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a b s t r a c t

In a symmetric infinitely-repeated game, where players have constant relative risk aversion (CRRA),
or constant elasticity of intertemporal substitution, utility functions, it is shown that the critical
discount factor required to sustain full cooperation is decreasing in the coefficient of relative risk
aversion (increasing in the elasticity of intertemporal substitution). An application to cooperation in
international environmental agreements (IEA) is presented and it is shown that the limit of the critical
discount factor as the number of countries goes to infinity is equal to one (zero) if the coefficient of
intertemporal inequality aversion is less (greater) than one.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the literature on experimental tests of the infinitely-
epeated prisoners’ dilemma, surveyed by Bó and Fréchette
2018), the link between personal characteristics and coopera-
ion has been tested. Sabater-Grande and Georgantzis (2002)
ind that risk aversion of players is negatively related to
ooperation whereas Dreber et al. (2014), Davis et al. (2016),
nd Proto et al. (2018) do not find a relationship between risk
version of players and cooperation.
This note analyses cooperation in a symmetric infinitely-

epeated game where the players have constant relative risk
version (CRRA) utility functions. The parameter of the CRRA
tility function can be interpreted as the coefficient of relative
isk aversion or, more relevantly in a deterministic game of
omplete information, as the reciprocal of the elasticity of
ntertemporal substitution. It is shown that the critical discount
actor required to sustain cooperation as a subgame-perfect
ash equilibrium using Nash-reversion trigger strategies is
ecreasing in this parameter. Hence, the more risk averse
re the players then the easier it is to sustain cooperation.
n application to international environmental agreements (IEA)
ith many countries is presented.

∗ Correspondence to: Cardiff Business School, Aberconway Building, Colum
rive, Cardiff, CF10 3EU, United Kingdom.

E-mail address: Collie@cardiff.ac.uk.
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2. CRRA utility and the critical discount factor

Consider a symmetric game with J ≥ 2 players where a stage
or constituent) game is repeated infinitely. In the stage game,
he monetary payoff to the identical players is a function of their
ctions yj (σ) where σ =

(
σ1, . . . , σJ

)
and j = 1, . . . , J . The

onetary payoff (or income) of a player is assumed to be con-
inuous and strictly quasi-concave in its own action, which will
nsure the existence of a Nash equilibrium. The utility of money
or income) for the players is given by the constant relative risk
version (CRRA) utility function u

(
yj

)
= y1−γ

j / (1 − γ ) where
≥ 0 (γ ̸= 1) is the coefficient of relative risk aversion (or the

eciprocal of the elasticity of intertemporal substitution), which
s defined as γ = −u′′y/u′ and is more generally a measure of
he concavity of the utility function. If γ = 1 then the CRRA
tility function is u

(
yj

)
= ln

(
yj

)
. Note that this is in line with

he usual assumptions of game theory, as utility is a function
f the actions of the players, uj (σ) = u

(
yj (σ)

)
. In the stage

ame, a player maximising utility is equivalent to maximising
he monetary payoff yj since u

(
yj

)
is an increasing monotonic

ransformation of yj. If the players cooperate to maximise joint
elfare then they all play σC and receive the monetary payoff yC .

f the players behave non-cooperatively then the outcome will be
he Nash equilibrium (assumed to be unique) where they all play
N and receive the monetary payoff yN . If one player deviates by

laying σD when all the others are playing σC then the deviator

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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eceives the monetary payoff yD. Obviously, except in perverse
xamples, it will be the case that yD > yC > yN .1
In the infinitely-repeated game, the stage game is played

indefinitely and the players maximise the discounted sum of
utility where the common discount factor is δ ∈ [0, 1). The
discount factor may be purely the discount factor of the player
or the probability of the game continuing to the next round in
which case the players are maximising expected utility. As is well
known, from Friedman (1971), cooperation can be sustained as
subgame-perfect Nash equilibrium using Nash-reversion trigger
strategies if the discount factor is sufficiently large.2 Each player
plays σC provided all players have always played σC . If any player
deviates by playing σD then all players play σN forever thereafter.
Hence, players will cooperate if:

1
1 − δ

u (yC ) ≥ u (yD) +
δ

1 − δ
u (yN) (1)

Cooperation can be sustained as a subgame perfect Nash equi-
ibrium if the discount factor is greater than the critical value:

∗

N ≡
u (yD) − u (yC )
u (yD) − u (yN)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y1−γ

D − y1−γ

C

y1−γ

D − y1−γ

N

=
1 − λ

1−γ

C

1 − λ
1−γ

N

γ ̸= 1

ln (yD) − ln (yC )
ln (yD) − ln (yN)

=
ln (λC )

ln (λN)
γ = 1

(2)

where λC ≡ yC/yD < 1, and λN ≡ yN/yD < λC < 1.

Proposition 1. The critical discount factor required to sustain full
cooperation using Nash-reversion trigger strategies δ∗

N is decreasing
in γ .

Proof. Differentiating the critical discount factor δ∗

N with respect
to the parameter γ yields:
∂δ∗

N

∂γ
=

(λN/λC )
γ(

λN − λ
γ

N

)2 [
λC

(
−λN + λ

γ

N

)
ln (λC )

−
(
−λC + λ

γ

C

)
λN ln (λN)

]
γ ̸= 1

(3)

This derivative will be negative if the expression in square
rackets is negative, which will be the case if:

λN ln (λN)

λN − λ
γ

N
<

λC ln (λC )

λC − λ
γ

C
γ ̸= 1 (4)

Since λC > λN , this will be case if Z = λ ln (λ)
/

(λ − λγ ) is
increasing in λ. Differentiating Z with respect to λ yields:
dZ
dλ

=
λ − λγ (1 + (1 − γ ) ln (λ))

(λ − λγ )2
γ ̸= 1 (5)

This will be positive if λ1−γ > 1 + ln
(
λ1−γ

)
for λ ∈ [0, 1),

γ ≥ 0 and γ ̸= 1, or equivalently Ω ≡ x − (1 + ln (x)) > 0
where x = λ1−γ for x ≥ 0 and x ̸= 1 (since this implies that
γ = 1). Since Ω is convex, d2Ω/dx2 = 1/x2 > 0, and has a
minimum at x = 1, dΩ/dx = (x − 1) /x, where Ω = 0, it follows
that Ω > 0 for x ≥ 0 and x ̸= 1. Hence, Z is increasing in λ, and
the derivative (3) is negative for γ ≥ 0 and γ ̸= 1.

Finally, note that taking the limit of (3) as γ goes to one yields
that limγ→1

(
∂δ∗

N/∂γ
)

= ln (λC ) ln (λN/λC ) /2 ln (λN) < 0.■

1 There are games where the Nash equilibrium and the cooperative outcome
oincide so this assumption does not hold, but sustaining cooperation is not an
ssue in such a game.
2 Nash-reversion trigger strategies are considered for the sake of simplicity.
ith optimal-punishment strategies, as in Abreu (1986, 1988), the analysis
ould be complicated as the punishment would depend upon γ .
 (

2

The more risk averse are the players (the larger is γ ) then
he lower is the critical discount factor δ∗

N and the easier it is to
ustain cooperation even though the game is deterministic.

. Application to international environmental agreements

Now consider cooperation between countries (an IEA) in an
nfinitely-repeated environmental game with many countries.3
n the stage game, each country has an identical endowment
f labour, L, and uses labour and emissions of pollution, σj, to
roduce a consumption good, yj. The welfare of each country is
iven by the CRRA utility function, u

(
yj

)
, where γ in this context

an be interpreted as a coefficient of intertemporal inequality
version. The production of the consumption good is negatively
ffected by global emissions of pollution,

∑J
i=1 σj, where the

roduction function of the jth country is assumed to be:

j = e−β
∑J

i=1 σiL1−ασ α
j (6)

here α ∈ (0, 1) and β > 0.
In the stage game, each country can choose its emissions of

ollution by setting the quantity of tradeable emissions permits,
j, to maximise its output of the consumption good, yj, which is
quivalent to maximising its CRRA utility, u

(
yj

)
. If the countries

cooperate then they choose a common quantity of tradeable
emissions permits to maximise joint welfare. Setting σj = σ

for all countries, j = 1, . . . , J then choosing σ to maximise yj
yields the cooperative quantity of tradeable emissions permits
σC = α/βJ , and the corresponding output of the consumption
good:

yC = e−αL1−ασ α
C (7)

If the countries set the quantity of tradeable emissions permits
non-cooperatively then each country will choose σj to maximise
yj given the quantities of tradeable emissions permits chosen
by all the other countries. This will yield the Nash equilibrium
quantity of tradeable emissions permits σN = α/β , and the
corresponding output of the consumption good:

yN = e−αJL1−ασ α
N (8)

If when all the other countries are setting the cooperative
quantity of tradeable emissions permits, σC , a country deviates
then it will set σj to maximise yj given that all the other countries
are setting σC . This yields the quantity of tradeable emissions
permits when a country deviates σD = α/β , which is equal to σN
since the best-reply function of the jth country does not depends
upon the quantities of tradeable emissions permits chosen by the
other countries. The corresponding output of the consumption
good is:

yD = e−α(2−1/J)L1−ασ α
D (9)

Dividing (7) and (8) by (9) yields λC and λN :

λC ≡
yC
yD

= eα(1−1/J)J−α < 1, λN ≡
yN
yD

= e−α(J−1)2/J < 1 (10)

To show that λC is greater than λN , divide λC by λN then take
logs, which yields:

λC

λN
= eα(J−1)J−α

⇒ ln
(

λC

λN

)
= α [(J − 1) − ln (J)] > 0 (11)

Hence, as assumed in Section 2, λC > λN . An IEA is sustainable
if cooperation is sustainable as a subgame perfect Nash equilib-
rium using Nash-reversion trigger strategies, and this will be the

3 For a survey of the literature on sustaining cooperation in IEA, see Barrett
2005).
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Fig. 1. The critical discount factor versus the number of countries.
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ase if the discount factor is greater than the critical discount
actor in (2). Substituting from (10) into (2) yields:

∗

N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − λ

1−γ

C

1 − λ
1−γ

N

=
1 − eα(1−γ )(1−1/J)J−α(1−γ )

1 − e−α(1−γ )(J−1)2/J
γ ̸= 1

ln λC

ln λN
=

J (ln J − 1) + 1
(J − 1)2

γ = 1
(12)

This depends upon α, γ and J , but not on β and L, and, from
Proposition 1, it is decreasing in γ . For an IEA, an important
question is can cooperation be sustained when the number of
countries becomes very large especially when there are global
externalities. This can be answered with this model by looking at
the limit of the critical discount factor as the number of countries
goes to infinity.

Proposition 2. The limit of the critical discount factor required to
sustain full cooperation using Nash-reversion trigger strategies as the
number of countries goes to infinity is equal to one if γ < 1 and zero
if γ ≥ 1.

Proof. If γ < 1 or 1− γ > 0 then the limit of the numerator and
the limit of the denominator in (12) as the number of countries
goes to infinity are equal to one. Hence, the limit of the critical
discount factor is equal to one as the number of countries goes to
infinity. If γ = 1 then the numerator and the denominator both
go to infinity as the number of countries goes to infinity, but the
denominator goes to infinity more rapidly than the numerator so
the limit of the critical discount factor is equal to zero. If γ > 1
or 1 − γ < 0 then the numerator and the denominator both
go to minus infinity as the number of countries goes to infinity,
but the denominator goes to minus infinity more rapidly than the
numerator so the limit of the critical discount factor is equal to
zero. ■

To illustrate this proposition, Fig. 1 shows the critical discount
factor versus the number of countries for γ = 0, γ =

1
2 , γ = 1,

nd γ = 2 when α = 1/2.
3

. Conclusions

Proposition 1 is a quite general result, but Proposition 2 ap-
lies only to the specific application, although it also holds for
Cournot oligopoly with linear demand and many firms. Hence,
ne might conjecture that the result is more general.
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