

B B B B= + + , 12 0 1 2ts ms bs
B H B H B H B= + − ; 11 ts ms bs

D D D D= + + ;  

0 0 0 0 0

11 ts tc bc ms bs
L I I I I I= + + + + , 

2 0 2 0 2 0 2 0

12 0 1 2ts ms tc ms bsL H I h I H I H I= + + + , 

0 0 0 0

13 0 1 2ts ms tc ms bsL H I h I H I H I= − + − ; 
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1 1 1

21 ts ms bsL I I I= + + , 
1 1 1

22 0 1 2ts ms bsL H I H I H I= + − , 
1 1

23 tc bc
L I I= + , 

1

24 ms tcL h I= , 

1 1 1 1

25 0 1 2ts ms ms tc bsL H I H I h I H I= + + − ; 

2 2

31 tc bc
L I I= + , 

2 2 2

32 ts ms bs
L I I I= + + . 

The unknown terms in 11L - 32L , 00A , 11A , 12A , 13A , 11B , 12B  and 11D  are expressed as [45] 

 

( ) ( ) ( ) ( )

( ) ( )

1

1

2 1

1 2

1 2

1

2 22

2

2 2

2

2

22

, , 1, , d ,  , , 1, , d ,

, , 1, , d ,   d , d ,

d ,  d ,

ms

ts

ts

ms

ms

ts

H
H h

Hts ts ts ts ms ms ms ms
Hh

H
H h H

Hbs ts bs bs tc tc bc bc
H h H

H
H h H

i i i i i
HHts ts ms ms bs bs

Hh

A B D E z z z A B D E z z z

A B D E z z z S G z S G z

I z z I z z I z  

+

−

− −

− + −

+ −

−−

= =

= = =

= = =

 

  

  
1

1 2

2

d ,

d , d ,
ts

ms

i

H
h H

i i i i

tc tc bc bc
H h H

z

I z z I z z 
−

+ −
= = 

 (28) 

where 0,1,2i = . The coefficients 11B  is recognized as the main contribution to the bending-extension 

coupling effect for the unsymmetric double-layer LTCSB. 

The following dimensionless quantities are introduced: 

 

( ) ( )

( ) ( )
( )

2 2
10 10

2 2

0 1 2
10 10 1 2 3 4 5

2
10 10 1010

*

0

,
,  , ,  ,  d ,  d ,  

,  ,  , ,  ,  ,  

, ,
, , ,  , , ,

1, ,

,

H H

H Hbs bs

ms

ii
qc qces es es i ies

es es es es qc qci i

linear
linear

u wx
U W A E z I z

L H

h H H HH
L I A

H L H H H

I SA B D I
A B D I I S

I H I H AA H H

Q
Q

   

     

− −
= = = = =

=  = = = = =

= = = =

=


 

2
* * max 10

max 0

0 0

 ,  ,  .nonlinear
nonlinear

Q J BA H
Q J

L
= =  =

 

 (29) 

After applying the dimensionless forms for Eqs. (23)-(25), the following energy functional of the 

unsymmetric double-layer LTCSB is arrived as 

 
* * *

max+linear nonlinearQ Q J = − . (30) 

 

3.2 Ritz method 

The governing equations for the nonlinear vibration of the double-layer LTCSB is derived using the 

Ritz method [46]. Three different boundary conditions, i.e., hinged-hinged (H-H), clamped-clamped (C-C), 

clamped-hinged (C-H) are considered in the model. The corresponding trial functions are given as [47]: 
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H-H: 

( ) ( )

( ) ( )

( )

1

1

1

1

1 ,

1 ,

,

N
j

j

j

N
j

j

j

N
j

j

j

U A

W B

C

  

  

  

=

=

−

=


= −


 = −



=








 (31) 

C-C: 

( ) ( )

( ) ( )

( ) ( )

1

1

1

1 ,

1 ,

1 ,

N
j

j

j

N
j

j

j

N
j

j

j

U A

W B

C

  

  

   

=

=

=


= −


 = −



= −








 (32) 

C-H: 

( ) ( )

( ) ( )

( )

1

1

1

1 ,

1 ,

,

N
j

j

j

N
j

j

j

N
j

j

j

U A

W B

C

  

  

  

=

=

=


= −


 = −



=








 (33) 

where N is the number of the polynomial terms; 
jA , 

jB  and 
jC  are unknown coefficients. Substituting 

one of Eqs. (31)-(33) into Eq. (30) and minimizing the total energy with respect to unknown coefficients 

yield: 

 0,  0,  0
j j j

A B C

     
= = =

  
. (34) 

Consequently, the nonlinear governing equations are expressed in a matrix form as 

      ( )  2+ 0+ − =L NL1 NL2K K K d M d , (35) 

where {{ }  { }  { } }T T T

j j j
A B C=d , 1,2,...,j N= ;  M ,  LK ,  1NLK  and  2NLK  are the mass matrix, 

linear stiffness matrix and nonlinear stiffness matrices, respectively.  1NLK  is a linear function of d  

while  2NLK  is a quadratic function of d . 

For the analysis of a linear vibration problem, the governing equation (35) is reduced to the 

following form as 
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    2 0− =LK d M d . (36) 

Note, the vibrational amplitudes of the unsymmetric double-layer LTCSB in both negative and 

positive cycles are different, due to the bending–extension coupling effects. Therefore, the nonlinear 

vibration of the unsymmetric double-layer LTCSB cannot be directly solved using the conventional 

iterative method [48]. However, the nonlinear free vibration of unsymmetric double-layer LTCSB can be 

analyzed using a new iterative method proposed by Ke et al. [47], which is developed based on the 

principle of energy balance at both positive and negative deflection cycles. The computational steps of this 

method are described as followings: 

1. The linear eigenvalue and eigenvector of Eq. (36) are determined, and then eigenvector is normalized 

with respect to maxW , which is assumed as a positive maximum amplitude. 

2. Using the eigenvector obtained in step 1 to calculate [KNL1] and [KNL2] and update Eq. (35), which is 

then used to compute new eigenvalue and eigenvector. 

3. Normalizing the new eigenvector again and repeating step 2 until the relative error in two consecutive 

iterations is less than 0.1%. Then, the iterative outcome is the frequency 1  for the positive deflection 

cycle. The maximum energy 
max linear nonlinearQ Q Q

+ + += +  of the positive deflection cycle is calculated 

using Eqs. (23) and (24). 

4. With a given negative amplitude minW , the energy 
maxQ

−
 in negative deflection cycle is calculated by 

repeating steps 1-3, and the frequency 2  for the negative deflection cycle is obtained until 

max maxQ Q
− += . 

After obtaining the nonlinear frequencies 1  and 2  from the above computational steps, the 

associated periods T1 and T2 of two half-cycles are expressed as 1 1T  =  and 2 2T  = , respectively. 

Finally, the nonlinear frequency of the unsymmetric double-layer LTCSB is determined by 

 ( ) ( )1 2 1 2 1 22 2
nl

T T     = + = + . (37) 

Similarly, the nonlinear frequencies of double-layer LTCSBs for cases I and IV-VI are obtained using the 

above computational steps. All elements of matrices in the governing equations are given in Appendix A. 

The dimensionless forms of corresponding coefficients for cases II, III and cases I, IV-VI are given in 

Appendix B and Appendix C, respectively. 
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4. Results and discussions 

In this section, we study the nonlinear vibration of double-layer LTCSBs with unsymmetric cores or 

sheets for six different cases I-VI. In case I, the effects to the nonlinear vibration of LTCSBs given rise by 

the variation of the material properties in two layers are studied. Three material combinations Al2O3-Al2O3, 

Al2O3-ZrO2 and Al2O3-Al are considered. In case II-VI, the variation of the structural geometry in two 

layers is studied. Only Al2O3 is applied in two layers of cases II-VI. The specific geometry parameters and 

material properties of double-layer LTCSBs for these six cases are given in Tables 1 and 2. 

 

4.1 Comparison and convergence studies 

To verify the present theoretical model, the FEM simulation using the Abaqus software is carried out 

to compute natural frequency of double-layer LTCSBs. As shown in Fig. 4, the element types of three 

sheets and struts in the FEM are 4-node shell element with reduced integration (S4R) and 3-node beam 

element (B32), respectively. In one unit cell, the number of elements for each strut is 10, while the number 

of elements on each side of the sheet is 12. The natural frequencies of double-layer LTCSBs are obtained 

using a frequency extraction procedure based on the Lanczos method. 

The analytical model developed in this paper is also applicable to analyze the symmetric double-layer 

LTCSB [40]. Table 3 shows the convergence procedure of the present theoretical model in the prediction 

of the fundamental frequencies of symmetric double-layer LTCSBs under H-H, C-H and C-C boundary 

conditions. The geometry parameters and material properties of double-layer LTCSB are: α = π / 4, h = 1 

mm, hc = 15 mm, rc = 1mm, L = 1.6970 m, B = 0.1697 m, E = 210 GPa and ρ = 7930 kg/m3. By increasing 

the total number of polynomial terms N (up to N = 7), the analytical model results are gradually 

convergent to the FEM results and the results given by Li et al. [40]. Therefore, N = 7 is selected in the 

following analysis. 

Table 4 gives first three frequencies of Al2O3-ZrO2 double-layer LTCSB with 80 unit-cells for case I. 

The theoretical and FEM results of the first three frequencies are in good agreement, which approves the 

accuracy of the present analytical model. 

 

4.2 Nonlinear vibration analysis  

Fig. 5 shows the normalized nonlinear frequency vs the vibration amplitude curves of double-layer 

LTCSBs for case I under three boundary conditions, e.g., H-H, C-H and C-C. It was found that the curves 
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of H-H and C-H Al2O3-ZrO2 and Al2O3-Al double-layer LTCSBs are unsymmetric due to the bending-

extension coupling effect. However, the curves of Al2O3-Al2O3 LTCSBs and C-C LTCSBs are symmetric 

with respect to the frequency ratio axis. That is because the C-C boundary condition can largely absorb the 

bending–extension coupling effect. Furthermore, the H-H Al2O3-Al LTCSBs exhibit the softening-spring 

nonlinearity at small amplitudes, i.e., 1
nl l

   , but this effect is not observed at small amplitudes in the 

H-H Al2O3-ZrO2 LTCSBs. This is because that the difference of material properties in Al2O3-Al system is 

greater than that in Al2O3-ZrO2 system. The similar unsymmetrical phenomenon and softening-spring 

nonlinearity had been reported to occur in FGM beams [49], two-layer beam [50] and asymmetric 

laminated beams and laminated cylindrical shell [51, 52, 53]. 

Fig. 6 illustrates the nonlinear frequency ratio vs the vibration amplitude curves of double-layer 

LTCSBs for case II. Obviously, the curves of C-C LTCSBs and the curves with 1
bs ts

h h ＝  are symmetric 

because the bending–extension coupling is zero for these two problems. However, the curves of H-H and 

C-H LTCSBs with 1
bs ts

h h   are unsymmetric, and the asymmetry becomes more obvious for the larger 

thickness ratio. Specially, the curve of H-H beam with a large thickness ratio ( 5
bs ts

h h = ) also exhibits 

the softening-spring nonlinearity at small amplitudes but it disappears when the vibration amplitude 

increases.  

Fig. 7 presents the nonlinear frequency ratio vs vibration amplitude curves of double-layer LTCSBs for 

case III. The curves of H-H and C-H LTCSBs with 1
bc tc

h h   is unsymmetric, but no softening-spring 

nonlinearity is observed. That is because the geometry asymmetry of lattice truss cores has little 

influence on the bending–extension coupling effect, and it can only affect the asymmetry of the curves. 

However, it does not result in a softening-spring nonlinearity. 

Fig. 8 shows the nonlinear frequency ratio vs vibration amplitude curves of double-layer LTCSBs for 

case IV. It is clearly seen that all curves for H-H, C-H and C-C LTCSBs show the symmetry and 

hardening-spring nonlinearity. In this case, the bending–extension coupling effect 
11B  is zero because 

only shear deformation is considered at lattice truss cores. In other words, the variation of the length of 

unit cells in two cores have no contribution on the bending-extension coupling effect. Note, the results 

for cases V and VI arrive similar conclusions with those for case IV but are not discussed herein for the 

sake of brevity. 
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In cases I and II, we found that the softening-spring nonlinearity occurs in H-H double-layer LTCSBs 

when the material properties or the structural geometry of each layer have a strong asymmetry with 

respect to the midplane. Under such scenarios, a strong bending–extension coupling effect will be 

produced in the double-layer LTCSBs. In the next analysis, we will study the combined effect of cases I 

and II on the softening-spring nonlinearity. Since the C-C boundary condition does not result in the 

unsymmetric curves for the nonlinear frequency ratio vs amplitude and the softening-spring nonlinearity, 

only the H-H and C-H double-layer LTCSBs are considered in the following example. 

Fig. 9 shows the combined effects on the nonlinear frequency ratio vs vibration amplitude curves of 

double-layer LTCSBs. We choose the Al2O3-Al material system and geometry parameters in case II for 

the double layers. Only hbs / hts is allowed to change in the analysis. As expected, the softening-spring 

nonlinearity is strengthened remarkably with the increase of hbs / hts from 1 to 2. Interestingly, for a large 

ratio of hbs / hts = 6, the softening-spring nonlinearity also occurs in C-H double-layer LTCSBs. These 

results are implied that the combined effect can increase the bending–extension coupling effect, which in 

turn leads to a stronger softening-spring nonlinearity than that in a single unsymmetric case. 

 

5. Conclusions 

This paper studies the nonlinear vibration of unsymmetric double-layer LTCSBs using two analytical 

models developed based on Timoshenko beam theory, von Kármán nonlinear theory and Allen model. The 

Ritz method is employed to obtain the nonlinear vibration frequencies of double-layer LTCSBs with 

different boundary conditions. The effect of different asymmetries in double-layer LTCSB on the 

nonlinear vibration behavior is discussed in detail. It was found that: 

(1) The nonlinear frequency ratio vs amplitude curves of symmetric double-layer LTCSBs and C-C 

unsymmetric double-layer LTCSBs are symmetric and exhibit the hardening-spring nonlinearity. 

(2) The softening-spring nonlinearity only occurs in cases I and II for H-H double-layer LTCSBs when 

the material properties or structural geometry of each layer have a strong asymmetry about the 

midplane. The reason is that it exhibits a strong bending–extension coupling effect in these cases. 

(3) The asymmetry in case III may induce obvious unsymmetric curves for double-layer LTCSBs under 

H-H and C-H boundary conditions, but this does not happen to the cases IV-VI. That is because the 

asymmetry of unit cells in two cores for cases IV-VI has no contribution to the bending–extension 

coupling effect. 
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(4) The combined effect of cases I and II can strengthen the bending–extension coupling effect, and lead 

to the softening-spring nonlinearity in both H-H and C-H double-layer LTCSBs. 
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Appendix A 

Rewrite trial functions in Eqs. (31)-(33) as the following form 

( ) 1

1

N

j j

j

U A
=

=  , ( ) 1

1

N

j j

j

W B
=

=  , ( ) 2

1

N

j j

j

C 
=

=  . 

The elements of linear stiffness matrix 3 3[ ]
N NLK  are 

1 1 1
( , ) 1

0

d d
[ ] d

d d

j k
k j

k 
 

 
= LK , 

2
1 1 1

( , + ) 7 20

d d1
[ ] d

2 d d

j k
k j N k 

 
 

= LK , 

1 2 1
( , 2 ) 3

0

d d1
[ ] d

2 d d

j k
k j N

k 
 +

 
= LK , 

2
1 11

( , ) 7 20

dd1
[ ] d

2 d d

jk
k N j

k 
 +


= LK , 

22
1 1 11 1

( , + ) 4 52 20

d dd d
[ ] d

d d d d

j jk k
k N j N k k 

   +

   
= +  

 
LK , 

2
1 21 1

( , +2 ) 6 12 220

dd d1
[ ] d

2 d d d

jk k
k N j N j

k k 
  +

  
= −  

 
LK , 

1 1 2
( 2 , ) 3

0

d d1
[ ] d

2 d d

j k
k N j

k 
 +

 
= LK , 

2
1 1 12

( 2 , + ) 6 12 220

d dd1
[ ] d

2 d d d

j jk
k N j N kk k 

  +

  
= −   

 
LK , 

1 22
( 2 , +2 ) 2 13 2 2

0

dd
[ ] d

d d

jk
k N j N k j

k k 
 +

 
= +   

 
LK . 

The elements of nonlinear stiffness matrix 1 3 3[ ]
N NNLK  are 

1 1 1
( , + ) 9

0

d d1 d
[ ] d

2 d d d

j k
k j N

W
k 

  
 

= NL1K , 
1 1 1

( + , ) 9
0

d dd
[ ] d

d d d

j k
k N j

W
k 

  
 

= NL1K , 

22 2
1 1 1 11 1 1

( + , ) 11 2 2 20

d d dd d d1 d d d
[ ] d

2 d d d d d d d d d

j j jk k k
k N j N

W W W
k 

        +

     
= + +  

 
NL1K , 
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1 2 1
( + , +2 ) 10

0

d dd
[ ] d

d d d

j k
k N j N

W
k 

  
 

= NL1K , 
1 1 2

( +2 , + ) 10
0

d d1 d
[ ] d

2 d d d

j k
k N j N

W
k 

  
 

= NL1K . 

The elements of nonlinear stiffness matrix 2 3 3[ ]
N NNLK  is 

2
1 1 1

( + , + ) 8
0

d dd
[ ] d

d d d

j k
k N j N

W
k 

  
  

=  
 

NL2
K . 

The elements of mass matrix 3 3[ ]
N NM  are 

1

( , ) 1 1 1
0

[ ] d
k j j k

m =  M , 
1 1

( , + ) 5 1
0

d1
[ ] d

2 d

j

k j N k
m 




= M , 

1

( , +2 ) 2 2 1
0

1
[ ] d

2
k j N j k

m =  M , 
1

1
( + , ) 5 1

0

d1
[ ] d

2 d

k
k N j jm 




= M , 

1 1 1
( , ) 1 1 1 3

0

d d
[ ] d

d d

j k
k N j N j k

m m 
 + +

 
=   + 

 
M , 

1
1

( + , +2 ) 4 2
0

d1
[ ] d

2 d

k
k N j N jm 




= M , 

1

( +2 , ) 2 2 1
0

1
[ ] d

2
k N j k j

m =  M , 
1 1

( +2 , ) 4 2
0

d1
[ ] d

2 d

j

k N j N k
m 

+


= M , 

1

( +2 , 2 ) 6 2 2
0

[ ] d
k N j N k j

m + =  M , 

where , 1,2,...,j k N= . 

The coefficients of elements in stiffness and mass matrices are 

1 11k A= , 
2 13k A= , 

3 122k A= − , ( )2

4 2 13 12 112k A B D= − + , 
5 00k A= , 

( )6 2 12 132k B A= − , ( )7 2 11 122k B A= − − , 

2

2
8 11

2
k A


= , 

9 2 11k A= , 

10 2 12k A= − , ( )2

11 2 11 12k B A= − − , 12 00

2

2
k A


= , 13 002

2

1
k A


= ; 

1 11m L= , ( )2 13 232m L L= − + , ( )2

3 2 12 22 322m L L L= − + , ( )4 2 25 122m L L= − , 

( )5 2 21 132m L L= − − , 
6 12 24 312m L L L= − + . 

 

Appendix B 

The dimensionless corresponding coefficients in Appendix A for cases II and III are 

00 tc bc
A S S= + ; 

11 ts ms bsA A A A= + + , ( )12 3 4 5ts ms bs
A A A A  = + − ,  
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2 2 2

13 3 4 5ts ms bsA A A A  = + + ; 
11 ts ms bsB B B B= + + , 

12 3 4 5ts ms bsB B B B  = + − ; 

11 ts ms bs
D D D D= + + ; 

0 0 0 0 0

11 ts tc ms bc bsL I I I I I= + + + + , 
2 0 2 0 2 0 2 0

12 3 1 4 5ts tc ms bsL I I I I   = + + + , 
0 0 0 0

13 3 1 4 5ts tc ms bsL I I I I   = − + − ; 

1 1 1

21 ts ms bsL I I I= + + , 
1 1 1

22 3 4 5ts ms bsL I I I  = + + , 
1 1

23 bc tc
L I I= + , 

1

24 1 tc
L I= , 

1 1 1 1

25 3 1 4 5ts tc ms bsL I I I I   = + + − ; 
2 2

31 tc bcL I I= + , 
2 2 2

32 ts ms bsL I I I= + + . 

 

Appendix C 

The corresponding dimensionless coefficients for cases I and IV-VI are 

00 bc tc
A S S= + ; 

11 ts ms bsA A A A= + + , 
12 1 1ts bsA A A = − , 

2 2

13 1 1ts bsA A A = + ;  

11 ts bs
B B B= + , 

12 1 1ts bsB B B = − ; 
11 ts ms bs

D D D D= + + ; 

0 0 0 0 0

11 ts tc ms bc bsL I I I I I= + + + + , 

2 2
2 0 0 0 2 03 3

12 1 1
4 4

ts tc bc bsL I I I I
  = + + + ,  

0 0 0 03 3
13 1 1

2 2
ts tc bs bc

L I I I I
  = − − + ;  

1 1

21 ts bs
L I I= + , 

1 1

22 1 1ts bsL I I = − , 
1 1

23 bc tc
L I I= + , 

1 1

3 3
24

2

tc bcI I
L

 −
= , 

1 1 1 1

25 1 3 3 1ts tc bc bsL I I I I   = + − − ; 

2 2

31 tc bcL I I= + , 
2 2 2

32 ts ms bsL I I I= + + ;  

where 

1 2 3, ,ch H h

H L H
  = = = , 

2 2

2 2

10 10

d d

,

H H
h h

i i

H hbc tc

i i

bc tci i

z z z z

I I
I H I H

 
− + −

−
= =

 
, 

( )
( )

( )

22

2

2

10

1, , d

, ,
1, ,

H

H ts
h

ts ts ts

E z z z

A B D
A H H

−
=


, ( )

( )
( )

22

2

2

10

1, , d

, ,
1, ,

h

h ms

ms ms ms

E z z z

A B D
A H H

−
=


, 

( )
( )

( )

22

2

2

10

1, , d

, ,
1, ,

H
h

H bs

bs bs bs

E z z z

A B D
A H H

− +

−
=


, 

2

2

10

d

 ,

H
h

h tc

tc

G z

S
A

−

=
 2

2

10

d

 

h

H bc
h

bc

G z

S
A

−

−
+

=


,  
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2 2 2

2 2 2

10 10 10

d d d

,  ,

H h H
h

i i i

H h Hts ms bs
h

i i i

ts ms bsi i i

z z z z z z

I I I
I H I H I H

  
− +

− − −
= = =

  
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 18 

References 

[1] L.J. Gibson, M.F. Ashby, Cellular solids: structure and properties. 2nd ed. Cambridge: Cambridge 

University Press, 1997. 

[2] H. Bart-Smith, J.W. Hutchinson, A.G. Evans, Measurement and analysis of the structural performance 

of cellular metal sandwich construction, Int. J. Mech. Sci. 43 (2001) 1945–1963. 

[3] J.G. Li , X.L. An , J.J. Liang , et al. Recent advances in the stereolithographic three-dimensional 

printing of ceramic cores: Challenges and prospects. J. Mater. Sci. Technol. 117 (2022) 79–98. 

[4] H.N.G. Wadley, N.A. Fleck, A.G. Evans, Fabrication and structural performance of periodic cellular 

metal sandwich structures, Compos. Sci. Technol. 63 (2003) 2331–2343. 

[5] V.S. Deshpande, N.A. Fleck, Collapse of truss core sandwich beams in 3-point bending, Int. J. Solids 

Struct. 38 (2001) 6275–6305. 

[6] T.A. Sebaey, E. Mahdi, Crushing behavior of a unit cell of CFRP lattice core for sandwich structures’ 

application, Thin-Walled Struct. 116 (2017) 91–95. 

[7] W. Yang, J. Xiong, L.J. Feng, et al. Fabrication and mechanical properties of three-dimensional 

enhanced lattice truss sandwich structures. J. Sandw. Struct. Mater. 22 (2020) 1594–1611. 

[8] L.H. Yang, X. Han, L.J. Feng, Z.B. Chen, G.C. Yu, J. Qu, J.S. Yang, L.Z. Wu, Numerical 

investigations on blast resistance of sandwich panels with multilayered graded hourglass lattice cores, 

J. Sandw. Struct. Mater. 22 (2020) 2139–2156. 

[9] X. Han, L.H. Yang, G.C. Yu, J. Qu, L.Z. Wu, Blast resistance of multilayer graded lattice sandwich 

structures, Chinese Journal of Applied Mechanics 35 (2018) 185–190. 

[10] K. Finnegan, G. Kooistra, H.N.G. Wadley, V.S. Deshpande, The compressive response of carbon fiber 

composite pyramidal truss sandwich cores, Int. J. Mater. Res. 98 (2007) 1264–1272. 

[11] H.L. Fan, F.H. Meng, W. Yang, Mechanical behaviors and bending effects of carbon fiber reinforced 

lattice materials, Arch. Appl. Mech. 75 (2006) 635–647. 

[12] J. Xiong, L. Ma, S. Pan, L.Z. Wu, J. Papadopoulos, A. Vaziri, Shear and bending performance of 

carbon fiber composite sandwich panels with pyramidal truss cores, Acta Mater. 60 (2012) 1455–

1466. 

[13] J. Xiong, L. Ma, L.Z. Wu, J.Y. Liu, A. Vaziri, Mechanical behavior and failure of composite 

pyramidal truss core sandwich columns, Compos. Pt. B-Eng. 42 (2011) 938–945. 

[14] Y.C. Hu, H.J. Bi, G.Y. Ye, Compression behaviors of 3D printed pyramidal lattice truss composite 

https://ifbfh253cb3a601b84ef2s5nwxpu9pwuqo6xxufgac.eds.tju.edu.cn/science/article/pii/S1005030222000469#!
https://ifbfh253cb3a601b84ef2s5nwxpu9pwuqo6xxufgac.eds.tju.edu.cn/science/article/pii/S1005030222000469#!
https://ifbfh253cb3a601b84ef2s5nwxpu9pwuqo6xxufgac.eds.tju.edu.cn/science/article/pii/S1005030222000469#!


 

 19 

structures, Compos. Struct. 233 (2020) 111706. 

[15] J.H. Lim, K.J. Kang, Mechanical behavior of sandwich panels with tetrahedral and Kagome truss 

cores fabricated from wires, Int. J. Solids Struct. 43 (2006) 5228–5246. 

[16] B. Wang, L.Z. Wu, L. Ma, Q. Wang, S.Y. Du, Mechanical behavior of the sandwich structures with 

carbon fiber-reinforced pyramidal lattice truss core, Mater. Des. 31 (2010) 2659–2663. 

[17] Y.J. Wang, Z.J. Zhang, X.M. Xue, L. Zhang, Free vibration analysis of composite sandwich panels 

with hierarchical honeycomb sandwich core, Thin-Walled Struct. 145 (2019) 106425. 

[18] L.H. Yang, L. Sui, Y.L. Dong, X.Y. Li, F. Zi, Z.X. Zhang, S.J. Yang, L.Z. Wu, Quasi-static and 

dynamic behavior of sandwich panels with multilayer gradient lattice cores, Compos. Struct. 255 

(2020) 112970. 

[19] X. Gao, M.M. Zhang, Y.D. Huang, L. Sang, W.B. Hou, Experimental and numerical investigation of 

thermoplastic honeycomb sandwich structures under bending loading, Thin-Walled Struct. 155 (2020) 

106961. 

[20] L. Ge, H.Y. Zheng, H.M. Li, B.S. Liu, H.R. Su, D.N. Fang, Compression behavior of a novel 

sandwich structure with bi-directional corrugated core, Thin-Walled Struct. 161 (2021) 10741. 

[21] Z.K. Guo, C.C. Liu, F.M. Li, Vibration analysis of sandwich plates with lattice truss core, Mech. Adv. 

Mater. Struct. 26 (2019) 424–429. 

[22] K. Kohsaka, K. Ushijima, W.J. Cantwell, Study on vibration characteristics of sandwich beam with 

BCC lattice core, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 264 (2021) 114986. 

[23] X.Y. Zhang, H. Zhou, W.H. Shi, F.M. Zeng, H.Z. Zeng, G. Chen, Vibration tests of 3D printed 

satellite structure made of lattice sandwich panels, AIAA J. 56 (2018) 4213–4217. 

[24] Y.Y. Chai, S.J. Du, F.M Li, C.Z. Zhang, Vibration characteristics of simply supported pyramidal 

lattice sandwich plates on elastic foundation: Theory and experiments, Thin-Walled Struct. 166 (2021) 

108116. 

[25] J. Lou, L. Ma, L.Z. Wu, Free vibration analysis of simply supported sandwich beams with lattice truss 

core, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 177 (2012) 1712–1716. 

[26] H.G. Allen, Analysis and Design of Structural Sandwich Panels. Oxford: Pergamon Press, 1969. 

[27] J. Lou, B. Wang, L. Ma, L.Z. Wu, Free vibration analysis of lattice sandwich beams under several 

typical boundary conditions, Acta Mech. Solida Sin. 26 (2013) 458–467. 

[28] M.H. Xu, Z.P. Qiu, Free vibration analysis and optimization of composite lattice truss core sandwich 



 

 20 

beams with interval parameters, Compos. Struct. 106 (2013) 85–95. 

[29] Z. Zhao, S.R. Wen, F.M. Li, Vibration analysis of multi-span lattice sandwich beams using the 

assumed mode method, Compos. Struct. 185 (2018) 716–727. 

[30] G. Yao, F.M. Li, Nonlinear primary resonances of lattice sandwich beams with pyramidal truss core 

and viscoelastic surfaces, Acta Mech. 229 (2018) 4091–4100. 

[31] M. Liu, D.Q. Gao, X.Y. Zhang, J. Wei, D.F. Zhu, Nonlinear dynamic responses of beamlike truss 

based on the equivalent nonlinear beam model, Int. J. Mech. Sci. 194 (2021) 106197. 

[32] Y.Y. Chai, F.M. Li, Z.G. Song, C.Z. Zhang, Analysis and active control of nonlinear vibration of 

composite lattice sandwich plates, Nonlinear Dyn. 102 (2020) 2179–2203. 

[33] P. Nampally, A.T. Karttunen, J.N. Reddy, Nonlinear finite element analysis of lattice core sandwich 

plates, Int. J. Non-Linear Mech. 121 (2020) 103423. 

[34] D.H. Li, R.P. Wang, R.L. Qian, Y. Liu, G.H. Qing, Static response and free vibration analysis of the 

composite sandwich structures with multi-layer cores, Int. J. Mech. Sci. 111 (2016) 101–115. 

[35] B.T. Cao, B. Hou, Y.L. Li, H. Zhao, An experimental study on the impact behavior of multilayer 

sandwich with corrugated cores, Int. J. Solids Struct. 109 (2017) 33–45. 

[36] B.T. Cao, B. Hou, H. Zhao, Y.L. Li, J.G. Liu, On the influence of the property gradient on the impact 

behavior of graded multilayer sandwich with corrugated cores, Int. J. Impact Eng. 113 (2018) 98–105. 

[37] G.D. Xu, J.J. Zhai, T. Zeng, Z.H. Wang, S. Cheng, D.N. Fang, Response of composite sandwich 

beams with graded lattice core, Compos. Struct. 119 (2015) 666–676. 

[38] Y. Sun, L.C. Guo, T.S. Wang, S.Y. Zhong, H.Z. Pan, Bending behavior of composite sandwich 

structures with graded corrugated truss cores, Compos. Struct. 185 (2018) 446–454. 

[39] A. Pydah, R.C. Batra, Analytical solution for cylindrical bending of two-layered corrugated and 

webcore sandwich panels, Thin-Walled Struct. 123 (2018) 509–519. 

[40] L. Meng, S.J. Du, F.M. Li, X.J. Jing, Vibration characteristics of novel multilayer sandwich beams: 

Modelling, analysis and experimental validations, Mech. Syst. Signal Proc. 142 (2020) 106799. 

[41] Z.K. Guo, X.D. Yang, W. Zhang, Dynamic analysis, active and passive vibration control of double-

layer hourglass lattice truss structures, J. Sandwich Struct. Mater. 22 (2020) 1329–1356. 

[42] L.X. Liu, W.Y.  Yang, Y.Y. Chai, G.F. Zhai, Vibration and thermal buckling analyses of multi-span 

composite lattice sandwich beams, Arch. Appl. Mech. 91 (2021) 2601–2616. 

[43] Z.K. Guo, G.B. Hu, V. Sorokin, Y. Yang, L.H. Tang, Sound transmission through sandwich plate with 



 

 21 

hourglass lattice truss core, J. Sandw. Struct. Mater. 23 (2021) 1902–1928. 

[44] S. Kitipornchai, L.L. Ke, J. Yang, Y. Xiang, Nonlinear vibration of edge cracked functionally graded 

Timoshenko beams, J. Sound Vib. 324 (2009) 962–982. 

[45] J.E. Chen, W. Zhang, M. Sun, M.H. Yao, Free vibration and hardening behavior of truss core 

sandwich beam, Shock Vib. 2016 (2016) 1–13. 

[46] K.M. Liew, C.M. Wang, Y. Xiang, S. Kitipornchai, Vibration of Mindlin plates: programming the p-

version ritz method, Oxford, Elsevier Science, 1998. 

[47] L.L. Ke, J. Yang, S. Kitipornchai, Nonlinear free vibration of functionally graded carbon nanotube- 

reinforced composite Timoshenko beam, Compos. Struct. 92 (2010) 676–683. 

[48] R.K. Gupta, Gunda Jagadish Babu, G. Ranga Janardhan, G. Venkateswara Rao, Relatively simple 

finite element formulation for the large amplitude free vibrations of uniform beams. Finite Elem. Anal. 

Des. 45 (2009) 624–631. 

[49] L.L. Ke, J. Yang, S. Kitipornchai, An analytical study on the nonlinear vibration of functionally 

graded beams, Meccanica 45 (2010) 743–752. 

[50] N. Hao, L.L. Ke, Softening-spring phenomenon in large amplitude vibration of two-layer bi-material 

beams, Int. J. Struct. Stab. Dyn. (2022) 2250106. https://doi.org/10.1142/S0219455422501061. 

[51] G. Singh, G.V. Rao, Nonlinear oscillations of thick asymmetric cross-ply beams, Acta Mech. 127 

(1998) 135–146. 

[52] G. Singh, G.V. Rao, N. Iyengar, Analysis of nonlinear vibrations of unsymmetrically laminated 

composite beam, AIAA J. 29 (1991) 1727–1735. 

[53] Mohd. Taha Parvez, A.H. Khan and M. Yaqoob Yasin, On the softening and hardening nonlinear 

behavior of laminated cylindrical shells. Eng. Struct. 226 (2021) 111339. 

 

 

 

 

 

 

 

 



 

 22 

 

 

 

Table 1 Geometry parameters of double-layer LTCSB in different cases (L=1.0607 m, B=0.06364 

m). 

 

Parameters Cases I and VI Case II Case III Case IV Case V 

hms 0.001 m 0.001 m 0.001 m 0.001 m 0.001 m 

hts 0.001 m 0.001 m 0.001 m 0.001 m 0.001 m 

hbs / hts 1 variable 1 1 1 

htc 0.015 m 0.015 m variable 0.015 m 0.015 m 

hbc / htc 1 1 variable 1 1 

H 0.033 m variable 0.033 m 0.033 m 0.033 m 

bc 0.02121 m 0.02121 m 0.02121 m 0.02121 m 0.02121 m 

dbc 0.02121 m 0.02121 m 0.02121 m variable 0.02121 m 

dbc / dtc 1 1 1 variable 1 

rtc 0.002 m 0.002 m 0.002 m 0.002 m 0.002 m 

rbc / rtc 1 1 1 1 variable 
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Table 2 Material properties of double-layer LTCSB. 

 

Materials Elastic modulus (E) Density (ρ) Poisson’s ratio (v) 

Al2O3 320 GPa 3800 kg/m3 0.26 

ZrO2 116 GPa 3657 kg/m3 0.298 

Al 70 GPa 2700 kg/m3 0.33 
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Table 3 Convergence and comparison of fundamental frequency (Hz) of double-layer LTCSB with 

different boundary conditions. 

 

N H-H C-H C-C 

3 34.234 47.857 68.635 

4 30.896 47.801 68.627 

5 30.896 47.752 68.387 

6 30.887 47.745 68.359 

7 30.887 47.739 68.349 

FEM 30.91 46.72 66.80 

Li et al. [40] 30.89 - - 
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Table 4 First three frequencies (Hz) of Al2O3-ZrO2 double-layer LTCSB with 80 unit-cells for case I. 

 

 H-H   C-H   C-C  

Mode Present FEM  Present FEM  Present FEM 

1 33.27 34.30  48.76 48.59  69.59 67.37 

2 123.39 121.38  155.61 150.50  190.45 181.33 

3 281.99 264.86  329.92 303.52  387.73 345.08 
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Fig. 1. Sketches of an unsymmetric double-layer LTCSB (a) and different unit cells in the top and bottom 

cores (b). 
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Fig. 2. Short elements along length of double-layer LTCSB for six cases. 
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Fig. 3. Undeformed and deformed infinitesimal elements of the double-layer LTCSB in xz-plane: (a) the 

midplane lies in the bottom core layer ( ms ts bs
h h h=   or tc bc

h h ), and (b) the midplane lies in the 

middle position of middle sheet ( ts ms bs
h h h= = and tc bc

h h= ). 
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Fig. 4. FEM model and total mesh of the double-layer LTCSB for case I. 
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Fig. 5. The ωnl / ωl vs amplitude curves of double-layer LTCSB for case I: (a) H-H, (b) C-H and (c) C-C. 
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Fig. 6. The ωnl / ωl vs amplitude curves of double-layer LTCSB for case II: (a) H-H, (b) C-H and (c) C-C. 
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Fig. 7. The ωnl / ωl vs amplitude curves of double-layer LTCSB for case III: (a) H-H, (b) C-H and (c) C-C. 
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Fig. 8. The ωnl / ωl vs amplitude curves of double-layer LTCSB for case IV: (a) H-H, (b) C-H and (c) C-C. 
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Fig. 9. Combined effect on the ωnl / ωl vs amplitude curves of double-layer LTCSB for cases I and II: (a) 

H-H and (b) C-H. 

 


