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Lipopolysaccharide distinctively alters human microglia
transcriptomes to resemble microglia from Alzheimer’s disease
mouse models
Jimena Monzón-Sandoval1, Elena Burlacu2, Devika Agarwal3,4, Adam E. Handel2, Liting Wei5, John Davis3,
Sally A. Cowley6, M. Zameel Cader2,5,* and Caleb Webber1,*

ABSTRACT
Alzheimer’s disease (AD) is the most common form of dementia, and
risk-influencing genetics implicates microglia and neuroimmunity in
the pathogenesis of AD. Induced pluripotent stem cell (iPSC)-derived
microglia (iPSC-microglia) are increasingly used as a model of AD,
but the relevance of historical immune stimuli to model AD is unclear.
We performed a detailed cross-comparison over time on the effects of
combinatory stimulation of iPSC-microglia, and in particular their
relevance to AD. We used single-cell RNA sequencing to measure
the transcriptional response of iPSC-microglia after 24 h and 48 h
of stimulation with prostaglandin E2 (PGE2) or lipopolysaccharide
(LPS)+interferon gamma (IFN-γ), either alone or in combination with
ATPγS.We observed a shared core transcriptional response of iPSC-
microglia to ATPγS and to LPS+IFN-γ, suggestive of a convergent
mechanism of action. Across all conditions, we observed a significant
overlap, although directional inconsistency to genes that change their
expression levels in human microglia from AD patients. Using a data-
led approach, we identify a common axis of transcriptomic change
across AD genetic mouse models of microglia and show that only
LPS provokes a transcriptional response along this axis in mouse
microglia and LPS+IFN-γ in human iPSC-microglia.

This article has an associated First Person interview with the first
author of the paper.
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INTRODUCTION
Microglia have well-established roles in inflammation, phagocytosis
and brain homeostasis, appear to promote neuronal survival during

early development (Ueno et al., 2013), participate in synaptic pruning
(Paolicelli et al., 2011) and regulate neuronal excitability (Badimon
et al., 2020). Microglia constantly survey and react to changes in their
environment. The normal functioning of microglia is key to brain
homeostasis, while their functional disruption, prolonged activation
or ageing may contribute to pathological conditions (Luo et al.,
2010). Age-related morphological changes in human microglia
include the loss of fine branches and cytoplasmic fragmentation
(Streit et al., 2004), and transcriptomic changes such as the
upregulation of the amyloid beta (Aβ) formation pathway and the
downregulation of the TGFβ pathway (Olah et al., 2018). Genes
associated with a higher risk of developing Alzheimer’s disease
(AD) are significantly associated with microglia-specific expression
patterns (Agarwal et al., 2020), and gene expression analyses
also highlight key roles for microglia in AD (Zhang et al., 2013;
Mukherjee et al., 2019) and other neurodegenerative diseases.

As neuroimmune cells, microglia respond to a large variety
of stimuli (Cho et al., 2019), including lipopolysaccharide
(LPS), interferon gamma (IFN-γ), prostaglandin E2 (PGE2) and
ATP studied here. The bacterial endotoxin, LPS, is a potent
pro-inflammatory stimulus for microglia and activators of innate
immunity. IFN-γ is a soluble cytokine predominantly released from
T cells and natural killer cells (Mosser and Edwards, 2008). It
is known to regulate leukocyte migration (Reyes-Vazquez et al.,
2012) and has elevated expression in models of injury and
pathology of the nervous system (Roselli et al., 2018). IFN-γ
primes microglia, resulting in changes in morphology and the
release of pro-inflammatory cytokines, to thereby heighten
microglial responses to other stimuli including LPS. For example,
the combination of LPS+IFN-γ potentiates the response of murine
macrophages by increasing nitric oxide production (Lowenstein
et al., 1993; Held et al., 1999). PGE2 is an endogenous lipid immune
modulator that elicits diverse functions through binding to
different types of EP receptors (EP1, increasing Ca2+; EP2 and
EP4, increasing cAMP; and EP3, reducing cAMP) (Kawahara
et al., 2015). Activation of the PGE2/EP2 pathway can promote
inflammation in diverse models of neurodegeneration (Liang et al.,
2008; Shie et al., 2005; Jin et al., 2007), and targeting EP2 with
agonists aims to reduce inflammation, restore healthy microglia
function (Amaradhi et al., 2020) and even improve age-related
cognitive decline (Minhas et al., 2021). However, the activation
of the PGE2/EP4 pathway has shown anti-inflammatory effects
in Aβ models of AD (Woodling et al., 2014), leading to a dual
PGE2 function that can be context dependent (Andreasson, 2010;
Caggiano and Kraig, 1999). PGE2 is also known to exert its effects
in other cell types, for example by promoting astrocyte proliferation
(Zhang et al., 2009). ATP is released as a transmitter by both
neurons (Pankratov et al., 2006; Bodin and Burnstock, 2001) and
astrocytes (Guthrie et al., 1999; Anderson et al., 2004; Lalo et al.,
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2014), but also acts to signal damage when released from injured
cells (Rodrigues et al., 2015) and in response to hypoxia (Melani
et al., 2005). Extracellular ATP induces microglial chemotaxis both
in vitro and in vivo (Davalos et al., 2005; Ohsawa et al., 2007). The
microglial response to external ATP is proposed to be mediated
through P2 purinergic receptors (Walz et al., 1993), while the ATP-
dependent release of ATP in microglia and astrocytes is suggested as
a mechanism to mediate the long-range migration of microglia
toward sites of injury (Dou et al., 2012).
Although the effects of inflammatory stimuli on their own have

been investigated, changes in response over time, the consequences
of combined inflammatory activation in human models and,
importantly, their utility for the study of AD are less well explored.
To model inflammatory effects, we used human induced pluripotent
stem cell (iPSC)-derived microglia (iPSC-microglia), following a
highly efficient protocol that broadly recapitulates microglia
ontogeny from primitive embryonic macrophages from the yolk sac
(Haenseler et al., 2017a,b; Buchrieser et al., 2017). We took
advantage of cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq) (Stoeckius et al., 2017) to simultaneously
measure, at a single-cell resolution, the transcriptional response of
iPSC-microglia to diverse stimuli [LPS+IFN-γ, PGE2 and adenosine
5′-O-(3-thio)triphosphate (ATPγS)] after different exposure times.
We confirmed the relevance of challenged iPSC-microglia as models
for AD, by finding both a higher than expected overlap with genes
that change their expression in microglia from AD patients and an
unusually high number of protein interactions with the products of
genes within AD genome-wide association study (GWAS) loci. We
also performed a meta-analysis of microglia from mouse models of
AD, identifying a disease axis along which microglia from wild-type
(WT) and transgenic AD mouse models are consistently separated.
We observed segregation between homeostatic and activated
response microglia (ARM) along the disease axis, as well as a
minor shift from microglia of post-mortem AD patients. This
framework singles out LPS as the only insult we tested that shifts the
transcriptional profile of microglia towards a disease state in both
mouse and human iPSC-microglia.

RESULTS
We set out to study the response of iPSC-derived microglia to a series
of individual and combined stimuli. More importantly, we investigated
whether the iPSC-microglia in vitro response is relevant for AD by
focusing on both human and mouse models of the disease.

Individual homogeneous populations of iPSC-microglia show
consistent responses to stimuli across biological replicates
We exposed iPSC-microglia to either ATPγS (1 mM), LPS+IFN-γ
(10 ng/ml) or PGE2 (500 nM), and measured the transcriptional
response after 24 h and 48 h. Additionally, iPSC-microglia were
exposed to either PGE2 or LPS+IFN-γ, with ATPγS added after
24 h and the combined response measured after a further 24 h
(Fig. S1A). Prior Ca2+-imaging experiments in iPSC-microglia
demonstrated that pre-treatment with either PGE2 or LPS+IFN-γ for
24 h led to an increased response to ATPγS (Fig. S2). We therefore
sought to investigate how treatment with these inflammatory stimuli
may alter microglia molecular networks. Across a total of eight
conditions, and across four biological replicates, the transcriptional
response was measured at the single-cell level using CITE-seq for
multiplexing (Stoeckius et al., 2017). All comparisons were made to
0 h controls (untreated).
After de-multiplexing, we obtained the transcriptome of 20,231

single cells and performed unbiased clustering analysis to identify cells

with similar transcriptional profiles (see Materials and Methods). We
detected eight cell clusters (Fig. S1B) that segregated cells by
experimental condition and by donor-to-donor differences (Fig. S1C),
with the exception of a small cluster of 469 cells (cluster 6) that did not
express microglial markers but appeared to be a fibroblast-like cell
population (Fig. S3B, Fig. S4A). We further detected a small
population of proliferatingmicroglia (cluster 7, n=302 cells) (Fig. S3C,
Fig. S4B). We excluded both fibroblast-like cells and proliferating
microglia from further analysis. In the remaining microglia-like
populations, we observed a consistent transcriptional response across
biological replicates upon exposure to the same stimuli (Fig. 1A,B).
iPSC-microglia treated with LPS+IFN-γ could be further segregated
by time of exposure (24 h and 48 h), while iPSC-microglia treatedwith
ATPγS (either alone or in combination with other stimuli) clustered
separately, indicating global similarity within treatments that converge
across biological replicates. However, the expression profiles of cells
treated with PGE2weremore similar to those of untreated control cells,
suggesting a milder response.

Functional convergence of differentially expressed genes
(DEGs) after 24 h stimulation with ATPγS and LPS+IFN-γ
Principal component analysis (PCA) showed separation of iPSC-
microglia treated with LPS+IFN-γ along the first component (7.45%
of the variance) and of iPSC-microglia treated with ATPγS along the
second component (6.03% of the variance) (Fig. 1C). Given the
observed clustering per donor even within control iPSC-microglia
(Fig. S5), we integrated our gene expression data across donors
(Fig. S6) and performed differential expression analysis grouping by
donor (seeMaterials andMethods). The largest number of DEGswas
found after 24 h exposure to LPS+IFN-γ (n=904, combined
P-value<0.05), closely followed by the 24 h stimulation with
ATPγS (n=802, combined P-value<0.05). Fewer gene expression
changes were found in response to PGE2 after 24 h exposure (n=152,
combined P-value<0.05, Fig. 1D). Despite the wide range of DEGs
detected in response to the different stimuli (LPS+IFN-γ, PGE2 and
ATPγS) and the distinct principal components (PCs), we found a set
of 73 overlapping DEGs at 24 h across all treatments (Fig. 2A,
hypergeometric test pairwise comparisons; LPS+IFN-γ and ATPγS,
n=514, P≈0, log(P)=−1007.81; LPS+IFN-γ and PGE2, n=89,
P=8.23×10−62; ATPγS and PGE2, n=112, P=4.51258×10

−101). In
particular, the strongest correlation between the gene expression fold
changes (FCs) at 24 h was observed between the exposure to
LPS+IFN-γ and to ATPγS (r=0.625, P<2.2×10−16, Fig. S7),
suggesting a convergent mechanism between these two different
stimuli.

Using Gene Ontology (GO) annotations and controlling for the
microglia-like gene background, we found strikingly similar sets
of enriched biological processes across DEGs, which broadly
segregated between upregulated and downregulated genes.
However, enriched GO terms from downregulated genes with
PGE2 tended to cluster with GO terms from upregulated genes in
response to the other stimuli. In particular, we found high similarity
between the ATPγS treatment and the LPS+IFN-γ treatment at
24 h compared to controls (Fig. 2B). Among downregulated genes,
in response to both ATPγS and LPS+IFN-γ at 24 h, we found
enrichment of genes associated with reduced gene expression,
including genes involved in translational initiation, nuclear-
transcribed mRNA catabolic process nonsense-mediated decay,
signal recognition particle (SRP)-dependent co-translational
targeting to membrane, oxidative phosphorylation, mitochondrial
ATP synthesis and plasma lipoprotein particle clearance. Genes
involved in the immune response were enriched among both
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upregulated and downregulated genes in response to both ATPγS
and LPS+IFN-γ, but only among downregulated genes in response
to PGE2. Notably, enrichment of genes involved in the cellular
response to LPS, as well as the IFN-γ-mediated signalling pathway,
was found among upregulated genes with ATPγS, again pointing
towards a common mechanism in the iPSC-microglia response to
ATPγS and to LPS+IFN-γ. In contrast, among the upregulated
DEGs in response to PGE2 at 24 h, there was no enrichment of
genes already implicated in the response to LPS alone.

Distinct temporal gene expression patterns in response to
LPS+IFN-γ versus PGE2
The DEGs in response to LPS+IFN-γ at both 24 h and 48 h
following exposurewere more similar to each other than to the DEGs
in response to PGE2 across the same time points. Specifically, when
comparing the sets of DEGs in response to LPS+IFN-γ at both 24 h
and 48 h, we observed a higher overlap (n=605, Jaccard
index=0.609, hypergeometric test, P≈0, log(P)=−1707.006,
Fig. 2C) than in response to PGE2 (n=66, Jaccard index=0.303,
hypergeometric test, P=1.484×10−95, Fig. 2D). Although similar
biological processes were enriched at both 24 h and 48 h in response
to LPS+IFN-γ, direct comparison between the two time points
revealed that a fraction of DEGs at 24 h are returning to baseline at

48 h (Fig. S8C,E), and thus DEGs show opposite directions from 0 h
to 24 h and from 24 h to 48 h. In contrast, when we compared the
response to PGE2 at 24 h and 48 h, we found biological processes
uniquely enriched at each time point. For example, in contrast to
ATPγS and LPS+IFN-γ, inflammatory response genes were
downregulated 24 h after PGE2 treatment, but, 48 h after exposure,
pathways shared with ATPγS and LPS+IFN-γ were also enriched
among genes that are differentially expressed in response to PGE2,
including upregulated regulation of the IFN-γ production pathway
and inflammatory response and downregulation of genes involved in
nuclear-transcribed mRNA catabolic processes (Fig. S8E). Our
results show that although LPS+IFN-γ provokes a broad, intense and
transient response, PGE2, by contrast, has a reduced but more
complex and in some aspects delayed response, consistent with its
dual pro-inflammatory and anti-inflammatory role (Fig. S8D,E).

Lack of widespread synergistic effects of the combined
treatments with ATPγS
Although ATPγS treatment alone provoked a strong cellular
response, little additional effect was observed when this treatment
was combined with the prolonged exposure of either LPS+IFN-γ or
PGE2 (Fig. S9). Specifically, only 20 DEGs were uniquely
identified in response to the combined treatment of LPS+IFN-γ

Fig. 1. Induced pluripotent stem cell
(iPSC)-derived microglia show a similar
response to treatments across biological
replicates, with the largest response to
lipopolysaccharide (LPS)+interferon
gamma (IFN-γ). (A) Uniform Manifold
Approximation and Projection (UMAP)
based on the first ten principal components
of the top 1000 most variable genes across
iPSC-microglia shows segregation of groups
exposed to either LPS+IFN-γ or adenosine
5′-O-(3-thio)triphosphate (ATPγS), while
those treated only with PGE2 tend to cluster
near controls. (B) UMAP shows a similar
segregation pattern across biological
replicates (colours indicate the donors from
which iPSC-microglia were derived).
(C) Principal component analysis based
on the top 1000 most variable genes in
iPSC-microglial cells (n=19,460). In the first
two principal components (PCs), cells are
coloured by experimental group; density
plots on the side help to distinguish groups
treated with LPS+IFN-γ along the first
component and groups treated with ATPγS
along the second component. (D) Number of
differentially expressed genes (DEGs)
detected between each treatment and
control cells (integrated data, combined
P-value<0.05).
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48 h and ATPγS at 24 h compared to ATPγS alone (Fig. S9B), while
only two unique DEGs were found in response to the combined
effect of 48 h PGE2 and 24 h ATPγS compared to ATPγS alone
(Fig. S9D). Additionally, in the combined treatments with ATPγS,
we found almost the same set of biological pathways once we
controlled for the effects of the individual treatments (Fig. S9I). We
observed similar FCs in response to LPS+IFN-γ at 48 h with and
without the addition of ATPγS at 24 h, whereas only strong changes
were observed in response to the combined treatment of PGE2 at
48 h with the addition of ATPγS (Fig. S9E,F). Gene expression

changes in response to the combined treatment of PGE2 and ATPγS
were quite similar to those observed in response to ATPγS
alone (Fig. S9H). Taken together, these findings suggest the lack
of widespread synergistic effects of LPS+IFN-γ or PGE2 treatments
when either treatment is combined with ATPγS.

Combined protein–protein interaction (PPI) network
highlights a core similar response to LPS+IFN-γ and to ATPγS
Using an integrated PPI network (see Materials and Methods), we
found more interactions than expected by chance among the protein

Fig. 2. Consistent increased expression of chemotaxis-related genes and decreased expression of genes involved in translation and signal
recognition particle (SRP)-dependent co-translational protein targeting to membrane. (A) Venn diagram shows the overlap between DEGs (combined
P-value<0.05) at 24 h after exposure to LPS+IFN-γ, PGE2 and ATPγS. (B) Enriched biological processes found among DEGs detected after 24 h and 48 h in
response to ATPγS, LPS+IFN-γ and PGE2. Gene Ontology enrichment analysis was performed separately for upregulated and downregulated genes. Heatmap
shows the −log10-transformed adjusted P-value for each enriched biological process in shades of pink (if adjusted P-value<0.05, otherwise grey). Only non-
redundant terms based on their semantic similarity are shown (see Materials and Methods). (C) Venn diagram shows a larger set of genes uniquely differentially
expressed in response to LPS+IFN-γ at 24 h compared to 48 h. (D) Similarly, a larger set of unique DEGs in response to PGE2 was found at 24 h.
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products of the DEGs in iPSC-microglia in response to each of the
different stimuli once we controlled for degree and gene length
(estimated P-value<0.0001 based on randomizations, see Materials
and Methods, Fig. S10A). These results further support the
functional convergence within each set of identified DEGs. By
focusing on a subset of the PPI network containing the genes with
the most marked changes at 24 h (absolute logFC>=1.5, combined
P-value<0.05), we observed a high level of similarity in the
direction and strength of the gene expression changes upon ATPγS
and LPS+IFN-γ, in addition to functional clustering among
upregulated and downregulated genes (Fig. 3; Fig. S7).

DEGs in iPSC-microglia across all treatments significantly
overlap with genes that change in microglia of AD patients
In AD, a large fraction of risk genes are highly expressed in
microglia compared to other cell types, and efforts to characterize
cell-type-specific transcriptional changes from post-mortem tissue
of patients with AD have been recently reported (Mathys et al.,
2019; Grubman et al., 2019). Grubman et al. (2019) characterized
cell-specific gene expression changes from the entorhinal cortex of
six patients with AD and six controls, while Mathys et al. (2019)
focused on cell-specific changes in the prefrontal cortex of 24
individuals with AD and 24 controls. Both reported microglial-
specific changes in AD patients compared to controls (62 DEGs in
the entorhinal cortex and 122 DEGs in prefrontal cortex, Fig. 4A).
Although there is heterogeneity between AD datasets, the overlap
of 12 genes between datasets is higher than expected by
chance (hypergeometric test, P=4.525×10−12). We compared the
transcriptional changes in our challenged iPSC-microglia and the
microglia-specific changes observed in both post-mortem AD
studies (see Materials and Methods). We observed a small, but
higher than expected, overlap between the genes differentially

expressed in iPSC-microglia following all challenges and the DEGs
in microglia from AD patients from both studies, including genes
that change in the early state of the pathology (Fig. 4B,C). However,
differences were observed in the direction of the effect. In the iPSC-
derived stimulated microglia, most of the gene expression changes
occurred in the same direction [such as the upregulation of serglycin
(SRGN)]. Only a few genes showed divergent expression patterns,
such as secreted phosphoprotein 1 (SPP1) upregulation with
LPS+IFN-γ and downregulation with PGE2 treatments. Another
discordant example was the chemokine (C-C motif ) ligand 3
(CCL3), upregulated only in response to ATPγS and LPS+IFN-γ but
not in response to PGE2 (Fig. 4D). By contrast, we observed more
changes in gene expression in opposite directions when comparing
the challenged iPSC-microglia to the post-mortem microglia of AD
patients. For example, mitochondrial and ribosomal genes were
downregulated in iPSC-microglia and upregulated in the post-
mortem AD microglia. Thus, we perturb a small but significant
subset of genes altered in post-mortem AD microglia when
challenging iPSC-microglia with different stimuli. Although few
differences in directionality are observed between iPSC-microglia
challenged with these different stimuli, larger differences in
directionality exist between these challenged iPSC-microglia and
post-mortem AD microglia.

DEGs in iPSC-microglia are linked through PPIs to genes
that change in microglia of AD patients and to AD GWAS
risk genes
Using the combined PPI network, we found more PPIs than
expected by chance between DEGs in post-mortem AD microglia
and DEGs in our stimulated iPSC-microglia, suggesting functional
convergence into shared pathways [PPIs controlled for cell-type-
specific effects, coding sequence (CDS) length and node degree, see

Fig. 3. Functional convergence among ATPγS and LPS+IFN-γ treatments at 24 h through a combined protein–protein interaction (PPI) network.
Nodes indicate genes, and edges indicate known PPIs between their gene products (see Materials and Methods). PPI network among the protein products
of the DEGs with the largest fold changes (FCs) in any of the treatments (absolute logFC≥1.5, combined P-value<0.05). (A) Genes are coloured by the
logFC after 24 h in response to ATPγS. (B) Genes are coloured by the logFC after 24 h in response to LPS+IFN-γ.
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Materials and Methods, Fig. S11A]. We also found more
PPIs between genes lying within AD GWAS risk loci and each
of every set of DEGs in challenged iPSC-microglia (Fig. S11B).
The functional links between the in vitro perturbations in iPSC-
microglia and the genetic risk of developing AD, as well as the
post-diagnosis gene expression changes observed in post-mortem
AD, suggest that all these challenged iPSC-microglia could be
relevant models for AD study.

Meta-analysis ofmousemicroglia allows the identification of
a disease axis that segregatesWTmicroglia from transgenic
AD model microglia
As a final comparison for our challenged human iPSC-microglia,
we compared them to in vivo purified microglia across a range of

published AD mouse models. Although a small fraction of
AD-relevant risk genes lack a 1:1 human: mouse orthologue
(Mancuso et al., 2019), genetic mouse models are useful as they
allow the study of behaviour and cognitive decline, and recapitulate
some physiopathological features of the disease. We performed a
gene expression meta-analysis of purified mouse microglia across a
series of transgenic models of AD including genetic mutations in
amyloid precursor protein (APP), presenilin (PS1; also known as
PSEN1), microtubule-associated protein tau (MAPT) and triggering
receptor expressed on myeloid cells 2 (TREM2) (Wang et al.,
2015; Song et al., 2018; Orre et al., 2014; Srinivasan et al., 2016;
Friedman et al., 2018). After data re-processing and accounting for
batch effects (see Materials and Methods), the first PC (accounting
for 14.43% of the variance) segregated WT from transgenic

Fig. 4. Overlapping DEGs in stimulated iPSC-microglia and DEGs in microglia from Alzheimer’s disease (AD) patients. (A) Venn diagram shows the
overlap between DEGs in microglia from AD patients identified by Mathys et al. (2019) in the prefrontal cortex and by Grubman et al. (2019) in the entorhinal
cortex (hypergeometric test, n=12, P=4.525×10−12). (B) Heatmap shows the number of overlapping iPSC-microglia DEGs and the DEGs in microglia from AD
patients. It includes the subsets of DEGs that change in expression early in the pathology of AD (contrasting individuals that showed amyloid burden but few
neurofibrillary tangles and modest cognitive impairment) and the subset of genes that change late in the pathology of AD (higher amyloid burden, presence
of neurofibrillary tangles and cognitive impairment compared to the early pathology group). (C) We tested whether the overlap between DEGs was higher
than expected by chance; the heatmap indicates the adjusted P-value of the corresponding hypergeometric tests (adjusted P-value<0.05 shown in pink
shades, otherwise shown in grey). (D) Heatmap shows the direction and magnitude of the change (logFC) of the DEGs in iPSC-microglia and the DEGs in
microglia from AD patients; grey squares indicate no significant change in expression (adjusted P-value>0.05).
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models carrying genetic mutations associated with AD (Fig. 5A;
Fig. S12A-C). We refer herein to the first PC as the disease model
axis. Along this data-driven disease axis, the most severe model
(5xFAD) showed the most segregation, while microglia with a
TREM2 knockout clustered with WT microglia.
Next, we asked whether the orthologues of genes lying within AD

GWAS risk loci were enriched among the genes driving the gene
expression differences along the disease axis (see Materials and
Methods). From 116 AD GWAS loci genes, we identified 55 with
one-to-one orthologue correspondence from human to mice
expressed across the microglia gene datasets used in the meta-
analysis. However, when we focused on the top 500 genes with the
lowest loadings along the disease model axis (corresponding to a
reduced expression in AD models), we found more AD GWAS loci
genes than expected by chance (hypergeometric test, P=0.00197),
including HBEGF, CASS4, OARD1, CNN2, IL6R, BZW2, BIN1,
FRMD4A and ADAM10 (Fig. S12D). We confirmed the overlap in
different-sized windows, from the top 50 to 1000 genes in 50 gene

increments. A significant overlap with AD GWAS loci genes held
truewhen testing the top 200-300, 400-750 and 900-1000 genes with
lowest loadings (adjusted P-value<0.05). We also foundmore PPIs to
AD GWAS loci genes than expected by chance in the top genes
with the highest and lowest loadings along the disease model axis
(Fig. S12E). Genes with the highest PC1 loadings showed
enrichment of genes involved in the innate immune response
(including response to bacteria), regulation of cytokine production
and Aβ clearance, whereas genes with the lowest loadings along PC1
showed enrichment of genes involved in the positive regulation of
defence response, negative regulation of cell proliferation and blood
vessel morphogenesis (Fig. S13). In summary, the meta-analysis of
mouse microglia revealed a disease model axis of microglia gene
expression variation that aligns with the disease severity observed in
the genetic mouse models of AD, where genes driving the differences
along this axis are enriched in AD GWAS loci genes, have more
PPIs to AD GWAS loci genes than expected by chance and are
enriched in pathways relevant to the disease models of AD.

Fig. 5. Disease axis from meta-analysis of microglia from genetic mouse models of AD segregates homeostatic and activated response microglia.
(A) After accounting for batch effects, first PC segregates mouse microglia from WT and from those of transgenic mouse models of AD across datasets.
(B) Single-cell gene expression of microglia from the knock-in AppNL-G-F and WT mice was aggregated by either microglia type/cluster (ARM, activated
response microglia; CRM, cycling/proliferating microglia; H1M, homeostatic microglia 1; H2M, homeostatic microglia 2; IRM, interferon response microglia;
TRM, transit response microglia), genotype (K, AppNL-G-F; W, WT), age (3, 6, 12 and 21 months) or sex (F, female; M, male) and projected into the first PC or
disease axis. Each dot represents the projected PC1 for the aggregated transcriptional profile of microglia across 10,187 shared genes. (C) Single-cell gene
expression of microglia from male WT and APP/PS1 mice was aggregated by either microglia type/cluster (H1.2M, homeostatic microglia 1/2), genotype C,
C57BL/6; D, App/Ps1-ApoeKO; E, C57BL/6-ApoeKO; P, App/Ps1 or age (17 and 18 months) and projected into the disease axis from the meta-analysis of
mouse AD models.
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Disease axis from genetic mouse models of AD segregates
homeostatic from ARM
We next asked whether the disease model axis could also segregate
the recently reported ARM subtypes/states that localize with
Aβ accumulation in the transgenic mouse APP knock-in model
(AppNL-G-F) (Sala Frigerio et al., 2019). We re-normalized and
aggregated gene expression data of the AppNL-G-F mouse model by
either microglia subtype, genotype, sex, age or tissue, and projected
the transcriptional profiles into the disease axis created from the
meta-analysis of mouse models of AD (see Materials and Methods,
Fig. 5B). We observed that the largest segregation along the disease
axis occurred when we compared homeostatic microglia, which
localized as microglia from WT in other studies, and ARM, which
localized similarly to AD model microglia. To a lesser degree, we
also observed segregation along the disease axis by genotype, age
and sex, in agreement with previous observations in which
microglia from female mice progress more rapidly to an ARM
state (Sala Frigerio et al., 2019). Differences between homeostatic
and ARM microglia along the disease axis were further confirmed
when projecting analogous gene expression data from the APP/PS1
mouse model reported in the same study (Fig. 5C). In this second
dataset, we also observed that APOE knockout moved microglia
along the disease axis towards a transcriptional profile more similar
to that of the WT, consistent with previous observations where its
deletion prevents the main inflammatory response to Aβ plaques
(Sala Frigerio et al., 2019).

LPS treatment shifts the transcriptional profile of microglia
towards a disease state
Following the data-led establishment of a framework that segregates
at the transcriptional level WT microglia from mouse genetic
AD model microglia, and that captures differences between
homeostatic and ARM subtypes/states, we then asked which
different inflammatory stimuli, if any, drive microglia along this
disease model axis towards a transcriptional state similar to that
observed in the disease models of AD. To this end, we re-analysed
the transcriptional profiles recently reported (Cho et al., 2019) that
systematically assess the microglia response to an array of stimuli
across 96 different conditions. Once we accounted for batch effects,
we projected each treated microglia transcriptional profile onto the
disease model axis (see Materials and Methods). We observed that,
after 4 h treatment with high doses of LPS, microglia transcriptional
profiles showed the largest shift along the disease axis (Fig. 6A).
Similarly, we created a pseudo-bulk from our human
iPSC-microglia, averaging expression per donor and per
treatment, based only on those genes with one-to-one orthologue
correspondence between species, accounting for batch effects, and
projected the transcriptional profiles into the disease axis (see
Materials and Methods). Again, only iPSC-microglia treated with
LPS+IFN-γ shifted along the disease axis (Fig. 6B). We further
performed a randomization analysis in which we ranked all samples
along PC1 and tested whether the transcriptional profiles of
microglia stimulated with LPS ranked higher along PC1 than
expected by chance. In mouse primary microglia and in human
iPSCs, we observed a higher ranking along PC1 in microglia treated
with LPS (estimated P-values: PMouse<1×10−5, PHuman=0.00208).
Finally, we encountered a large overlapping set of functional
pathways shared among the upregulated genes in response to
LPS+IFN-y and those with the highest loadings along the disease
axis (Fig. S13B). Taken together, these results indicate that, despite
the core similarities observed in response to ATPγS and to
LPS+IFN-γ, it is the response to LPS by both mouse microglia

and human iPSC-microglia that best promotes a transcriptional shift
towards a state more similar to that of the ARM from the mouse AD
models.

Minor shift along disease axis of human post-mortem
microglia from AD patients
Finally, we projected the gene expression profiles of human post-
mortem microglia from individuals with AD and healthy controls
(Mathys et al., 2019; Grubman et al., 2019) onto the disease model
axis created (Fig. S14). We observed a small but consistent shift
along the disease axis, where transcriptional profiles of microglia
from individuals with AD segregate along the disease axis closer to
the transgenic models of AD, and those from controls towards the
profiles of microglia from WT mouse.

DISCUSSION
In this study, we compared the transcriptomic response of iPSC-
microglia to a range and combination of different stimuli at different
exposure times and then asked whether any of these challenges
provoked a cellular response that that could be useful when
modelling AD. Our single-cell approach allowed us to remove
contaminating fibroblast-like cells and proliferating microglia and
focus on the large fraction of iPSC-microglia (Fig. S3). We showed
a consistent response to the different stimuli across four biological
replicates (Fig. S6), where the main sources of variation correspond
to the exposure type (Fig. 1C), with LPS+IFN-γ and ATPγS
provoking the largest number of transiently DEGs (Fig. 1D) with
the strongest functional convergence in terms of shared enriched
biological pathways, compared to a milder but more complex
response to PGE2 (Figs 2, 3; Fig. S8). Few additional effects
were observed when combining treatments, which supports both
functional convergence and dominance of individual effects
(Fig. 1D; Fig. S9).

In comparison to microglia, for nuclei obtained from human post-
mortem AD, although there is a significant overlap in the DEGs
(Fig. 4B,C), the direction of change is largely not concordant
(Fig. 4D). This lack of agreement on direction could reflect the
temporal nature of immune stimulation (Fig. 2; Fig. S8) and that the
post-mortemmicroglia are likely to be far more neuropathologically
heterogeneous than the comparatively controlled and homogeneous
iPSC-microglia challenges. In terms of convergent biological
processes, across all iPSC-microglia treatments, we found
significantly more protein–protein interactors than expected by
chance to either DEGs in microglia from AD patients or to genes
lying in AD GWAS loci (while controlling for the microglial
background), indicating that by stimulating iPSC-microglia we are
perturbing gene networks functionally associated with AD.

To further pursue the question of relevance of iPSC-microglia
models to AD, we employed an unbiased approach to reveal a
shared axis of gene expression variation that distinguished purified
WT microglia from AD model microglia across a wide range of
AD mouse models (Fig. 5). The discovered axis reflects large and
small shifts in gene expression across a great many genes, rather
than a smaller number of independently statistically significant
changes in a subset of genes. Human post-mortem microglia
showed a consistent but small change along the disease model
axis, separating AD cases from controls. The lack of a stronger
segregation of human post-mortem microglia along the microglia
disease axis from AD mouse models might reflect distinct biology
or differences in comparative timing and heterogeneity in the
transcriptional profiles of AD post-mortem microglia. Placing the
gene expression profiles from all human in vitro iPSC-microglia
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challenges and all in vitromouse microglia challenges considered in
this study onto this disease model axis singled out the expression
changes invoked by LPS in mouse and LPS+IFN-γ in human iPSC-
microglia as the challenge that distinctively produces a gene
expression reaction similar to that shared among AD genetic mouse
models (Fig. 6). Nevertheless, given the lack of stimulation of LPS
alone in iPSC-microglia, we were unable to confirm the result using
LPS alone in human.
Although, overall, we observed a great similarity between

the response to ATPγS and to LPS+IFN-γ, suggesting shared
mechanisms of action, we speculate that key differences could be
operating upstream of these shared mechanisms that may shift the
transcriptional profile towards a state resembling that of the mouse
disease models of AD. As observed in mice, LPS alone is able to
shift the transcriptional profile of microglia towards a more AD

disease model state whereas IFN-γ alone does not induce this shift
(at least at the observed times/doses) (Fig. 6A). Although it would
be of interest to test the effect of other stimuli, for example Aβ
fibrils, our current results propose that, from the stimuli we tested,
LPS provokes the most AD-relevant microglia stimulus given its
similarity to the genetic mouse models. LPS also has advantages in
terms of assay reproducibility, availability and scalability. Although
LPS is not known to, nor likely to, cause AD, the Toll-like receptor 4
that mediates the LPS response is thought to have a role in AD (Park
and Lee, 2013; Calvo-Rodriguez et al., 2020).

Our data-led approach to identifying an AD disease model
transcriptional axis for microglia can be revisited with new model
data and further investigated for disease insight. Although there is a
strong agreement between the response to LPS and the genetic mouse
models of AD, for most of the overlapping DEGs, the directionality

Fig. 6. LPS shifts mouse primary
microglia and human iPSC-
microglia towards a more similar
profile to that of mouse models of
AD. (A) Gene expression data of
in vitro mouse microglia stimulated
with a large array of different stimuli
were projected into the disease axis
(or first PC based on the meta-
analysis of gene expression of
microglia from genetic mouse models
of AD). Each dot represents the
projected PC1 based on the
transcriptional profile of 10,844
shared genes. Largest shifts along
PC1 occur in microglia treated with
high doses of LPS at 4 h. (B) Gene
expression data from our human
iPSC-microglia were aggregated by
experimental group and donor and
projected into the disease axis (PC1)
from the meta-analysis of microglia
from genetic models of AD. Each dot
represents the projected PC1 based
on the transcriptional profile of 8156
common genes. iPSC-microglia
treated with LPS+IFN-γ showed the
largest shift along the PC1
projection. We used randomization
analysis (see Materials and
Methods) to test whether the average
rank of treatments that included LPS
along PC1 was higher than expected
by chance. In mouse primary
microglia and in human iPSC-
microglia, samples treated with LPS
ranked higher along PC1 (estimated
P-values: PMouse<1×10−5,
PHuman=0.00208).
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of change is not consistent with human post-mortem microglia.
Noticeably, an exception, SPP1was among the top genes driving the
shift along the disease axis from the genetic mouse models of AD,
was exclusively upregulated in the iPSC-microglia treated with
LPS+IFN-γ at both 24 and 28 h, has increased expression in two
different studies of post-mortem human AD microglia (Grubman
et al., 2019; Mathys et al., 2019) and is characteristic of the ARM
subtype (Sala Frigerio et al., 2019). A microglia population
expressing Spp1 has been described in the axon tracts of the pre-
myelinated brain during early post-natal development in mouse
(Hammond et al., 2019) and has also been associated with a specific
microglia population from a model of toxic demyelination and in
human microglia of multiple sclerosis patients (Masuda et al., 2019).
The role of SPP1 both during normal conditions and development
and in disease warrants further study.

MATERIALS AND METHODS
Cell culture, differentiation and processing
Two male [SFC841-03-01 (Dafinca et al., 2016), SFC854-03-02 (Haenseler
et al., 2017a,b)] and two female [SFC180-01-01 (Haenseler et al., 2017a,b),
SFC856-03-04 (Haenseler et al., 2017a,b)] iPSC lines were used for the
study. They were originally re-programmed from healthy donors recruited
through StemBANCC/Oxford Parkinson’s Disease Centre [participants
were recruited to this study having given signed informed consent, which
included derivation of human iPSC lines from skin biopsies; Ethics
Committee: National Health Service, Health Research Authority, NRES
Committee South Central, Berkshire, UK (REC 10/H0505/71)], and are all
listed in hPSCreg and available from the European Bank for Induced
Pluripotent Stem Cells (EBiSC). They were differentiated to primitive
macrophage precursors and subsequently skewed to microglia-like cells
in monoculture according to Haenseler et al. (2017a,b). Primitive
macrophage precursors were plated in IBIDI dishes (IBIDI µ-dish 35 mm,
low, cat. no. 80136) at a starting density of 500.000 cells per IBIDI dish
(∼125,000 cells/cm2). Cells were treated with 10 ng/ml LPS and 10 ng/ml
IFN-γ or with 500 nM PGE2 for 24 h or 48 h in a final volume of 500 µl
medium per IBIDI dish; 1 mMATPγS was added for the second 24 h where
relevant (Fig. S1). Note that our experimental design compares all 24 h or
48 h treatments to 0 h controls where relevant, and thus is unable to
distinguish in vitro changes due only to culturing cells without treatment for
24 h or 48 h.

Cells were lifted by incubating them with 200 µl accutase (Thermo Fisher
Scientific) for 3 min at 37°C. Cells were then collected in 2×500 μl PBS and
pelleted by spinning at 600 g for 5 min at 4°C. Next, cells were resuspended
in 100 µl staining buffer (2% bovine serum albumin, 0.02% PBS-Tween 20)
and incubated with 7 μl Fc blocking reagent (BioLegend) for 10 min. Then
1 µg cell hashing antibodies was added to each of the samples. Each cell line
had eight IBIDI dishes corresponding to the eight different treatment
conditions and eight hashing antibodies. After 30 min incubation at 4°C,
cells were washed two times: first wash by spinning them at 600 g for 5 min
and resuspending them in 500 ml staining buffer spinning, second wash by
spinning the cells at 600 g for 5 min and resuspending them in 200 µl
staining buffer. Finally, cells were resuspended in 150 µl PBS, filtered
through a 40 µm cell strainer and counted. Note that cultures were staggered
and RNA was extracted at the same time to avoid batch effects. All the
treatments from a cell line were pooled together and were loaded on a 10X
Chromium. For SFC841-03-01, SFC856-03-04 and SFC180-01-01 cell
lines, 10,000 cells per pool were loaded in one 10X Chromium lane; for
SFC854-03-02 cell line, 5000 cells per pool were loaded on two 10X
Chromium lanes.

Ca2+ imaging
For ratiometric Ca2+ imaging, microglia from the male line (SFC841-03-01)
were incubated in aCSF (130 mM NaCl, 25 mM NaHCO3, 2.5 mM KCl,
1.25 mMNaH2PO4, 2 mMCaCl2, 1 mMMgCl2 and 10 mM glucose, pH 7.4,
290-310 Osm) containing 5 µM Fura-2 AM and 80 µM pluronic acid (Thermo
Fisher Scientific) for 1 h at 37°C after their 24 h pre-treatment incubation. After

incubation with Fura-2 AM, the cells were washed with aCSF to remove
extracellular dye and left to sit for 30 min at room temperature before imaging.
During imaging recording, the first fewminutes were recorded with only aCSF.
Vehicle orATPγS (50 µM)waswashed on and off the cells in a time-dependent
manner. The fluorescence of Fura-2 was excited alternatively at wavelengths of
340 nm and 380 nmbymeans of a high-speedwavelength-switching device on
a Zeiss microscope. Zeiss image analysis software allowed selection of several
regions of interest within the field of view. Ratiometric 340/380 calculationwas
performed with a background subtraction. The 340/380 ratios were then
analysed by measuring the average value in a user-defined time window using
custom scripts in MATLAB. The data were smoothed using robust local
regression MATLAB function at 20%.

Data processing
We used Cell Ranger pipeline (v2.1.0) to process the sequencing data,
including alignment with STAR and single cell 3′ gene counting. CITE-seq-
Count python tool was used to de-multiplex samples by hashtag antibody.
Then, we used the HTODemux function from Seurat to identify doublets
and keep singlets (n=20,231). We kept only protein-coding genes detected
in at least 100 cells. Thus, we obtained gene expression data for 12,335
genes across 20,231 cells. In the filtered dataset, we observed a median
of 2309 genes, 10,293 unique molecular identifiers (UMIs) and 3.25%
of mitochondrial reads per cell. Gene expression was normalized against
the total number of counts detected per cell. Gene expression data
were scaled to a factor of 1×104 before the transformation to logarithmic
scale.

Dimensionality reduction and clustering
We performed PCA on the scaled gene expression of the top 1000 most
variable features (across 20,231 cells). For visualization, we used Uniform
Manifold Approximation and Projection (UMAP) based on the first 30 PCs.
To identify communities of similar cells, we used the shared nearest
neighbour (SNN) modularity optimization-based clustering algorithm
(FindClusters function in Seurat R package). To identify unbiased clusters,
we included the first 20 PCs and a granularity resolution of 0.1. Most cell
clusters showed expression of the microglial markerC1QB (Fig. S3A), except
cluster 6, consisting of 469 cells, which instead showed increased expression
levels of COL1A1 (Fig. S3B) and other common fibroblast markers (Muhl
et al., 2020). For a more comprehensive characterization, we considered the
expression levels of a core set of 249 human microglial markers identified by
Patir et al. (2019) from a meta-analysis of transcriptomic data (Patir et al.,
2019).Many human microglial makers were expressed across all cell clusters,
except in cluster 6, the fibroblast cell population (Fig. S3C, Fig. S4A). We
also detected a small population (cluster 7) of proliferating iPSC-microglia
characterized by the expression of KIAA0101 (also known as PCLAF),
UBE2C, TOP2A and CDK1 (Fig. S4B). We excluded from further analysis
both cluster 6 (fibroblast-like) and cluster 7 (proliferating cells) and
performed PCA again. Initially PCA was performed only on untreated
control iPSC-microglia (n=1751), where we used the first 30 PCs for UMAP
and clustering (Fig. S5). Then, PCs were re-calculated for iPSC-microglia
across all experimental groups (n=19,460), and, again, the first 30 PCs were
used for UMAP.

Data integration
We performed an integration step across our biological replicates (donors).
Gene expression data were divided into smaller datasets per donor and
normalized, and the top 1000 most variable features were identified. A total
of 1620 features were repeatedly variable and were used to find anchors.
Canonical correlation analyses were performed across each pair of datasets.
Integrated data were scaled for PCA. For visualization, we used UMAP
based on the first 30 PCs.

Differential expression
Differential expression analysis was performed in the integrated dataset,
using the FindConservedMarkers function in Seurat R package. Each
experimental condition was compared to the untreated control cell per donor
independently using a Wilcoxon rank sum test. Therefore, each gene was
tested four times, one per donor. The metap R package was used to combine
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P-values using the minimump function that implements the Tippett’s
method, for the meta-analysis of P-values. Genes with a combined
P-value<0.05 were considered differentially expressed.

GO enrichment
For GO enrichment analyses, we used clusterProfiler R package. GO
annotations were accessed through Bioconductor (org.Hs.eg.db). We used as
background population the set of genes expressed in our dataset (n=12,335).
We used false discovery rate (FDR) to account for multiple testing and
considered enriched only those termswith an adjustedP-value<0.05.To reduce
redundancy among enriched GO terms, we used rrvgo R package using Rel
similarity with a threshold of 0.85. Similarly, GO mouse annotations were
accessed through Bioconductor (org.Mm.eg.db). All genes detected in the
meta-analysis were considered our background gene population.

Combined PPI network
We constructed a PPI network based on the data available across a range of
resources: BioGRID (Stark et al., 2006) (accessed 30 March 2020),
HitPredict (López et al., 2015) (accessed 30 March 2020), IntAct (Orchard
et al., 2014) (accessed 30 March 2020), STRING (Szklarczyk et al., 2019)
(accessed 30 March 2020, only links with experimental evidence score>0),
CORUM (Giurgiu et al., 2019) (accessed 30 March 2020), Reactome
(Fabregat et al., 2018) (accessed 30 March 2020), BioPlex HCT116.v.1.0
(accessed 30 March 2020), BioPlex 3.0 (Huttlin et al., 2021) (accessed 30
March 2020), MINT (Licata et al., 2012) (accessed 30 March 2020),
InBioMap (Li et al., 2017) (accessed 30 March 2020). All PPIs were either
kept or mapped to Ensembl gene IDs. When we tested whether the number
of PPIs was higher among a set of genes than expected by chance, we
performed 10,000 randomizations. In each randomization, we selected an
equally sized sample of genes matched for degree and CDS length and
counted the number of PPIs among them. An estimated P-value was derived
from the number of randomizations where we detected more PPIs than
observed among the protein products of each set of DEGs.

Test for gene overlap
We used a hypergeometric test for the overlap between each pair of sets of
DEGs. We adjusted for multiple testing using the Benjamini–Hochberg
method. We used as background a population of 12,335 genes to estimate
the expected proportions. When we compared Homo sapiens and Mus
musculus, only genes with one-to-one orthologue correspondence were
taken into account.

Microglia response to diverse stimuli in mice
We re-processed the gene expression data from mouse microglia exposed to
96 different conditions in vitro available at Gene Expression Omnibus
(GEO) [GSE109329 (Cho et al., 2019)]. We quantified transcript
abundances using Kallisto version kallisto_linux-v0.46.0 (Bray et al.,
2016). The reference index was built based on coding (cdna) and non-
coding RNA (ncrna) sequences with annotations from Ensembl release 98
available through the ftp website (http://ftp.ensembl.org/pub/release-98/
fasta/mus_musculus/cdna/Mus_musculus.GRCm38.cdna.all.fa.gz; http://
ftp.ensembl.org/pub/release-98/fasta/mus_musculus/ncrna/Mus_musculus.
GRCm38.ncrna.fa.gz). We filtered out sequences in scaffold chromosomes.
We filtered genes with no expression across all samples. For comparison
between species, only genes with one-to-one orthologues from Homo
sapiens to Mus musculus were considered.

DEGs in human AD patients
We used data from two independent studies that have reported microglia-
specific gene expression changes in AD patients compared to controls
(Grubman et al., 2019; Mathys et al., 2019). Genes reported byMathys et al.
(2019) (Supplementary Table 2 in their publication, FDR-adjusted
P-value<0.05, two-sided Wilcoxon rank sum test), and those reported by
Grubman et al. (2019) on the accompanying website to their publication
(http://adsn.ddnetbio.com/; AD versus control based on subclusters, n=62
genes, FDR<0.05, n=62 genes, empirical Bayes quasi-likelihood F-test),
were evaluated.

Meta-analysis of microglia from genetic mouse models of AD
Gene expression datasets from mouse microglia were obtained from GEO
through a search of genetic models of AD (search in GEO for ‘microglia
mouse AD’ in 2018). Microarray datasets included the following:
fluorescence-activated cell sorting (FACS)-purified microglia from
8.5-month-old WT, Trem2−/−, 5XFAD, and Trem2−/− 5XFAD
[GSE65067 (Wang et al., 2015)]; CD45+ and CD11B+ microglia from
8.5-month-old mice expressing the common variant, R47H or no human
TREM2 on a background of murine TREM2 deficiency and the 5XFAD
mouse model of AD [GSE108595 (Song et al., 2018)]; and cortical
microglia from 15- to 18-month-old APPswe/PS1dE9 mice compared to
WT littermates [GSE74615 (Orre et al., 2014)]. RNA-sequencing datasets
included the following: FACS-sorted microglia from 7- or 13-month-old
PS2APP or non-transgenic mice [GSE75431 (Srinivasan et al., 2016)];
microglia (Cx3cr1::GFP+ sorted) from the cortex of 14- to 15-month-old
PS2APP or WT mice [GSE89482 (Friedman et al., 2018)]; sorted CD11B+

myeloid cells from 11- to 12-month-old tau-P301L and non-transgenic
littermates [GSE93179 (Friedman et al., 2018)]; and sorted CD11B+

myeloid cells from 6-month-old tau-P301S transgenic mice or non-
transgenic littermates [GSE93180 (Friedman et al., 2018)]. For RNA-
sequencing datasets, fastq files were downloaded from GEO, and transcript
quantification was performed with Salmon (version 0.9.1) for protein-
coding genes with Ensembl (release v91). Quality control metrics are
provided in Table S1. Transcript counts for all studies were imported and
summarized to gene levels counts with tximport R library, and genes with
less than 20 counts across all samples were filtered out. The filtered count
matrix was normalized using Rlog transformation implemented in DESeq2
R library (Love et al., 2014). For microarray datasets, CEL files were
downloaded from GEO. We performed background subtraction, quantile
normalization and summarization using the RMA algorithm implemented in
oligo R library (Carvalho and Irizarry, 2010). Then, we used surrogate
variable analysis to correct for batch effects between the seven studies
through the ComBat function available in the sva R library (Chakraborty
et al., 2012). Finally, we performed PCA using the prcomp function in R.

Projection into PC1 of mouse genetic AD models meta-analysis
We projected samples from a few datasets into the same dimensional space
(PC1) from the meta-analysis created from the genetic mouse models of AD,
with one dataset projected at a time. For each dataset we projected into PC1,
we corrected for batch effects using ComBat along with the rest of the
datasets from the meta-analysis. Then, we centred the batch-corrected data
from the dataset to be projected and multiplied it by the gene loadings of
PC1 (contained in the rotation slot from the corresponding prcomp object in
R). For the single-cell datasets, we averaged gene expression by either
experimental group, microglia subtype, genotype, age or sex before
correcting for batch effects.

To test whether LPS-stimulated microglia tended to rank higher along PC1,
we first ranked all the projected samples along PC1 (separately for mouse
microglia, and for human iPSC-microglia).We obtained the average rank for all
the samples that included LPS (mouse microglia) or LPS+IFN-γ (iPSC-
microglia) and compared it to the average rank of 100,000 equally sized
random samples. We obtained an estimated P-value by counting the number of
times that the random samples had an average higher rank along PC1.

Mousemicroglia subtypes from single-cell gene expression data
Counts were downloaded directly from GEO (GSE127892, GSE127884),
and meta-data were extracted from loom files available at scope.bdslab.org
(Sala Frigerio et al., 2019). Counts from each dataset (APP/PS1 and
APPNF-G-L) were normalized and scaled using the logNormalize method with
a scale factor of 10,000 implemented in the NormalizeData and ScaleData
functions from Seurat R package (Stuart et al., 2019). Gene expression was
averaged either by microglia subtype cluster, genotype, age or sex.

PPIs to AD GWAS risk genes, and to DEGs in microglia of AD
patients
From the GWAS catalogue (Buniello et al., 2019), we obtained all mapped
genes to single-nucleotide polymorphisms associated with AD traits
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(EFO_0000249; accessed 16 November 2020, P≤1×10−8). From the set of
116 AD GWAS risk genes, we found that 72 had expression in our iPSC-
microglia and were included in the combined PPI network described above.
Then, we tested whether the number of PPIs between each set of DEGs and
AD GWAS risk genes was higher than expected by chance. To this end, we
contrasted the number of PPIs among the gene products of each set of DEGS
in iPSC-microglia to those of 10,000 equally sized random samples from our
background population (genes expressed in iPSC-microglia), while
controlling for the CDS length and degree of the random sets in the PPI
network. An estimated P-value was drawn from the 10,000 randomizations.
The same approach was used to test whether the number of PPIs between
each set of DEGs (iPSC-microglia) and DEGs in microglia of AD patients
was higher than expected by chance.

We also tested whether the genes with the top 500 highest and lowest
loading along the disease axis (PC1 of the meta-analysis) had more PPIs
than expected by chance to AD GWAS genes. In this case, the background
population was reduced to genes detected in the meta-analysis that had a
one-to-one orthologue relationship from mouse to human.
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