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Abstract 

Efficient resource management methods are essential for spare parts used in the maintenance and repair 

of equipment. Forecasting plays a critical role in planning, especially under demand uncertainty. 

Existing works regarding spare parts with intermittent demand focus on the mere forecasting model 

while integrating the planning and forecasting models are not sufficiently investigated. We examine the 

interaction between two models to optimise planning and forecasting decisions and prevent sub-

optimality. This paper presents two mathematical models, including a planning model that determines 

stock level, spare part order assignment to suppliers, equipment repair assignment, and the number of 

intervals over the planning horizon. The second model is the forecasting model by Support Vector 

Machine (SVM). Considering uncertainty, demand estimation is performed by piecewise linearization 

considering the optimal number of intervals in the planning model used in forecasting. An interactive 

procedure is developed to optimise models. We use an empirical investigation from an oil company 

providing the spare part supply chain data. The analyses show that demand estimation by piecewise 

method and integrating the decisions optimises the cost, improves the forecasting accuracy, and 

planning performance. Moreover, we offer several insights to practitioners that shed light on spare part 

planning and forecasting decisions. 
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1. Introduction 

Most organisations consider profitability a vital objective, so the decisions should be organised to 

facilitate achieving the goals and competing in the global market. Unexpected downtime can be 

disastrous for continuous production and the company's bottom line, i.e., the net profit (Comparesoft 

2021). Given the equipment maintenance, developing the operations above standard causes safety risks, 

business risks, and operational obstacles; therefore, these risks may affect the continuous operations of 

ageing assets (Keystone Energy Tools 2021). Maintenance and repair are critical operations in 

industries that guarantee production continuation, supported by robust planning integrated with a well-

structured forecasting approach. Repair operations significantly impact downtime costs causing the lost 

sale, which can never be regained (World oil 2021); in other words, a few hours of downtime can 

prominently be critical in a strategic industry (Jin and Liao 2009). A spare part supply chain should 

provide a high  service level since the shortage lead to prominent inventory costs; however, overstocking 

may cause huge costs (Cantini et al. 2022). 

We focus on the high-value and low-demand spare parts that are the most important resources used in 

equipment repair operations, which may be crippled if their required resources are not sufficiently 

supplied (Christiansen 2021). Optimising the resources has gained increasing attention worldwide, so 

there are many tools to manage the activities for this purpose. Circular Economy (CE) is one of the 

concepts for optimising resources which shows the growing popularity regarding the increasing 

attention to supply, production, and distribution (Gonzalez et al. 2019). Spare parts have characteristics 

that distinguish them from other inventories, such as criticality, speciality, demand pattern, and price 

(value). Moreover, in the US military, the repairable spare parts were estimated at $10 billion in 1976 

(Nahmias 1981). The government accountability office reports that the items are worth about $4.3 

billion just in one of the army's depots, reported in 2021, which points out the importance of using an 

effective forecasting method to optimise planning. The spare part's demand pattern has two aspects: 

quantity and forecastability; the irregular pattern makes it difficult to control forecasting (Huiskonen 

2001).  

Integrating the supply and repair decisions can improve planning and increase supply chain 

responsiveness.  Existing research is based on Multi-Echelon Technique for Recoverable Item Control 

(METRIC) model that discusses repairable spare part inventory management with uncertain demand 

during the lead-time by a probability distribution with constant parameters; however, using data for 

estimation is both theoretically and practically important, mainly when uncertain intermittent demand 

exists. Goltsos et al. (2019) declare that forecasting is vital in any supply chain, especially when dealing 

with a closed-loop network, the uncertainty in return rate (quantity and time) and quality becomes 

important. We implement the renewal process using piecewise linearization to approximate the demand 

in each time interval over the planning horizon, enhancing planning effectiveness by improving the 

demand estimation. The estimated demand is used both in planning and forecasting. Indeed, this method 

determines the number of intervals so that the demand in each interval becomes near-linear, which is 

simpler to deal with. We use "interval" instead of time interval throughout this article for simplicity.  

Several kinds of research regarding the intermittent demand forecasting models, such as (Balugani et 

al. 2019; Prestwich et al. 2014; A.A. Syntetos, Babai, and Altay 2012), consider forecasting by a single 

model while integrated planning and forecasting models can improve the results. Cyplik et al. (2009) 

discuss integrated planning and forecasting decisions, but demand estimation, supply, and repair 

decisions are not sufficiently investigated. According to Goltsos et al. (2022), a 1% reduction in forecast 

errors can lead to a 10–15% decrease in inventory costs, which illustrates the criticality of considering 

the integration between forecasting and planning and prevents overstocking and shortages. Moreover, 

as Tapia-Ubeda et al. (2020) declared, the integration of various decisions is vital to enhancing the 

supply chain performance and cost-effectiveness 

We are looking to answer the following questions: 1) what are the optimal forecasting model parameters 

for the spare parts with intermittent demand? 2) what is the optimal number of intervals (periods)? 3) 



 

 

what failed equipment should be assigned to each repair centre? 4) what and how many spare parts to 

order? 5) where the repaired equipment should be held (warehouses or installation bases)? 6) what is 

the optimal stock level of spare parts? 

This paper presents two models: the repairable spare part planning that determines the stock level of 

warehouses, repair, order assignment, and the optimal number of the planning intervals, and an SVM-

based forecasting model that uses the estimated demand considering the optimal number of intervals 

from the planning model. An interactive procedure optimises the models. An important factor in 

forecasting accuracy is the number of periods (intervals) that affects the demand estimation. The 

estimated demand is the basis of forecasting in future periods. The rest of the article is organised into 

the following sections: a literature review is presented in section 2. Then, the problem and model are 

described in section 3. The case study, computations, and results are provided in section 4. The 

conclusion is expressed in section 5. 

2. Literature review 

The related works regarding spare part supply chain planning and forecasting are discussed below. The 

literature review findings are provided as the research gaps at the end of this section.  

2.1.  Planning models 

Spare part characteristics distinguish it from other similar products in the aspect of demand, value, and 

other properties. As one of the most critical activities in industrial sections, inventory management 

involves supplying, ordering, purchasing, and inventory control. All the activities should be organised 

in a way that helps meet the demand while minimising total costs (Haj shirmohammadi 2014). If the 

inventory level is too high, the inventory costs will be high while the shortage decreases. A low 

inventory level decreases the inventory costs while shortages increase.  

Sherbrooke (1968) developed a METRIC model, as the pioneer, to optimise the stock level aiming to 

minimise costs. Yangi and Saski (1991) considered the same model with a continuous review policy 

that applies the repair capacity in repair centres to evaluate the performance. Subsequently, Axsäter 

(2003) examined a single-echelon, single-item model examining unilateral transhipment between 

warehouses to reduce shortages. Jain and Raghavan (2009) extended the queuing model for inventory 

planning in a multi-tier supply chain. Manufacturers, warehouses, and vendors are considered in this 

network, and the M/M/∞ queuing model evaluates the performance. Considering the basic model, 

(Hertzler 2010) investigated the effect of the replacement for the low-demand, high-value spare parts. 

Using the decision tree model and the Markov chain, they also analysed the effect of unidirectional 

replacement in a multi-period supply chain.  

Van Jaarsveld et al. (2015) used an integer programming model for a multi-location, single-echelon, 

and multi-item repairable spare parts network. Continuous inventory review and base stock 

replenishment policy are considered in this problem. Lateral transhipment is allowed to reduce the 

shortage probability. Tavakkoli-Moghaddam et al. (2018) developed a two-tier closed-loop spare part 

supply chain, including distributor, repair centres, and operating bases considering multi-modal repairs, 

formulated for location-allocation to minimise costs and determine each spare part's repair service 

mode. Ruiz-Torres et al. (2019) published a paper on optimising supplier selection for a spare part 

network. Supplier capacity is deterministic, but the returned spare part is uncertain. 

 Bitton and Cohen (2019)  focused on the repairable spare parts network in the aviation industry. In this 

study, two groups of spare parts are analysed to obtain optimal decisions regarding inventory 

management and repair. No-Go spare parts ground the aircraft when they fail, but Go parts' failure 

allows the aircraft to be operational for a predetermined period. This research uses Erlang-A (M/M/c) 

and Erlang-B (M/M/c/c) models for the second and first groups of parts, respectively. Mohtashami et 

al. (2020) considered a green closed-loop network to minimise negative environmental effects. The long 

waiting time in queues is due to the limited capacity of the facilities such as distribution, recycling, and 

repair centres. The queuing model is defined as G/M/S, aiming to minimise the waiting time to reduce 

negative environmental effects. Qin et al. (2021) presented two models with profit- and cost-centric 



 

 

objective functions for a two-echelon repairable spare part service network. The models consider the 

performance assessment in repair centres under the uncertain failure rate.  

The reviewed researches investigated the performance assessment in planning decisions by queuing 

models to obtain optimal decisions, while supply decisions are rarely examined besides the other 

decisions. Also, other research does not consider repair constraints such as repair expertise (skills) and 

capacity, which are commonly used in real-world problems. Moreover, there is no order assignment 

decision to suppliers regarding the supply decisions integrating with repair and inventory management. 

Most of the works focused on the basic METRIC model from the aspect of uncertainty, while this 

method may not fit the demand pattern in many cases.  

2.2.  Forecasting models 

Demand plays a crucial role in spare part supply chain planning since the stock level depends 

significantly on demand and value. Since uncertainty in demand is a critical factor in forecasting, we 

first review the literature regarding the spare part demand  uncertainty; then, the forecasting context is 

examined. 

Machine learning (ML) is the branch of artificial intelligence (AI) that allows applications to obtain 

results without programming for every purpose. Historical data are used as the input for prediction. 

Machine learning is divided into different types according to the algorithms used in learning: 1) 

unsupervised learning, 2) supervised learning, 3) semi-supervised learning, and 4) reinforcement 

learning. The algorithm is selected based on the data used in the prediction (Burns 2021).  

Demands of spare parts have specific characteristics that make forecasting complicated. These 

characteristics are such as 1) type of demand: I) Intermittent (irregular demand occurrence with low 

demand quantity variation); II) Lumpy (irregular demand occurrence with high demand quantity 

variation); III) Erratic (regular demand occurrence with high demand quantity variation); IV) Smooth 

(regular demand occurrence with low demand quantity variation) 2) Dependence on descriptive factors: 

There are several factors related to maintenance and repair, and working condition that affects the 

failure rate, i.e., the demand (SILVER 1981).  

Croston (1972) proposed the first forecasting model for intermittent demand that divides the demand 

intervals and quantity. He used exponential smoothing in forecasting, which outperforms routine 

exponential smoothing. Also, Aris A. Syntetos and Boylan (2005) developed the Syntetos-Boylan 

approximation (SBA), and (Babai et al. 2019) presented a modified SBA (MSBA). Lindsey and Pavur 

(2014) uses the Bayesian model to forecast intermittent demand to minimise costs that obtain spare 

parts' inventory level when demand is uncertain. Hua and Zhang (2006) developed an approach that 

assesses the effectiveness of time series and descriptive variables on demand forecasting. They also 

adapted the Support Vector Machine model to forecast demand. Using the descriptive variables with 

the proposed model improves the forecast accuracy. 

Amin-Naseri and Tabar (2008) examined recurrent neural network (NN) for forecasting spare parts with 

lumpy demand. They compared the proposed approach with Boylan, Synetos, and Croston's methods. 

The results confirmed the superiority of the NN-based AI. (Amirkolaii et al. 2017) studied the 

forecasting approach for irregular demands of spare parts. They analysed the neural network for single- 

and multi-feature demand. The results show more accuracy for spare parts with higher features, 

especially those with intermittent demands. (N. Pawar and B. Tiple 2019) compared the accuracy of the 

ML when new features (variables and predictors) are added to the model. The results show that adding 

new features enhances accuracy. Yang et al. (2021) studied the spare part classification using 

convolutional neural networks. They considered various criteria to categorise the spare parts. A transfer 

learning-based is used according to stock level, characteristics, cost, and lead-time criteria. Dodin et al. 

(2021) developed a machine learning forecasting framework for intermittent and non-intermittent 

demands of aircraft spare parts in the aftermarket to pursue the recent literature. The proposed 

framework prominently improves the accuracy and run time.  



 

 

The literature review shows that the relation of demand estimation in planning models with forecasting 

is not investigated, especially in nonparametric methods that are data-based. Integrating forecasting and 

planning models can efficiently bridge this research gap, especially for the repairable spare parts supply 

chain. 

2.3. Research gaps 

The findings of the reviewed literature are listed below: 

• Demand is a critical factor used in forecasting, affecting planning performance. Many research 

considers a probability distribution for demand estimation, but existing methods may not fit the 

demand pattern appropriately, especially for spare parts with intermittent demand, which highly 

affects demand forecasting.  

• Parameters in forecasting models such as SVM are often separately optimised while reflecting 

planning decisions is scarcely discussed for optimising decisions considering the demand 

estimation by piecewise linearization. 

• The integrated supply and repair decisions are not comprehensively considered in other models; 

for example, the supply capacity, defect, and delivery time constraints are significant decisions 

affecting the planning performance. Also, repair constraints such as capacity, time, and expertise 

are critical constraints that are not considered in other research. Integrating the above decisions 

contributes to the literature and prevents sub-optimal solutions. 

3. Model 

This section discusses the problem description and model formulation, including forecasting and 
planning models. 

3.1.  Problem description 

The present research considers a repairable spare part supply network (RSPSN) model regarding supply 

and repair decisions. The RSPSN is illustrated in Figure 1. The flows begin where the equipment is 

installed. The failed equipment is replaced with an operational one that is intact, and the defective one 

is moved to inspection centres where the experts are gathered to examine the entries from technical 

aspects to determine whether the repair is economical.  

The repair assignments to repair centres are analysed considering the repair time, expertise, technical, 

and capacity aspects. The company assigns the repair operations to either inner or outer-company repair 

centres based on recent factors. Inner-company repair centres depend on the company's resources, such 

as labour, material (spare parts used in repairing), and the budget, while the outer-company repair 

centres serve the company and receive the repair cost based on the predefined contract. Central 

warehouses provide the spare parts to repair centres used in repairing the equipment. The order 

assignment to suppliers is performed according to price, delivery time, and defect rate. 

 In case of failure, the spare parts are stocked in central and local warehouses to meet the demands of 

installation bases and central warehouses. The central warehouses also supply the local warehouses, 

and the demands of installation bases are supplied from the local warehouses. Additionally, the central 

warehouses supply the repair centres for the spare parts used in repair operations. The optimal decisions 

regarding the planning model are such as order assignment to suppliers, including what to order and the 

amount of order, assignment of the failed equipment to repair centres considering the repair capacity, 

expertise, and time, the stock level of central and local warehouses, repair equipment from repair centres 

to central and local warehouses and installation bases, the number of time intervals in the planning 

horizon. The demand, i.e., the failure rate, may follow a known distribution in the present planning 

horizon, but this distribution cannot be reliable for long-term forecasting since demand's mean and 

variance may change over the planning horizon. Hence, integrating the planning and forecasting models 

can improve the performance of models.  



 

 

 

 

Figure 1. RSPSN representation  

Figure 1 Alt Text. This figure shows the network structure, type and direction of flows. The figure shows the 

network that includes suppliers, repair centres, warehouses, inspection centres, and installation bases. The 

equipment moves from installation bases to repair centres; then, they move to warehouses and installation bases 

when they are repaired. Also, the spare parts move from suppliers to warehouses and warehouses to repair 

centres. 

3.2.  Notations 

➢ Indices and sets 𝑠 ∈ 𝑆 where 𝑠1, 𝑠2 ⊆ 𝑠 Equipment / Spare parts 𝑗, 𝑗′ ∈ 𝐽 where 𝑤, 𝑟, 𝑖 , 𝑐, 𝑠′ ⊆ 𝑗, 𝑗′ All nodes 𝑤,𝑤′ ∈ 𝑊;𝑤1 ⊆ 𝑤;𝑤2 ⊆ 𝑤 Warehouses; Central warehouses; Local warehouses 𝑟 ∈ 𝑅; 𝑟1 ∈ 𝑟; 𝑟2 ∈ 𝑟 Repair centres; Inner-company; Outer-company repair centres 𝑖 ∈ 𝐼 Inspection centre 𝑐 ∈ 𝐶 Installation bases 𝑠′ ∈ 𝑆′ Suppliers 𝑙 ∈ 𝑁 Number of time intervals 

 

➢ Parameters 𝑑𝑠𝑐 Spare part s demand (failure rate) at installation base c 𝑡𝑐𝑠𝑗𝑗′  Transportation cost from node j to 𝑗′  𝑟𝑡𝑠𝑟 Spare part s repair time in repair centre r 𝑠𝑐𝑎𝑝𝑠𝑠′ Capacity of supplier 𝑠′ for spare part s 𝑝𝑟𝑠𝑠′  Spare part s procurement cost ordered from supplier 𝑠′ 𝑝𝑢𝑠1𝑠2 Probability of demand for spare part 𝑠1 in equipment 𝑠2 ∈ 𝑠  in repair centre, otherwise 0 ℎ𝑠𝑗 Spare part s holding cost in facility j (warehouse w or repair centre r) 𝑑𝑒𝑓𝑠𝑠′ Defect rate of spare part s from supplier 𝑠′ 𝑑𝑒𝑙𝑠𝑠′ Spare part s delivery time from supplier 𝑠′ 𝑚𝑑𝑒𝑓𝑠 Maximum mean defect of spare part s 𝑚𝑑𝑒𝑙𝑠 Minimum acceptable mean delivery time of spare part s 𝐼𝑠𝑤0  Initial inventory of spare part s in warehouse w 𝜏𝑠𝑤1𝑤2 Traveling time of spare part s from central warehouse 𝑤1 to local warehouse 𝑤2 𝜋 ′𝑠 Shortage cost of spare part s 𝜇𝑠𝑠′𝑤1 Spare part s supply time from supplier 𝑠′ to central warehouse  𝑤1 



 

 

𝜏𝑠𝑤1 =∑𝜇𝑠𝑠′𝑤1𝑠′

 Travel time of spare part s from supplier 𝑠′ to central warehouse 𝑤1 

𝐺𝑠𝑖 Probability of repairability of equipment s in inspection centre i 𝑟𝑐𝑠𝑟 The repair cost of spare part s in repair centre r 𝑐𝑝𝑟𝑠 1, if repair centre r has the capability of repairing spare part s, otherwise 0  𝑐𝑎𝑝𝑟  Repair centre r capacity (Man-Hour) 

  

➢ Decision variables 𝑥𝑠𝑐𝑖𝑙′  Amount of equipment s from installation base c to inspection centre i in interval l 𝑦𝑠𝑖𝑟𝑙′  Amount of equipment s from inspection centre i to repair centre r in interval l 𝑥(1)𝑠𝑠′𝑤1𝑙 Amount of spare part s from supplier 𝑠′ to central warehouse 𝑤1 in interval l  𝑥(2)𝑠𝑟𝑤1𝑙 Amount of equipment s from repair centre r to central warehouse 𝑤1 in interval l 𝑦(1)𝑠𝑤1𝑤2𝑙 Amount of equipment s from central warehouse 𝑤1 to local warehouse 𝑤2 in interval l 𝑦(2)𝑠𝑟𝑤2𝑙 Amount of equipment s from repair centre r to local warehouse 𝑤2 in interval l 𝑧(1)𝑠𝑤2𝑐𝑙 Amount of equipment s from local warehouse 𝑤2 to installation base c in interval l 𝑧(2)𝑠𝑟𝑐𝑙 Amount of equipment s from repair centre r to installation base c in interval l 𝑤𝑎𝑠𝑤1𝑙  Spare part s waiting time in the central warehouse 𝑤1 in interval l 𝑤𝑠𝑠𝑤1𝑟𝑙 Amount of spare part s from central warehouse 𝑤1 to repair centre r in interval l 𝐼𝑠𝑤𝑙+  Average on-hand inventory of spare part s in warehouse w in interval l 𝐼𝑠𝑤𝑙−  Average shortage of spare part s in warehouse w in interval l 𝑠𝑡𝑠𝑗𝑙 Stock level of spare part s facility j (warehouse w or repair centre r) in interval l 𝜆𝑠𝑤𝑙  Demand rate of spare part s in warehouse w in interval l 
 

3.3. Formulation 

3.3.1. Planning model 

The planning model is formulated in this section. The objective function and constraints are presented 

below. We assume in this model, I) central warehouses do not confront shortages, II) demand of 

equipment (LRUs1) depends on spare parts (SRUs2), III) each SRU only lies in one LRU, IV) base stock 

(S-1, S) replenishment policy is used for all equipment and spare parts. 

➢ Objective function and constraints 

The objective function minimises total costs in each time interval l shown in Eqs. (3-1).  𝑀𝑖𝑛 𝑍𝑙   Eq. (3-1) =∑∑∑𝑡𝑐𝑠𝑠′𝑤1𝑥(1)𝑠𝑠′𝑤1𝑙𝑤1𝑠′𝑠  transportation costs from suppliers to central 
warehouses +∑∑∑𝑡𝑐𝑠𝑟𝑤1𝑥(2)𝑠𝑟𝑤1𝑙𝑤1𝑟𝑠  transportation cost from repair centres to 
warehouses and installation bases 

 

1 Line-Replaceable Unit 
2 Shop-Replaceable Unit 



 

 

+∑∑∑𝑡𝑐𝑠𝑟𝑤2𝑦(2)𝑠𝑟𝑤2𝑙𝑤2𝑟𝑠 +∑∑∑𝑡𝑐𝑠𝑟𝑐𝑧𝑠𝑟𝑐𝑙(2)𝑐𝑟𝑠  

+∑∑∑𝑡𝑐𝑠𝑤1𝑤2𝑦(1)𝑠𝑤1𝑤2𝑙𝑤2𝑤1𝑠  transportation cost between the warehouses 

+∑∑∑𝑡𝑐𝑠𝑤2𝑐𝑐𝑤2𝑠 𝑧𝑠𝑤2𝑐𝑙(1)
 travelling cost from local warehouses to 

installation bases +∑∑∑𝑡𝑐𝑠𝑐𝑖𝑖𝑐𝑠 𝑥𝑠𝑐𝑖𝑙′  transportation cost from installation bases to 
inspection centres +∑∑∑𝑡𝑐𝑠𝑖𝑟𝑦𝑠𝑖𝑟𝑙′𝑟𝑖𝑠  transportation cost from installation bases to 
inspection and repair centres +∑∑∑𝑡𝑐𝑠𝑤1𝑟1𝑟1𝑤1𝑠 𝑤𝑠𝑠𝑤1𝑟1𝑙 travelling cost of spare parts used in repairing 
equipment, from central warehouses to repair 
centres +∑∑∑𝑝𝑟𝑠𝑠′𝑥(1)𝑠𝑠′𝑤1𝑙𝑠′𝑤1𝑠  Procurement cost, including ordering and 
purchase cost +∑∑∑𝑟𝑐𝑠𝑟𝑦𝑠𝑖𝑟𝑙′𝑟𝑖𝑠  repair cost 

+∑∑ℎ𝑠𝑤𝐼𝑠𝑤𝑙+𝑤𝑠  Holding cost in warehouses 

+∑∑ℎ𝑠𝑟𝑠𝑡𝑠𝑟𝑙𝑟𝑠  Holding cost in repair centers 

+∑∑𝜋′𝑠𝐼𝑠𝑤𝑙−𝑤𝑠  shortage costs 

 

The renewal process is used to formulate the uncertainty in demand over the planning horizon that 

considers IID3 variables (Jin and Tian 2012). First, we consider 𝑁(𝑡) as the number of random events 

in [0, t], then an integral equation is introduced as  𝑢 = 𝑎 + 𝑢 ∗ 𝐹 for an unknown function 𝑢: [0,∞) → ℝ that is the renewal equation of u.  𝑀𝑠𝑐 (t) is the number of arrivals in [0, t]. 𝑓𝑠 and 𝐹𝑠 are respectively 

the density and cumulative functions that are interpreted as the first arrival and time-to-failure over 

interval [0, s]. 𝐾𝑗 and 𝑍𝑠𝑐(𝑡) respectively are the time of happening jth event the overall failures, shown 

in Eq. (3-2). 

𝑍𝑠𝑐(𝑡) = 𝑀𝑠𝑐(𝑡) + ∑ 𝑀𝑠𝑐(𝑡 − 𝐾𝑠𝑐𝑗)𝑁𝑠𝑐(𝑡)
𝑗=1       Eq. (3-2) 

 

To simplify the time-varying demands, stepwise linearization is used. Accordingly, the length of each 

interval is L in the planning horizon with length t. Consider t as the length of interval l where l ∈{1,… ,𝑁}. is calculated in Eq. (3-3). 𝑛 = 𝑡𝐿𝑙 Eq. (3-3) 

 

 

3 Independent and identically distributed 



 

 

It is assumed that the time-to-failure follows the exponential distribution with a rate of 𝛼. The average 

number of arrivals in [0, t] is presented in Eq. (3-4) (David and Nagaraja 2004). 𝐸(𝑍𝑠𝑐(𝑡)) = 𝛼𝑠𝑡 + 𝛼𝑠𝑡 𝑁(𝑡)2     Eq. (3-4) 

 

Considering the arrival rate as 𝜆, 𝑁(𝑡) = 𝜆𝑡. The average demand in interval [0, 𝑡𝑙] is calculated by 

Eq. (3-5). Then, it is rewritten for each spare part and installation base. 𝐸(𝑍(𝑡)) = 𝛼𝑡 + 𝛼𝜆𝑡22  

 𝑑̅𝑠𝑐𝑙 = 𝐸(𝑍𝑠𝑐(𝑡𝑙) − 𝑍𝑠𝑐(𝑡𝑙−1))𝑡𝑙 − 𝑡𝑙−1 = 𝛼 + 𝛼𝜆(𝑡𝑙 + 𝑡𝑙−1)2 , 𝑙 = 1,… , 𝑛  ;     𝑛 = 𝑡𝐿𝑙 
 

Eq. (3-5) 

The amount of failed equipment to inspection centres is calculated by Eq. (3-6), in which the right-

hand side is reproduced from Eq. (3-5). Eq. (3-7) shows the balance equation at installation bases ∑𝑥𝑠𝑐𝑖𝑙′𝑖 = 𝐿𝑘 . 𝑑̅𝑠𝑐𝑙 ∀𝑠, 𝑐, 𝑙 Eq. (3-6) ∑𝑧(1)𝑠𝑤2𝑐𝑙𝑤2 +∑𝑧(2)𝑠𝑟𝑐𝑙𝑟 = 𝐿𝑘 . 𝑑̅𝑠𝑐𝑙 ∀𝑠, 𝑐, 𝑙 Eq. (3-7) 

Eqs. (3-8) – (3-14) are the METRIC model constraints such as expected on-hand inventory, shortage, 

and waiting time. The model developed by Sherbrooke (1968) for repairable items is later extended 

with adding multi-item, multi-location, capacity limitation, and other properties. Eq. (3-8) presents the 

average on-hand inventory. Eqs. (3-9) and (3-10) are the demand of local from central warehouses and 

the average shortage. The little law in Eq. (3-11) computed the expected waiting time given the average 

shortage. The average replenishment time in local warehouses is presented in Eq. (3-12). Finally, the 

average on-hand and shortage inventory of local warehouses are shown in Eqs. (3-13) and (3-14). 

𝐼𝑠𝑤1𝑙+ = ∑ 𝑗. 𝑃(𝑋 = 𝑗)𝑠𝑡𝑠𝑤1𝑙
𝑗=1 = ∑ 𝑗 𝑒−𝜆𝑠𝑤1𝜏𝑠𝑤1(𝜆𝑠𝑤1𝑙𝜏𝑠𝑤1)𝑠𝑡𝑠𝑤1𝑙−𝑗(𝑠𝑡𝑠𝑤1𝑙 − 𝑗)!

𝑠𝑡𝑠𝑤1𝑙
𝑗=1 ∀𝑠,𝑤1, 𝑙 

Eq. (3-8) 

𝜆𝑠𝑤1𝑙 =∑𝑦𝑠𝑤1𝑤2𝑙(1)𝑤2  
Eq. (3-9) 𝑠𝑡𝑠𝑤1𝑙 ≥ 𝐼𝑠𝑤1𝑙+ − 𝐼𝑠𝑤1𝑙− + 𝜆𝑠𝑤1𝑙𝜏𝑠𝑤1  Eq. (3-10) 𝑤𝑎𝑠𝑤1𝑙 = 𝐼𝑠𝑤1𝑙−𝜆𝑠𝑙 , 𝜆𝑠𝑙 ≠ 0 Eq. (3-11) 

𝜏̄𝑠𝑤2𝑙 =∑(𝜏𝑠𝑤1𝑤2 +𝑤𝑎𝑠𝑤1𝑙)𝑤1  

∀𝑠,𝑤2, 𝑙 
Eq. (3-12) 

𝜆𝑠𝑤2𝑙 =∑𝑦𝑠𝑤1𝑤2𝑙(1)𝑤1  

𝐼𝑠𝑤2𝑙+ = ∑ 𝑗𝑠 × 𝑒−𝜆𝑠𝑤2𝑙𝜏̄𝑠𝑤2𝑙(𝜆𝑠𝑤2𝑙𝜏̄𝑠𝑤2𝑙)𝑠𝑡𝑠𝑤2𝑙−𝑗𝑠(𝑠𝑡𝑠𝑤2𝑙 − 𝑗𝑠)!
𝑠𝑡𝑠𝑤2𝑙
𝑗𝑠=1  

Eq. (3-13) 

𝐼𝑠𝑤2𝑙− = 𝐼𝑠𝑤2𝑙+ − (𝑠𝑡𝑠𝑤1𝑙 − 𝜆𝑠𝑤2𝑙𝜏̄𝑠𝑤2𝑙)  Eq. (3-14) 
Inner-company repair centres use tools, budget, materials, and energy, while outer-company repair 

centres operate independently. The minimum spare parts required in inner-company repair centres that 



 

 

the central warehouses may supply are calculated by Eq. (3-15). Eqs. (3-16) and (3-17) are the capacity 

and expertise constraints.    ∑𝑤𝑠𝑠𝑤1𝑟1𝑙𝑤1 ≥ 𝑝𝑢𝑠𝑠1 ×∑𝑦𝑠1𝑖𝑟1𝑙′𝑖 + 𝑠𝑡𝑠1𝑟1𝑙  ∀𝑠, 𝑟, 𝑙 Eq. (3-15) ∑𝑟𝑡𝑠𝑟 × 𝑦𝑠𝑖𝑟𝑙′𝑖 ≤ 𝑐𝑎𝑝𝑟 ∀𝑠, 𝑟 Eq. (3-16) ∑𝑦𝑠𝑖𝑟𝑙′𝑖 ≤ 𝑀 × 𝑐𝑝𝑟𝑠 ∀𝑠, 𝑟, 𝑙 Eq. (3-17) 

The supply constraints related to capacity, maximum defect, and delivery time are shown in Eqs. (3-

18) - (3-20). The balance equation in local and central warehouses are respectively presented in Eq. (3-

21) and (3-22). ∑𝑥(1)𝑠𝑠′𝑤1𝑙𝑤1 ≤ 𝑠𝑐𝑎𝑝𝑠𝑠′  ∀𝑠, 𝑠′, 𝑙 Eq. (3-18) ∑∑𝑑𝑒𝑓𝑠𝑠′𝑥(1)𝑠𝑠′𝑤1𝑙𝑤1𝑠′

≤ 𝑚𝑑𝑒𝑓𝑠∑∑𝑥(1)𝑠𝑠′𝑤1𝑙𝑠′𝑤1  ∀𝑠, 𝑙 Eq. (3-19) ∑∑𝑑𝑒𝑙𝑠𝑠′𝑥(1)𝑠𝑠′𝑤1𝑙𝑠′𝑤1 ≤ 𝑚𝑑𝑒𝑙𝑠∑∑𝑥(1)𝑠𝑠′𝑤1𝑙𝑠′𝑤1  ∀𝑠, 𝑙 Eq. (3-20) 𝐼𝑠𝑤20 +∑𝑦(1)𝑠𝑤1𝑤2𝑙𝑤1 +∑𝑦(2)𝑠𝑟𝑤2𝑙𝑟  

= 𝑠𝑡𝑠𝑤2𝑙 +∑𝑧(1)𝑠𝑤2𝑐𝑙𝑐  

∀𝑠,𝑤2, 𝑙 Eq. (3-21) 

𝐼𝑠𝑤10 +∑𝑥(1)𝑠𝑠′𝑤1𝑙𝑠′

+∑𝑥(2)𝑠𝑟𝑤1𝑙𝑟  = 𝑠𝑡𝑠𝑤1𝑙 +∑𝑦(1)𝑠𝑤1𝑤2𝑙𝑤2 +∑𝑤𝑠𝑠𝑤1𝑟𝑙𝑟  

∀𝑠, 𝑤1, 𝑙 Eq. (3-22) 

The amount of repairable equipment is computed in Eq. (3-23) based on the probability of repairability. 

Eq. (3-24) shows the flow balance in repair centres. Finally, domains of variables are presented. 

 ∑𝑦𝑠𝑖𝑟𝑙′𝑟 =∑𝐺𝑠𝑖 × 𝑥𝑠𝑐𝑖𝑙′𝑐  ∀𝑠, 𝑖, 𝑙 Eq. (3-23) ∑𝑦𝑠𝑖𝑟𝑙′𝑖 =∑𝑥(2)𝑠𝑟𝑤1𝑙𝑤1 +∑𝑦(2)𝑠𝑟𝑤2𝑙𝑤2 +∑𝑧(2)𝑠𝑟𝑐𝑙𝑐  ∀𝑠, 𝑟, 𝑙 Eq. (3-24) 

   𝑥𝑠𝑐𝑖𝑙′ ,  𝑦𝑠𝑖𝑟𝑙′ ,  𝑥𝑠𝑠′𝑤1𝑙(1) , 𝑥𝑠𝑟𝑤1𝑙(2)  ,  𝑦𝑠𝑤1𝑤2𝑙 (1) ,  𝑦𝑠𝑟𝑤2𝑙(2)  ,  𝑧𝑠𝑤2𝑐𝑙(1) ,  𝑧𝑠𝑟𝑐𝑙(2) ,  𝑠𝑡𝑠𝑤𝑙 ∈  ℤ+ ;    𝐼𝑠𝑤𝑙+ ,  𝐼𝑠𝑤𝑙− ∈  ℝ+ 
 

3.3.2. Forecasting model 

Spare part intermittent demand forecasting methods are divided into three categories: time-series, 

contextual forecasting, and comparative studies (Pinçe e al. 2021).  Contextual forecasting refers to 

external factors such as equipment life, maintenance scheduling, and working conditions. Comparative 

studies provide performance benchmarks for spare part forecasting models based on the available data 

sets. Spare part demand forecasting by time series includes parametric and nonparametric approaches 

that we focus on the latter one. Parametric approaches consider the demand over the lead-time as a 

predefined parameter with a known probability distribution, while nonparametric approaches extract 

the distribution from the data.  

The demand may follow a known distribution in the present planning horizon, but the specified 

distribution cannot be reliable for future forecasting since demand's mean and variance may change 

over the planning horizon; therefore, we use a nonparametric method to determine the future demand. 



 

 

Machine learning techniques use learning algorithms to determine demand patterns. Support Vector 

Machine (SVM) is a supervised algorithm that provides accurate results compared with other models. 

This method does not depend on the model and requires a smaller number of parameters. Also, it is not 

dependent on the model type, such as linear and stationary process, and is guaranteed to obtain the 

optimal solution (N. I. Sapankevych and R. Sankar 2009). 

 This method has its cons, e.g., it is time-consuming, and its robustness is not sufficiently investigated. 

Jiang, et al. (2021) present a new version of SVM considering outliers and errors that outperform the 

basic model considering computation time and non-smooth demand forecasting accuracy; however, the 

validation period is constant. ⟨𝑤, 𝑥⟩ is defined as the dot product where w, x, and b are the coefficient, 

attribute vector, and intercept. It is allowed that data fluctuates in the interval [−𝜀, +𝜀], the outlier 

distance is defined as the penalty 𝛿𝑠𝑗𝑙,𝑖′  where 𝑖, 𝑗 𝜖 𝐼 counts the data samples used in the training process. 

The nonlinear form of attribute is generally denoted by ∅(𝑥). The forecasting error formulated by Mean 

Absolute Scaled Error (MASE) is used to measure accuracy. An important factor in forecasting 

accuracy is the number of intervals utilised in estimating demand. We determine the number of intervals 

by the planning model, expressed in section 3.3.1. The indices may be omitted for simplicity while 

explaining.  

First, it is assumed that the demand for each spare part is initially considered to be time-independent. 

The initial demand obtained by 𝑑𝑠𝑙 = ∑ 𝑑𝑠𝑐𝑙𝑐  initialising the forecasting model. 𝑑𝑠𝑙,𝑖′ = ∑ ∑ 𝑑𝑠𝑐𝑙𝑐𝑙+𝑖′−1𝑙   

is the demand of each spare part in interval with length 𝑖′ from period l. A so-called kernel function is 

implemented to estimate the random variable's conditional expectation. Kernel function computes the 

dot product of two vectors, which means how much of the force vector is applied in the direction of the 

other vector. The forecast variable is denoted by 𝐹𝑠𝑙,𝑖′(𝜔𝑖′)  where 𝜔 = {𝛹, 𝜀, 𝜉} . 𝐹𝑠𝑙,𝑖′(𝜔𝑖′)  is the 

forecast for 𝑖′ periods later from l. The initial parameters in the kernel function are d ∈ 𝛮 and r ≥ 0. The 

learning process includes the initial training, validation, and testing processes defined for each spare 

part. Given the planning horizon with length T, it is divided into three parts 1 to 𝑇1 for initial training, 𝑇1 + 1 to 𝑇1 + 𝑉 for validation, and 𝑇1 + 𝑉 + 1 to T for the testing process. Considering the validation 

process, it is decomposed into the main model in Eqs. (3-25)-(3-27), and subproblem in Eqs. (3-28) - 

(3-32).  The strong dual counterpart is shown in Eqs. (3-33)-(3-35) used to simplify the existing 

complexities. The subproblem determines the optimal parameters of the regression line while the main 

model generates the hyperparameters by calling the dual model. 

𝜔𝑖′∗ = argmin𝜔𝑖′ ∑ ∑ |𝑑𝑠𝑙,𝑖′ − 𝐹𝑠𝑙,𝑖′(𝜔𝑖′)|𝑆. 𝑉∑ |𝑑𝑠𝑞,𝑖′ − 𝑑𝑠𝑞,𝑖′−1|𝑇1+𝑉𝑞=𝑇1+2 𝑉 − 1
𝑆𝑠=1𝑇1+𝑉𝑙=𝑇1+1  ∀𝑖′ Eq. (3-25) 

𝐹𝑠𝑙,𝑖′(𝜔𝑖′) =∑ 𝑏𝑠𝑙,𝑖′(𝜔𝑖′) + (𝑢𝑗,𝑠𝑙,𝑖′(𝜔𝑖′) − 𝑢𝑗,𝑠′ 𝑙,𝑖′(𝜔𝑖′))𝑙−𝑖′𝑗=1 𝜑𝑖′(𝑥𝑠𝑗, 𝑥𝑠𝑙) ∀ 𝑖′, 𝑠, 𝑙 Eq. (3-26) 

𝜑𝑖′(𝑥𝑠𝑗, 𝑥𝑠𝑙) = {  
  (𝑥𝑠𝑗)𝑇𝑥𝑠𝑡 + 𝑟,                                       𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑜𝑟𝑚exp (−𝛾𝑖′‖𝑥𝑠𝑗 − 𝑥𝑠𝑙‖2),        𝑟𝑎𝑑𝑖𝑎𝑙 𝑏𝑎𝑠𝑖𝑠 𝑓𝑜𝑟𝑚[𝛾𝑖′(𝑥𝑠𝑗)𝑇𝑥𝑠𝑡 + 𝑟]𝑑 , 𝛾𝑖′ > 0     𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑓𝑜𝑟𝑚tanh(𝛾𝑖′(𝑥𝑠𝑗)𝑇𝑥𝑠𝑡 + 𝑟),                𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑜𝑟𝑚

 

∀𝑠, 𝑙, 𝑖′ 
Eq. (3-27) 

∀𝑠, 𝑙, 𝑗, 𝑖′ ∀𝑠, 𝑙, 𝑗, 𝑖′ ∀𝑠, 𝑙, 𝑗, 𝑖′ 
 

The subproblem model formulation determines the optimal parameters of the regression line, which are 

the SVM variables. The support vectors are formulated in Eqs. (3-29) and (3-30). 𝛿 and 𝛿′ are the slack 

variables that capture the errors out of [−𝜀,+𝜀]. The objective function in Eq. (3-28) includes two 

terms; the first term is flatness, defined as the distance or volume surrounded by the hyperplanes. The 



 

 

balance between two terms of the objective function is tunned with a decision variable denoted by Ψ in 

the second term. {𝑤𝑠𝑙,𝑖′ , 𝑏𝑠𝑙,𝑖′ , 𝛿𝑠𝑙,𝑖′ , 𝛿𝑠′ 𝑙,𝑖′}∗ = arg min𝑤𝑠𝑙,𝑖′ ,𝑏𝑠𝑙,𝑖′ ,𝛿𝑠𝑙,𝑖′ ,𝛿𝑠′ 𝑙,𝑖′ 12 (𝑤𝑠𝑙,𝑖′)𝑇𝑤𝑠𝑙,𝑖′                                                                           +Ψ𝑖′∑(𝛿𝑠𝑗𝑙,𝑖′ + 𝛿𝑠𝑗′ 𝑙,𝑖′)𝑙−𝑖′
𝑗=1   ∀𝑠, 𝑖′, 𝑙 Eq. (3-28) 

𝑑𝑠𝑗,𝑖′ − (𝑤𝑠𝑙,𝑖′)𝑇 ∅(𝑥𝑠𝑗) − 𝑏𝑠𝑙,𝑖′ ≤ 𝜀𝑖′ + 𝛿𝑠𝑗𝑙,𝑖′   ∀𝑗, 𝑠, 𝑙, 𝑖′ Eq. (3-29) (𝑤𝑠𝑙,𝑖′)𝑇 ∅(𝑥𝑠𝑗) + 𝑏𝑠𝑙,𝑖′ − 𝑑𝑠𝑗,𝑖′ ≤ 𝜀𝑖′ + 𝛿𝑠𝑗′ 𝑙,𝑖′  Eq. (3-30) 𝛿𝑠𝑗𝑙,𝑖′ , 𝛿𝑠𝑗′ 𝑙,𝑖′ ≥ 0 Eq. (3-31) Ψ𝑖′ , 𝜀𝑖′ ≥ 0 ∀𝑖′ Eq. (3-32) 

The dual model presented below that determines 𝑢𝑗,𝑠𝑙,𝑖′  and 𝑢𝑗,𝑠′ 𝑙,𝑖′ . This model simplifies the complexity 

made by large dimensional 𝑤𝑠𝑙,𝑖′ . Eq. (3-33) shows the objective function and Eqs. (3-34) and (3-35) 

are the constraints. Lagrangian relaxation is used to approximate the dual model. 

{𝑢𝑠𝑙,𝑖′ , 𝑢𝑠′ 𝑙,𝑖′} = arg max𝑢𝑠𝑙,𝑖′ ,𝑢𝑠′ 𝑙,𝑖′−𝜀𝑖′∑(𝑢𝑗,𝑠𝑙,𝑖′ + 𝑢𝑗,𝑠′ 𝑙,𝑖′)𝑙−𝑖′
𝑗=1  

                      +∑(𝑢𝑗,𝑠𝑙,𝑖′ − 𝑢𝑗,𝑠′ 𝑙,𝑖′)𝑙−𝑖′
𝑗=1 𝑑𝑠𝑗,𝑖′   

                      − 12∑∑(𝑢𝑖,𝑠𝑙,𝑖′ − 𝑢𝑖,𝑠′ 𝑙,𝑖′) (𝑢𝑗,𝑠𝑙,𝑖′ − 𝑢𝑗,𝑠′ 𝑙,𝑖′)𝜑𝑙(𝑥𝑠𝑖 , 𝑥𝑠𝑗)𝑙−𝑖′
𝑗=1

𝑙−𝑖′
𝑖=1  

∀𝑠, 𝑖′, 𝑙 Eq. (3-33) 

∑(𝑢𝑖,𝑠𝑙,𝑖′ − 𝑢𝑖,𝑠′ 𝑙,𝑖′) = 0𝑙−𝑖′
𝑖=1  ∀𝑠, 𝑖′, 𝑙 Eq. (3-34) 0 ≤ 𝑢𝑖,𝑠𝑙,𝑖′ , 𝑢𝑖,𝑠′ 𝑙,𝑖′ , 𝑢𝑗,𝑠𝑙,𝑖′ , 𝑢𝑗,𝑠′ 𝑙,𝑖′ ≤ Ψ𝑖′  ∀𝑖, 𝑗, 𝑠, 𝑖′, 𝑙 Eq. (3-35) 

 

4. Computations and discussions 

This section presents the empirical investigation, interactive procedure, and results and sensitivity 

analyses. 

4.1. Case study and solution method 

Twenty-five months of data for the spare parts with intermittent demand is provided from the oil 

industry to validate the models. The National Iranian South Oilfields Company (NISOC), a prominent 

Iranian oil company, is selected with three central and six local warehouses. Additionally, one outer 

company and two inner-company repair centres are considered. Table 1 presents the demand data which 

initialised the planning model. Holding cost per unit is 20%, and the shortage cost equals the production 

loss value. Four categories of spare parts are considered, including 200 spare parts with intermittent 

demand fall into one of these categories. A maximum five number of intervals (periods) are considered. 

This table shows that all the squared coefficient of variations (CVs) for demand are less than 0.5. 

 

  

 

 



 

 

Table 1. Spare parts category demand statistics in 25 months 

 
Spare parts category 

 1 2 3 4 

Mean 7.12 8.15 7.97 7.4 
Std. Dev. 4.29 4.52 4.64 5.14 

 C.V. 0.36 0.31 0.34 0.48 
Minimum 0 0 0 0 
Maximum 15 25 19 24 

The models are solved using the case study data. The initialisation process consists of 12 months, 

validation involves seven months, and testing covers six months. Demand and the maximum number 

of intervals (in addition to other crucial parameters) are initially set to solve the planning model, then 

the number of intervals is obtained. The range of 𝛹 ,  𝜉 , and 𝜀  are respectively [10−2, 102] , [10−1, 100], and [10−2, 10−1]. The kernel parameters such as r and d are zero and three.  

4.2. Numerical results 

Since the models are simplified, GAMS software is capable of solving both of the models. A PC with 

16GB RAM and Intel(R) Core (TM) i5-9400F CPU @ 2.90GHz is used to run the models. The 

forecasting model uses the output of the first model (number of intervals) to forecast the demand in 

successive periods. The interactive procedure optimises two models and runs the termination condition 

when the optimal number of intervals no longer changes, as shown in Figure 2. The optimal number of 

time intervals is 𝑛∗ = 4 with the optimal cost of 1.56 × 107. The number of intervals over the planning 

horizon is used for demand estimation and forecasting. Table 2 demonstrates the costs for different time 

intervals. Also, Table 3 outlines MASE in different periods. The optimal stock levels in warehouses are 

presented in Table A-1 in the appendix. 
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Figure 2. Interactive procedure for optimising planning and forecasting models 

Figure 2 Alt Text. The iterative optimisation procedure is illustrated in this figure. First, the parameters are 

initialised in the planning model. After solving the planning model, it gets the number of time intervals from the 

planning model (to estimate demand in each interval). Then, the demand forecasted by the forecasting model 

initialises the planning model. The procedure continues until no significant changes appear in the number of 

intervals (and consequently no change in forecasted demand). 

 

Table 2: Costs over the time intervals 

Time interval Cost 

1 1.63 × 107 
2 1.63 × 107 
3 1.6 × 107 
4 1.56 × 107 
5 1.59 × 107 

 

Table 3. MASE in different time intervals and iterations 

Iterations 
Time interval 

1 2 3 4 5 

10 0.88 0.87 0.868 0.866 0.877 

20 0.874 0.869 0.868 0.862 0.858 

30 0.865 0.864 0.86 0.858 0.855 

50 0.861 0.86 0.858 0.855 0.854 

70 0.857 0.85 0.85 0.846 0.84 

100 0.855 0.848 0.847 0.844 0.851 

 

4.3. The effect of changing forecasting model parameters 

Considering the forecasting criteria, Figure 3 illustrates the effect of implementing the kernel function 

on MASE, shortage, and cost. The kernel function is defined in linear, polynomial, radial basis, and 

sigmoid forms that affect data fitness and accuracy accordingly. MASE is decreasing by the cost, 

resulting in more accurate forecasting leading to lower shortages and costs. In other words, the emphasis 

on collecting more data can enhance forecasting since the nonparametric estimation highly depends on 

data sets. Also, it can be helpful in parametric estimation that uses probability distribution for the 

estimation. It is noteworthy that organising a well-structured forecasting system improves inventory 

management by modifying the ordering process; therefore, it can cut shortages since the data accuracy 

will positively affect the planning. Another finding is regarding the kernel function estimation, which 

plays an essential role in fitting the regression line for the data. Here, the polynomial form outperforms 

the others, but higher forecasting accuracy does not necessarily guarantee a good inventory management 

performance; however, it may require considering all the parameters in practice. SVM implements 

various hyperparameters used in tuning, but simultaneous tuning helps prevent overfitting, although it 

is recommended that each spare part be tuned separately to adopt the specifications of each item. 



 

 

  
a) SPC 1 b) SPC 2 

  

c) SPC 3 d) SPC 4 

Figure 3. MASE deviation, cost, and shortage (relative to demand) for each spare parts category (SPC) 
Figure 3-a Alt Text. Considering SPC 1, the Polynomial form of kernel function has the minimum cost in 
comparison with other forms, followed by radial basis. Also, the minimum MASE and shortages are obtained 
in polynomial form. The sigmoid form has closer results to polynomial. Figure 3-b Alt Text. The polynomial 
form has the minimum cost, shortage, and MASE for SPC 2, but other forms of kernel functions prominently 
have higher value. Moreover, MASE changes significantly when we move the end of the diagram. Figure 3-c 

Alt Text. Regarding SPC 3, the radial basis form has the minimum MASE, but the polynomial has the minimum 
cost. Also, linear and sigmoid forms have similar results to linear forms for cost, while the sigmoid form has 
higher MASE and shortage compared to other forms of the kernel function. Figure 3-d Alt Text. SPC 4 shows 
that minimum cost occurs in the polynomial form where it has the minimum MASE, but cost, MASE, and 
shortage sharply react to other forms of kernel functions that lead to higher values. 

 
 

The relation of total spare parts' stock level of warehouses and different forms of kernel function is also 

shown below in Figure 4. Inventory is a critical factor that significantly affects the supply chain's 

performance since it imposes prominent costs for holding excessive stock. Forecasting can improve 

inventory planning to avoid shortages and high costs. In the SVM model, the kernel function helps map 

the present attributes to new dimensions to investigate more features in the forecasting model. The 

polynomial function best fits the data because the minimum stock level confirms previous findings. 

Overfitting can be observed as we proceed to the right side of the diagram resulting from tightening the 

parameter. 

Several measures are used to evaluate intermittent demand forecasting models categorised as absolute, 

mean, percentage, square, scaled, and relative errors. Also, there are hybrid measures, e.g. mean 

absolute; some are symmetric or geometric (Hyndman and Koehler 2006). They recommend the 

absolute measures to be independent among the various time series. Also, (Aris A. Syntetos and Boylan 

2005) proposed scaled mean error (SME) widely used in bias analysis (Petropoulos et al. 2016). Another 

independent measure is alternative mean absolute percentage error (AMAPE), which is a good 

alternative for dealing with division-by-zero problems. We consider Mean absolute scaled error MASE, 

AMAPE, and SME as measures to compare the accuracy of the present forecasting model with others. 

 



 

 

 

Figure 4. Stock levels vs kernel functions 

Figure 4 Alt Text. The stock level changes are shown in different forms as the kernel functions change. The 

minimum stock level is obtained by using the polynomial kernel function. Other forms of kernel functions cause 

overstocking that is due to more errors in forecasting 

The results are presented in Table 4. The effect of running other models such as SBA, MSBA, Croston, 

and SVM are analysed considering the various intervals, shown in Figure 5. It can be seen that the cost 

reduces by using the SVM integrated with the planning model, which is the result of improvement in 

the forecasting model's accuracy. It can be seen that when considering the integration of forecasting and 

planning decisions, the results improve compared with other methods. Nevertheless, the results are 

comparable as we go through different time intervals. The comparison shows that the trade-off between 

the number of intervals and forecasting accuracy gives insights into determining the optimal length of 

each interval (by dividing the length of the period by the number of time intervals). As we move to four 

intervals, the errors reduce, but it starts to rise when the number of intervals increases. The best-

performing result is highlighted in table 4. In practice, the number of planning periods can be considered 

as the number of intervals in the theoretical context, but the decisions in this regard should be modified 

for each spare part due to different demand patterns. 

 Table 4. Forecasting accuracy comparison by different measures 

Time 
interval 

 
SBA MSBA Croston SVM SVM integrated with planning 

1 

MASE 0.889 0.880 0.890 0.869 0.855 

SME 0.087 0.007 0.161 -0.141 -0.152 

AMAPE 1.112 0.752 0.833 1.050 1.090 

2 

MASE 0.818 0.810 0.869 0.865 0.848 

SME 0.080 0.006 0.148 -0.144 -0.158 

AMAPE 1.023 0.692 0.766 0.966 0.940 

3 

MASE 0.791 0.783 0.792 0.759 0.847 

SME 0.077 0.006 0.143 -0.145 -0.166 

AMAPE 0.990 0.669 0.741 0.935 0.926 

4 

MASE 0.765 0.757 0.765 0.734 0.844 

SME 0.075 0.006 0.138 -0.149 -0.182 

AMAPE 0.956 0.647 0.716 0.903 0.807 

5 

MASE 0.782 0.774 0.783 0.751 0.851 

SME 0.077 0.006 0.142 -0.154 -0.178 

AMAPE 0.979 0.662 0.733 0.924 0.906 

 



 

 

The number of intervals affects demand estimation, inventory costs, and other related factors. Total cost 
reduces to a minimum value as the number of intervals increases. However, the cost starts to rise when 
it passes four intervals. There are two practical and theoretical concepts. Practically, this could be 
justified from the aspect of risk-sharing (flexibility in spare part stock level and order) caused by 
increasing the number of intervals. There is a break-even point between the costs and the number of 
intervals. The demand estimation theoretically improves as the optimal number of intervals increases 
since the demand curve closes to a near-linearised form. Figure 5 shows that minimum cost is obtained 
when there are four intervals for all the forecasting methods, so using the optimal number of intervals 
can be interpreted as an improvement in parameter tuning which is achieved by integrating planning 
and forecasting decisions. The integration causes simultaneous consideration of the decisions and their 
effects on each other, so multiple attributes in the decision-making process help the results be more 
reliable since various aspects are considered. 

 

 
Figure 5. The cost fluctuation for different models as the number of intervals changes 

Figure 5 Alt Text. The cost is compared when using different intermittent demand forecasting models, including 

Croston, SBA, MSBA, SVM, and SVM integrated with planning. The minimum cost is obtained at interval four, 

where the SVM is integrated with the planning model. Also, SBA and MSBA show comparable results, while 

Croston has the highest cost. 

4.4. The impact of changing planning model parameters 

 

Considering the changes in the number of intervals, stock level fluctuations are provided in Figure 6. It 

illustrates that the optimal number of the time intervals  does not necessarily relate to stock level; 

however, it indirectly affects the stock levels. As presented earlier, the optimal number of time intervals 

has the minimum cost. We can observe that stock levels of spare parts 1 and 3 will proceed to the 

minimum value as the number of intervals is closing to four, while this analysis is suitable for spare 

parts 1 and 4 in local warehouses. These differences show that each warehouse and spare part may 

require an adaptive policy for planning since the demand makes the difference in planning. These 

analyses result in two concepts for planning decisions: centralisation and decentralisation of decisions. 

The first concept suggests considering the same decision or similar decisions of planning, but the second 

concept considers separate decision-making for each item, i.e., spare parts. The centralised decision-

making provides savings in cost and resources, but the decisions may not be flexible and adaptive to 

each spare part. Conversely, decentralised decision-making leads to more adaptive results since the 

decisions can be made according to demand patterns and other attributes of the spare part; however, it 

is not as cost-effective as the centralised one. 

 



 

 

 
Figure 6. Local warehouse stock levels when the number of time intervals changes 

Figure 6 Alt Text. Stock levels of local warehouses are illustrated when the number of intervals changes. Four 

categories of spare parts are compared. It can be seen that categories 1 and 4 have minimum stock levels when 

the optimal number of intervals is four, but categories two and three have optimal stock levels when the number 

of intervals is respectively five and one. 

Figure 7 illustrates the effect of change in shortage cost on total cost and MASE. As the shortage cost 

increases, the total cost also increases. Since the objective function minimises the total cost, increasing 

the shortage cost necessitates more accurate forecasting to optimise the planning decisions. The 

forecasting model tunes the planning data, i.e., the future demand, by minimising MASE, reducing the 

forecasting error as the shortage cost increases. In practice, the shortage cost can be interpreted as lost 

sale cost, damage cost to machines, or imposed labour cost. The spare parts with higher shortage costs 

need to be planned more accurately due to their crucial role in the operation. 

 

 
Figure 7. The effect of shortage cost fluctuation on MASE and cost 

Figure 7 Alt Text. MASE and cost are shown when the shortage cost change. MASE decreases, and total costs 

increase as shortage cost increases. The more the shortage cost is, the less the forecasting error will be due to 

improvement in MASE.  

 

4.5.  Managerial insights 
 

• The planning performance highly depends on the accuracy of demand data, i.e., failure rate. 
The less the forecasting error is, the more the planning performance will be. For example, the 



 

 

repair response time depends on the supply planning of spare parts used in the repairing 
operations, which can be improved by optimising forecasting.  

• Integrating planning and forecasting decisions and considering the uncertainty improves the 
robustness and optimises the cost. Also, filtering the data and considering more attributes 
reduces the noise and overfitting.  

• Nonparametric approaches derive the demand distribution from data, so it is recommended that 
spare parts with similar demand patterns be tuned separately to adopt the specifications of each 
category for demand estimation. These differences show that each warehouse and spare part 
may require its adaptive policy for planning since the demand makes the difference in planning; 
however, it may differ from one industry to another. 

• Considering the category of spare parts with a similar demand pattern improves the forecasting 
efficiency due to demand aggregation since it gives minor variation and more accurate 
forecasts. 

• Owing to the characteristics of repairable spare parts with intermittent demand, considering the 
supply and repair planning with forecasting optimises the stock level of spare parts, affecting 
the inventory costs. The servicing performance is enhanced due to improvement in planning 
since separate optimisation leads to sub-optimal solutions. 

• Estimating the  demand by piecewise linearization gives better results because the dynamic 
number of intervals adapts to the demand pattern of each spare part category. Also, the planning 
decisions can be determined by analysing the trade-off between the forecasting results and 
planning decisions. 

5. Conclusion 

In this study, we examine integrated forecasting and planning models for repairable spare part supply 

chain, including repair and supply decisions for low-demand spare parts following the intermittent 

demand pattern, which necessitates a well-defined forecasting mechanism to improve the performance 

of planning decisions. This research considers two mathematical models; the first model includes 

planning decisions, while the second focuses on demand forecasting.  An interactive procedure 

optimises two models based on the iterative procedure. The planning model determines optimal 

variables such as the number of time intervals, order assignment to suppliers, stock level of warehouses, 

and order assignment to repair centres. The forecasting model uses the first model's estimated demand 

using the piecewise linearization technique and forecasts the demand. The procedure iterates until the 

number of time intervals does not change significantly. An empirical study of an oil company is 

presented to validate the models solved by GAMS that implement data related to 200 spare parts 

obtained from an oil company.  

The contributions of this research include 1) Demand estimation using the piecewise linearization 

technique by determining the number of intervals, 2) using an interactive procedure for optimising the 

forecasting and planning models, 3) Integrating the repair and supply decisions, 4) Modifying SVM-

based forecasting model by considering the integration of planning and forecasting decisions. The 

findings are two parts: the findings related to planning model analyses and the findings of demand 

forecasting: I) Determining the number of intervals is theoretically and practically significant. 

Estimating demand by piecewise linearization is advantageous since it simplifies dealing with 

uncertainty. Additionally, it can be used as a criterion for specifying the number of planning periods. 

The proposed methodologies can be used for planning (such as determining the stock level, order 

quantity, and assignment to operational bases). The number of intervals determines the length of each 

interval, e.g., a two-year planning period with four intervals results in six-month-length periods so that 

the demand will be broken down according to this logic to reduce the forecasting error and provide 

robust planning decisions. Moreover, we noticed that all the forecasting methods examined in this study, 

except SVM integrated with planning, are very competitive in the lower number of intervals. This is a 

critical result in cases where one interval exists; in other words, the mentioned methods (SBA, MSBA, 

Croston, and SVM) can be used interchangeably in long-term decision-making.  



 

 

II) Decreasing the forecasting error causes the planning to be more accurate since the piecewise 

linearization technique improves the forecasting accuracy and outperforms the basic planning model 

used in the METRIC. This method enables the central and decentral decision-making for each item and 

warehouse to manage the resources and costs. In comparing the variations of the errors, we observe that 

some methods outperform the others in a specific number of intervals that can be used for parameter 

tuning. 

 III) Filtering the historical data, aggregating, and considering more attributes reduces the noise and 

overfitting; moreover, using the kernel function modifies the possible errors. It enhances forecasting 

accuracy; however, the characteristics of each spare part should be considered according to the 

centralised or decentralised concept. 

IV) The forecasting's result significantly impacts the planning decisions such as stock levels, order 

assignment, and repair assignment since they correlate with demand data, i.e., failure rate. In this case, 

the trade-off between the forecasting error measures such as MASE and planning performance could 

contribute to defining multiple scenarios for adapting to repair, supply, and inventory management 

decisions. We presented a model for planning and forecasting a spare part supply chain that can support 

the repair, supply, and other related processes in an information system. 

The piecewise linearization technique is helpful for spare parts with intermittent demand, which other 

researchers can develop to deal with lumpy, erratic, and smooth demand. The forecasting method used 

in this paper is proper for intermittent demand, so the forecasting methods for other types of demand 

can be developed regarding the machine learning approaches. Although, the training process can be 

computationally complicated, and attributes may need to be selected empirically. Future research can 

investigate adding each spare part category's feature to modify the present forecasting model, e.g., 

examining the aggregation level is valuable for analysing the properties of each category. Also, using 

clustering methods can be helpful for the aggregation of the spare parts demand. Researchers may also 

examine other decisions such as lateral and emergency transhipment and pooling in the planning model, 

which are significant decisions connecting with forecasting models. Moreover, considering the various 

scenarios and implementing a decision tree provides flexible results, which can be an exciting 

throughput for the managers; therefore, they can easily opt for the desired choices. Another extension 

of this work is to consider the network design as a higher decision level of planning that allows 

examining the effect of the network structure on other decisions; additionally, it may result in new 

methodologies in integrated forecasting, network design, and planning which multi-level models can 

be used in this case. 
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Appendix: 

 

 

Table A-1: Costs and stock levels in warehouses at different time intervals 

Time interval Warehouses 
Spare parts 

Cost 
1 2 3 4 



 

 

1 

Central  
1 0 0 0 

1.63 × 107 

1 1 1 1 
3 1 2 3 

Local  

0 0 0 1 
0 0 1 0 
0 2 0 0 
2 0 2 2 
1 0 1 0 
0 0 0 0 

2 

Central  
2 0 0 0 

1.61 × 107 

1 0 1 2 
1 1 2 2 

Local  

0 0 0 0 
0 0 1 0 
0 4 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

 

Central 
2 0 0 0 

1.6 × 107 

 0 0 1 2 
 0 1 2 2 

3 

Local 

1 0 0 0 
 0 0 1 0 
 0 1 2 0 
 0 0 0 0 
 0 0 1 0 
 0 0 0 0 

 

Central  

2 0 0 0 

1.56 × 107 

 0 0 1 2 

 0 0 2 2 

4 

Local  

3 0 0 0 

 0 1 1 0 

 1 0 0 0 

 0 0 0 1 
 0 1 0 0 

 1 0 0 0 

 

Central  

0 0 0 0 

1.59 × 107 

 1 1 1 1 

 1 1 2 0 

 

Local  

0 0 0 1 

5 0 3 1 0 

 0 2 0 0 

 2 0 2 2 

 1 0 1 0 

 0 0 0 0 
 


