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Abstract

A new algorithm for the WISH diffractometer is discussed, in particular, its

utility as extended to the solution and refinement of structures from single

crystal data. Further, this algorithm finds itself applicable to structural and

magnetic diffuse scattering, where it allows for the presentation of combined

reciprocal space data and symmetrized planes.

A correspondence between short range magnetic order and plateaus of the

magnetization is established in the one-dimensional Ising system, α-CoV2O6,

in which we measure the co-existence of short-range 〈T̂ 3〉 and 〈T̂ 4〉 orders

manifest only for a non-zero component of magnetic field applied out of the

easy plane. When the magnetic field is applied along the easy axis, only 〈T̂ 3〉

long range order is observed.

We also describe a new method for the preparation of out-of-equilibrium,

monopole rich states in Dy2Ti2O7 spin ice — a pulse heating/cooling method

that relies upon the high cooling power of a dry dilution refrigerator. This

includes the Bluefors refrigerator at Cardiff University — in which we tested

our set-up — and the E18 refrigerator at ISIS, in which we planned to con-

duct our investigation of the spin correlations. Prior to our measurements on
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the WISH diffractometer, we achieved a very fast cooling rate of 150 mK/s

in Cardiff — much faster than that previously reported in previous studies

where rich monopole populations were prepared. Due to factors beyond our

control, however, we had to modify our set-up in order for it to work in a

standard dilution insert refrigerator, which severely limited the cooling rate

and thereby the density of monopoles frozen in. As a result of these restric-

tions, we did not observe any appreciable change to the spin correlations, as

compared to the equilibrium state; consequently, we placed a lower bound

on the cooling rate spin freezing transition of 9.5 mK s−1 before changes to

the spin correlations are manifest.
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Chapter 1

Introduction

In this thesis, we explore the rich physics of long and short-range ordered

phases in frustrated and correlated electron systems using modern single-

crystal neutron scattering techniques. Neutron diffraction is an elegant ex-

perimental technique with deep principles of symmetry at its core, and is

the primary technique by which we investigate the emergent properties of

the magnetic materials discussed herein. Part of this thesis is dedicated to

the development of the WISH diffractometer [1] on the second target station

at the ISIS Pulsed Neutron and Muon Source, expanding its scope to deal

more routinely with single-crystal diffraction experiments. The layout of this

thesis is presented as follows.

Chap. 2 opens with a discussion of historical developments related to the

discovery of the neutron, and subsequently, its use as a scattering probe

of condensed matter. Acknowledging the pivotal roles that key figures have

played in advancing the field of neutron scattering, we describe the progresses

made in neutron instrumentation and measurement techniques over the past
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2 1. Introduction

century that have laid the foundations for modern-day neutron scattering

techniques, which — with dedicated specialist facilities worldwide — support

a broad and diverse scientific community of neutron beam users. Of fun-

damental importance is a discussion of the elementary physical properties

of neutrons apropos to their role as a scattering probe of condensed matter.

Then, we discuss symmetry analysis, group representations, and scattering

theory as foundational tools used implicitly throughout this thesis. This

discussion of theoretical matters then segues into a discussion of instrumen-

tation — specifically of the triple-axis and time-of-flight spectrometers — and

finally, of bulk property measurements.

Chap. 3 is concerned with a treatment of goniometer rotations, and subse-

quently, quantitative structural characterizations from single-crystal on the

WISH beamline, which, as previously mentioned, is located at the ISIS fa-

cility, established in 1984 at the Rutherford Appleton Laboratory of the Sci-

ence and Technology Facilities Council in Didcot, Oxfordshire. This chapter

is tripartite. We open with a discussion of the properties of cold neutrons,

before considering the time-of-flight diffractometer in further detail. We then

describe the characteristics of pulsed neutron sources, highlighting the ver-

satility of the WISH beamline. Lastly, we discuss the ramifications of the

strengths afforded by its intrinsic qualities on the field of single-crystal diffrac-

tion.

The second part of this chapter focuses on practical aspects of data reduc-

tion salient to the treatment of single-crystal time-of-flight diffraction data.
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We consider Vanadium as a normalization standard for neutron scattering,

discuss peak detection, and importantly, describe the orientation matrix for-

malism. This is followed by a discussion of peak integration and the dynami-

cal theory of diffraction, owing to its importance in correcting for the effects

of extinction and multiple scattering, which is ubiquitous in single-crystal

diffraction. Then, we discuss the main contribution of the chapter, namely a

novel algorithm LinkedUBs. This algorithm allows for the derivation of a set

of mutually consistent orientation matrices, thereby facilitating quantitative

structural characterization from single-crystal data on WISH, traditionally

and foremost a powder instrument.

The final part of this chapter discusses results from single-crystal refine-

ment, along with supporting visualizations, taking the form of symmetrized

reciprocal space planes; these were obtained from the implementation of a

method for combining data with different statistical weights in reciprocal

space, as described in Ref. [2]. These are especially useful in the analysis

of diffuse scattering datasets, where spectral weight is distributed over large

volumes in reciprocal space. Specifically, present an investigation of the crys-

tal structure of the garnet Ca3Ga2Ge3O12, which displays interesting optical

properties, as well the as rutile-type MnF2, in which antiferromagnetic order

with a k⃗ = 0 type propagation wavevector is stabilized below TN. Finally,

as a testament to the additional utility of WISH unlocked by the LinkedUBs

algorithm, we present diffuse scattering results obtained in a study of the

germinate spinel GeNi2O4; our results provide novel microscopic insight into

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html


4 1. Introduction

the nature of the short-range magnetic correlations in this material.

In Chap. 4, we present an investigation of short-range magnetic correla-

tions in the insulating jeff =
1
2 Ising-chain material α-CoV2O6. Interestingly,

an M/Ms = 1
3 plateau is stabilized in applied fields below TN, with the ap-

pearance of additional fine structure as temperature is decreased [3–9]. Such

behavior typically appears in frustrated systems with a triangular geome-

try, and as such, much effort has been dedicated to developing a greater

understanding of this unexpected behavior over recent years. In general, the

presence of plateaus in the magnetization implies the existence of a gap to

magnetic excitations. The presence of plateaus in this jeff =
1
2 Ising magnet

appears, therefore, to conflict with Haldane’s conjecture, which posits that

the spectrum of magnetic excitations is gapless in half-integer spins [10, 11].

In an effort to resolve this difficulty, we sought to conduct neutron diffrac-

tion experiments in applied magnetic fields to measure the equilibrium struc-

ture factor S(Q⃗) ≡
∫
S(Q⃗, ω)dω, and thereby elucidate the nature of the

magnetic magnetic correlations in the vicinity of the plateaus. We character-

ized the crystal structure and magnetic ground state in neutron diffraction

experiments on single-crystals and powders below TN using the WISH beam-

line (ISIS, UK) and MORPHEUS instrument at the SINQ Spallation Neu-

tron Source (PSI, Switzerland). After concretizing our understanding of the

ground state, we proceeded to characterize the magnetization at the Institut

Néel (Grenoble, France), using a single-crystal sample and measuring down to

T = 0.85 K using a SQUID magnetometer in a Physical Properties Measure-



1. Introduction 5

ment System (PPMS). Our measurements at dilution temperatures revealed

the the emergence of new plateaus not present at higher temperatures, and

in particular, a prominent plateau at M/Ms =
1
4 .

Guided by our magnetization measurements, we conducted single-crystal

neutron diffraction experiments in applied magnetic fields on the WISH

diffractometer to characterize the temperature and field dependence of the

magnetic correlations between 0.1 K and 4.5 K. Owing to kinematic con-

straints of the vertical field on WISH, it was not possible to apply the mag-

netic field wholly along the easy c-axis; to achieve adequate coverage, it was

necessary to apply a small component of field out of the ac-plane along the

b-axis. In the vicinity of the magnetization plateaus, we found no evidence of

long-range translational symmetry breaking; instead rich short-range ordered

states were found to evolve between the propagation wavevectors k⃗ = (1, 0, 12),

k⃗ = (12 , 0,
1
4), and k⃗ = (23 , 0,

4
3). The diffuse scattering was characterized by

the broadening of peaks along the direction of the Néel wavevector, and is

similar in nature to the correlations manifest in the case of antiphase domains.

We investigated the directional dependence of the applied field on S(Q⃗)

using the RITA triple-axis spectrometer at PSI. With magnetic field ap-

plied strictly along the c-axis in a horizontal magnetic field, we found no

evidence of the k⃗ = (12 , 0,
1
4) propagation wavevector. This stands in contrast

to the results obtained on WISH. To resolve this discrepancy, we conducted

neutron powder diffraction in applied magnetic fields on the TASP triple-

axis-spectrometer at PSI, finding complex behavior involving all propagation
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wavectors, owing to the isotropic nature of applied field among grains. Fi-

nally, with no change to the long-range magnetic structure evidenced, we

resolve the conflict with Haldane’s conjecture by appeal to the Lieb-Schultz-

Mattis theorem [12], which states that a gap can emerge in half-integer spins

without breaking translational symmetry if the magnetization per spin satis-

fies (S−m) ∈ Z. Our results therefore demonstrate a correspondence between

local translational symmetry breaking and the stabilization of magnetization

plateaus.

Finally, in Chap. 5 we present an investigation of the nature of the mag-

netic correlations in far-from-equilibrium states in the frustrated spin-ice ma-

terial Dy2Ti2O7 by neutron diffraction. Using a BlueFors dilution refriger-

ator at Cardiff University, we developed a novel avalanche-quench cooling

protocol which delivers a pulse of heat to the sample, thereby inducing ther-

mally activated spin-flip excitations, followed by rapid cooling through the

spin-ice freezing transition Tf ∼ 0.65 K, at which the system falls out of

equilibrium. The rapid cooling through Tf traps in an enhanced monopole

population which has been shown to be stable on the order of neutron scat-

tering timescales through direct measurement of the monopole density using

a similar cooling protocol involving polarizing magnetic fields, at a rate of

70 mK s−1 [13].

Such monopole-rich states have the potential to harbor non-trivial types of

correlations; in the testing of our beamline-compatible protocol, we achieved

cooling rate of ∼ 150 mK s−1, sufficient to enhance the monopole density.
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We therefore sought to implement our quench-cooling protocol on the WISH

beamline (ISIS, UK), preparing a non-equilibrium monopole-rich state, be-

fore measuring the equilibrium structure factor S(Q⃗) which, in the equilib-

rium state, is characterized by pinch point singularities as well as significant

zone-boundary scattering. We used an isotopically enriched 162Dy2Ti2O7

sample in our neutron scattering experiment on account of its I = 0 nuclear

spin state; this removes the complicating effects of the hyperfine interaction,

which has been shown to facilitate magnetic relaxation via quantum tunnel-

ing processes [14].

We performed both quench-cooling and conventional slow-cooling proto-

cols at T = 0.35 K and at T = 10 K; the high temperature dataset was

collected to serve as a background subtraction, necessary to reveal the mag-

netic diffuse scattering in the absence of polarization analysis. We planned

to use the cryogen-free E18 dilution refridgerator on the beamline since its

mixing chamber has a sufficient cooling power to support our quench-cooling

protocol. However, due to issues beyond our control, we were required to

adapt our protocol to work with the lesser powered Kelvinox dilution re-

fridgerator insert, thereby severely limiting the rate of cooling through Tf,

and consequently, the degree of monopole enrichment. Our data revealed no

significant changes in the features of the diffuse scattering, up to a maximum

achieved cooling rate of 9.5 mK s−1; as such, we place a lower bound on the

cooling rate necessary to influence magnetic correlations through manipula-

tion of the monopole density.





Chapter 2

Experimental techniques

2.1 Introduction

The neutron was discovered by Chadwick in 1932 [15]. In 1935, he was

awarded the Nobel prize in physics, and one year later, the first evidence for

the diffraction of neutrons was found in experiments using radioisotope driven

(α, n) sources [16, 17]. Soon after its discovery, Bloch [18] and Schwinger [19]

would demonstrate that the magnetic scattering of neutrons could, in princi-

ple, be observed in experiments. Meitner and Hahn later discovered nuclear

fission in 1938 [20–22] — a crucial step in the early development of neutron

scattering as they established a feasible means to access free neutrons en

masse. Shortly after, Fermi arrived in the United States and joined teams at

Columbia University pursuing the development of chain-reacting exponential

‘piles’ which, at the time, comprised Uranium oxide powder in a graphite

matrix [23, 24]. While commissioned on the Manhattan project in 1942,

Fermi and colleagues at the University of Chicago built the first nuclear reac-

9



10 2. Experimental techniques

a b

Figure 2.1: The magnetic neutron diffraction profiles of MnO collected
by Shull and Smart in 1949 at Oak Ridge is shown in (a) with the deter-
mined magnetic structure shown in (b). The top panel of (a) shows the
profile below the ordering temperature for T < Tc. The broad in Q⃗ scat-
tering observed for T > Tc (shown in the bottom panel) is redistributed
among sharp satellite reflections for T < Tc as symmetry is broken and
long-range magnetic order is established. From Ref. [28].

tor which used high-purity graphite to moderate the velocity of fission neu-

trons, thereby promoting a self-sustaining chain reaction. This technology

made possible the production of high-flux beams of ‘slow’ neutrons; reac-

tors were subsequently built at the Oak Ridge National Laboratory, United

States [25, 26], and at Chalk River Laboratories, Canada [27].

In 1944, Wollan submitted a proposal to the director of research at Oak

Ridge requesting funding for neutron diffraction experiments on the graphite

X-10 pile reactor. After the acceptance of this, he proceeded to establish the

technique with a series of measurements on powder samples. Later working

in collaboration with Shull, they developed a two-axis neutron diffractome-
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ter, applying it to crystal structure determination. In 1949, Shull and Smart

measured satellite reflections associated with ordered antiferromagnetism in

MnO [28] for the first time. Their powder data collected above and below

the ordering transition, which clearly demonstrate the shift of spectral weight

below the Néel temperature TN, is shown in Fig. 2.1(a). The new peaks ob-

served below TN are consistent with a k⃗ = (12 ,
1
2 ,

1
2) propagation wavevector;

this corresponds to a magnetic unit cell which is doubled along all the prin-

cipal axes of the parent nuclear cell, and is shown in Fig. 2.1(b). With these

measurements, they had established the use of neutrons for the investigation

of magnetic structure; this elegant experimental technique has symmetry at

its core, and is used extensively in this thesis.

While most early work focused on the elastic scattering of neutrons, at the

NRX reactor, Chalk River, Brockhouse worked on the development of the

triple-axis spectrometer (TAS). He shared his first results on the energy spec-

trum of phonon modes in Vanadium [29], and subsequently, Aluminum [30],

in 1955, and completed the construction of the instrument in earnest in 1956.

This allowed him to obtain the first measurements of the collective spin wave

excitations in magnetite Fe3O4 [31] at Chalk River in 1957. In these measure-

ments, the Néel mode was investigated, allowing the spin-wave number as a

function of energy transfer to be extracted. The invention of the TAS made

possible the controlled measurement of the dynamic structure factor S(Q⃗, ω)

at any point in (Q⃗, E) space. For this, and the groundbreaking experiments

he subsequently performed establishing neutrons as a probe of dynamic prop-
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erties in condensed matter, he was awarded the 1994 Nobel prize in physics

jointly with Shull, who was recognized for his seminal work on the neutron

diffraction technique.

Advances in neutron instrumentation and measurement techniques have

continued at pace to the present day, with neutrons now used by a diverse

scientific community for the benefit of society. Reactor sources were soon

built specifically for the purpose of neutron scattering, the first of which

being the the high-flux beam reactor at Brookhaven National Laboratory,

United States [32] in operation between 1965 and 1996. This was followed by

the Institut Laue-Langevin, Grenoble [33], in 1971, founded by France and

Germany, with the UK joining as a major partner in 1973. Through continual

development in collaboration with its numerous associated European member

countries, it maintains its position as providing the most intense steady flux

of neutrons in the world.

The ISIS facility, UK [34], was first approved in 1977 and produced its

first neutrons in 1984 by spallation — a bombardment process in which an

abundance of neutrons are generated when a highly accelerated proton beam

is collided with a heavy metal target. The two experimental halls associated

with the first and second target stations at ISIS are shown in Fig. 2.2, host-

ing a wide range of advanced beamlines. Here, world leading innovation of

the time-of-flight (TOF) technique — an alternative method that facilitates

the measurement of four dimensional volumes of (Q⃗, E) space — took place.

Other sources, including the SNS Facility at Oak Ridge [35] followed suit,
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Figure 2.2: The 70 MeV linear accelerator and 800 MeV snychotron at the
heart of the ISIS Pulsed Spallation Neutron Source in Didcot, UK. The
first (top) and second (bottom) target stations house different modera-
tors, providing thermal and cold neutrons to the beamlines respectively,
each configured to a particular science case. Schematic from Ref. [36].
Images from http://ftp.nd.rl.ac.uk/ISISmedia/.

taking advantage of the improved efficiency afforded by the white beam and

its numerous constituent wavelengths which serve to illuminate multiple Bril-

louin zones with the same in-plane wavevector.

The advent of spallation sources, hosting suites of instruments with large

arrays of position sensitive detectors, has presented new challenges for the

http://ftp.nd.rl.ac.uk/ISISmedia/
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reduction and analysis of data. To meet the increasingly difficult challenge

of analyzing the complex datasets generated in TOF scattering experiments,

ISIS manages the IDAaaS computing cluster that provides the user commu-

nity access to virtual machines with up to 14CPU and 128GB RAM [37]. Envi-

ronments of this capacity are necessary for the most intensive of reduction

tasks, such as the treatment of single-crystal diffuse scattering data. The

mantid analysis framework [38] is standard at the ISIS and SNS sources; it

is under active development by teams at both facilities, while also benefiting

from external contributions, since its code base is open source [39]. It pro-

vides a comprehensive set of algorithms and workflows that serve to introduce

a degree of standardization for the reduction of TOF data — a valuable asset

to the neutron community that greatly reduces the complexity of data anal-

ysis. Currently under construction, the much anticipated next generation

European Spallation Source (ESS), Sweden [40], will use mantid as standard

on site for data reduction; with enhanced flux, the latest detector technology,

and a suite of advanced instruments, the facility promises a bright future for

neutron science in Europe.

2.2 Neutron properties

The neutron is a massive, charge neutral particle. In Table 2.1, we list the

elementary physical properties apropos to its role as a scattering probe of

condensed matter. It is a composite fermion and carries a nuclear spin

https://isis.analysis.stfc.ac.uk
https://github.com/mantidproject/mantid
https://github.com/mantidproject/mantid
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Table 2.1: Elementary physical properties of the neutron, relevant to the
description of their scattering by condensed matter. Values have been
compiled from Refs. [41–43].

Quantity Value
Electronic charge (qn) 0 e
Rest mass (mn) 939.57 MeV/c2
Nuclear spin (In) 1/2
Mean lifetime (τn) 885.7(8) s
Geometric ratio (γn) 1.913

σn = h̄/2. After their initial liberation from bound nuclear states, and with

appropriate moderation, it is possible to prepare a flux of ‘slow’ neutrons

having a de Broglie wavelength λn = h/mnv ∼ Å with an associated energy

E = hc/λn ∼ meV. The long-wavelength, low-energy nature of the neutron is

related to its appreciable rest mass mn ≈ 939.57 MeV/c2. This wavelength is

well matched to both the length-scale of typical interatomic spacings, and to

the energy-scale of elementary collective excitations in condensed matter sys-

tems. With isospin In 6= 0, the neutron directly probes the magnetic degrees

of freedom in matter. Carrying a nuclear moment µn = −γnµNσn � µe, with

a gyromagnetic ratio γn = 1.913, the neutron interacts through the dipolar

interaction with the magnetic fields generated by the localized moments of

unpaired electrons in the scattering system.

Both nuclear and magnetic interactions admit elastic and inelastic kine-

matical scattering processes, thereby providing a means of measuring both

the static and dynamical properties of matter. The classification of slow
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Table 2.2: Classification of neutrons by their energy, velocity, de Broglie
wavelength, and associated temperature. Values have been compiled
from Refs. [41–43].

E [meV] λ [Å] v [m/s] T [K]
Ultra-cold < 3× 10−4 > 520 5 2× 10−3

Cold 0.1− 20 5 800 40
Thermal 25 1.8 2200 300
Hot 40− 103 0.7 5700 2000
Fission 2× 109 2× 10−4 2× 107 2× 1010

neutrons by their energies, velocities, de Broglie wavelengths, and associated

temperatures is presented in Table 2.2. The neutron-magnetic interaction is

a leading order effect and can give rise to strong magnetic scattering with

measured intensities often comparable to those obtained for nuclear scatter-

ing. By contrast, the much weaker non-resonant magnetic x-ray cross section

is obtained only by the inclusion of perturbations up to fourth order in the

electron interaction Hamiltonian [44]. The relative simplicity and accessibil-

ity afforded by neutrons is not without drawbacks, however; unlike the case

of x-ray scattering, it is often not possible to separate the contribution of

orbital correlations in the magnetic cross-section directly.

Unlike nuclear scattering which concerns interactions with point-like atoms,

the magnetic scattering cross-section is limited by the fall-off of the magnetic

form factor f(Q⃗) with increasing momentum transfer Q⃗. This follows from

the Heisenberg uncertainty principle, from which the spatial distribution of

the electron is understood to be intrinsically diffuse. In the dipole approxi-
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mation where Q = |Q⃗| is large compared to the mean radius of the orbital

wavefunctions, the Q⃗-dependence of the magnetic form-factor is well approx-

imated by the expression [45]

f(Q⃗) = 〈j0(Q⃗)〉+ (2g−1 − 1)〈j2(Q⃗)〉. (2.1)

The jl(s) terms in this expression are lth-order Bessel functions, with the

leading order isotropic term 〈j0(Q⃗)〉 dominant at low momentum transfer,

accounting for spin-only contribution. The l > 0 terms are relevant in ac-

counting for orbital contributions; in this case, the Q⃗-dependence of the

form-factor is dependent on the orbital state of the magnetic ion and can

be expressed through the piecewise relation [46]

〈jl(Q⃗)〉 =

A exp(−aQ⃗2) +B exp(−bQ⃗2) + C exp(−cQ⃗2) +D l = 0,

A exp(−aQ⃗2) +B exp(−bQ⃗2) + C exp(−cQ⃗2) +DQ⃗2 l 6= 0.

(2.2)

This magnetic form-factor describes the Fourier transform of the magneti-

zation density of a single magnetic atom; the fall-off at large momentum

transfer is a reflection of the probabilistic distribution of electrons in orbitals

and bands around the ion.

The erratic variation of the nuclear coherent scattering length with in-

creasing atomic number Z is advantageous since this often results in a good

degree of contrast in materials containing atoms with similar Z. Free neu-

trons are weakly interacting and unobstructed by Coulomb barriers as they
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travel through matter. The neutron-matter interaction is well described by

the application of the Born approximation in which incident and final states

are treated as spherically symmetric plane waves [47], with neutrons a probe

of the linear response regime whereby correlation functions are determined

by equilibrium fluctuations. With a lifetime τn ≈ 886 s and a typical mean

free path of order ∼ cm, neutrons are an excellent bulk probe, providing

the unique opportunity to investigate matter under extreme conditions, in-

cluding at high pressures, low temperatures, and high magnetic fields — a

challenging set of environmental conditions to maintain, requiring extensive

sample environment material in the path of the beam, inaccessible to x-rays

on account of considerable beam attenuation.

2.3 Symmetry and reciprocal space

Having now reviewed some relevant properties of the neutron and understood

its efficacy as a scattering probe of nuclear and magnetic degrees of free-

dom, we consider the general symmetry properties of the scattering system.

Broadly concerning the many-electron problem, the investigation of emergent

magnetic phases in crystalline solids is central to the work presented in this

thesis, and draws implicitly on the formalism presented in this section.

The crystal structure of these materials is characterized by a fundamental,

repeating atomic configuration called the unit cell. By definition, the crystal

system must possess, at the least, discrete translational symmetry under the
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n linearly independent vectors that constitute the basis, thereby spanning the

vector space En. In most cases, the structure is additionally invariant under a

number of rigid-body symmetry operations. These transformations preserve

the dot product between vectors ∈ Rn, corresponding to the preservation of

distances and angles. These symmetry elements are members of the affine

group An of mappings, defined by the combination of an orthogonal linear

component h ∈ GLn(R) satisfying hT = h−1 and a translation τ⃗ ∈ Rn. We

express the isometries of the space group g ∈ G using Seitz notation [48, 49],

which we illustrate by the action of the symmetry element on some vector

v⃗ ∈ Rn, according to {h|τ⃗}(v⃗) := h · v⃗ + τ⃗ . This set of isometries define the

crystal space group G1.

The set of translations T := {{e|τ⃗} | τ⃗ ∈ Rn} is an abelian (commutative)

subgroup of the space group, denoted by T ≤ G; this defines the crystal

lattice. A selection of lattice types with various centering conditions are

illustrated in Fig. 2.3. The factor group of G by the normal subgroup T ◁ G

is isomorphic to the group of point operations G/T ∼= P, describing the

symmetries of the crystal with one point fixed. We will discuss the symmetry

of the scattering system from the perspective of group theory, as presented

here, and additionally using representation theory in Sec. 2.3.1.

Each atom in the crystal basis is specified by a set of fractional coordinates,

together with a thermal displacement parameter U and site occupancy factor

1The true definition of the space group requires much more rigorous formalism, referring
to the theorems of Bieberbach [50, 51], but, while interesting, is beyond the scope of
this discussion.
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cI

rP

mC

tP

Figure 2.3: The cubic (c), monoclinic (m), orthorhombic (o), and tetrag-
onal (t) Bravais lattice types. The labels P,C, F , and I describe the
lattice centering type. The P -cell by definition has only primitive cen-
tering vectors.

B. Each atomic position is associated with a Wyckoff position specifying the

point group P (stabilizer) of the site2. The geometry of the crystal lattice in

real (direct) space is defined by three noncollinear unit-vectors a⃗1, a⃗2, a⃗3 ∈ E3.

We denote these by a⃗1 = a⃗, a⃗2 = b⃗, a⃗3 = c⃗, with lengths a, b, c respectively,

known as the lattice parameters. The cell angles are denoted by α, β, γ,

where α = b⃗∡ c⃗, β = c⃗∡ a⃗, γ = a⃗∡ b⃗. General positions in the lattice are

denoted by the vector R⃗ij = τ⃗ + r⃗j where τ⃗ = ua⃗+ v⃗b+wc⃗ (u, v, w ∈ Z) and

r⃗j = xa⃗+ y⃗b+ zc⃗ (x, y, z ∈ R). There exist 14 distinct Bravais classes which

describe the full set of unit cell metrics in 3D, imposing constraints on the

relationships between cell lengths and angles.

We define the metric tensor of the lattice by Gij = a⃗i ·a⃗j , facilitating the cal-

2An infinite set of symmetry equivalent sites, known as the crystallographic orbit, is
generated under the action of elements p ∈ P ⊂ G.
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a b

Figure 2.4: The face-centered cubic (cF ) lattice in direct space is shown
in (a) and its dual in reciprocal space, the body-centered cubic (cI)
lattice, is shown alongside in (b), with the reciprocal space basis vectors
indicated.

culation of inner products via 〈u⃗, v⃗〉 = u⃗·v⃗ = Giju
iv⃗j . We can define a dual ba-

sis with b⃗i = 2πa⃗k(G−1)ki having the property a⃗i · b⃗j = a⃗i · a⃗k(G−1)kj = 2πδji .

The basis vectors b⃗i are contravariant and linearly independent; any vector

on the new basis can be expressed Q⃗ = qi⃗b
i, where the coordinates qi are not

necessarily covariant. The vectors b⃗i have units of inverse length and define

the reciprocal space of the system [52] — a vector space on E3 dual to the

direct space. The dot product between position vectors in real space and

reciprocal space is a dimensionless quantity Q⃗ · v⃗ = 2πqix
i, since reciprocal

space is dual to direct space. The reciprocal metric tensor is G̃ = (2π)2G−1.

For two reciprocal-space vectors Q⃗ and r⃗, the dot product takes the form

Q⃗ · r⃗ = G̃ijqirj . The basis vectors of the reciprocal lattice are given by

a⃗1 =
2π

V
a⃗2 × a⃗3, a⃗2 =

2π

V
a⃗3 × a⃗1, a⃗3 =

2π

V
a⃗1 × a⃗2, (2.3)

where V = a⃗1 · (⃗a2 × a⃗3) is the unit cell volume. We denote these by a⃗1 = a⃗∗,
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Figure 2.5: Bragg’s law — an incident neutron approaches at an angle θ
to a lattice plane and is diffracted at an angle 2θ when the path difference
between lattice planes is integral multiple n of the wavelength λ.

a⃗2 = b⃗∗, a⃗3 = c⃗∗ and define the angles α∗, β∗, γ∗ in a manner analogous to

that of the direct lattice angles. The mapping between direct and reciprocal

bases is depicted in Fig. 2.4, showing the face-centered cubic (cF ) lattice in

direct space and its dual, the body-centered cubic (cI) lattice in reciprocal

space, with basis vectors indicated.

Considering atomic planes through the direct lattice, if their mutual sep-

aration d ∼ Å is an integral multiple of the neutron incident wavelength,

then coherent interference of the neutron plane wave is manifest with elastic

kinematics. This is summarized by the Bragg law [53],

2d sin θ = nλ for n ∈ N, (2.4)

with the kinematics of the diffraction from lattice planes depicted in Fig. 2.5.

Noting the matter-wave properties of the neutron expressed through the de

Broglie relation, in the limit of the Born approximation, the neutron incident
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upon the scattering system takes the form of a spherically symmetric wave

ψi = b exp(i[⃗ki · r⃗ − ωt]). After the scattering event, the outgoing scattered

wave can be expressed in the form ψf = F (b/r) exp(i[⃗kf · r⃗ − ωt]). The

canonical response observed is one of sharp Bragg peaks, each corresponding

to the reflection of neutrons from a set of reciprocal lattice planes, indexed

by Miller indices h, k, l. Each member of the triple corresponds to the inverse

intersection of some lattice plane (h, k, l) on the direct basis vectors.

The elastic scattering is characterized by a delta-function type response,

peaked at h̄ω = 0, and given by the expression

I(Q⃗) =
1

V

(2π)3

N

∑
τ⃗

|F (τ⃗)|2δ(Q⃗− τ⃗), (2.5)

where the momentum transfer Q is defined as the difference between incom-

ing and outgoing neutron wavevectors Q⃗ = k⃗i − k⃗f . From this definition,

a basic condition for diffraction follows, given by |Q⃗| = |τ⃗ | for τ⃗ ∈ Ruvw,

the set of lattice vectors. The term F (τ⃗) is the structure factor, given by

the expression F (τ⃗) =
∑

l blWl(τ⃗) exp(iτ⃗ · r⃗l), where b is the nuclear scat-

tering length and Wl is the Debye-Waller factor describing the isotropic dis-

placement of atoms about their equilibrium positions with a Q dependence

Wl(Q) = exp(−U iso
l Q2/2) and U iso

l determined by refinement.

Analogous to the direct unit cell, the first Brillouin Zone (BZ), sometimes

referred to as the Wigner–Seitz cell, serves as the primitive cell in recipro-

cal space and can be constructed by Voronoi decomposition. Alternatively,
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b ca

Figure 2.6: Systematic absences due to centering translations for prim-
itive (P ) cell is shown in (a), the body-centered (I) cell in (b), and
face-centered (F ) cell in (c). Diffraction shown is from a crystal with
one-atom basis on position (0, 0, 0) in space groups P23, I23, and F23,
with respective Patterson symmetries indicated. Absences are manifest
in the structure factor due to an exact cancellation of terms, with con-
ditions on the relevant Miller indices.

we can define the nth zone as the set of points in the neighborhood of the

origin that can be reached while crossing exactly (n− 1) Bragg planes. The

diffraction patterns manifest in the case of a primitive, body-centered, and

face-centered cubic cell are shown in Fig. 2.6, with centering vectors in the di-

rect space basis listed in Table 2.3. Non-primitive lattices are invariant under

a larger set of translation vectors, as compared to the case of a primitive lat-

tice; these additional centerings give rise to systematic absences in the diffrac-

tion pattern where the Fourier components of some reflections cancel exactly,

explaining the differences in the diffraction patterns among Fig. 2.6(a-c). Sys-

tematic absences are useful in the analysis of diffraction patterns — especially

in the study of phase transitions where symmetries are often broken leading to

the development of intensity at nominally extinct positions. The conditions

on the h, k, l for allowed reflections and systematic absences are tabulated for
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Table 2.3: The centering vectors for the base-centered (C), face-centered
(F ), body-centered (I), and rhombohedral (R) lattice systems are shown
as rational fractions of the lattice vectors a⃗, b⃗, c⃗. As noted previously, the
P -cell by definition has centering vector [0, 0, 0].

Lattice type Centering translations
C [12 ,

1
2 , 0]

F [12 ,
1
2 , 0], [12 , 0,

1
2 ], [0, 12 ,

1
2 ]

I [12 ,
1
2 ,

1
2 ]

R [13 ,
2
3 ,

2
3 ], [23 ,

1
3 ,

1
3 ]

each space group type, for example in Ref. [54].

For an atom j in the crystal basis, denoting the scattering length by bj ∈ R,

we can write for Q = (h, k, l) the Fourier amplitude satisfies the relation

F (−Q⃗) =
∑

j fj exp(−iQ⃗ · R⃗j) = F ∗(Q⃗). This is the case since the mea-

sured intensity is related to the absolute square of the Fourier amplitude

I(Q⃗) ∝ |F (Q⃗)|2 = F (Q⃗)F ∗(Q⃗); consequently the intensity of the reflection

Q⃗ = (h, k, l), and its image under inversion Q are equal. This phenomenon is

known as Friedel’s law and gives rise to the appearance of centrosymmetric

pairs (Q,Q) in the diffraction pattern, known as Friedel pairs. These occur

even when space group lacks a center of inversion symmetry. If Q⃗ is close

to a resonance, however, Friedel’s law is violated; the anomalous part of the

scattering length b = b′ − ib′′ can be used to determine the symmetry and

understand the nature of chiral structures, traditionally difficult to solve on

account of the Friedel law. In this case, with the lattice assumed to be lack-

ing of a center of inversion symmetry i /∈ G, the structure factor satisfies
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Table 2.4: The 11 Laue classes which result from the combination of
rotational elements of point group symmetries of each crystal system
with Friedel’s law. Each Laue class has a number of compatible point
group symmetries; for instance, the Orthorhombic class permits 222,
mm2, and mmm point group symmetries of the diffraction pattern.

Crystal system Laue class
Triclinic 1
Monoclinic 2/m
Orthorhombic mmm
Tetragonal 4/m, 4/mmm
Trigonal 3, 3/m
Hexagonal 6/m, 6/mmm
Cubic m3, m3m

F (−Q⃗) =
∑

j fj exp(−iQ⃗ · R⃗j) 6= F ∗(Q⃗).

The combination of Friedel’s law with the rotational component of the

point group symmetry elements of the generating space group results in 11

Laue classes, listed in Table 2.4, defining the symmetry of the diffraction

pattern. For g = {h|τ⃗} ∈ G, improper rotations are those arising from the

combination of a rotational symmetry element h with a lattice translation

τ⃗ 6= 0. These symmetries are perhaps more subtle, but their presence can

have important consequences on the material properties manifest. Consider

a non-symmorphic crystal system with space group G. In the following, we

show how the presence of these symmetries can be inferred from diffraction

measurements by considering the systematic absences that arise from two

particular classes of improper rotations, often relevant for the stabilization
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of special, or functional, physical properties. A motivating example for the

analysis of Fourier amplitudes we present here concerns the deduction of

a ferroaxial coupling mechanism in multiferroic Ca3Mn7O12 from neutron

diffraction, in which a large ferroelectric polarization constrained to 3-fold

axis of the rhombohedral crystal structure is induced by an incommensurate

helical magnetic structure [55].

We first consider the case of a screw-axis symmetry element given by

g = 21 ‖ b⃗ ∈ G. The image of the general position (xj , yj , zj) under the ac-

tion of the symmetry element g is given by (−xj , 12 + yj ,−zj), while the unit

cell structure factor reduces to F (h, k, l) =
∑

j fj exp(2πi[hxj + kyj + lzj ])+∑
j fj exp(2πi[−hxj + k(12 + yj)− lzj ]). For the (0k0) zone, the structure

factor takes the form F (0k0) = [1 + (−1)k]
∑

j fj exp(2πikyj) and therefore

generates an extinction condition for (0k0) type reflections if k = 2n + 1,

for n ∈ Z. We now consider the case where g represents a c-axis glide

element ⊥ b ∈ G. Under the action of g, the general position (xj , yj , zj)

is mapped onto the position (xj ,−yj , 12 + zj); in this case, the unit cell

structure factor takes the form F (h, k, l) =
∑

j fj exp(2πi[hxj + kyj + lzj ])+∑
j fj exp(2πi[hxj − kyj + l(12 + zj)]). The structure factor for (h0l) type re-

flections hence takes the form F (h0l) = [1 + (−1)l]
∑

j fj exp(2πi[hxj + lzj ])

and generates an extinction condition for (h0l) if l = 2n+ 1, for n ∈ Z.
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2.3.1 Symmetry groups

Symmetry analysis provides an elegant and systematic means of simplifying

and understanding the stabilization of phase transitions in correlated and

functional materials. In the following exposition, we discuss the algebraic

properties of groups, sufficient to utilize its extensions in the description of

subgroup structures stabilized in phase transitions. Here, we draw upon

Refs. [56–64], which offer a more complete description. Consider a set G =

{g1, g2, . . . , gn} with n elements — the size of G is referred to as the order,

denoted by |G| = n. We endow this set with a binary operation ∗ specifying

the rule for the composition elements gi, gj ∈ G. In short-form we write

gi ∗ gj = gigj . The set G has the algebraic structure of a group, notated

G = (G, ∗), if the following axioms hold true.

1. Closure. The group G must be closed under the composition of elements

such that gigj = gk ∈ G for all gi, gj , gk ∈ G.

2. Identity. The group G must contain an identity element e ∈ G such

that eg = ge = g for all g ∈ G.

3. Inverse. The group G must contain an appropriate set of inverse ele-

ments; that is, for all g ∈ G require that ∃g−1 ∈ G such that g−1g =

gg−1 = e holds true.

4. Associativity. The composition of elements must be associative; that is

for elements gi, gj , gk ∈ G, the relation (gigj)gk = gi(gjgk) must hold.
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If the subset H ⊆ G satisfies the group axioms, then it is a subgroup H ≤ G.

Further, if there exist elements g ∈ G that do not appear in H, then it

is a proper subgroup H < G. Commutative groups are those that satisfy

gigj = gjgi for all gi, gj ∈ G and are termed abelian. In the context of

crystallography, the Bravais lattice is an abelian group T of translations with

rank(T ) = 3, referring to the smallest order of the possible generating sets

for G. Due to the translational symmetry of the Bravais lattice, it is a normal

subgroup of the space group T ◁ G since it is invariant under conjugation by

all members of the space group gτ⃗g−1 ∈ T for all g ∈ G and τ⃗ ∈ T .

Considering, now, the group structure and mappings between groups, we

introduce the concept of a homeomorphism — a bijective mapping between

two groups ϕ : G1 7→ G2 which preserves multiplication of domain elements

in the codomain ϕ(gigj) = ϕ(gi)ϕ(gj) for all gi, gj ∈ G. Homeomorphic

mappings that preserve the structure of the group (most easily intuited by

considering the group multiplication table) are termed isomorphisms. These

establish a kind of equivalence between groups G1 and G2. Isomorphic groups

have the same order and possess an identical group structure; in the parlance

of algebra, we call such groups similar and the conjugacy relation between

the G1 and G2 is termed a similarity transformation.

Space groups for which the symmetry elements have no combination of

rotational, mirror, or inversion operations with non-primitive translations

g = {h|0} ∈ G are symmorphic and account for 73 of the total 230 unique

space groups in 3D. The remaining groups are non-symmorphic, having glide
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planes and screw axes resulting from the combination of translation with

a mirror element and rotation element respectively. Symmetry elements of

the crystal g constitute a linear mapping h on Rn and a translation τ⃗ on

Rn, defined by {h|τ⃗}v⃗ := h · v⃗ + τ⃗ , expressed in Seitz notation. Of interest

to us are affine symmetry elements g for which the linear map h on Rn is

an isometry, satisfying h(v⃗)h(w⃗) = v⃗ ∗ w⃗ for all v⃗, w⃗ ∈ Rn; equivalently, we

require that hT = h−1 in the matrix representation, such that h belongs to

the Euclidean group En of orthogonal matrices.

Consider the subgroup H = {h1, h2, . . .} < G where gi ∈ G and gi /∈ H.

The quantities giH = {gih1, gih2, . . .} and Hgi = {h1gi, h2gi, . . .} are termed

the left and right cosets of H respectively. Lagrange’s theorem states that for

some finite group G, the order of every subgroup of G divides the order of G

and it is therefore the case that all cosets of a subgroup have the same order.

Further, each g ∈ G appears in exactly one coset of a subgroup, therefore

partitioning G. Consequently, the order of H in G, written [H : G], must be

integral [H : G] = |H|/|G| = m ∈ Z. We draw upon this construction later

in Sec. 2.3.2 where we discuss the symmetry of the magnetic propagation

wavevector under the rotational elements of the space group.

Subgroups of the 230 space groups can be divided among two broad cat-

egories, namely Translationengleiche (t-type) and Klassengleiche (k-type).

The t-subgroups are those with a point group of reduced order and an identi-

cal set of translations. By contrast, the k-subgroups are those for which the

order of the point group is unchanged, but are accompanied by a reduction
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of translational symmetry. In the case where a k-subgroup H belongs to the

same affine space group type as G, it is an isomorphic subgroup. Meanwhile,

the non-isomorphic subgroups are divided into two distinct types. Subgroups

belonging to the type-I classification are characterized by a reduction of cen-

tering translations only, while those belonging to type-II have an enlarged

unit cell only, when compared to the parent structure.

2.3.2 Modulated structures

The propagation wavevector k⃗ establishes a correspondence between the par-

ent lattice and that of the magnetic subgroup structure, while the basis vec-

tors m⃗j = Ψj encode the projection of the magnetic moment along principal

directions of the reciprocal lattice. It is typical for multiple basis vectors to

be involved in a phase transition, so we write Ψj =
∑

ν Cνψν , where the ψν

terms represent the ν components of Ψj for a given propagation wavevec-

tor k⃗ in the zeroth crystallographic unit cell. If more than one propagation

wavevector is involved in the transition to the ordered phase, then it is neces-

sary to sum over all the contributions to the moment projections m⃗j arising

from these, which can lie at any point on or within the first BZ, as follows

m⃗j =
∑
k⃗

Ψk⃗
j exp(−2πik⃗ · τ⃗). (2.6)

From this follows a classification of the subgroup lattice. A commensurable

lattice Λ′, in direct space, is related to its parent lattice Λ ∈ Rn modulo some
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P PF IP

P2a C2c CP

Figure 2.7: A subset of the magnetic Bravais lattices illustrating the
notion of a colored lattice. Shown here are examples of colored cubic
and monoclinic Bravais lattices types, with primitive (P), body-centered
(I) and base-centered (C) cells, equipped with both translation and anti-
translation, denoted by yellow and blue sites respectively.

integral number of primitive cells along each of the principal lattice directions;

this correspondence is summarized by stating that all the components of k⃗ can

be expressed as rational fractions of whole numbers p/q ∈ Q. This gives rise

to a change in the overall symmetry of the structure, with some examples

of so-called colored lattices given in Fig. 2.7. Consequent from this is a

redistribution of spectral weight among sharp Bragg reflections at rational

positions in reciprocal space, manifest in experiments as satellite reflections,

as illustrated in Fig. 2.8.

On the other hand, superstructures induced by the presence of a wavevec-

tor with irrational components have no simple relationship between nuclear

and magnetic cells; these aperiodic structures are incommensurate, and give
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a b

Figure 2.8: Development of satellite reflections below the Tc, associated
with a reduction of symmetry G < G0. In magnetic systems approaching
a transition, critical scattering is manifest as paramagnetic background
which is then increasingly redistributed in reciprocal space among posi-
tions specified by the k⃗-actives involved in the transition. In (a), the
diffraction is manifest from two arms of the star of k⃗ while in (b), the
diffraction results from three arms of the star of k⃗. Based on Fig. 1.12
of Ref. [65].

rise to the development of intensity at irrational positions in reciprocal space.

The lack of translational symmetry induced by an incommensurate modula-

tion results in a supercell of infinite size, although while it is the case that

incommensurable structures are nominally aperiodic, they can be recast as

the embedding of a (3 + n)-D space group in which the structure is periodic.

Consider some scattering system with space group G and propagation

wavevector k⃗. We need only consider the action of the rotational compo-

nent of the symmetry element h, since k⃗ is invariant modulo some linear

combination of primitive translations. Lattice translations do not affect k⃗,

when operated on by the rotational component h ∈ G, therefore the propaga-

tion wavevector k⃗ is either left invariant, or is mapped onto the inequivalent
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wavevector k⃗′ = kh. The action of the rotation operator will generally give

rise to a number of such distinct wavevectors, providing a means by which

to partition the symmetry elements of G into cosets. The first coset G⃗
k⃗

is

made up of the elements that do not change k⃗, the second coset (g2) trans-

forms k⃗ into the inequivalent wavevector k⃗′ = k⃗2, and so on. The full set of

inequivalent wavevectors obtained in this manner defines the star of k⃗, with

each inequivalent wavevector representing a separate arm of the star, which

is typically made up from a number of arms satisfying l
k⃗
< |G

k⃗
| < |G0|.

The symmetry elements of G0 leaving k⃗ invariant are those of the first

coset and form the little-group G
k⃗
, with elements of the form k⃗h = k⃗ + τ⃗ .

Magnetic ordering typically involves one propagation wavevector, generating

single-⃗k structures described within the remit of a single propagation wavevec-

tor. In cases where appreciable higher order exchange terms are manifest in

the Hamiltonian of the scattering system, it is possible to observe quadrupo-

lar ordering in which several arms of the star are involved in the magnetic

structure, which is then termed multi-⃗k. These types of magnetic structure

are rare, but domain structure can give rise to Bragg scattering that is in-

distinguishable; to determine whether the structure is multi-⃗k or comprising

k⃗-domains, it is necessary to test environmental conditions of the scatter-

ing system such as temperature, pressure, or magnetic field, to investigate

whether there is a favoring of some k⃗-domain manifest in the response.

The magnetic moment can be expressed m⃗j = Ψk⃗
j [cos(2πk⃗·τ⃗)+isin(2πk⃗·τ⃗)]

in general. The simplest case occurs when the basis vectors Ψk⃗
j are purely real
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or purely imaginary. Propagation wavevectors with such basis vectors can

result in simple ferromagnetic, antiferromagnetic, or ferrimagnetic structures,

with m⃗j = Ψk⃗
j cos(2πk⃗ · τ⃗). In the case where Ψk⃗

j is real with a nonzero sine

component, given that m⃗j must be real, the magnetic moment requires a

contribution from both k⃗ and −k⃗. In this case, the moment can be expressed

by m⃗j = Ψk⃗
j exp(2πik⃗ · τ⃗) + Ψ−k⃗

j exp(−2πik⃗ · τ⃗) where we have Ψ−k⃗
j = Ψk⃗∗

j .

Since m⃗j is real, it can be expressed simply as m⃗j = 2Re(Ψk⃗
j ) cos(2πk⃗·τ⃗), since

the imaginary part 2Re(Ψk⃗
j ) sin(2πk⃗ · τ⃗) is zero. Magnetic structures with

basis vectors requiring (k⃗,−k⃗) admit a cosine modulation of the magnetic

moments and the presence of both wavevectors gives rise to a modulation of

the size of the magnetic moment in what is often called a spin density wave.

Incommensurate structures also require a contribution from both (k⃗,−k⃗),

with the moment given by m⃗j = 2Re(Ψk⃗
j ) cos(2πk⃗ · τ⃗) + 2Im(Ψk⃗

j ) sin(2πk⃗ · τ⃗).

When the real and imaginary components of the basis functions are equal in

magnitude and lie in the plane ⊥ k⃗, a helical magnetic structure is manifest in

which a cosine modulation is accompanied by a transverse sine modulation.

The two components are separated by a phase of π/2, and since the real

and imaginary components are equal in magnitude, the projection of the

helix is circular with no variation of the moment size — only its direction in

the crystal. When these are not of equal magnitude, an elliptical helix is

formed. If the basis vectors have components ‖ k⃗ then a cycloid is formed

in which the components of the basis vector change direction and sign along

the modulation axis, meaning the moments twist in the direction of k⃗.
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Figure 2.9: Matrix representation of the point group P = 222. Each of
the rotational symmetry elements h of the point group P are mapped
onto corresponding invertible 2 × 2 matrices, belonging to the general
linear group GL2(R) of order 2.

2.3.3 Group representations

In this section, we draw partly on the relevant expositionary material pre-

sented in Ref. [66]. The concept of a group representation is illustrated in

Fig. 2.9, showing the mapping of elements of the little group g ∈ G
k⃗

onto

matrices R belonging to GLn(R), the general linear group of order n. We

note that both the atomic position and the direction of magnetic moment are

exposed to the action of a symmetry element g ∈ G
k⃗
, when operating on some

magnetic site in the crystal basis. The magnetic moment is an axial vector,

distinct from that of the usual polar vector. Both of these are invariant under

the action of inversion, and transform similarly under rotations. They differ
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a

b

Figure 2.10: Transformation properties of the axial vector under mirror
symmetry elements both parallel and perpendicular to the moment direc-
tion. Identifying the magnetic moment with a current loop, the action
of a mirror plane perpendicular to the moment axis, as in (a) leaves
the moment unchanged, while the action of mirror plane parallel to the
moment axis, as in (b) reverses the sense of rotation of the current loop,
and hence the moment direction.

in their response to mirror symmetry elements, however; the action of mirror

elements both perpendicular to and parallel to the moment direction for axial

is compared to that of polar vectors in Fig. 2.10. Axial vectors are relevant

in the description magnetic structures, while polar vectors are relevant to the

case of atomic distortions, or in the study of phonon modes.

Written in matrix form, the set of symmetry elements belonging to the

little group of k⃗ define the group representation of G
k⃗
. We can transform this

into a more convenient form, in which the matrices are all mutually orthog-

onal — this is known as the irreducible representation of G
k⃗
. The structure

transforms, in general, as R(g) |ψ〉 = χ(g) |ψ〉, where χ is the character of
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g ∈ G
k⃗
, which is in general a complex quantity and given simply by the trace

of the matrix R(g) corresponding to the symmetry element g ∈ G
k⃗
. The

symmetry elements g ∈ G
k⃗

have the action of permuting the set of atomic

positions such that gx⃗i = x⃗j . We note that since the effect of polar and

axial operations are independent, their effects on the system are independent

and are therefore considered separately. When a symmetry element maps

an atom to a position beyond the boundary of the unit cell, we can account

for this by invoking a phase factor exp[ik⃗ · (u⃗j − u⃗i)], allowing us to repre-

sent its image within the the zeroth cell. The matrix that accounts for the

permutation of atom labels and the introduction of a phase term, discussed

previously, is the permutation representation Γperm(g).

The magnetic vector associated with an atom µ⃗ = (µa, µb, µc) transforms

according to µ⃗′ = |R(g)|R(g)µ⃗, where |R(g)| is the determinant of the matrix

R(g), required in order to conserve the symmetry of the axial vector under

improper rotations. The axial representation Γaxial(g) is a 3× 3 matrix that

characterizes the transformation of the magnetic moment vector. The char-

acter of the permutation and axial vector representations are given simply by

the trace of their respective matrices. The magnetic representation Γmag(g)

is given simply by the product of the permutation and axial representations,

since they are independent. It is, in general, a tensor quantity defined by

Γmag(g) = Γperm(g)× Γaxial(g),

χmag(g) = χperm(g)χaxial(g),
(2.7)
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where Γmag(g) has dimension 3N × 3N . Noting that the matrices Γν(g) act

only upon a subspace of the 3N -spin components µΓν , a block-diagonal form

of the magnetic representation can be obtained by summation over all the

irreducible representations Γν(g), as follows

Γ1µ1 + Γ2µ2 + · · ·+ Γνµν =



Γ1 0 · · · 0

0 Γ2 · · · 0

...
... . . . ...

0 0 · · · Γν





µΓ1

µΓ2

...

µΓν


. (2.8)

With nν defining the number of distinct basis vectors involved in each irre-

ducible representation, the magnetic representation is described as,

Γmag(g) =
∑
ν

nνΓν(g), (2.9)

nν =
1

n(G
k⃗
)

∑
g∈G

k⃗

χmag(g)χΓν (g)
∗. (2.10)

One strategy for the calculation of basis vectors ψ the projection oper-

ator method, in which trial functions m⃗a = (1, 0, 0), m⃗b = (0, 1, 0), and

m⃗c = (0, 0, 1) along the crystallographic axes are used in conjunction with

the projection operator formula to find the basis vector ψ for magnetic rep-

resentation Γν(g). The projection operator is given by

ψαν =
∑
g∈G

k⃗

χ∗
ν(g)

∑
n

δn,gn |R(g)|R(g) m⃗α, (2.11)
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where χ(g) is the character of g ∈ G
k⃗
. Any linear combination of basis vectors

will, in the general case, have the same symmetry as that of the irreducible

representation. The moment distribution M⃗j of jth atom expressed as the

Fourier transform of the linear combination of basis vectors Ψj =
∑

αCαψα

is given by

M⃗j =
∑
k⃗

∑
α

Cαψα exp(−ik⃗ · τ⃗), (2.12)

where Cα is a mixing coefficient, describing the weighted contribution of the

basis vectors. In general, this is a complex quantity with the summation

taken over all possible propagation vectors k⃗.

In order for a result to be physical, the moment must be real. In accor-

dance with this, the basis vectors can be brought into a completely real form

by constructing linear combinations of basis vectors with their complex con-

jugates, given by −k⃗. As deduced from the projection of test functions, the

moment distribution takes the form [64, 67]

M⃗j =
∑
α

Cαψα exp(−ik⃗ · τ⃗) + C∗
αψ

∗
α exp(+ik⃗ · τ⃗). (2.13)

This can be expressed equivalently in the form

M⃗j = 2
∑
α

|Cα|v̂ cos(k⃗ · τ⃗ + ωα + θα). (2.14)

The basis vectors along direction v̂, can be expressed as ψ = exp(−iω)v̂, with

the complex coefficient written in the form C = |C| exp(−iθ); here, θ is a
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free parameter, while the phase contribution ω is restricted by the symmetry

of the space group.

2.4 Scattering theory

Like most scattering techniques, the fundamental quantities measured in neu-

tron experiments are the incident and final states of the wavevectors and en-

ergies. The angle and intensity of scattering is recorded on position sensitive

detectors and it is possible to transfer these quantities to the reciprocal lattice

frame using geometrical and kinematical transformations. The conservation

of momentum and energy can be expressed as

Q⃗ = k⃗i − k⃗f ,

ET = Ei − Ef =
h̄2

2mn
(k⃗2i − k⃗2f ),

(2.15)

where Q⃗ is the momentum transfer and ET is the energy transfer.

2.4.1 Geometry and kinematics

Summarizing from Refs. [68–71], we denote the neutron flux as Φ0 and assume

the detectors to be perfectly efficient. The total scattered intensity is given

by the product of the flux with the cross-section Itot = σtot × d2σ/dΩfdEf .

The quotient term in this expression is the partial differential cross-section
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Figure 2.11: The geometry of the scattering experiment expressed
in spherical coordinates (r, θ, ϕ). The neutron beam, with incoming
wavevector k⃗i is along the ẑ-axis of the scattering frame, with ŷ verti-
cally upwards and x̂ lying in the horizontal scattering plane. The angle
element dΩ encodes the direction of the final wavevector k⃗f incident on
the detectors in terms of (θ, ϕ). Based on Fig. 1.2 in Ref. [68].

Itot/σtot, which is a sum of incoherent and coherent components

d2σ

dΩfdEf
=

d2σ

dΩfdEf

∣∣∣∣
inc

+
d2σ

dΩfdEf

∣∣∣∣
coh

, (2.16)

and intrinsically contains the direction of the scattered neutrons in terms of

(θ, ϕ) through the angle element dΩf , along with the final neutron energy

Ef . The geometry of the scattering experiment is shown in Fig. 2.11. The

incoherent component of the scattering cross-section arises when there exists

a distribution of isotopes or nuclear spins in the system.
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2.4.2 Scattering lengths, interactions and cross-section

Consider a system with i atomic species each having a set of set of uncorre-

lated scattering lengths bi′ . Summarizing from Refs. [46, 72], the neutron has

spin σn and the nucleus has spin s. In the case where the target nucleus has

non-zero spin, the neutron scattering length is spin-dependent. Upon collid-

ing with the target nucleus, the neutron can be scattered or absorbed; in the

latter case, photons or α-particles are produced. The scattering length can

be written as a complex quantity b = b′ + ib′′. The total bound cross-section

takes the form σs = 4π〈|b|2〉, where 〈. . . 〉 denotes a statistical average over

neutron and nuclear spins.

The absorption cross-section takes the form σa = (4π/k)〈b′′〉, where k =

2π/λ is the wavevector of the incident neutron with wavelength λ. The

macroscopic absorption cross-section takes the form Σ = NAρjσj/Aj and re-

lates the area of the nucleus seen by the incident neutron to the resultant

beam attenuation. In the case of unpolarized neutrons and unpolarized nuclei,

the bound scattering cross-section is of the sum of coherent and incoherent

cross sections σs = σc + σi = 4π(|bc|2 + |bi|2). The coherent cross-section is

the thermal average, bc = 〈b〉, therefore the absorption cross-section is given

by σa = (4π/k)b′′c . There is a small (≤ 0.5 %) electrostatic contribution

to bc from the neutron polarizability. This contribution, be, is due to the

neutron-electron electron interaction with the Coulomb field of bound nuclei.

Summarizing from Ref. [72], the neutron-electron interaction potential can

be written as follows: V̂E(r⃗) = V̂SO(r⃗) + V̂F(r⃗). The first term gives rise
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to Schwinger scattering with a potential given by V̂SO = −γnµN(mc2)−1σ ·

(E⃗ × p⃗), arising from the coupling of the electric field of the moving neutron

magnetic moment with the charge-density of the scattering system via the

spin-orbit interaction [73]. The second term gives rise to scattering by the

Foldy interaction, which has potential V̂F = h̄γnµN(2mc2)−1∇ · E⃗, and arises

from the relativistic Zitterbewegung motion of the neutron moment. This

gives rise to an anomalous moment as the neutron rapidly oscillates to and

from its dissociated state (comprising a proton and π− meson), which in turn

provides a separation of charge [74].

The Schwinger scattering gives a purely imaginary cross-section while the

Foldy contribution is bF = −1.486 × 10−3 fm [46, 75]. These Coulombic

contributions to the neutron scattering length will henceforth be considered

negligible. The scattering is spherically symmetric because the Fermi inter-

action potential is valid over very short ranges, and gives rise to s-wave type

scattering. Neutrons are sensitive only to the component of the magnetic

moment perpendicular to Q⃗, and unlike the nuclear case, the scattering is

anisotropic. The probability of scattering is given by application of Fermi’s

golden rule, resulting in the matrix element

d2σ

dΩfdEf

∣∣∣∣
λi→λf

=
kf
ki

[
mn
2πh̄2

]
|〈k⃗fλf |V̂ |⃗kfλi〉|2 δ(h̄ω + Ei − Ef ). (2.17)
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The potential V̂ in Eq. (2.17) is the Fermi pseudo-potential, given by

V̂n(r⃗) = δ(r⃗)
2πh̄2

mn
b. (2.18)

In general, the interaction potential for magnetic scattering is

V (r⃗) = 2µB γµN σ ·

[
∇×

(
s⃗× ˆ⃗

R

R2

)
+

1

h̄

r⃗ × ˆ⃗
R

R2

]
, (2.19)

the first term due to spin, and the second due to the orbital motion of the

electron. The cross-section comprises matrix elements
〈
k⃗1σ1λ1

∣∣∣V ∣∣∣⃗k0σ0λ0〉.

The magnetic interaction potential for magnetic neuron scattering is VM (r⃗) =

−µ⃗n · B⃗(r⃗), where B⃗ is the local magnetic field around localized moments of

the electrons in the crystal structure. Invoking a Fourier transformation,

from Maxwell’s laws, one can write the magnetic interaction potential as

V (Q⃗) = −µnB⃗(Q⃗) = −µ0µn · M⃗⊥(Q⃗),

M⃗⊥(Q⃗) =
ˆ⃗
Q× [M⃗(

ˆ⃗
Q)× ˆ⃗

Q],

(2.20)

where M⃗⊥(Q⃗) is the perpendicular projection of the magnetization. In the

dipole approximation, one can simply write

M⃗(Q⃗) = −gµ⃗Bf(Q⃗)S⃗ = f(Q⃗)µ⃗. (2.21)

Now considering the incoherent scattering from a distribution of isotopic
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abundances, the average isotopic states for each atomic species can be defined

by their relative frequency fi′ through the relations

bi =
∑
i′

fi′bi and b2i =
∑
i′

fi′b
2
i . (2.22)

The incoherent elastic cross-section then takes the form

d2σ

dΩdEf

∣∣∣∣
inc

=
∑
i

(b2i − b
2
i ). (2.23)

This component of the cross-section provides a measurement of the autocorre-

lation function for a particular atom in the system. That is, the probability

that a particular atom is located at position r⃗′ at time t′ given an initial

position r⃗ = 0 at t = 0. Since the incoherent scattering does not arise from

collective interference, it contains no structural information. In experiments,

the incoherent scattering is typically treated as a parasitic contribution to the

background and its minimization is sought with careful choice of materials

used for sample environment and mounting. The second term in Eq. (2.16)

describes the collective interference of scattered neutrons from atomic cen-

ters in the sample. For a system with atomic species i, j and instantaneous

displacement between their equilibrium positions r⃗ij = r⃗j − r⃗i, the coherent

elastic cross-section takes the form

d2σ

dΩdEf

∣∣∣∣
coh

=
1

N

∑
ij

bibj〈exp(iQ⃗ · r⃗ij)〉, (2.24)
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and in the case of powder diffraction, it is given by

Icoh
el (Q⃗) =

1

N

∑
i

b
2
i +

1

N

∑
i ̸=j

bibj

〈
sin qrij
qrij

〉
. (2.25)

2.4.3 Correlation functions and diffuse scattering

Consider the magnetic susceptibility M⃗ = χH⃗. If H⃗ is constant in spa-

tial and temporal variables, then we measure the zero frequency, uniform

susceptibility, i.e. the (Q⃗, ω) = 0 response. On the other hand, if the ap-

plied field has a varying spatial and temporal dependence, then we mea-

sure the generalized dynamic susceptibility χ(Q⃗, ω). In the case where the

system responds linearly to the applied magnetic field, the susceptibility is

M⃗α(Q⃗, ω) = χαβ(Q⃗, ω)Hβ(Q⃗, ω). In general, there is a phase factor between

M⃗ and H⃗, so χ is a complex quantity and can be written in the two compo-

nent form χ(Q⃗, ω) = χ′(Q⃗, ω)− iχ′′(Q⃗, ω).

Since the neutron is weakly interacting, the system responds linearly within

the remit of the fluctuation-dissipation theorem. Then, between pairs of spins,

one can define the spin-pair correlation function. The imaginary component

of the generalized susceptibility is related to the dynamic structure factor

through the relation

Sαβ(Q⃗, ω) = [1 + n(ω)]
1

π
χ′′(Q⃗, ω), (2.26)

where the factor n(ω) = [exp(h̄ω kBT )− 1]−1 is required on account of de-
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tailed balance. In terms of the perpendicular component of the spin, the

dynamic structure factor takes the form

S(Q⃗, ω) = (2πN)−1

∫ ∑
ij

exp[i(Q⃗ · rij − ωt)]〈S⃗⊥
i (0) · S⃗⊥

j (0)〉. (2.27)

The self-pair correlation function measures correlations between the po-

sition of the same particle at different times, so quantifies the incoherent

nuclear scattering,

Si(Q⃗, ω) = A′′
∫∫

exp(i[Q⃗ · r⃗ − ωt])Gs(r⃗, t)dr⃗ dt, (2.28)

where Gs(r⃗, t) is the self-pair correlation function. For a scattering system

with a single magnetic ion species, an electron density distributed isotropi-

cally around atomic positions, no magnetoelastic coupling, and only isotropic

harmonic atomic displacements T = T iso, the magnetic scattering is

Imag(Q⃗, ω) =
kf
ki

(
µ⃗0
4π

γne2

2me

)2

T 2[gf(Q⃗)]2Sαβ(Q⃗, ω). (2.29)

The magnetic scattering obeys sum rules, which assumes that the spin value

S is constant, leading to the expression

∫
S(Q⃗) =

2

3
S(S + 1)

∫
dQ⃗, (2.30)

with the factor of 2/3 due to the projection of the spin perpendicular to Q⃗.
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The dynamic structure factor contains information on the distribution of

spectral weight in reciprocal space. Magnetic dynamics such as dispersion

relations and spectral weight distributions can be calculated from linear re-

sponse theory. In such a linear system, the response R(x⃗, t) that is induced

by a small perturbation H(x⃗, t) is proportional to this perturbation to first

order R(x⃗, t) = χ(x⃗, t) ·H(x⃗, t)

χ′αβ = −2ω

π
p

∫ ∞

0
dω′χ

′(Q⃗, ω′)

ω′2 − ω2
. (2.31)

In fact, for any neutron scattering process, a continuity relation must hold,

defined by the condition S(Q⃗,−ω) = exp(h̄ω/kBT )S(Q⃗, ω), relating the

neutron energy gain S(Q⃗,−ω) to the neutron energy loss S(Q⃗, ω).

The average crystallographic structure of a material, as we have seen, gives

rise to sharp [δ(Q⃗) ⊗ resolution function] Bragg reflections; the intensity be-

tween these is the diffuse scattering, arising from local distortions and cor-

related disorder. The lead-oxide class of relaxor ferroelectric materials are a

classic diffuse scattering material with extraordinary piezoelectric properties,

with their configurations of correlated disorder producing vivid and striking

patterns of diffuse intensity in reciprocal space, as illustrated in Fig. 2.12. The

magnitude of intensities arising from diffuse scattering are typically orders

of magnitude lower than the Bragg contribution. The separation of diffuse

scattering from background signal is highly non-trivial and is a longstanding

challenge. On account of their weak nature, diffuse features are often uncov-
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Figure 2.12: Neutron diffuse scattering in relaxor ferroelectrics, showing
broad in Q⃗ correlations spread throughout reciprocal space, indicating
the presence of correlated disorder. Adapted from Ref. [76].
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ered only after careful, properly normalized background subtraction. Small

local distortions in direct space give rise to a broad-in-momentum response

in reciprocal space since Q = 2π/d. In the kinematic approximation, the

coherent neutron cross section is

I(Q⃗) =
1

N

∑
jk

〈bjbk exp[iQ⃗ · (r⃗j − r⃗k)]〉, (2.32)

where bj is the coherent scattering length of atom j. The scattered intensity

from a crystal is the sum of Bragg and diffuse contributions. I(Q⃗) can be

can be separated into these, as follows,

I(Q⃗) = IBragg(Q⃗) + Idiffuse(Q⃗)

=
1

N
|〈F (Q⃗)〉|2 + 1

N
〈|F (Q⃗)− 〈F (Q⃗)〉|2〉,

(2.33)

where F (Q⃗) is the unit cell structure factor, a discrete Fourier transform of

the direct lattice unit cell, given by F (Q⃗) =
∑N

j=1 bj exp(iQ⃗ · r⃗k).

Before the advent of Pair Distribution Function (PDF) and Reverse Monte

Carlo (RMC) methods [77] of interpretation, problems in diffuse scattering

were largely approached by symmetry analysis and physical intuition for dis-

order mechanisms used to propose models, allowing for direct Monte Carlo

simulation of the equilibrium structure factor S(Q⃗) ≡ S(Q⃗, 0) in packages

such as the DISCUS suite [78, 79] to be compared against measurements.

The algorithm simulates thermalization under each system configuration in
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which random perturbations are introduced to the phase-space Hamiltonian

H(ϕ). ‘Moves’ are accepted if they lower the configuration energy with some

probability. The partition function of the canonical ensemble, and the ther-

mal operator of some operator Ô, are given by the relations

Z =

∫
Dϕ exp[−H(ϕ)/kBT ], (2.34)

〈Ô(ϕ)〉 = Z−1

∫
Dϕ Ô(ϕ) exp[−H(ϕ)/kBT ], (2.35)

where H(ϕ) is the configuration energy. The Metropolis method of phase-

space exploration imposes the transition probability between configuration

states as

W (ϕ→ ϕ′) = C ×


exp(δH/kBT ) ifδH > 0,

1 otherwise.
(2.36)

Summarizing from Ref. [80], which presents a new method for calculation of

diffuse scattering patterns by fast Fourier transform, the ordering wavevector

k⃗ with components kα ∈ R defines a supercell such that Bragg positions are

G⃗ = H⃗ + k⃗, with H⃗ = H1a⃗
∗ + H2⃗b

∗ + H3c⃗
∗ and Hα ∈ Z. Let r⃗µi denote

the average position of site µ in the unit cell and u⃗R⃗µi denote the local

displacement of atom i at site µ and lattice point R⃗. The structure factor

can the be expressed as

F (G⃗) =
∑
R⃗µi

δR⃗µibµi exp[iG⃗ · (r⃗µ + u⃗R⃗µi)] exp(ik⃗ · R⃗), (2.37)
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where δR⃗µi is 1 if site µ at lattice point R⃗ is occupied by atom of element

i, and zero otherwise. The deviation from average occupancy is aR⃗µi =

[δR⃗µi − cµi]/cµi, in which cµi is the average occupancy of site µ by atom of

type i. This separates the structure factor into an average component and

a local modulation. Since the structure factor is now in terms of an average

component and a local modulation, it can be written in terms of a Bragg and

diffuse contribution, given by

F (Q⃗) =
∑
µi

[U
k⃗µi

(G⃗) + A
k⃗µi

(G⃗)]cµibµi exp(iG⃗ · r⃗µ). (2.38)

The terms U
k⃗µi

(G⃗) and A
k⃗µi

(G⃗) are a pair of Fourier transforms for each site

µ and element i, defined by the relations

U
k⃗µi

(G⃗) =
∑
R⃗

exp(iG⃗ · u⃗R⃗µi) exp(ik⃗ · R⃗), (2.39)

A
k⃗µi

(G⃗) =
∑
R⃗

aR⃗µi exp(iG⃗ · u⃗R⃗µi) exp(ik⃗ · R⃗). (2.40)

The Bragg structure factor therefore takes the form

〈F (Q⃗)〉 = n1n2n3δG⃗H⃗

∑
µi

Tµi(Q⃗)cµibµi exp(iG⃗ · r⃗µ), (2.41)

where n1, n2, n3 denote the number of units cells, and with the Debye-Waller
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(temperature) factor given by

Tµi(G⃗) =
1

n1n2n3

∑
R⃗

〈(1 + aR⃗µi) exp(iG⃗ · u⃗R⃗µi)〉. (2.42)

Laue monotonic scattering from random population of defect sites appears

as incoherent background scattering. The magnetic cross section is

Fmag(G⃗) =
∑
µi

fmag
µi (|G⃗|)Tµi(G⃗)M⃗k⃗µi

exp(iG⃗ · r⃗µ), (2.43)

where fmag
µi (|G⃗|) is the magnetic form factor, and the Fourier component of

the magnetic moment is given by

M⃗
k⃗µi

=
∑
R⃗

M⃗R⃗µi exp(ik⃗ · R⃗). (2.44)

The measured intensity then takes the form Imag(G⃗) = (C/N)〈|F⊥
mag(G⃗)|2〉,

with the constant C = (γnr0/2)
2 = 0.07265 barn. This is the case because the

neutron interacts with the perpendicular component of the magnetic moment,

F⊥
mag = Ĝ× Fmag × Ĝ, where Ĝ = G⃗/|G⃗|.

2.5 Instrumentation

In this section, we draw partly on the relevant expositionary material pre-

sented in Refs. [66, 81]. Neutron scattering is a flux-limited technique. In a

neutron scattering experiment, one generally aims to measure some volume



2.5 Instrumentation 55

element of the dynamical structure factor S(Q⃗, ω). In the case of neutron

diffraction, measurements are energy integrated, so one measures instead the

static structure factor S(Q⃗) ≡
∫
S(Q⃗, ω)dω. Depending on the aims of the

experiment, one selects an instrument and beamline configuration in the plan-

ning stage that takes into account the equipoised relationship between beam

flux and instrument resolution.

It is generally the case that a higher brilliance — the neutron current nor-

malized to the source area and solid angle of emission — comes at the cost

of resolution, since higher resolutions typically require a greater degree of

beam shaping, thereby giving rise to a greater degree of beam attenuation.

Due to the bounded nature of instrument resolution, there are always a dis-

tribution of wavevectors k⃗i and energies Ei around their nominal values in

scattering experiments. The intensity I(Q⃗, ω), as measured on the detec-

tors in experiments, is directly proportional to a function which encodes the

(Q⃗, E) dependence of the instrument resolution.

Owing to the complexities of accounting for the effect of all neutronics,

resolution effects are not usually easy to calculate; the resolution function

itself manifests as an anisotropic ellipsoid in (Q⃗, E) space, and is often ap-

proximated to a reasonable degree of accuracy by a 4D multivariate Gaussian

distribution. We denote the wavevector spread of the incident and scattered

beam k⃗i and k⃗f by the vector Q̃ = Q⃗− Q⃗0, and notate the spread of frequen-

cies by ω̃ = ω⃗ − ω⃗0. Then, the measured intensities vary according to the
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relation

I(Q̃, ω̃) ∝
∫∫

R(Q̃, ω̃)S(Q⃗, ω)d3Q⃗dω. (2.45)

The resolution function R(Q̃, ω̃) is peaked at (Q⃗0, ω0), and is the inverse of

the covariance matrix describing a 4D Gaussian distribution in (Q⃗, E) space

of the form [82]

R(Q̃, ω̃) =
1

(2π)2
|C|1/2 exp(−1

2
XTCX), (2.46)

where X is a column vector with elements (Q̃, ω̃) and the integral of R is

normalized to unity. Here, C is the resolution matrix, which in general is not

diagonal — that is, the eigenvectors are not oriented along the axes of the

(Q⃗, ω) coordinate system.

2.5.1 Triple-axis spectrometer

Affording the experimenter granular control of the incident neutron momen-

tum k⃗i and energy Ei, the triple-axis spectrometer is well known for its high

resolution and versatility, and has enjoyed decades of success in condensed

matter physics, as discussed in Sec. 2.1. The instrument is particularly effec-

tive when applied to the study of collective excitations, including phonons and

magnons. A schematic representation of the instrument is shown in Fig. 2.13.

An incident wavevector k⃗i is selected from the polychromatic incident beam

by a single-crystal monochromator. This operates on the basis of Bragg’s

law by varying the angle 2θM alike the analyzer crystal; by varying the angle
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ki kf

Figure 2.13: Schematic diagram of the triple-axis spectrometer. The
white beam is filtered by the crystal monochromator, selecting an in-
cident wavevector k⃗i. There are many options for the installation of
collimation or filtration modules on both the incident and scattered side
of the beam, affording much flexibility. Upon scattering with the sam-
ple, the scattered beam is directed to an analyzer crystal where the final
wavevector k⃗f is selected before the beam is directed to the detector tube
and its counts recorded.

2θA, the final wavevectors of the scattered neutrons k⃗f are selected. Both

monochromator and analyzer are typically made from Pyrolytic graphite,

though sometimes also from Cu, Si, or Heusler alloys.

Meanwhile, low efficiency detectors known as monitors are situated along

the length of the beam for diagnostic purposes; they additionally serve as a

proxy for the incident flux, therefore allowing for the normalization of raw

detector panel data. High energy neutrons contaminate the beam and con-

tribute to the background, and can be removed via the insertion of Be or

graphite filters along the length of the beam on either side of the sample
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table. Fig. 2.13, a schematic representation of the instrument, shows the lay-

out of the monochromator, sample, and analyzer tables, which rotate about

their respective axes. When combined with sample orientation, these degrees

of freedom allow for a variety of instrument configurations, and afford the

experimenter the opportunity to measure any region of reciprocal space.

The measurements of a given (Q⃗, E) point can be performed in an infinite

number of ways due to the flexibility of the instrument configuration. In

reality, however, not all configurations are equivalent as they lead to different

intensity or resolution characteristics. The quantity which we measure in

neutron scattering experiments is the double-differential cross-section with

respect to solid angle Ω and scattered neutron energy Ef ,

d2σ

dΩdEf
=
ki
kf
S(Q⃗, E), (2.47)

where the response function S(Q⃗, E) is the physical quantity of the sample

which we wish to extract in neutron scattering experiments. Generally, the

final wavevector kf is held fixed and ki is allowed to vary. This can be ac-

counted for by the following: often varying ki results in a decreasing incident

neutron flux on the sample; in qualitative analysis of the integrated intensi-

ties in constant-Q scans, the intensity is also proportional to the factor F (kf )

which is given as [71],

F (kf ) = RA(kf )k
3
f cot θA, (2.48)
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where RA is the reflectivity of the analyzer and θA is the scattering angle,

defined in Fig. 2.13. This factor accounts for the changes in analyzer response

and resolution volume as a function of kf ; in the instrument setup where kf

is varied, a significant kf -dependent correction must be accounted for.

Over a large range of kf , the analyzer reflectivity will also become impor-

tant. The variable-kf mode is useful in measurements which require a very

low background as higher-order neutrons can be filtered out of the incident

beam [71]. By contrast, in the fixed-kf scattering mode — which is more fre-

quently used — the factor F (kf ) becomes constant. That is not to say that

the resolution volume is not changing; rather, as the incident beam monitor

efficiency is inversely proportional to ki, the neutron count rate normalized

to the monitor counts is then directly proportional to the response function

S(Q⃗, E), from Eq. (2.47).

2.5.2 Time-of-flight spectrometer

Unlike the case of the TAS which probes a specific point in (Q⃗, E) space, the

TOF technique is capable of collecting many energy spectra simultaneously

for a wide range of wavevectors by using PSD arrays. Pulsed sources are

therefore ideally suited to TOF techniques, although a reactor source can be

adopted to use TOF if the source beam is pulsed through the use of a series

of choppers. The TOF measurements can be made in the following geome-

try settings. Firstly, the direct geometry spectrometer, where the incident

neutron energy Ei is defined by a crystal or a chopper, and the final energy
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Ef is found from TOF. Secondly, the indirect geometry spectrometer, where

the sample is illuminated by a polychromatic beam and Ef is defined by a

crystal or filter, where the incident energy Ei is determined by TOF. Only

a direct geometry spectrometer has been used in the work presented in this

thesis, and will be discussed further.

In the classical limit where the neutron wavelength is much smaller than

the slits the neutron encounters along its path, neutrons can be treated as an

ensemble of particles of mass mn traveling with a velocity v for a time interval

of t. The velocity of thermal neutrons is of order of km s−1; consequently,

their energy can be determined by measuring their TOF over a distance of a

few meters. The manner by which this is achieved is as follows.

Fig. 2.14 shows a typical TOF setup using the WISH instrument at ISIS as

an example; an initial pulse of neutrons from the spallation source contains

neutrons with velocities 〈v〉 ± δv, where 〈v〉 represents the average velocity,

and the velocity distribution is denoted by δv. As the neutrons propagate,

the pulse width will increase. To reduce the initial background, choppers are

used to block fast neutrons produced in the instant of proton spallation, and

a Fermi chopper is then placed to monochromate the incident beam further.

The chopper is a rotating drum synchronized to the neutron pulse which

consists of layers of highly absorbing (such as B) and transparent material

(such as Al). Only a narrow range of neutrons with desired energy are allowed

to pass, with the remainder of neutrons absorbed by the chopper. The energy

width of the pulse is varied by adjusting the frequency of the rotation of the



2.5 Instrumentation 61

Figure 2.14: Schematic diagram of WISH diffractometer at ISIS — an
example of a TOF instrument. The initial neutron beam is pulsed, and
two choppers are used to select a particular incident wavevector ki. The
scattered neutrons are recorded by a large array of position sensitive
detectors located some distance away from the sample. Monitors are
placed before background chopper, after the Fermi chopper, and at very
end of the beam after the detectors.

chopper — using a higher frequency will improve the energy resolution but

reduce the beam intensity.

The monochromatic beam is then incident on the sample and will be scat-

tered into the position sensitive detector banks. The neutron position can be

determined to within about 1 cm, and the neutron arrival time is measured

to a precision of around 1 ns. With the chopper–sample and sample–detector

distances denoted by L1 and L2 respectively, and the neutron traverses this

distance in a time interval of t12, the final energy can be found by solving

t12 = (mn/n)
1/2(L1/E

1/2
i + L2/E

1/2
f ), (2.49)

and since the position of the detector is known, the scattering wavevector can

be calculated. However, unlike in the triple-axis experiments, the momentum

and energy transfer are coupled. Resolving the scattering wavevector parallel
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and perpendicular to ki as (Q∥, Q⊥), it can be shown that

E = − h̄2

2mn
(Q2

∥ +Q2
⊥ + 2Q∥Q⊥ cot 2θ), (2.50)

where 2θ is the angle between k⃗i and k⃗f . Therefore, for a given Q⊥, the

predetermined values of Ei and Ef can be used to calculate Q∥. The variation

ofQ∥ with E does not present issues when analyzing two-dimensional systems,

but when the dispersion is three-dimensional, rotation of the crystal about

the axis perpendicular to the scattering plane is necessary, and software is

available to reconstruct the full (Q,E) excitation spectrum, including the

Horace suite in Matlab.

The resolution function given in Eq. (2.45) also holds for TOF spectrom-

eters. However, a good approximation to the energy dependent part of the

resolution can be calculated using the width of the elastic line, and in doing

so, treating the wavevector and energy resolutions separately. At a fixed

detector position, the uncertainty in the energy transfer can be expressed as

δE =
∂E

∂Ei
δEi +

∂E

∂Ef

∂Ef

∂Ei
δEi. (2.51)

In order for neutrons to arrive at the same time t12, from Eq. (2.49), it is the

case that Ei and Ef are coupled. Using the width of the elastic line, δE0, we

can eliminate δEe from Eq. (2.51) to obtain

δE =
δE0

1 + L1/L2
[1 + (L1/L2)(Ef/Ei)

3/2]. (2.52)
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The wavevector resolution is mainly dependent on the beam divergence δϕ;

for an incident neutron of energy Ei, the wavevector broadening can be ap-

proximated as δ|Q⃗| ≈ kiδϕ. Another advantage of TOF measurements is

that the excitation spectrum can be readily converted into absolute units,

which can then be compared to theoretical models. This can be achieved by

comparing the data measured to a standard V/Nb calibration dataset with

the same instrument parameters employed.

2.6 Bulk property measurements

In this section, we draw partly on the relevant expositionary material pre-

sented in Refs. [66, 83]. Magnetization measurements are an ubiquitous bulk

probe of magnetic materials, and are employed in the work presented in

Chap. 4. The magnetization M⃗ is a measure of the total magnetic moment

of a sample; it is an aggregate measurement probing the overall response

manifest due to the collective behavior of the constituent magnetic ions. This

quantity is typically normalized by the sample volume, but sometimes also by

the sample mass [84]. These measurements are useful in the characterization

of the bulk magnetic response of materials as a function of temperature and

applied magnetic field. Combining these measurements with the microscopic

information obtained from neutron scattering measurements is often useful,

as it provides a more comprehensive understanding of the material properties,

thereby allowing for the identification and understanding of phase transitions.
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In the case where the constituent magnetic moments are unpolarized —

that is, with 〈M⃗〉 = 0 representing a random distribution of moments — they

cancel out over the sample volume on average, and result in zero net magne-

tization M⃗ = 0. When this is the case, and in the absence of magnetizing

applied fields H⃗, the material is known as a paramagnet; in the presence of

applied fields, however, spontaneous symmetry breaking occurs. The contin-

uous rotational symmetry of the 〈M⃗〉 = 0 state is broken and a polarization

direction is chosen, at random, as the spins align along a common axis; in

doing so, a net M⃗ > 0 is generated.

For small applied magnetic fields, the relationship between magnetization

and applied field is often linear and related by a constant of proportionality.

This is called the magnetic susceptibility, denoted by χ. The susceptibility

facilitates a second definition of a paramagnetic material, defined by the

case where χ > 0. For an ideal paramagnetic material, the relationship

between M⃗ and H⃗ is governed by the Brillouin function — contingent on the

temperature, the number of atoms per unit volume, and their total angular

momentum J — as given by [84]

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
, (2.53)

where x is the ratio of the Zeeman energy of the magnetic moment in the

external magnetic field to the thermal energy kBT , that is x = JgµBB/kBT .

In the case of χ < 0, upon application of a magnetic field H⃗, the magnetic
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moments align in opposition to the applied field. This phenomenon is known

as diamagnetism, and arises as a purely quantum mechanical effect that is

present in all materials.

There exist a class of materials — ferromagnets — in which the application

of a applied field H⃗ is not necessary to give rise to the onset and stabilization

of long range magnetic order; this leads to a situation in which the system

has a positive net magnetization M⃗ > 0. This net magnetization can be

the result of an applied field that was subsequently removed, giving rise to

spontaneous co-alignment of magnetic moments in the case where the sample

temperature is cooler than its Curie temperature T < TC; these materials

exhibit hysteretic phenomena between M⃗ and H⃗, and it is therefore the case

that the susceptibility χ is not well defined. On the other hand, long-range

magnetic order can also be realized in materials for which M⃗ = 0, and is

known as antiferromagnetism; in this case, the magnetic moments align on

two opposing sublattices, such that neighboring spins are aligned anti-parallel

to one another. This phenomenon often occurs in insulators, and can occur

spontaneously when the sample is cooled below its Néel temperature T < TN.

The magnetization and magnetic susceptibility can be measured using

a superconducting quantum interference device (SQUID); later in the the-

sis, we present results using a commercial instrument — a Quantum Design

MPMS3 — for which operation and data acquisition are computer-controlled.

The SQUID magnetometer is highly sensitive to small magnetic fields and op-

erates on the principle of the Josephson junction, fundamentally measuring
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trapped flux quanta. The dynamic magnetic susceptibility, as measured by

neutrons, can be directly related to the static susceptibility χ′
0, as measured

in a SQUID magnetometer by the relation [85]

χ′
0 = lim

Q⃗→0

1

π

∫ ∞

−∞
χ′′(Q⃗, E)

1

E
dE. (2.54)

The Kramers-Kronig relation has been used in this expression to connect the

real and imaginary parts of the generalized susceptibility [45], as discussed in

Sec. 2.4.3. The SQUID is capable of measuring the magnetic susceptibility of

samples from 400 K to a base temperature of 2 K, and static magnetic field

measurements from ∼ 10 G up to a maximum of 70000 G.

SQUID measurements are based principally on sensors comprising an isola-

tion transformer and a second-derivative detector array. The sample is placed

inside a set of detection loops and configured as a highly-balanced coil set,

with coils made from superconducting wire. Here, pairs of coils are wound in

opposite directions to give rise to a cancellation of mutually induced fields,

thereby reducing noise in the detection unit; the pick-up coils, in which the

current signal induced from the sample is manifest, are isolated within the

SQUID loop by the transformer for a reduction in noise. This superconduct-

ing transformer features a small heating element which drives the SQUID

input circuit back into the normal state, eliminating persistent currents that

arise in the pick-up loops that result from changing the applied magnetic

field. The application of heat drives the quenching of the magnet in a chain
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reaction as it enters the normal state, with remnant fields less than 2 G. As

previously mentioned, the SQUID device measures trapped flux quanta; a

constant biasing current is maintained in the device such that the measured

voltage oscillates with changes in the phase between two Josephson junctions

which, in turn, depend on the change in the magnetic flux, thus facilitating

a sensitive measurement.

The sample magnetization can be measured in its vicinity, and has the

effect of inducing a net magnetic moment in the sample. This represents a

sufficient condition for the magnetization to be measured since the moment

induces a current in the detector coils of the SQUID, with the output voltage

directly proportional to the current induced by the magnetization. Field-

cooled measurements are presented in Chap. 4, and are defined by measuring

from room temperature with a small measuring (excitation) field, typically of

order 100 Oe, applied to the sample, which is then cooled to base temperature.

Measurements are then made on increasing temperature, covering the full

temperature range of the SQUID. Zero-field-cooled measurements are defined

by first cooling from room temperature to base temperature with zero applied

magnetic field; a small measuring field is then applied at base temperature in

the SQUID, and measurements can be made again on increasing temperature.

The resulting measurements of the magnetization M⃗ can then be converted

to units of emu/mol.

There are several techniques which can be employed to measure the sample

magnetization. One such method is the reciprocating sample option (RSO),
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and another, the direct current (DC) method. In RSO measurements, the

sample is subject to oscillations from the center of the main sensing coils,

while in the case of the DC method, the sample itself is moved through the

detector coils. In both methods, the output of the SQUID is measured as a

function of the position of the sample, which is then fitted to a theoretical

curve for a point-like sample geometry. The sample magnetization is then

taken as the amplitude of the recorded voltage signal, with the sample typ-

ically mounted within a plastic straw. A benefit running the instrument in

this configuration is that the movement of the sample through the detector

coils has the effect of nullifying the background contribution that arises from

the straw mount. It is generally the case that the RSO method is more sen-

sitive than the DC method; the former is therefore preferred over the latter,

especially for the measurement of small or subtle effects.



Chapter 3

Magnetic structure from

single-crystal on WISH

3.1 Chapter summary

WISH is a cold neutron time-of-flight (TOF) diffractometer on the second

target station (TS-2) at the ISIS Pulsed Neutron and Muon Source, UK.

Noted for its excellence in neutron powder diffraction, the beamline deliv-

ers a high-flux of long-wavelength neutrons at the sample position with low

intrinsic background and good resolution over a wide Q⃗-range. Well suited

to the investigation of magnetostructural phenomena, the beamline excels in

the measurement of subtle effects manifest in small samples, in the presence

of strongly absorbing elements, and in the measurement of small magnetic

moments. The beamline is modular and highly flexible, with neutronics that

can be simply reconfigured programmatically to fulfill its secondary role in

single-crystal diffraction. There is considerable appetite within the user base

69
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and broader scientific community for the study of quantum and topological

materials. Given that the growth of large, high-quality crystal samples is gen-

erally challenging for these types of materials, WISH is uniquely positioned to

facilitate scientific insights in this area where observed signals may be weak.

In this chapter we report on a novel algorithm, LinkedUBs [86], created to

assist in the generation of a consistent set of orientation matrices (UBs) for a

set of single-crystal runs, associated with a corresponding set of goniometer

configurations. It is necessary to combine runs on account of the limited

±15◦ out-of-plane coverage of the instrument. As described in Sec. 3.4, the

strategy operates principally on the transfer of a reference UB between runs,

and is followed by the subsequent refinement of the U matrix. This second

step operates on the basis of a peak matching algorithm, and compares a set

of observed reflections for a given run to those predicted from the contiguous

rotation of a reference UB. By applying the algorithm to a sequence of single-

crystal runs, a corresponding set of UBs can be obtained; taken together,

these define a connected reciprocal space. Related by continuous rotations

and preserving the directionality of the vectors expressing the reference UB,

the resultant set of UB matrices obtained in this manner are self-consistent.

This is a necessary condition that must be met before reflections can be

integrated, collated, and subsequently used for structural refinement.

We present additionally the implementation of a method from Ref. [2] for

the combination of data with different statistical weights in reciprocal space

(presented Sec. 3.3.1), which thereby allows for the visualization and sym-

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
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metrization of reciprocal space volumes. This feature is particularly useful

for diffuse scattering experiments where intensity is often distributed over

large volumes of reciprocal space. Using these tools, we present the results of

commissioning experiments conducted on WISH for a number of well stud-

ied materials — namely, the crystal structure of the garnet Ca3Ga2Ge3O12

(presented in Sec. 3.5.1) and the commensurate antiferromagnetic magnetic

structure of rutile-type MnF2 (presented in Sec. 3.5.2). Finally, we investi-

gate short-range magnetic correlations in the spinel GeNi2O4 (presented in

Sec. 3.5.3), highlighting the versatility of the WISH beamline unlocked by

the LinkedUBs algorithm, as applied to single-crystal diffraction.

The contributions to this chapter are as follows. Prototype goniometer

and low temperature fully motorized goniometer were designed and tested by

Pascal Manuel (ISIS), Fabio Orlandi (ISIS), and Dimitiry Khalyavin (ISIS) —

hereafter referred to as the WISH team. Measurement strategy and analysis

methodology developed by the WISH team. Novel LinkedUBs algorithm was

designed, tested, and implemented by Lewis Edwards (Cardiff). Collection

of Ca3Ga2Ge3O12 and MnF2 datasets was carried out by Lewis Edwards

(Cardiff) and WISH team (ISIS). Collection of GeNi2O4 dataset was carried

out by the WISH team (ISIS). Reduction and analysis of Ca3Ga2Ge3O12,

MnF2 and, GeNi2O4 data was carried out by Lewis Edwards (Cardiff).

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
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3.2 Introduction

Powerful and highly flexible, the WISH beamline [1] is equipped for the de-

tailed investigation of magnetostructural phenomena under a wide array of

extreme sample environment conditions1. The beamline facilitates the mea-

surement of small magnetic moments down to at least ∼ 0.47 µB [99] — and

much smaller in 1-2-10 compounds — as well as small samples down to at least

∼ 20 mg [100]. While primarily optimized for powder diffraction experiments,

the instrument has excellent characteristics for single-crystal diffraction, as

evidenced by an impressive program of experiments already carried out2. The

development of this secondary capability is the central focus of this chapter.

The spallation process begins with the acceleration of H– ions to 70 MeV

in a linear accelerator through high intensity radio frequency fields. The

accelerated beam is then passed through 0.3 µm thick graphite foil, strip-

ping its outer electrons, before it is directed along the 26 m radius of a syn-

chrotron and restructured into bunches. As it circulates, the beam is focused

by quadrupole magnets and is subsequently accelerated to 800 MeV before

irradiating the primary target [101], which constitutes a cylindrical core of

Tungsten clad in an outer layer of Tantalum3. The target operates at a power

1While magnetism experiments account for ∼ 85 % of those awarded beamtime on WISH,
high-impact work has been carried out in the investigation of large-unit cell systems,
metal-organic frameworks [87–98].

2Single-crystal experiments represent ∼ 20 % of those approved on the WISH beamline
and correspond to ∼ 40 % of allocated beamtime.

3While Tantalum produces ∼ 10 % less neutrons by spallation than Tungsten, it is an inert
and durable material; its presence prevents the accumulation of radioactive material over
the course of its operation by water-damage/degradation.
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Figure 3.1: The WISH beamline on the second target station. A
schematic view of the beamline is reproduced from Ref. [1]. Charac-
teristics of the solid methane moderator are illustrated along with the
repetition rate of successive pulses and the time-structure of a single-
frame. The main aspects of beamline neutronics are shown, illustrating
chopper phasing in single- and double-frame operation. The brilliance
of the solid-methane moderator is illustrated through plots of the λ-
dependent flux in high-resolution and high-flux divergence modes.

of 48 kW (corresponding to a beam current of 40 µA h−1) with the beamline

viewing the broad-side of a dedicated solid methane moderator. The moder-

ator is cooled to 40 K, and is responsible for the thermalization of a highly

brilliant Maxwellian distribution4 of cold neutrons (0−0.025 eV) with a peak

flux of 2.8 Å and a wide natural bandwidth of 8 Å. In addition to this, the
4A small number of high energy neutrons are inevitably thermalized in the moderator.

These give rise to an epithermal tail in the neutron flux profile, as shown in Fig. 3.1.
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pulse width of 10 Hz results in a high resolution at long d-spacing — an invalu-

able characteristic for the study of aperiodic structures and long-wavelength

modulations. Over the course of operation, the moderator experiences a pres-

sure build up from H2 [102]. This affords a data-collection time window of

∼ 17 − 18 hours between refilling.

The thermalized neutron beam is directed along the primary flight path

(L1 = 40 m) within a supermirror5 guide, beginning 1.7 m from the source

and ending 0.5 m from the sample position, with a tuneable exit opening. A

schematic diagram of the beamline is shown in Fig. 3.1 from Ref. [1], and

is supplemented with illustrations of the neutronic characteristics described

henceforth. At the expense of increased divergence, the elliptical profile of the

guide in the horizontal and vertical planes promotes an increased acceptance

angle for internal reflection, and results in an increased flux transported by

the guide. A continuum of reflected neutrons are transported along its length

up to a critical wavevector Q⃗c, determined by the shortest bilayer period in

the m = 2 supermirror array6. Noting the λ-distribution transported along

the guide and the 10 Hz repetition rate of TS-2, by adjustment of their relative

phases or frequencies, the selection of a wavelength bandpass can be made;

5Supermirror guides are made from repeating bilayers of, for instance, Ni/Ti. The bilayer
spacing decreases with depth and gives rise to a variable Bragg condition, while the
critical wavevector Q⃗c transported by the guide depends on the shortest bilayer spacing.
Supermirror guides are generally characterized by an m value, which describes the ratio
of Q⃗c to that of a pure Ni guide [82].

6WISH has Aluminum choppers measuring 1.2 m in diameter. Neutrons pass through a
window on the radius of the disk while beam-blocking portions are coated in highly
absorbing 10B.
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crucially, this also prevents the overlap of successive frames.

In single-frame operation, the counter-rotating double-disk chopper and

single-disk chopper located within the first few meters of the guide are run

at frequencies of 20 and 10 Hz respectively, with a second counter-rotating

double-disk chopper run at 10 Hz further along the guide. In double-frame

mode, the chopper frequencies are halved — the accessible Q⃗-range at each

diffraction angle is doubled, giving rise to a factor-2 reduction in flux as half of

the frames are discarded. Further to the modification of angular frequencies,

the introduction of relative phase-shifts allows for specific wavelength frames

to be selected. An oscillating radial collimator7 (described in Ref. [103])

operating at frequencies below 5 Hz — with Gd2O3 painted Mylar blades sep-

arated by 0.75° — surrounds the sample environment and removes the effect

of scattering from Aluminum sample environment, while a secondary argon

tank removes the effect of air scattering. These features contribute to the low

intrinsic background of the instrument, increasing the signal to noise ratio

for the detection of weak features in the energy integrated structure factor

S(Q) ≡
∫
S(Q,ω)dω. An adjustable system of piezoelectric slits are located

along the last 8 m of the guide, and allow for the control of the horizontal

and vertical components of beam divergence. With the slits fully open, the

full divergence is transported by the guide, whereas 0.4° and 0.2° divergence

is transported for medium and high resolution configurations respectively.

7The oscillation of the collimator produces a uniform distribution of detector shadowing
that is accounted for by normalization to V/Nb standard.
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For single-crystal measurements, the slits are operated in medium-resolution

mode, with choppers phased to access the full frame such that flux is maxi-

mized while good Q⃗-resolution is maintained.

The moderator produces frames with a time resolution that varies from a

full-width at half-maximum (FWHM) of ∆t = 30 µs at 1 Å to 300 µs at 10 Å.

The profile function for TOF diffraction is well approximated by a Pseudo-

Voigt function, including asymmetry, convolved with an impulse function

comprised of back-to-back exponentials. With G(x) and L(x) representing

Gaussian and Lorentzian functions respectively, and the constant η ∈ [0, 1],

the profile function is given by

pV (x) = ηG(x) + (1− η)L(x),

Ω(x) = pV (x)⊗ E(x) =

∫ ∞

−∞
pV (x− t)E(t)dt.

(3.1)

The impulse function E(x) is parameterized by a rising (α) and falling (β)

component, with the requirement that N = αβ/2(α+ β), satisfying

E(t) = 2N exp(t) t ≤ 0,

E(t) = 2N exp(−t) t > 0.

(3.2)

Many approximations of the neutron TOF pulse shape have been introduced.

The Ikeda-Carpenter function [104], for instance, captures the steep onset of

the pulse very well — much better than an impulse constructed solely from

back-to-back exponentials. However, the model has a large number of pa-
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rameters that require accurate characterization of moderator and neutronic

characteristics, either through careful measurements or by Monte-Carlo ray-

tracing simulations using programs such as McStas [105].

In general terms, the wavelength spread ∆λ can be obtained by differentia-

tion of the Bragg equation with respect to λ and θ, followed by adding these

terms in quadrature, leading to [82]

(
∆λ

λ

)2

=

(
∆d

d

)2

+ (∆θ cot θ)2 . (3.3)

From this we see that as θ → 90°, the resolution is increasingly dominated

by the ∆d contribution. Noting the relationship between the TOF t, and the

distance traveled along the total flight path L = L1 + L2, the wavelength

obtained from the Bragg condition and d-spacing can be expressed as

λ =
ht

mnL
and d =

1

2 sin θ
ht

mnL
. (3.4)

Finally, the resolution function can be recast in terms of the TOF and total

flight path as

(
∆d

d

)2

=

(
∆t

t

)2

+

(
∆L

L

)2

+ (∆θ cot θ)2 . (3.5)

Continuous arrays of position-sensitive 3He gas detectors surround the sam-

ple position, providing access to a wide Q⃗-range via 320° of coverage in the

horizontal scattering plane, as well as ±15° of coverage out-of-plane. While
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the detector resolution ∆θdet decreases along the length of the tube out of the

horizontal scattering plane, they are well suited to our purposes since slow

neutrons do not have sufficient energy to create charged particles by collision,

operating on the principle

n+ 3He → 3He + p+ 0.764 MeV. (3.6)

The large number of isotropic pixels without gaps between adjacent detectors

is especially important for single-crystal measurements, where continuous Q⃗-

coverage is essential. The instrument has 10 detector banks which can be

grouped by average scattering angle for a factor-2 enhancement of statistics

in powder diffraction. The detector array comprises a total of 1520 tubes,

each having 128 pixels of dimension 8 mm × 8 mm. WISH collects TOF

data in each frame between 6000 and 99000 µs, with 4500 logarithmically

binning time channels per pixel, with each run generating unprocessed data

files of size 20 GB. Finally, we note the growing use of WISH for single-crystal

studies and the associated development of its single-crystal program. This is

evidenced in Refs. [106–120], with examples shown in Fig. 3.2.

3.3 Reduction of single-crystal TOF data

Over the course of a measurement, the TOF spectra of each pixel are saved

to disk. This is facilitated by a system of data acquisition electronics which

focuses the spectra into histogram data before writing to *.raw file — a bi-
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a b

c

d

Figure 3.2: WISH single-crystal experiments under extreme conditions.
A great asset to its magnetism program, the beamline boasts a dedicated
14 T superconducting magnet that can be used in combination with a
dilution refrigerator insert [121]. High pressure [122] studies on WISH,
with restricted geometry in α-TbMnO3 (panel a) and AgFeO2 (panel
b) from Ref. [111] and from Ref. [116] respectively. Magnetic diffuse
scattering in SrHo2O4 (panel c) and in SrDy2O4 (panel d) in applied
fields from Ref. [106] and Ref. [112] respectively.
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nary format that provides 4-factor compression. Relevant metadata and sam-

ple/instrument logs are saved in *.log format accompanying the *.raw de-

tector panel and monitor data, and are indexed together by beam operation

cycle and run number. The JournalViewer program [123] is used to search

the data repository and query metadata/sample logs, while the mantid frame-

work [38, 124] is used for the processing and normalization of data. This is

carried out on performant virtual machines hosted on the IDAaaS cluster8.

With a substantial allocation of CPU and RAM, these provide the high work

capacity required to execute the intensive calculations and transformations

involved in the treatment of the volumetric single-crystal data.

Once loaded into memory, the *.raw data is is stored in a Workspace2D

container. This is equipped with the instrument and detector geometry and

relevant beamline parameters, as specified by an underlying instrument defi-

nition file in *.xml format. The Workspace2D container is a subclass of the

more general data structure, the MatrixWorkspace, which holds, by defini-

tion, one or more spectra in histogram format defined by an independent

variable (e.g. TOF) along with the signal and its associated error. In the

case where data depends on more than one independent variable, it is con-

tained within an MDWorkspace; this multi-dimensional data structure has

the capacity to store a dataset dependent with up to 9 independent variables.

Following appropriate transformations of the Workspace2D— as described be-

low in Sec. 3.3.1 — it is frequently used in the analysis of the 3D volumetric

8The IDAaaS cluster supersedes its recently retired predecessor, the ISIScompute cluster.

https://www.projectaten.com/jv
https://github.com/mantidproject/mantid
https://isis.analysis.stfc.ac.uk
https://docs.mantidproject.org/nightly/concepts/Workspace2D.html
https://docs.mantidproject.org/nightly/concepts/Workspace2D.html
https://docs.mantidproject.org/nightly/concepts/MatrixWorkspace.html
https://docs.mantidproject.org/nightly/concepts/MDWorkspace.html
https://docs.mantidproject.org/nightly/concepts/Workspace2D.html
https://isis.analysis.stfc.ac.uk
https://www.isis.stfc.ac.uk/Pages/Connecting-to-isiscomputendrlacuk-using-NoMachine.aspx
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datasets generated in single-crystal experiments.

3.3.1 Vanadium normalization

With a negligible coherent scattering cross-section, the scattering response

in V0.95Nb0.05 is concentrated almost entirely in the incoherent channel; ac-

cordingly, it is widely used as a standard for the normalization of single-

crystal neutron diffraction data. In a scattering experiment, each pixel of the

multi-bank detector array records an intensity based on the neutron count

rate, and is proportional to the detector solid angle efficiency. These Nio-

bium doped Vanadium (V/Nb) datasets intended for use as a normalization

standard are usually collected at the start of each beam operation cycle in

order to accurately account for the neutronic and detector characteristics rel-

evant to forthcoming experiments, with separate datasets collected for the

different modes of beamline operation. Long counting times are employed to

achieve excellent statistics; where possible, samples are sanded into spheres

to mitigate the effects of beam attenuation, and to facilitate straightforward

absorption corrections.

Single-crystal experiments are limited most severely by the effects of re-

stricted detector coverage, with the additional complication that different

segments of the measured reciprocal space volume are distinguished by their

non-uniform counting statistics; an optimal normalization procedure must

take this into account and provide appropriate weightings based on the an-

gular setting of the sample. This is accomplished with the method described
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in Ref. [2], which imposes an appropriate statistical averaging of overlapping

volume elements in reciprocal space. The treatment of volumetric data in

this manner is especially relevant for diffuse scattering experiments where

spectral weight arising from local distortions is redistributed over large re-

gions of reciprocal space in one, two, or three Q⃗-dimensions, as demonstrated

in Fig. 3.3.

The intensities measured by the arrays of position-sensitive detectors in

experiments are fundamentally driven by the number of registered neutron

counts; consequently, the associated errors are independent and identically

distributed and — in the limiting case — are described by a Poisson distribu-

tion. Following the derivation in presented in Ref. [2], recall the definition of

the differential cross-section dσ/dΩ =
∑

iNi/[
∑

i(ΦidΩi)]. Spectral weight

is distributed isotropically throughout reciprocal space for the V/Nb stan-

dard, with a spherically symmetric signal measured on the detector banks.

The summation over all detectors and configurations that contribute to the

scattering in reciprocal space volume element dQ⃗ is given by the quantity

dσ/dΩ = σI/4π, where σI is the incoherent scattering cross-section.

With Vi being the counts recorded from the diffraction of the V/Nb sample,

and assuming the sample is measured under identical conditions — namely,

with orientation and flux at the same 2θ-position where the instrument flux

profile is identical — then
∑

i ΦidΩi =
∑

i Vi · (σi/4π)−1. The calculation

of the sum yields the quantity dσ/dΩ = (σI/4π)
∑

iNi/[
∑

i Vi], where it is

understood that the values Ni and Vi are to be corrected for sample and
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Figure 3.3: Diffuse scattering in Benzil. The (h, k, 0) zone is shown for
measurements from the SXD single-crystal instrument (TS-1, ISIS) [125]
in (a-f). (a) shows the results from 1 crystal orientation and a single
detector bank (No. 1), while (b) shows the results from using one crystal
orientation and all six equatorial detector banks (Nos. 3, 2, 1, 6, 5, 4). In
(c) the results from using three different crystal orientations with a single
detector bank (No. 1) are presented, while in (d) the results obtained
using three crystal orientations and four detector banks (Nos. 1, 2, 5, 6)
with 3m symmetry applied. (e) and (f) show the data at lower values
of Q; specifically in (e) data is shown using detector bank 1 with three
different crystal orientations and finally, (f) shows the data using detector
bank 3 with three different crystal orientations. The (h, k, 0) zone is
also shown as measured from the Corelli instrument (SNS, ORNL) [126,
127] in (g-j), which has elastic discrimination from its cross-correlation
chopper system. The same color scheme is used as for the SXD data
for the purposes of comparison. (g) presents the total scattering (elastic
plus inelastic) at 300 K, while (h) presents the elastic scattering only at
300 K. In (i), the total scattering (elastic plus inelastic) is shown at 100
K, while in (j) the elastic scattering only is shown at 100 K. Adapted
from Ref. [128].
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Vanadium absorption. Next, we perform an average weighted by the number

of counts of incoherent scatter in the same region of reciprocal space wi = Vi,

dσ
dΩ =

σI
4π

∑
i ViNi/Vi∑

i Vi
=
σI
4π

∑
iwiNi/Vi∑

iwi
. (3.7)

Departing from the usual convention of adding up intensity around a

peak — as is done for the calculation of integrated intensities of ungrouped

runs for structural refinement — the number of scattered neutrons from a

particular Bragg peak can be represented by the integral over the solid angle

of the detector multiplied by the integrated flux,

Ic =

∫
N(λ)dΩf

dσc
dΩ dλ. (3.8)

After a change of coordinate system, it can be shown that

Ic =
V N(λ)λ4|F (G⃗)|2

2v2c sin2(θ)
, (3.9)

where the sample volume is given by V = Nvc. The structure factor is there-

fore related to the integrated intensity by |F (G⃗)|2 ∝ Ic sin2(θ/2)/N(λ)λ4,

which is composed of the product of the spectrum correction and Lorentz

correction (described in Sec. 3.3.3); by similar means, for the incoherent scat-

terer, it can be found that the flux and Lorentz terms are identical, leading

to |F (G⃗)|2 = cIc/Ii, where c is a λ and detector-independent constant.



3.3 Reduction of single-crystal TOF data 85

3.3.2 Peak detection and orientation matrix

In single-crystal experiments, the orientation matrix defines a transforma-

tion from the instrument frame to the reciprocal lattice of the diffracting

sample, derived by Busing and Levy in 1967 [129]. Writing both these vector

spaces in an orthogonal basis with common handedness means the mapping

between them is a rotation in SO(3). The B matrix orthogonalizes the con-

travariant reciprocal basis, while the U matrix provides a mapping onto the

instrument frame; the product of these quantities is the UB matrix [129, 130].

In the context of the mantid framework, the UB matrix can be attached to

a Workspace2D in the instrument frame, allowing for the transformation to

an MDWorkspace in the reciprocal lattice frame.

A suitable right-handed basis can be constructed from the following projec-

tions of the reciprocal lattice vector Q⃗hkl/2π = ha⃗∗+ k⃗b∗+ lc⃗∗. In this thesis,

the crystallography convention is assumed, where factors of 2π do not appear

in the definition of Q⃗hkl. Following the derivation set out in the mantid doc-

umentation [38], we first choose e⃗1 to lie along the component of Q⃗hkl ‖ a⃗∗,

then require e⃗2 to lie along the component of Q⃗hkl ⊥ a⃗∗ in the (⃗a∗⃗b∗) plane;

with e⃗3 along the direction of e⃗1 × e⃗2, the resulting basis set is orthogonal.

The matrix representation of this basis transformation has upper triangular

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/nightly/concepts/Workspace2D.html
https://docs.mantidproject.org/nightly/concepts/MDWorkspace.html
https://github.com/mantidproject/mantid


86 3. Magnetic structure from single-crystal on WISH

form and defines the B matrix, given by

B =


a∗ b∗ cos γ∗ c∗ cosβ∗

0 b∗ sin γ∗ −c∗ sinβ∗ cosα

0 0 1/c

 . (3.10)

This quantity is related to the reciprocal metric tensor9 G∗ = BTB = G which

facilitates the straightforward calculation of the inner product for two vectors

p⃗, q⃗ in the reciprocal lattice basis via 〈p⃗, q⃗〉 =
∑

ij piG∗qj . It is conventional

in mantid to define the instrument frame with ŷ vertical, ẑ ‖ beam direction

and with a horizontal x̂ ⊥ (yz) plane, with the incident wavevector k⃗i along

the incoming beam direction. The instrument geometry is shown in Fig. 3.4,

with θ the angle between incident and final wavevector, and ϕ′ the inclination

of the final wavevector out of the horizontal scattering plane. The second

axis u⃗ϕ(ω, χ) is oriented at an angle χ to u⃗ϕ(ω)— its definition is therefore

dependent upon the angle ω.

Designed and tested by the WISH team, the prototype single-crystal go-

niometer, suitable for high-temperature measurements, features a manual

ω axis and motorized ϕ axis inclined at χ = 54°. By contrast, the new

fully motorized goniometer developed by the WISH team used in this work

has the ϕ-axis inclined at an angle of χ = 45°, and is compatible with

9Calculations involving the metric tensor are implemented in mantid as methods of
the mantid.geometry.UnitCell class. For instance, after importing the UnitCell
class from mantid.geometry the d-spacing of a given reflection can be calculated by
UnitCell.d(h,k,l). Furthermore, the two reflections can be calculated using another
method of the class by UnitCell.recAngle(h1, k1, l1, h2, k2, l2).

https://github.com/mantidproject/mantid
https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v4.0.0/api/python/mantid/geometry/UnitCell.html
https://docs.mantidproject.org/v4.0.0/api/python/mantid/geometry/UnitCell.html
https://docs.mantidproject.org/v3.6.0/api/python/mantid/geometry/index.html
https://docs.mantidproject.org/v4.0.0/api/python/mantid/geometry/UnitCell.html
https://docs.mantidproject.org/v4.0.0/api/python/mantid/geometry/UnitCell.html
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Figure 3.4: Instrument frame geometry on WISH. (a) shows half of the
detector banks on WISH, covering 160° of the horizontal scattering plane
and ±15° out of the plane. The incident wavevector is parallel to the
ẑ-axis of right handed Cartesian basis, with the ŷ-axis vertical and the
x̂-axis in the horizontal plane. (b) illustrates the rotation axes of the
WISH single-crystal goniometer. In the same Cartesian system discussed
previously, the in-plane angle ω has axis ‖ to the ŷ-axis. The ϕ-axis
is inclined at an angle χ from the vertical direction and is given by
u⃗′ = u⃗(0, χ) = [0, sinχ,− cosχ]T. The Laue projection (along the ŷ-
axis) for all detector banks is shown for two goniometer configurations
in panels (c-d).
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the cryostats used on WISH — a top-loading cryostat for low temperature

measurements10 between 1.25 and 300 K described in Refs. [131, 132]. The

prototype goniometer enabled rough measurements at room temperature to

be taken in the development of the data collection methodology, but suf-

fered from systematic corrections due to the hand-turned, non-motorized

ϕ-axis. The new fully motorized goniometer, however, enables data collec-

tion at lower temperatures and without considerable systematic error in the

goniometer settings. We define a general rotation of the sample about the

u⃗(ω, ϕ, χ) axis in which the vector describing the u⃗ϕ(ω, χ) rotation axis is de-

fined by convention at ω = 0°. We express this as the vector u⃗′ = u⃗(0, χ) =

[0, sinχ,− cosχ]T; for varying ω, the recalculation of the axis is achieved by

premultiplication of the axis defined at ω = 0° by the R(ω) matrix. This

definition of goniometer axes is compatible with the SetGoniometer algo-

rithm in mantid, which reads the angles ω and ϕ— whose attribute names

are ccrPos and ewaldPos respectively — as entries of the sample log meta-

data for the given run. Rotations about the u⃗ϕ(ω, χ) axis by an angle ϕ

are given by u⃗(ω, χ) = Rω(ω) u⃗
′ = Rω(ω)[0, sinχ,− cosχ]T. For brevity, we

define sin′ ψ = (1− sinψ) and cos′ ψ = (1− cosψ); the most general rotation

around a direction v⃗ = (vx, vy, vz) with v2x + v2y + v2z = 1 by angle ψ is the

10With its high cooling power ∼ 0.23 W at 1.9 K, a dilution refrigerator insert can be used
in the continuous regime of the cryostat facilitating measurements down to 0.5 K. We
note that this is not currently compatible with the motorized goniometer design for
single-crystal measurements at variable angular configurations. The width of the device
is around 100 mm so the sample stays in the center of the instrument, and there is a
large thermal leak from the goniometer at cold temperatures o the motor.

https://docs.mantidproject.org/nightly/algorithms/SetGoniometer-v1.html
https://github.com/mantidproject/mantid
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matrix

R(ψ) =


cosψ + v2x cos′ ψ vxuy cos′ ψ − vz sin′ ψ vxvz cos′ ψ + vy sinψ

vyvx cos′ ψ + vz sinψ cosψ + v2y cos′ ψ vyvz cos′ ψ − vx sinψ

vzvx cos′ ψ − vy sinψ vzvy cos′ ψ + vx sinψ cosψ + v2z cos′ ψ


(3.11)

satisfying R−1(ψ) = R(−ψ) = RT(ψ). This R is a member of the rotation

group. It provides an affine transformation between orthonormal bases ∈ R3

and satisfies the relation RRT = RTR = I. This rotation matrix belongs to

the special orthogonal group SO(3), a subgroup of the orthogonal matrices

for which det RT = det R, and consequently, (det R)2 = ±1. For an n-axis

goniometer with corresponding rotation matrices R1,R2, . . . ,Rn ∈ SO(3), by

writing R =
∏n

i Ri, the momentum transfer in the instrument frame Q⃗lab =

∆p⃗/ℏ = (k⃗i − k⃗f ) can be related to the momentum transfer Q⃗hkl/2π in the

reciprocal basis as follows,

Q⃗lab =


−kf sin θ cosϕ′

−kf sin θ sinϕ′

ki − kf cos θ

 = 2πRUBQ⃗hkl, (3.12)

where the angle θ is between k⃗i and ẑ, and ϕ′ = π − ϕ is the angle between

the x̂ axis and the projection of k⃗f in the (xy) plane (shown as the angle

ϕ = π − ϕ′ between −x̂ and k⃗f in Fig. 3.4). This definition of Q⃗lab ensures
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that the neutron energy loss is a positive quantity,

∆E =
ℏ2

2m
(k2i − k2f ) = ℏω > 0 (3.13)

identified with the wavevector transferred to the sample, so is widely used by

convention in inelastic scattering. By writing Q⃗ = [h, k, l]T, we can express

the momentum transfer in a Cartesian frame associated with the reciprocal

lattice of the sample via Q⃗c = 2πBQ⃗.

The U matrix is a simple rotation matrix which maps Q⃗c onto the axes

of the Cartesian lab frame, thus yielding the momentum transfer in the lab

frame Q⃗l. The rotations of the goniometer axes are encoded in the product of

rotation matrices R = Rω (ω) ·Rϕ (ϕ); finally, for a general goniometer setting,

the relation between lab and reciprocal lattice frame can be written as Q⃗l =

2πRUBQ⃗. The samples studied on WISH are typically well characterized,

with known lattice parameters, Laue symmetry, and space group. As such,

the B matrix is typically known to a first approximation in advance of the

experiment, and it is therefore usually possible to identify some reflections

based on attributes such their as d-spacing and the angles between them.

After the deduction of the indices of three non-coplanar reflections by their d-

spacing, the U matrix can be calculated; further refinement11 of the B matrix

11We report on a recent algorithm incorporated in mantid, namely FindGlobalBMatrix,
to refine the B matrix over a set of runs with distinct U matrices while preserving
indexation.

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/nightly/algorithms/FindGlobalBMatrix-v1.html
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is, however, preferable. By first expressing these reflections in the form

Q⃗1 = 2πR(ω1)UBv⃗1

Q⃗2 = 2πR(ω2)UBv⃗2,
(3.14)

the rotation matrix that describes the rotation between Q⃗-vectors is the U

matrix, which facilitates the rotation of Bv⃗1 and Bv⃗2 onto R−1(ω1) Q⃗1/2π

and R−1(ω2) Q⃗2/2π respectively.

Due to errors in the angular settings of the goniometer or in the calculated

B matrix, it is often not possible to find a matrix that simultaneously satisfies

these two equations. This can be overcome by constructing two orthogonal

coordinate systems related to one another by the U matrix, in which the unit

vectors are defined by t̂1c = Bv⃗1/ |Bv⃗2|, t̂3c = (Bv⃗1)× (Bv⃗2) / |(Bv⃗1)× (Bv⃗2)|,

and t̂2c = t̂3c × t̂1c. A set of three orthogonal unit vectors can subsequently

be obtained from the vectors R−1(ω1) Q⃗1/2π and R−1(ω2) Q⃗2/2π— labeled

t̂1ν , t̂2ν , and t̂3ν — where the subscript ν indicates that the system is tied to

the inner axis of the goniometer. Noting that the relationships t̂1ν = Ut̂1c,

t̂2ν = Ut̂2c, and t̂3ν = Ut̂3c hold true, they can be recast in terms of the

matrices Tν with columns t̂1ν , t̂2ν , and t̂3ν , and Tc with columns t̂1c, t̂2c, and

t̂3c. When expressed in this form, it follows that Tν = UTc which immediately

yields

U = TνT−1
c = TνTT

c . (3.15)
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3.3.3 Intensity corrections and peak integration

After the positions and indices of the Bragg peaks have been characterized

by the UB matrix, what remains is to determine their intensity in a process

called integration, summarized by

I = ΣNmodel

σ2 = NΣobs +NΣbg +
ΣNobs(Nobs −Nmodel)

2

ΣNobs
.

(3.16)

Bragg reflections are complex 3D profiles of intensity, and can be integrated

in detector space or in reciprocal space; there exist a number of standard

algorithms in mantid to make these computations. For the structures pre-

sented in this work, spherical integration in Q⃗ is sufficient, but we note that

in the case of modulated structures with low symmetry, the reciprocal space

can be very dense and present challenges with peak overlap. This is, how-

ever, beyond the scope of the discussion at hand. Integration can be carried

out upon either a FindSXPeaks workspace or instead upon a PredictPeaks

workspace. The latter case affords the inclusion of peaks missed by imperfect

peak finding routines; it is also most useful, as with an accurate UB matrix,

weak reflections can be conveniently located according to their predicted po-

sition and subsequently integrated. A comparison of integration schemes in

mantid is described in more detail in Refs. [133, 134].

In order to refine single-crystal data, we must consider corrections of the

measured intensity using the results of the dynamical theory of diffraction,

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v3.7.1/algorithms/FindSXPeaks-v1.html
https://docs.mantidproject.org/nightly/algorithms/PredictPeaks-v1.html
https://github.com/mantidproject/mantid
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Figure 3.5: (a) spherical integration conventions in mantid, showing a
section of the cross-section through spherical regions centered on an
observed Bragg reflection. Shown are the radius of integration and
the definition of the shell used to estimate background under peak
which is subsequently subtracted from the integrated intensity. The
inner and outer radii of the shell are shown as BackgroundOuterRadius
and BackgroundInnerRadius respectively. (b) elliptical integration
conventions in mantid, within a sphere of radius RegionSize. The
principal ellipsoid axes are denoted by variables p1 and p2 respec-
tively. The peak size is denoted ps. The BackgroundOuterSize and
BackgroundInnerSize denoting the elliptical shell used to estimate back-
ground under the peak are denoted b1 and b2, respectively. Figure made
with reference to mantid documentation [38].

where the neutron optical phenomena manifest due to interactions between

the incident and scattered beam are taken into account. This approach goes

beyond the Born approximation, where the scattering amplitude is given

simply by the Fourier transform of the scattering potential. The kinematical

theory is generally valid only for small sample volumes or weak scattering;

the more general dynamical theory that takes account of multiple scattering

and beam attenuation is required for the interpretation of Bragg intensities

https://github.com/mantidproject/mantid
https://github.com/mantidproject/mantid
https://github.com/mantidproject/mantid
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observed in single-crystal diffraction experiments.

The Lorentz correction considers the wavelength dependent TOF flux pro-

file, and takes the amount of a time a given reflection remains in the diffrac-

tion condition into account [135–137]. Owing to resolution effects, the surface

of the Ewald sphere in fact has some thickness; effects such as the non-zero

wavelength spread, divergence of the incident beam, and the mosaicity of the

sample — as shown in Fig. 3.6 — all contribute to this [82]. As the crystal ori-

entation is varied across a set of runs, some reflections intercept the surface

of the Ewald sphere at more or less oblique angles. This results in unequal

measuring times for such reflections, and is a systematic source of intensity

error. This procedure is important for the combination of data at different

crystal spatial orientations, and is briefly outlined in Ref. [2]. The number

of neutrons scattered from a particular Bragg peak is

Ic =

∫
dλN(λ)dΩf

dσc
dΩ , (3.17)

while the Jacobian of the transformation from Q⃗ to spherical coordinates of

k⃗f is the quantity J = k2 sin θ[−2 sin2(θ/2)]. As noted in Ref. [2], this allows

computation of the volume element in Q⃗ as the quantity

dQ⃗ = [−2 sin2(θ/2)]k2 dk sin θ dθ dϕ,

with the last three terms on the right-hand side representing the solid angle
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ed

a

c

b

Figure 3.6: (a) Crystal mosaicity and rocking curve profiles as a function
of the Bragg angle, with reference to Fig. 1 of Ref [138]. (b) Primary and
(c) secondary extinction effects, with reference to Fig. 4.1 of Ref. [139]
and Fig. 6 of Ref. [140] respectively. The extinction effect for TOF
diffraction is illustrated in (d) and (e), reproduced from Ref. [141].

of scattering dΩf . This yields the Bragg intensity as

Ic = V N(λ)
λ4|F (τ⃗)|2

2v2c sin2(θ/2)
, (3.18)

where the sample volume is given by V = Nvc. As discussed in Ref. [2],

the structure factor is then related to the integrated intensity through the

relation

|F (τ⃗)|2 ∝ Ic
1

N(λ)

sin2(θ/2)

λ4
, (3.19)

which describes a spectrum correction (contained within the first term) and

the Lorentz correction (contained within the second term).
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The mosaic model was proposed in 1922 by Darwin [142] and, as described

in Ref. [82], views the crystal as an array of perfect domains that have some

mutual misalignment making up the crystal volume as we see it, with the

boundaries between these domains not taken into account. The degree of

domain structure can be accessed through the rocking curve, in which the

angular distribution of intensity around a Bragg position is measured. The

individual blocks are themselves perfect and are slightly misorientated with

respect to each other. These blocks are small enough that the integrated

intensities of their reflections are proportional to their volume ∆v, such that

ρ = Q∆v, where Q = N2λ3(e2/mc2)2|F |2(1 + cos2 2θ)/(2 sin 2θ). The dy-

namical theory always predicts Bragg intensities that are lower than those

obtained from the kinematical theory. A major contribution is the extinction

effect, illustrated in Fig. 3.6, which is most severe for large samples.

The extinction length ξ is related to the Pendellösung period, and de-

fines the volume element of an infinite crystal (namely, within the extinction

length) that contributes to the diffraction. Following Ref. [82], primary ex-

tinction concerns the coherent multiple scattering (also known as the Ren-

ninger effect) within a single mosaic block, which occurs when two or more

sets of crystal planes satisfy the Bragg condition for a given incident wavevec-

tor. Meanwhile, secondary extinction occurs when the diffracted beam from

one mosaic block is rescattered by other mosaic blocks [82]. Primary extinc-

tion is only appreciable if the individual mosaic blocks are larger than the
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extinction length. The extinction effect is illustrated in Fig. 3.6.

ξ =
πv0 cos θ
λ|FN(G⃗)|

, (3.20)

which is one period of the Pendellösung interference pattern.

Following Ref. [143] (and Refs. therein), the model for extinction [144, 145]

considers the integrated intensity Pk of the Bragg reflection according to

the kinematical theory that can be approximated from the intensity of the

incident beam I0 and the irradiated volume v. The integrated intensity is

given by Pk = I0vQ, where Q is the average scattering cross-section per

unit volume Q = |aFK/V |2 λ3/ sin 2θ with F the structure factor, K the

polarization factor (1 for neutron or synchrotron radiation), V the unit cell

volume, θ the Bragg angle, and λ the wavelength of the radiation. The

constant factor is given by a = 10−12 m for neutrons. The influence of

secondary extinction can be expressed by a factor y, through P = Pk ·y. The

mosaicity, or angular distribution of domains, W is approximated by either

Gaussian or Lorentzian profiles with width g,

WG(ϵ) =
√
2g exp

(
−2π2g2ϵ2

)
WL(ϵ) = 2g/(1 + 4π2ϵ2g2).

(3.21)

For secondary extinction, the correction for y can be approximated by [145]

y(x, θ) =

[
1 + ξG,Lx+

A(θ)x2

1 +B(θ)x

]−1/2

x =
2

3
QαG,Lt (3.22)
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αG = α/(1 + α2/2g2)1/2 ξG = 2.12

αL = α/(1 + 2α/3g)1/2 ξL = 2.

(3.23)

The parameter α = (3r/2λ) sin 2θ = (3ρ/2) sin 2θ, where r is the particle

size. The primary and secondary extinction coexist and are assumed to be

independent, in which case y = ypys, where ys and yp are the coefficients for

primary and secondary extinction respectively. In the case of a spherical crys-

tal containing idealized spherical crystal blocks, both can be approximated

(see for instance Ref. [82]).

Following Ref. [82], the absorption-weighted mean path through the crystal

T is given by the expression

T =
1

AV

∫
V
(Li + Lf ) exp[−µ(Li + Lf )]dV. (3.24)

The Beer-Lambert law is given by

I = I0 exp(−µx), (3.25)

where the quantity µ is the linear absorption coefficient. Sample transmission

is a measure of the variation of path length of the diffracted beam. If the

crystal is not spherical, then reflections will have a distribution of flight paths.

This leads to the systematic reduction of intensity for some peaks, where the
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transmission factor is

T =
1

V

∫
dτ exp(µL(r⃗)). (3.26)

The Beer-Lambert law describes transmission of neutrons through a sample

of uniform thickness; the transmission is defined as the factor by which the

count rate is attenuated,

A = I(t)/I0 = exp(−µt), (3.27)

where I0 is the incident intensity, I(t) is the intensity for thickness t, and

µ is the linear attenuation coefficient that is assumed to be independent

of position such that the sample is homogeneous, as described in Ref. [82].

Attenuation is caused by coherent and incoherent scattering, as well as ab-

sorption. One may write µ = n(σs + σa), where n is the number density

of some grouping of atoms such as a formula unit or unit cell, and σs and

σa are the total scattering and absorption cross-sections respectively for the

grouping considered.

As described in Ref. [82], the absorption varies as the inverse of neutron

speed increases linearly with more time spent in the sample, but there ex-

ist resonant excitation energies of the nucleus such that the neutron can be

easily captured being close to bound state. With the exception of B, Cd,

and, Gd, which have large cross-sections and are used for shielding or to

poison moderators, these do not typically coincide with thermal neutron ve-
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locities. Proper absorption corrections require knowledge of the average path

through the sample, and are usually done for idealized crystal shapes with

Monte Carlo simulations. The data refinement software used in this work

is Jana2006 [143] due to its superior treatment of extinction. Integration in

mantid [133, 134] allows the intensities of the Bragg reflections to be deter-

mined. This information is critical for structural refinement, allowing the unit

cell composition to be deduced through various methods including Rietveld

refinement and charge flipping.

3.4 Linked orientation matrices

The first crucial step towards structural refinement is the accurate prediction

of peaks at each goniometer configuration — a series of spatial configurations

of the sample in space at goniometer angles (χ, ω, ϕ), as defined in Fig. 3.4. In

order to obtain sufficient coverage of reciprocal space, enabling high quality

structural refinement, the diffracting crystal must be measured at a number

of orientations in the laboratory frame. In general terms, the crystal potential

ρ(r⃗) and its Fourier transform g(q⃗) are invariant under the symmetry element

h = {R|τ} ∈ G, and transform according to the relations

ρ(r⃗) = ρ(Rr⃗ + t),

g(q⃗) = g(q⃗) exp(2πiRq⃗ · τ).
(3.28)

http://jana.fzu.cz/
https://github.com/mantidproject/mantid
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The interaction of the beam with the crystal is mediated by the potential

V (r⃗), and measurements of the momentum transfer in a diffraction experi-

ment are proportional to the matrix element

〈
k⃗f

∣∣∣V (r⃗)
∣∣∣⃗ki〉 ∼

∫
ρ(r⃗) exp

(
2πik⃗ · r⃗

)
dr⃗ = g(q⃗). (3.29)

This expression makes clear the Fourier transformation implicit in the scat-

tering process. In the case of missing segments of data, distortions of the

reciprocal space volume are manifest in the perpendicular direction; as such,

it is crucial that coverage corresponding to at least the asymmetric unit of

the space group is collected in a diffraction experiment if these data are to

be used for structural refinement.

Methods of UB matrix determination discussed in Sec. 3.3.2 are imple-

mented in mantid and exposed to the Python API in a number of methods.

By deducing and manually setting the indexation (h, k, l) of two Bragg peaks

added to a PeaksWorkspace by hand, one can calculate a reasonably accurate

UB using CalculateUMatrix. From this UB, the positions of all peaks on the

detectors can be predicted, and one can add more peaks by hand, setting their

indices in an iterative procedure of refinement, obtaining a more accurate UB

at each step. On the other hand, in the determination of an initial UB one of

the auto-indexing methods (including FindUBUsingLatticeParameters or

FindUBUsingFFT) may be used on a PeaksWorkspace listing single-crystal

Bragg reflections found by invocation of a peak-finding algorithm (includ-

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v3.7.2/concepts/PeaksWorkspace.html
https://docs.mantidproject.org/nightly/algorithms/CalculateUMatrix-v1.html
https://docs.mantidproject.org/nightly/algorithms/FindUBUsingLatticeParameters-v1.html
https://docs.mantidproject.org/nightly/algorithms/FindUBUsingFFT-v1.html
https://docs.mantidproject.org/v3.7.2/concepts/PeaksWorkspace.html
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a b c

Figure 3.7: Pseudosymmetry introduced by non-unique selection of zone-
axes for the commensurate magnetic phase of Holmium with k⃗ = c⃗∗/6.
In panel (a), the raw panel data is shown, with the highlighted region
corresponding to the annotated region in panel (b). The result of rota-
tion of the UB matrix without U matrix correction is compared against
the blind indexation of the observed peaks, not consistent with the ref-
erence UB. The result of this inconsistent indexing is shown in panel
(c) and corresponds to the introduction of a 3-fold pseudosymmetry and
gives a false Laue symmetry. Note that in panel (c) only the nuclear
structure is shown.

ing FindSXPeaks working in detector space and FindPeaksMDworking in Q⃗).

The determination of UB matrices across goniometer configurations is of

paramount importance, and strongly influences subsequent steps of the struc-

tural refinement. Without good UB matrices, refinement will not be optimal

or, in most cases, even possible at all. It is important therefore, especially

in low symmetry or twinned structures, that the determined UB matrices

describe a continuous reciprocal space, transforming smoothly between ori-

entations. When one simply applies the auto-indexing methods to separate

runs, the above condition is not necessarily met, and one can introduce pseu-

https://docs.mantidproject.org/v3.7.1/algorithms/FindSXPeaks-v1.html
https://docs.mantidproject.org/nightly/algorithms/FindPeaksMD-v1.html
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dosymmetry that can distort the structural model. As illustrated in Fig. 3.7,

the LinkedUBs algorithm presented in this section solves this problem, and

is one of the major contributions of the chapter.

Suppose for example that two successive goniometer configurations describ-

ing the orientation of the crystal in space share some reflection, (h, k, l). In

cubic structures, it is not important whether this is indexed consistently

across orientations due to the equivalence in d-spacings,

1/d2 = (h2 + k2 + l2)/a2. (3.30)

However, for lower symmetry structures, such as for the monoclinic system

in which β 6= 90°, the d-spacing is given by

1/d2 =
h2

a2 sin2 β
+
k2

b2
+

l2

c2 sin2 β
− 2hl cosβ
ac sin2 β

. (3.31)

While some reflections may be equal in d-spacing, others are not, so it is

important for structural refinement that those reflections that occur with

equal d-spacing are indexed consistently across detectors, since the indexation

of such reflections determines the direction of the UB matrix and may result —

if not indexed consistently — in discontinuity between physical rotations of

the crystal described by the UB matrices.

This problem is most apparent when auto-indexing algorithms are em-

ployed as methods for the determination of the UB matrix. Examples in

the mantid suite are FindUBUsingLatticeParameters and FindUBUsingFFT.

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://github.com/mantidproject/mantid
https://docs.mantidproject.org/nightly/algorithms/FindUBUsingLatticeParameters-v1.html
https://docs.mantidproject.org/nightly/algorithms/FindUBUsingFFT-v1.html
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These do not take into account the consistency of indexation of reflections

across goniometer configurations. In order to solve this problem, an algo-

rithm LinkedUBs has been created and incorporated into the mantid code-

base12. The algorithm implements automatic consistent indexation of peaks

across orientations using a user-supplied reference UB matrix. The peaks in

subsequent orientations are predicted from the starting UB matrix and their

d-spacing and Q⃗ values are compared to sets of found peaks.

This procedure is done iteratively, with a decrementing Q⃗ envelope and

an ordered list in which peaks at long d-spacing are considered first, since

these are typically more spread out than those in backscattering, where false

matches could occur with many peaks close together and with similar d-

spacing. As more iterations are executed, the number of peaks considered

increases. This results in more and more peaks being indexed and thus a more

accurate UB matrix. This procedure is done for all orientations, resulting in

the determination of a complete set of linked UB matrices which can then be

used to integrate the peaks. A simple approach might be just to predict peaks

at each orientation from the starting UB, and to use those predicted peaks

and the UB associated with them (differing only by the R matrix) as linked

UBs. In principle this could indeed work; in practice however, the nature of

the goniometr means that crystal centering is approximate at best, and is

done on the lab bench by eye, as opposed to four-circle x-ray diffractometers

which implement a series of cameras to achieve good centering.

12L. Edwards, LinkedUBs, mantid/Framework (2018).

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://github.com/mantidproject/mantid
https://github.com/mantidproject/mantid/blob/master/Framework/PythonInterface/plugins/algorithms/LinkedUBs.py
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On WISH, the sample is attached to an insert at the end of the goniometer,

which sits in the blockhouse, in the beam, with no scope to adjust the position

of the sample when it has been mounted. For single-crystal studies, rotations

about a miscentered crystal will result in the translation of the peaks on

the detectors that predictions of the reflection positions from the goniometer

angular settings and UB matrix alone cannot account for. The ω axis is

rather more accurate than the ϕ axis which consists of long rod, motor and

coupler. The best solution to this problem is to have a single UB matrix for

each orientation. What is required is a U matrix correction while preserving

the indexing of the peaks. This is done by comparing the predicted peaks to

the observed peaks.

The core of the LinkedUBs algorithm is as follows. The algorithm requires

one to supply a reference UB matrix, from which the peak positions of all

subsequent crystal rotations are calculated by goniometer rotations. It is not

trivial to do this without the use of an automated algorithm in many cases,

since the crystal will not be perfectly centered in the beam when lowered into

the blockhouse and rotated in data collection, thereby giving rise to distor-

tions in the U matrix, with subsequent predicted UB matrices not capturing

the peak positions. In some cases, this effect can be quite severe, and the

manual creation of the UB matrices can be quite time consuming and prone to

human error. The algorithm works by comparing the d-spacing and Q⃗ values

of peaks found by a standard search algorithm — such as FindSXPeaks— to

the predicted peaks. The algorithm searches for matches based on Q⃗ and

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://docs.mantidproject.org/v3.7.1/algorithms/FindSXPeaks-v1.html
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a b

Figure 3.8: Scattering from Ruby, Al2O3 showing the predicted peaks
from goniometer rotation in panel (a) and the corrected linked peaks in
panel (b).

d-spacing tolerance values supplied by the user. Those found peaks, which

match within tolerance a predicted peak, inherit the (h, k, l) value; after all

peaks have been considered, the UB is forced with CalculateUMatrix. This

process is done for n interactions, with the tolerance values decrementing at

each iteration, as the UB is refined.

The process of linking the peaks is shown in Fig. 3.8 for single-crystal

Ruby, Al2O3. While having the correct indexing, the goniometer rotated

peaks shown in panel (a), are quite far away from capturing the observed

peaks shown in panel (b). While it is relatively simple to correct for this

by hand for simple structures, the problem becomes much more complicated,

time consuming, and prone to error for denser reciprocal spaces characterized

by low symmetry or having present some magnetic or structural modulation.

https://docs.mantidproject.org/nightly/algorithms/CalculateUMatrix-v1.html
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...
for i in range(len(qlabs_observed)):

qx_obs, qy_obs, qz_obs = qlabs_observed[i]
q_obs = V3D(qx_obs, qy_obs, qz_obs)
p_obs = linked_peaks.createPeak(q_obs)
d_obs = dspacings_observed[i]

for j in range(len(q_ordered)):
qx_pred, qy_pred, qz_pred = q_ordered[j]
d_pred = d_ordered[j]

if (qx_pred - qtol_var <= qx_obs <= qx_pred
+ qtol_var and qy_pred - qtol_var <=

qy_obs <= qy_pred
+ qtol_var and qz_pred - qtol_var <=

qz_obs <= qz_pred
+ qtol_var and d_pred - self._dtol <=

d_obs <= d_pred + self._dtol):
h, k, l = HKL_ordered[j]
p_obs.setHKL(h, k, l)
linked_peaks.addPeak(p_obs)

linked_peaks = FilterPeaks(linked_peaks,
FilterVariable="h^2+k^2+l^2",
Operator="!=",
FilterValue="0")

CalculateUMatrix(PeaksWorkspace=linked_peaks,
a=self._a,
b=self._b,
c=self._c,
alpha=self._alpha,
beta=self._beta,
gamma=self._gamma,
StoreInADS=False)

linked_peaks_predicted = PredictPeaks(
InputWorkspace=linked_peaks,
WavelengthMin=self._wavelength_min,
WavelengthMax=self._wavelength_max,
MinDSpacing=self._min_dspacing,
MaxDSpacing=self._max_dspacing,
ReflectionCondition=self._reflection_condition,
StoreInADS=False)

...
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3.5 Single-crystal results

Solving magnetic structure requires a few main steps. First, the determina-

tion of the propagation wavevector, second, the determination of the coupling

between magnetic moments, and finally, the determination of the moment di-

rections and their values in Bohr magnetons (µB) are determined. In many

cases, an unambiguous structure solution cannot be achieved through powder

diffraction alone; the propagation wavevector often cannot be determined un-

ambiguously, and peak overlap can be problematic. Single-crystal diffraction,

however, facilitates unambiguous determination of the propagation wavevec-

tor and does not present major problems concerning peak overlap.

There do exist cases in which single-crystal is not enough for a full structure

solution, namely in the case of multi-domain structures, such as multiferroics.

In cases of domain structure, magnetic field or uniaxial strain can be provided

to the sample to break symmetry and produce single-domain structure. This

is especially important in high symmetry structures such as F -centered cubic

cells, and will allow one to distinguish magnetic order that involves multiple

arms of the star of k⃗ and a multi-⃗k structure involving more than one prop-

agation wavevector. Sometimes, additional polarization analysis is required
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to fully solve the structure13. In the case of X-ray diffraction, the unit cell

structure factor is the Fourier transformation of the electron charge density

in the unit cell,

ρ(x, y, z) =
∑
hkl

F (h, k, l) exp[−2πi(hx+ ky + kz)]. (3.32)

Above, the charge density has been separated into amplitude and phase terms.

In diffraction experiments, we measure the square of the structure factor since

I ∝ F 2; the resultant loss of information presents a challenge to structure

solution widely known as the phase problem. The superflip algorithm [146]

implements a charge flipping protocol in arbitrary dimension to tackle struc-

ture solution, and works by minimization of the difference between observed

and calculated electron density. A schematic diagram of the algorithm pro-

cess is given in Fig. 3.9.

The atoms in the crystal structure are not strictly fixed, but undergo os-

cillations about their nominal orbits due to thermal motion. With respect

to the Fermi length, these displacements are large. The probability of the

13Polarization analysis exploits the fermionic nature of the neutron beam to provide addi-
tional information from scattering. The S = 1/2 beam is split into |↑⟩ and |↓⟩ compo-
nents in the ratio P = (N+−N−)/N++N−, which can also be expressed (F−1)/(F+1),
defining F as the so-called flipping ratio. For uniaxial polarization (longitudinal), the
scattered intensity can be separated into the spin-flip and non-spin-flip channels. More
complex spherical/vector schemes exist but will not be discussed here, although three-
dimensional polarization axes are often required for magnetic structure solution on
multi-domain systems.
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Figure 3.9: Charge flipping algorithm for structure solution from
diffraction data [146]. An initial electron density ρ0(r⃗) =
F−1[Fobs(Q⃗) exp{iφ(Q⃗)}] is calculated for random set of phases, {φ(Q⃗)}
satisfying Freidel’s law. The low density region of ρ(r⃗) is flipped in direct
space with the modified density g(r⃗) = ρ1 − ρ2, sensitive to the one pa-
rameter used in the algorithm — the threshold δ. Temporary structure
structure factors are obtained from the modified density g(r⃗) by Fourier
transform. From the temporary structure factors G(Q⃗), the calculated
phases are used to calculate the structure factor for which moduli are re-
placed by Fobs(Q⃗), with F (0) = G(0) accepted without changes, and the
structure factor outside the resolution sphere defined by Qmax = 1/dmin
reset to zero. The grid must satisfy ∆r ≤ dmin/2. Figure made with
reference to Ref. [147].

displacement of the atom by some u is related to the Boltzmann distribution

P (u) =

∑
n ψ

2
n exp(−En/kBT )∑

n exp(−En/kBT )
=

1√
2π〈u〉2

exp(−u2/2〈u2〉), (3.33)

which describes a Gaussian distribution of atomic displacements. The recip-

rocal space representation also describes a Gaussian distribution, in which
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the probability is given by in terms of u, as varying exponentially according

to the relation

P (u) = exp(−u2Q2/2) = exp(−8π2〈u2〉 sin2 θ/λ2). (3.34)

For isotropic motion, the atomic displacement parameter (ADP) for atom j

is Bj = 8π2〈u2j 〉. In the case where the ADP is anisotropic, a multivariate

Gaussian distribution is assumed, which — in the most general case — gives

rise to 6 independent uij displacement parameters, and is a second rank

tensor. The ADP brings about a dampening of the intensity with increasing

momentum transfer. Another effect to consider in refinements is the effect

of strain. A phenomenological model for anisotropic strain is described with

symmetrical 4th order tensor [143, 148]

σ2(hkl) = Dijmnhihjhmhn =
∑
hkl

Shklh
hhkhl, (3.35)

where the landau summation convention is observed and restricted to h+k+

l = 4. The contribution to the FWHM is ΓA = [σ2(hkl)]1/2d2 tan θ. The

ratio in which the broadening is included in Gaussian and Lorentzian parts

is (1− ζ)/ζ. The weights are calculated from the uncertainties of the profile

intensities wi = 1/σ2[yi(obs)]. The experimental R-factor has n number of

profile points and p number of refined parameters. The goodness of fit is

GOF = Rwp/Rexp. The pure profile and weight profile R-factors use the
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following background corrected observed and calculated intensities:

y′i(obs) = yi(obs)− bi,

y′i(calc) = yi(calc)− bi.

(3.36)

In Jana2006, refinements can be made on both the structure factor F and

its square F 2. In the former case, the weighting and P factors take the form

w = [σ2(|Fobs|)− (uFobs)
2]−1

P =
∑

w(|Fcalc| − |Fcalc|)2,
(3.37)

and the corresponding residuals for F 2 are modified according to the relations

w′ = w/4F 2
obs

P ′ = w′[F 2
obs − F 2

calc]
2.

(3.38)

Here, σ is the estimated standard-deviation (ESD) and u is the so-called in-

stability factor. This parameter should be consistent across all measurements

on the same diffractometer. P is the minimized function i.e. the R-factor,

which is based on Fobs and Fcalc for refinements on both F and F 2.

In Jana2006, reflections are counted as observed (from the set of all reflec-

tions collected) if I/σ > k where k is a chosen real number; a standard choice

is k = 3. By discounting too many reflections, inaccurate refinements can

be obtained, so care is needed. Since it allows for description of anharmonic

displacement parameters, as well as for its superior treatment of extinction,
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Table 3.1: Reliability factors, Jana2006 [143].

Reliability factor Function

R2
exp

∑
iwiyi(obs)2
n− p

Rp

∑
i |yi(obs)− yi(calc)|∑

i yi(obs)

cRp

∑
i |y′i(obs)− y′i(calc)|∑

i y
′
i(obs)

R2
wp

∑
iwi[yi(obs)− yi(calc)]2∑

iwiyi(obs)2

cR2
wp

∑
iwi[y

′
i(obs)− y′i(calc)]2∑
iwiy′i(obs)2

Jana2006 is preferred compared to other refinement software packages such

as FullProf. The mean path T is either recorded in the reflection file and

used in numerical absorption correction or, if it is not present, calculated from

the equation T = 3R/2 for a spherical crystal of radius R. The parameter ρ

gives the ratio of the particle size in µm to the wavelength in Å.

http://jana.fzu.cz/
http://jana.fzu.cz/
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Figure 3.10: Crystal structure of Ca3Ga2Ge3O12 (a), drawn using the
VESTA program [150]. Brillouin-zone associated with Federov group
Ia3d (b) drawn using the KVEC program of the Bilbao crystallographic
server [151].

3.5.1 Crystal structure of garnet Ca3Ga2Ge3O12

The calcium gallium germanium garnet Ca3Ga2Ge3O12 is a functional mate-

rial that has many applications depending on doping. Their optical properties

are of particular interest; they are also a component materials of the Earth’s

crust and mantle. The chemical formula of the garnet structure can be rep-

resented as VIII[X3]
VI{Y2}IV(Z3)O12 [149]. A cation in the X site is located

in an eightfold triangular dodecahedral coordination site, a cation in the Y

site is located in a sixfold octahedral coordination site, and a cation in the Z

site is located in a fourfold tetrahedral coordination site.

The garnet structure Ca3Ga2Ge3O12 has the symmetry and spatial isome-

tries described by the nonsymmorphic Federov group Ia3d, with point group

Im3m, and cubic lattice parameter a = 12.2562(1) Åand Z = 2. The crystal
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a b c

d e f

Figure 3.11: Normalized extracted planes, Ca3Ga2Ge3O12 (T = 293 K).
Data normalized to incoherent scattering of absorption corrected Vana-
dium sphere. Symmetrization using the Laue group (m3m) has been
applied to six goniometer configurations representing a redundant vol-
ume of reciprocal space, combined using the method described in Ref. [2].
The ends of the detector tubes have been masked to reduce streaks at
high Q, and the data have been smoothed using a Gaussian profile func-
tion. Powder rings arising from the scattering sample environment com-
ponents occur at at d-spacing values of 2.338, 2.025, 1.432, . . . Å, with
texturing from preferred orientation visible, as well scattering from sec-
ondary crystallites.
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structure is shown in Fig. 3.10, along with the first Brillouin zone. A high-

quality single-crystal was provided by the WISH team, and single crystal

neutron diffraction data were collected across several goniometer configura-

tions covering the asymmetric unit of the BZ. This was determined using the

CrystalPlan program, which optimizes angular settings for maximum cover-

age in the minimal number of runs. This is the first sample that was tested

with the fully motorized, low temperature goniometer. Data were normalized

to the incoherent scattering of V/Nb using the mantid program; using the

LinkedUBs algorithm, a full set of consistent UB matrices were refined. Their

quality is demonstrated by the joining of datasets to present the reciprocal

lattice planes in Fig. 3.11. The quality of the combined volumes is such that

texturing can be seen in the powder rings arising from the Aluminum sample

environment. Spherical integration of reflections was carried out in recip-

rocal space and were subsequently combined using mantid. The combined

integrated intensities were used in the refinement of the crystal structure in

Jana2006 with a type-I extinction correction applied in finding the corrected

structure, filtering reflections with I/σ > 3. The results of the refinement

are presented in Table 3.2 and compare favorably with values presented in

the literature [152]. The observed and calculated structure factors are com-

pared in Fig. 3.12. The refinement converged with acceptable values for TOF

scattering, namely below 10, thereby demonstrating a successful quantitative

structural characterization from single-crystal in this material.

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://github.com/mantidproject/mantid
http://jana.fzu.cz/
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Table 3.2: Crystal structure parameters for Ca3Ga2Ge3O12 at T = 293 K ob-
tained from a refinement of neutron single-crystal diffraction data taken on the
WISH instrument, ISIS. Data processing was achieved using the MantidPlot
framework [38]. Integrated reflections were combined in the refinement of the
nuclear structure using Jana2006 [143], with reflections with I/σ > 3 dis-
carded. For each atom type, the Wyckoff position (WP) and site symmetry
are given, along with its fractional coordinates (x/a, y/b, z/c), isotropic dis-
placement factor (Biso), and site occupation factor (SOF).

Atom x y z Biso SOF WP Site symmetry
Ge 0.75000 0.12500 0.00000 0.002 1.00 24d −4..
Ga 0.75000 0.25000 −0.25000 0.001 1.00 16a .− 3.
Ca 0.75000 0.37500 0.00000 0.004 1.00 24c 2.2 2
O 0.65112 0.03372 0.04997 0.003 1.00 96h 1

G = Ia3d, a = 12.274(1) Å, V = 1847.284 Å3,
GOF = 9.53%, Rp = 6.99%, Rwp = 7.73%

3.5.2 Magnetic structure of rutile-type MnF2

The insulating transition metal difluoride MnF2 crystallizes in the rutile struc-

ture [153], as shown in Fig. 3.13. The primitive tetragonal unit cell has a

metric defined by the lattice constants a = 4.873 Å and c = 3.130 Å, with

appreciable compression perpendicular to the basal ab-plane evident from the

ratio c/a ∼ 2/3. The spatial isometries of the crystal structure are fully de-

scribed by the nonsymmorphic Federov group P42/mnm. The space group

G [54] is centrosymmetric, with its origin at the body-center position co-

incident with an inversion center. With respect to the origin, the crystal is

invariant under the group P of point symmetries, 4/mmm; the site symmetry
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Figure 3.12: Refinement of the crystal structure in Ca3Ga2Ge3O12 . The
observed and calculated structure factors are compared, showing that
the refinement converged with acceptable values for TOF scattering,
namely below 10, thereby demonstrating a successful quantitative struc-
tural characterization from single-crystal in this material.

So < P of the origin is mmm, through which a 2/m axis along the primary14

direction and 2/m axis along the tertiary15 direction intersect. High sym-

metry projections are along the [1, 0, 0], [1, 1, 0], and [0, 0, 1] directions with

14The primary axis is along c⃗; this 2/m axis is equivalent to a 2-fold ∥ c⃗∗, and mirror plane
⊥ c⃗∗.

15The tertiary axis is along the diagonal of the plane ⊥ c⃗; this 2/m axis is equivalent to a
2-fold rotational element ∥ (±a⃗∗ ± b⃗∗), and mirror plane ⊥ (±a⃗∗ ± b⃗∗).
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a b

Figure 3.13: Crystal structure of MnF2 (a), drawn using the VESTA pro-
gram [150]. Brillouin-zone associated with Federov group P42/mnm (b)
drawn using the KVEC program of the Bilbao crystallographic server [151].

respective point symmetries p4gm, c2mm, and p2mm.

The symmetry elements of G are generated by the combination of the

elements of P with the translation group T . When the translation is non-

primitive, systematic absences in the diffraction are manifest. In the primitive

tetragonal basis with τ = (1/2, 1/2, 1/2), the symmetry elements of G can

be expressed in Seitz notation [49] as follows:

{1|0}, {2001|τ}, {4+001|τ}, {4−001|τ},

{2010|τ}, {2100|τ}, {2110|0}, {2110|0},

{1|0}, {m001|0}, {4+001|τ}, {4−001|τ},

{m010|τ}, {m100|τ}, {m110|0}, {m110|0}.

(3.39)

The 42 screw-axis ‖ c⃗∗ generates an extinction condition along the [0, 0, l] zone-
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a b

Figure 3.14: Magnetic structure of MnF2 below TN. The system or-
ders under the antiferromagnetic propagation vector k⃗ = 0 at the Bril-
louin zone center, with the symmetry of the type-III Shubnikov group
P4′2/mnm

′. Point group symmetry shown following Ref. [154].

axis for reflections l = 2n+ 1, while the 21 screw-axes ‖ a⃗∗ and b⃗∗ generate

extinctions along [h, 0, 0] and [0, k, 0] for reflections h = 2n+ 1 and k = 2n+ 1

respectively. The n-glide ⊥ c⃗∗ generates extinctions of the (h, k, 0) zone for

reflections h+ k = 2n+ 1.

The two magnetic Mn2+ ions in the crystal basis occupy positions X1 =

(0, 0, 0) and X2 = (1/2, 1/2, 1/2); their G-orbits are identical and belong

to the 2a Wyckoff position. These are octahedrally coordinated to six non-

magnetic F– ions which occupy the non-centrosymmetric 4f position. The

crystal-field environment is defined by the resulting framework of corner and

edge-sharing MnF6 octahedra (m3m point group), subject to a small distor-

tion with two shorter (2.14 Å) and four longer (2.17 Å) Mn–F bonds. The

selection of the free-ion Mn2+ electronic ground state can be understood from
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Hund’s rules: each of the 3d5 electrons with spin quantum number ms = 1/2

singly occupy the orbitals ml = (−2,−1, 0,+1,+2), minimizing their mutual

Coulombic repulsion and stabilizing a high-spin S =
∑
ms = 5/2 state with

L =
∑
ml = 0; since the d-band is half-filled, the total angular momentum is

J = |L− S| = 5/2. The octahedral crystal-field environment splits the free-

ion ground state among a low-lying orbital triplet t2g and an excited orbital

doublet eg. Their energy-shifts with respect to the free-ion state are −2∆/5

and 3∆/5 respectively, where ∆ = 10Dq is the octahedral crystal-field split-

ting energy. Since these energy shifts (associated with the splitting of the

d-band) are weak compared to the pairing energy of two electrons ms = ±1/2

in the same orbital ml (underpinned by the exclusion principle), the ion in

the crystal-field remains in the high-spin S = 5/2 state for which there is no

orbital contribution to the total angular momentum.

In the absence of spin-orbit coupling, the Bloch functions of the lattice

ψ
k⃗
(r⃗) are separable, and are composed from the product of spatial and

spin wavefunctions, governed by Coulombic and exchange interactions respec-

tively. Describing the eigenstates of electrons, the symmetry of these wave-

functions are restricted by the requirement that the overall Bloch function is

antisymmetric under exchange in the position basis, on account of fermionic

statistics. From inelastic neutron scattering [155], the nearest-neighbor Mn2+

ions are found to be coupled by ferromagnetic exchange J1 = 0.028 meV along

〈0, 0, 1〉 directions, concomitant with a small single-ion anisotropy D arising

from their long-range dipole-dipole interactions [156]. A strong antiferro-
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magnetic superexchange J2 = SI−0.152 is induced between next-nearest-

neighbor Mn2+ ions along 〈1, 1, 1〉 directions, mediated by the significant

overlap of the Mn2+ and F– electronic wavefunctions along 〈1, 1, 0〉 direc-

tions, while higher-order exchange interactions16 are negligible. With indices

j, k running over the nearest and next-nearest neighbors of sites i, the mag-

netism can be summarily described in the absence of external applied fields

by the Heisenberg Hamiltonian,

Ĥ = −1

2
J1
∑
ij

S⃗i · S⃗j −
1

2
J2
∑
ik

S⃗i · S⃗k −D
∑
i

(Sz
i )

2. (3.40)

In the paramagnetic phase above TN ≈ 67 K [157, 158], the Mn atoms on

each sublattice are equipped with a localized magnetic dipole moment; the

directions of these pseudovectors17 are uncorrelated as thermal fluctuations

dominate and the time-average of the moment density is vanishing. The sym-

metry elements of G [see Eq. (3.39)] are a set of spatial unitary operators, and

account fully for the non-magnetic symmetries of the crystal18. The random

distribution of pseudovectors over the crystal volume in the paramagnetic

phase admits a continuous degree of rotational freedom due to large N ∼ NA

statistics; consequently, the time-average crystal potential is invariant under

16For instance the contribution from J3 = −0.004 meV along ⟨1, 0, 0⟩ directions.
17The term pseudovector is used interchangeably with axial vector to describe the distinct

symmetry properties of the magnetic moment, distinct to the transformation properties
of polar vectors: under the rotation element R, the pseudovector v⃗ transforms as v⃗′ =
det R(Rv⃗).

18Defined on a Hilbert space, unitary operators are linear and preserve the inner product
⟨Ûf |Ûg⟩ = ⟨f |g⟩. They provide an isometric mapping that leaves distances in the image
unchanged; in fact, the mapping is surjective and satisfies Û†Û = Û Û† = E.
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a b c

d e f

Figure 3.15: Normalized extracted planes, MnF2 (T = 4.7 K). Data
normalized to incoherent scattering of absorption corrected Vanadium
sphere. Symmetrization using the Laue group (4/mmm) has been ap-
plied to six goniometer configurations representing a redundant volume
of reciprocal space, combined using the method described in Ref. [2]. The
ends of the detector tubes have been masked to reduce streaks at high
Q⃗, and the data have been smoothed using a Gaussian profile function.
Powder rings arising from the scattering sample environment compo-
nents are visible, showing texturing from preferred orientation, as well
as scattering from secondary crystallites.
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a b c

Figure 3.16: Linecuts along the [h, 4, 2], [2, k, 1], and [3, k, 2] zone-axes
in MnF2 at T = 5 K and T = 70 K, showing development of intensity at
k⃗ = 0 positions.

the antiunitary19 time-reversal symmetry operator θ = 1′, which expresses

mapping θ : t 7→ −t. This can be understood by realizing that θ reverses the

sense of electric current circulation i = dq/dt associated with the magnetic

dipole moment |µ| = πr2dq/dt, from which it follows that θ : µ 7→ −µ. We

see that, in addition to the symmetries of the unitary group G, the param-

agnetic structure is additionally invariant under the antiunitary group θG of

primed elements. The full group of symmetries M of the paramagnetic crys-

tal potential can be expressed by the SII (gray) group P42/mnm 1′, which

is nonunitary and constructed by the direct sum M = G ⊕ θG = G ⊗ {E, θ}.

At temperatures close to TN, thermal fluctuations compete with short-

range antiferromagnetic correlations; the equilibrium response is character-

ized by broad-in-momentum critical scattering in static structure factor, given

19Antiunitary operators have instead the property ⟨Ûf |Ûg⟩ = ⟨f |g⟩∗ = ⟨g|f⟩. These are
self-adjoint, satisfying the relation Û†Û = Û Û† = 1, and used in the description of
time-reversal and charge-conjugation symmetries.
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by S(Q⃗) ≡
∫
S(Q⃗, ω)dω. As temperature is decreased below the second-

order phase boundary, long-range antiferromagnetic order characterized by

the magnetic propagation vector k⃗ = 0 is stabilized; the order parameter in

this state is the sublattice magnetization, and its square is coupled to the

intensity of the magnetic scattering. The uniaxial anisotropy D is responsi-

ble for the collinear, mutually antiparallel alignment of the pseudovectors on

each Mn-sublattice along 〈0, 0, 1〉 directions with ordered moment 4.6(1) µB,

as well as the gap in the magnon dispersion at the Γ-point of the BZ [155].

Since the metric of the unit cell is nominally unchanged under the action of k⃗,

the BZ of the crystal and magnetic structures are coincident. However, since

the continuous rotational symmetry of the pseudovectors in the paramagnetic

phase is spontaneously broken, the ordered state has reduced symmetry and

can be understood as a group-subgroup relation.

In the ordered phase, a subset of the unitary operators of group G leave

the structure invariant,

{1|0}, {2001|τ}, {2010|τ}, {2100|τ},

{1|0}, {m001|0}, {m010|τ}, {m010|τ}.
(3.41)

These symmetry operations define a unitary subgroup H of index [H : G] = 2.

The symmetry elements of H are those of the Federov group Pnnm in its stan-

dard setting. The symmetry of the ordered phase is that of the Shubnikov

SIII (translationgleiche) group P4′2/mnm
′ (point group 4′/mm′m). These

SIII groups are constructed by the relation H⊕ θ(G −H). The representa-
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Figure 3.17: Magnetic form factor for MnF2 (g ≈ 2) showing the fall-off
at high momentum transfer Q⃗.

tion of the gray group under the propagation wavevector k⃗ = 0 at the 2a po-

sition can be decomposed as the direct sum of the irreducible representations

Γ+
2 ⊕ Γ+

3 ⊕ 2Γ+
5 , where the representations Γ2+

2 and Γ+
3 are one-dimensional,

and the representation Γ+
5 is two-dimensional. The k⃗-vector type is Γ, the

coordinates of the vectors of the star of k⃗ are (0, 0, 0). For the unitary sub-

group, the k⃗-vector type is Γ, the coordinates of the vectors of the star are

(0, 0, 0), and the unitary little co-group is mmm. In this case, there is no

structural distortion associated with the reduced symmetry of the ordered

phase. This is in contrast to the case of rutile-type NiF2, which undergoes

an orthorhombic distortion below TN [159]. However, the c-axis has been

found to experience magnetorestriction in MnF2 with decreasing tempera-

ture; below TN, the elastic strain ∆c is coupled linearly to the square of the
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Table 3.3: Crystal structure parameters for MnF2 at T = 4.7 K obtained from a
refinement of neutron single-crystal diffraction data taken on the WISH instru-
ment, ISIS. Data processing was achieved using the MantidPlot framework [38].
Integrated reflections were combined in the refinement of the nuclear structure
using Jana2006 [143], with reflections with I/σ > 3 discarded. For each atom
type, the Wyckoff position (WP) and site symmetry are given, along with its
fractional coordinates (x/a, y/b, z/c), isotropic displacement factor (Biso), and
site occupation factor (SOF).

Atom x y z Biso SOF WP Site symmetry
Mn 0.00000 0.00000 0.00000 0.051 1.00 2a m.m′m′

F −0.30362 −0.30362 0.00000 0.051 1.00 4f m.2′m′

G = P4′2/mnm′ (BNS 136.499), a = 4.95750 Å, c = 3.35530 Å, V = 82.462556 Å3,
GOF = 7.25%, Rp(nuc) = 11.74%, Rwp(nuc) = 12.22% Rp(mag) = 11.27%,
Rwp(mag) = 11.67%, ordered moment = 4.151(3) µB

antiferromagnetic order parameter [160]. The magnetic structure is shown in

Fig. 3.14.

The symmetry operations of the magnetic structure are

{1|0}, {2001|τ}, {4′+001|τ}, {4′−001|τ},

{2010|τ}, {2100|τ}, {2′110|0}, {2′
110

|0},

{1|0}, {m001|0}, {4′+001|τ}, {4′−001|τ},

{m010|τ}, {m100|τ}, {m′
110|0}, {m′

110
|0}.

(3.42)

In addition to the general rule, along the [h, 0, 0] and [0, k, 0] zone-axes, mag-

netic reflections are systematically extinct for reflections h = 2n and k = 2n;

along the [0, 0, l] zone axis, magnetic reflections are systematically extinct ∀l.
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Figure 3.18: Refinement of the crystal and magnetic structures in MnF2.
The observed and calculated structure factors are compared, showing
that the refinement converged with acceptable values for TOF scatter-
ing, namely below 10, thereby demonstrating a successful quantitative
structural characterization from single-crystal in this material.

A high-quality single-crystal was provided by the WISH team; single crys-

tal neutron diffraction data were collected across several goniometer config-

urations covering the asymmetric unit of the BZ, as determined using the

CrystalPlan program to optimize angular settings for maximum coverage

in the minimal number of runs. This is the second sample that was tested

with the fully motorized, low temperature goniometer, and the first mag-
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netic structure refined from single-crystal on WISH. Data were normalized

to the incoherent scattering of V/Nb using the mantid program; using the

LinkedUBs algorithm, a full set of consistent UB matrices were refined. Their

quality is demonstrated by the joining of datasets to present the recipro-

cal lattice planes through the normalized volume of combined data given in

Fig. 3.15. Having taken into account the fall-off of the magnetic form-factor

presented in Fig. 3.17, spherical integration of reflections was carried out in

reciprocal space and subsequently combined using mantid. The combined

integrated intensities were used in the refinement of the crystal structure in

Jana2006 with a type-I extinction correction applied in finding the corrected

structure, filtering reflections with I/σ > 3. The results of the refinement are

presented in Table 3.3 and compare favorably with the values presented in

the literature [153]. The observed and calculated structure factors are com-

pared in Fig. 3.18. The refinement converged with acceptable values for TOF

scattering, namely below 10, thereby demonstrating a successful quantitative

magnetic structure characterization from single-crystal in this material.

3.5.3 Short-range magnetic order in spinel GeNi2O4

The 1-2-4 germanate garnet GeNi2O4 is a spinel material, with general sto-

ichiometry AB2X4 (X = O, S, Se, Te). LiV2O4 is a famous member of

the spinel family, which shows heavy-fermion behavior without having any

f -electron states. Spinels are a well studied class of materials, with the struc-

ture of Magnetite — also known as lodestone in ancient times — first charac-

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://github.com/mantidproject/mantid
http://jana.fzu.cz/
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Figure 3.19: Crystal structure of GeNi2O4 (a), drawn using the VESTA
program [150]. Brillouin-zone associated with the Federov group Fd3m
(b) drawn using the KVEC program of the Bilbao crystallographic
server [151].

terized by Bragg in 1915. In normal spinel materials such as MgV2O4, the

tetrahedral site is the A-site and the octahedral site is the B-site, while in in-

verse spinels — such as Mangenite Fe3+Fe2.5+O4 — the tetrahedral site is the

B-site and the octahedral site is the A-site. These centrosymmetric oxides

have the symmetry nonsymmorphic Federov group G = Fd3m with Z = 8,

the non-magnetic B-site occupied by octahedrally coordinated Ge4+ cations

which form a diamond sublattice [161].

The A-site supports tetrahedrally coordinated magnetic Ni2+ cations (3d8,

S = 1, g = 2.34) which form an edge-sharing pyrochlore sublattice. Two

distinct Néel phases exist below with transition temperatures TN1 = 12.1 K

and TN2 = 11.4 K, with no evidence found to suggest that they are associated

with a structural transition. In these spinels, due to the octahedral oxygen

crystal field, the degeneracy of the five d orbitals is lifted with three t2g or-
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bitals with smaller energy and two eg orbitals with higher energy. The orbital

occupation for the Ni2+ ions differ by a hole in the t2g orbitals, which sub-

stantially changes the first neighbor interaction. The magnetic structure has

been well studied [162–164]. A collinear structure with propagation wavevec-

tor k⃗ = (12 ,
1
2 ,

1
2) was proposed in Ref. [162]. The two antiferromagnetic

structures were found in Ref. [163] and frustration investigated in Ref. [164].

Three of the four Ni2+ ions on each tetrahedron belong to a Kagomé plane,

while the fourth belongs to a triangular plane. Spins with the Kagomé planes

are ferromagnetically coupled, while spins between the adjacent triangular

planes are antiferromagnetically coupled.

The crystal structure and first BZ of GeNi2O4 is shown in Fig. 3.19. A high-

quality single-crystal was provided by the WISH team; single crystal neutron

diffraction data were collected across several goniometer configurations cov-

ering the asymmetric unit of the BZ, as determined using the CrystalPlan

program to optimize angular settings for maximum coverage in the minimal

number of runs. This is the first diffuse scattering dataset that was collected

with the fully motorized, low temperature goniometer. Data were normalized

to the incoherent scattering of V/Nb using the mantid program; using the

LinkedUBs algorithm, a full set of consistent UB matrices were refined. The

joining of datasets was achieved using the procedure in [2]; the combined

reciprocal lattice planes showing the diffuse scattering at T = 4.7 K are pre-

sented in Fig. 3.20. A high temperature run has been subtracted from the low

temperature data to reveal the diffuse scattering. The low temperature data

https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
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a b c

d e f

Figure 3.20: Short-range magnetic correlations in the Néel phase of spinel
GeNi2O4 at T = 4.7 K < TN. Broad in Q⃗ scattering is manifest in the
(h, k, n) zone shown in (a-c) for n = l/2 and in the (h, h, n) zone shown
in (d-f) for l = 2n with n ∈ Z).
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and high temperature data are taken at different stick heights, evidenced

from the offset of the (0, 0, l) reflections at nominally (ω, ϕ) = (0, 0) positions

at low and high temperatures.

In general, the intensity integrated over all wavevectors Q⃗ and energies ω

is constant as external variables (temperature, pressure, magnetic field, etc.)

are changed; the intensity is, however, redistributed in reciprocal space and

is summarized by the total moment sum rule

1

d3Q⃗

∑
α

∫
d3Q⃗

∫
ℏdωSαα(Q⃗, ω) = 〈S⃗(0) · S⃗(0)〉 = S(S + 1). (3.43)

In GeNi2O4, strong paramagnetic diffuse scattering is manifest above TN.

Unlike its counterpart below TN giving δ-function (convolved with instrument

resolution function) Bragg reflections, the scattering intensity I(Q⃗) in the

paramagnetic phase is characterized by continuous variation with wavevector.

Below TN, magnetic intensity is increasingly redistributed among positions

of the k⃗-active in Bragg channel with decreasing temperature as long-range

order evolves below the transition. Magnetic diffuse scattering can give rise

to a myriad of shapes in reciprocal space including half-moons, pinch-points,

and Kagomé type correlations [165] — all of which are indicative of frustrated

magnetic interactions and short-range order. The diffuse scattering observed

in Fig. 3.20 indicates the presence of non-trivial spin correlations, for which

a more detailed study would be worthwhile. These data are useful for Monte

Carlo simulations in so far as accessing the reciprocal space volumes presented
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herein can help to constrain the problem. These results demonstrate that

in addition to quantitative structural refinements, the LinkedUBs algorithm

facilitates the analysis of diffuse scattering data in single-crystals, thereby

further expanding the scope of the single-crystal capability of WISH.

3.6 Conclusions

We have developed a novel algorithm for the mantid neutron scattering anal-

ysis framework — LinkedUBs— which allows for the creation of a set of con-

sistent UB matrices for a single-crystal dataset comprising a number of runs.

Respecting the continuity of reciprocal space, these enable quantitative struc-

tural characterizations to be carried out routinely on the instrument, thereby

expanding the scope of its scientific program. Noting the importance of

extinction correction, we apply this algorithm to a number of single-crystal

datasets, demonstrating the data collection and analysis methodology, noting

the importance of extinction corrections to be applied to the integrated reflec-

tions for successful refinements. We first characterized the crystal structure

of the garnet Ca3Ga2Ge3O12 material (Sec. 3.5.1), then went on to character-

ize the magnetic structure of rutile type MnF2 (Sec. 3.5.2). We also applied

the algorithm in the visualization of reciprocal space planes, producing sets

of planes for all materials considered. With successful structural character-

izations achieved in these materials — evaluated by noting the acceptable

nature of the R-factors achieved from the associated structural refinements

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://github.com/mantidproject/mantid
https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html


3.6 Conclusions 135

in Jana2006— we went on to investigate magnetic diffuse scattering in the

spinel material GeNi2O4 (Sec. 3.5.3). Our results indicate the presence of

strong magnetic diffuse scattering below the Néel temperature, which indi-

cates the presence of non-trivial spin correlations that would be worthwhile

studying in greater detail in future measurements.

http://jana.fzu.cz/




Chapter 4

Short-range order and topology in Ising

α-CoV2O6

4.1 Chapter summary

Belonging to the 2D Ising universality class, the insulating jeff = 1
2 spin-

chain material α-CoV2O6 supports a global U(1) symmetric Néel state and

distinct periodic magnetic structures induced by applied fields. These are

based upon collinear arrangements of localized Co2+ moments, occupying

the sites of an anisotropic triangular sublattice. Hysteretic and cascading

magnetization plateaus are manifest below TN, for which the total Sz
tot =∑

i S
z
i does not change in response to an increasing applied field [166]. This

suggests the presence of an energy gap and exponentially decaying spatial

correlations. In this chapter, we present results from neutron diffraction

and low-temperature magnetization, in search of resolution to this apparent

departure from Haldane’s theorem (discussed in Sec. 4.3.2).

137
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At dilution temperatures, no long-range translational symmetry breaking

occurs in the neighborhood of the plateaus below the ferromagnetic phase

which occurs at a saturation field of ∼ 4 T; instead, broad in Q⃗ scattering

arising from short-range ordered states is observed in the static structure fac-

tor S(Q⃗) ≡
∫
S(Q⃗, ω)dω. Antiphase domains, as evidenced from the nature

of the diffuse scattering, confer q-fold degenerate local periodicities T̂ q and

characterize the ratios M/Ms of the observed plateaus. This correspondence

is identified as the signature of an emergent gauge structure, consistent with

an extension of the Lieb-Schultz-Mattis theorem (discussed in Sec. 4.3.3), in

which the magnetization per site m = 1
L

∑L
i Ŝ

z
i is understood to be topo-

logically quantized as (S − m). Echoing the hidden symmetry breaking in

Fractional Quantum Hall systems, we demonstrate a correspondence between

local translational symmetry breaking with the stabilization of magnetization

plateaus in an Ising magnet. The results presented in this chapter have been

published in Ref. [167].

The contributions to this chapter are as follows. Magnetization measure-

ments were carried out by Sean Giblin (Cardiff), Carley Paulsen (CNRS),

Lewis Edwards (Cardiff), and Gavin Stenning (ISIS). Single-crystal neutron

diffraction experiments in magnetic field on the WISH instrument were car-

ried out by Chris Stock (Edinburgh), Sean Giblin (Cardiff), and Pascal

Manuel (ISIS). Single-crystal diffraction experiments in magnetic field on

the RITA instrument were carried out by Chris Stock (Edinburgh), Manila

Songvilay (Edinburgh), and Christof Niedermayer (PSI). Single-crystal diffrac-
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tion measurements in zero magnetic field were carried out on the MOR-

PHEUS instrument by Chris Stock (Edinburgh) and Manila Songvilay (Ed-

inburgh). Neutron powder diffraction experiments in magnetic field were

carried on the TASP instrument by Lewis Edwards (Cardiff), Sean Giblin

(Cardiff), Chris Stock (Edinburgh), Manila Songvilay (Edinburgh), and Greg

Tucker (PSI). Single-crystal and powder neutron diffraction experiments were

carried out in zero magnetic field using the WISH instrument were carried out

by Lewis Edwards (Cardiff), Sean Giblin (Cardiff), Chris Stock (Edinburgh),

Manila Songvilay (Edinburgh), Pascal Manuel (ISIS). Analysis of data was

carried out by Lewis Edwards (Cardiff) and theoretical support was provided

by Harry Lane (Edinburgh).

4.2 Introduction

The Quantum Hall effect (QHE) [168] is defined by the non-uniform variation

of the electrical Hall conductivity under the effect of varying applied field;

this is in contrast to the response expected from conventional electrostatics

where a continuous change is manifest. The plateaus realized in the Hall

resistivity in the case of the QHE have been the focus of intense interest and

have been attributed to topological edge states [169]. Meanwhile, analogies

resulting from bulk Bloch states are rare, and particularly magnetic analogues

displaying steps in the magnetization.

Neutron scattering provides a means of probing the underlying symmetry
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of magnetic correlations in condensed matter systems through the dynamical

structure factor S(Q⃗, ω). A notable accomplishment of the technique is the

differentiation of the dynamics of chains of integer and half-integer spins [170];

Indeed, Haldane was jointly awarded the 2016 Nobel prize, along with co-

recipients Thouless and Kosterlitz, for his work on the problem [10, 11, 171].

The spectrum of magnetic excitations in half-integer spins has been found to

be gapless [172, 173], while integer spins display a gapped magnon spectrum

consistent with the Haldane conjecture [10, 11, 174, 175]. In the absence of

inter-chain interactions, neither class of spin chain shows spontaneous symme-

try breaking; no change to the equilibrium structure factor S(Q⃗) is observed

associated with the development of long-range order.

By Haldane’s conjecture (Sec. 4.3.2), the theoretical predictions for the

spectrum of magnetic excitations in integer and half-integer spins are at odds;

an extension [12, 176] of the Lieb-Schultz-Mattis theorem (Sec. 4.3.3), how-

ever, provides resolution. Arguing on topological grounds [176], the existence

of analogous Haldane gapped phases in half-integer spins have been demon-

strated to exist in principle, concomitant with plateaus of the magnetization

for which the total Sz
tot is robust to varying applied fields. The energetics of

these gapped phases resemble those of spin-Peierls dimerized states [177, 178],

and indeed, those of Haldane gapped phases observed in integer spin chains.

Plateaus of the magnetization have been reported in a number of insulating

triangular lattice materials [179–190] and also in materials with a continuous

symmetry [191–194] where complex field-induced magnetic transitions are
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observed. In these materials, the energetics are complicated by far-reaching

exchange interactions between the constituent magnetic ions, which deter-

mine the in-field phase diagram. Despite the presence of multiple competing

interactions, the realization of fractional steps of the magnetization — akin to

the plateaus of the resistivity observed in fractional quantum Hall systems —

is rare in the truly Ising limit.

Assuming an axially symmetric Hamiltonian H, discrete steps in the mag-

netization can be understood to originate from the underlying translational

symmetry, placing restrictions on the values of the complex geometric phase

acquired upon rotating the spins around the axis of symmetry. Akin to that

gained by a Foucault pendulum as it undergoes a unitary transformation

about the Earth’s axis, for a Hamiltonian invariant under a site translation

Ĥ → T̂ ĤT̂−1, a norm preserving unitary rotation of the spins generates a ge-

ometric phase under the following large gauge transformation (see Sec. 4.3.3)

T̂ Û T̂−1 = Û exp[2πi (S −m)]. (4.1)

For (S −m) /∈ Z, the rotated state must be orthogonal to the ground state,

representing an excited state with an infinitesimally larger energy ∼ O( 1L) in

the thermodynamic limit [176]. These states give rise to a gapless continuum

consistent with Haldane’s conjecture [10, 11].

In the case of integral values, the states are gapped and cannot be smoothly

transformed through low-lying orthogonal states with applied field; this gives
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rise to emergent magnetization plateaus and a Bloch state analog of the quan-

tum Hall effect. Plateaus of the magnetization can also be realized for frac-

tional values of the topological index, supported by an emergent higher order

periodicity through the spontaneous breaking of the Hamiltonian’s symme-

try, by further analogy with the quantum Hall effect. The establishment of

this magnetization-induced symmetry can give rise to the emergence of new,

modulated ground states, though the stability of such states is ultimately

determined by the interaction terms present in the microscopic Hamiltonian.

In this chapter, we report the emergence of such symmetries in the Ising

magnet α-CoV2O6 [195], which displays magnetization plateaus [4–9], using

neutron diffraction and low temperature magnetization.

Centrosymmetric, and with a monoclinic Bravais lattice Λ, the insulat-

ing Vanadate α-CoV2O6 is invariant under the spatial isometries of the

symmorphic Federov group G = C2/m [3, 5, 195–197]. This particular al-

lotrope of CoV2O6 is distinct from the triclinic γ-polymorph with P1 symme-

try [4, 8, 198, 199], which will not be discussed here. Results from x-ray Laue

characterization measurements, conducted at the Materials Characterization

Lab (ISIS, UK), are presented in Fig. 4.1; the (h, 0, 0) and (0, 0, l) zone cen-

ters of the reciprocal lattice are shown, albeit with some misalignment of the

crystal. Using the unique b-axis setting of the crystal space group, the met-

ric tensor of the lattice is defined by the unit cell parameters a = 9.2283(1),

b = 3.50167(5), c = 6.5983(1)Å, and a monoclinic angle β = 112.0461(7)°.

The crystal structure is shown in Fig. 4.2(a), illustrating the neighboring
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a b
(h00) (00l)

Figure 4.1: Results from x-ray Laue characterization of α-CoV2O6 ob-
tained at the Materials Characterization Lab (ISIS, UK). (a) shows the
diffraction from the crystal aligned roughly along the [h, 0, 0] zone axis,
while (b) shows the diffraction from the crystal aligned roughly along
the [0, 0, l] zone axis.

chains of Co atoms along the b-axis; alongside this, the first Brillouin zone

(BZ) is shown in Fig. 4.2(b), with the asymmetric unit indicated1.

Magnetic Co2+ ions (L = 2, S = 3
2) are located on the G-orbits of the 2c

Wyckoff position, associated with a 2/m point group symmetry. Chains of

distorted CoO6 octahedra span the b-axis and are interspersed by VO5 square

pyramids. Neighboring chains are offset by ±1
2b and define an exchange net-

work based upon an anisotropic motif out of the ac-plane [201–205]. In

Fig. 4.2(c), the typical morphological features of single-crystals are shown;

prominent crystal faces have been annotated with corresponding principal

directions of the reciprocal lattice. Belonging to the Brannerite class charac-

terized by the UTi2O6 structure [200], single crystals form with a prismatic

habit and well defined faces on opposite sides of the crystal, convenient for

1The asymmetric unit is defined by the set {(x, y, z) |x ∈ [0, 0.5], y ∈ [0, 0.25], z ∈ [0, 1]}.
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a b c

Figure 4.2: (a) shows the crystal structure of α-CoV2O6 , drawn using
the VESTA program [150]. Co atoms (blue) occupy the 2c Wyckoff po-
sition, with 2/m PG symmetry, coordinated by oxygen (red) in CoO6
octahedra, with distortion modes active along the octahedral axis and
within the octahedral plane. Chains of distorted CoO6 octahedra span
the b-axis and are interspersed by VO5 square pyramids (white), while
neighboring chains offset by ±1

2b define an anisotropic exchange motif
out of the ac-plane. (b) shows the first BZ of G = C2/m, drawn us-
ing the KVEC program of the Bilbao crystallographic server [151],
with the asymmetric unit indicated. (c) shows the Brannerite morphol-
ogy [200] of single-crystals with the principal directions of the reciprocal
lattice indicated.
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the purposes of co-alignment.

The d-orbital states of Co2+ in a cubic crystalline-electric field (CEF) are

split among a low-lying triply degenerate ground |t2g〉 state and an excited

|eg〉 state. Depending on the relative strength of the Hund’s coupling, as

compared to the energy splitting 10Dq, both high S = 3
2 and low S = 1

2

complexes can be realized, with the former state manifest in the case of

weak Coulombic interactions. Further splittings of the CEF are induced by

the effects of spin-orbit coupling (SOC), giving rise to a ground jeff = 1
2

state lying below jeff = 3
2 and jeff = 5

2 multiplets, for which the energy

separations are fixed by the Landé interval rule [206, 207]. Octahedral Oh

coordination of the Co2+ Kramers ion on the 2c site is forbidden by the

2/m site symmetry; distortion modes both within and perpendicular to the

octahedral plane are thus active, giving rise to degenerate splittings of the

CEF by Kramers theorem.

For lattice translations τj ∈ Λ with j = 1, 2, 3, the spatial isometries of G,

written in Seitz notation, take the form

{1|0}, {2010|0}, {1|τ1}, {m010|τ1},

{1|τ3}, {2010|τ3}, {1|τ2}, {m010|τ2},
(4.2)

where τ1 = (0, 0, 12), τ2 = (12 ,
1
2 , 0), and τ3 = (12 ,

1
2 ,

1
2). Despite the presence

of symmetry elements g combining non-primitive lattice translations with

point symmetry operations, the structure is symmorphic since all isometries
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g ∈ G leave a single point fixed. The paramagnetic phase for T > TN

has additional non-unitary symmetries since the localized Co2+ moments

possess full SU(2) rotational freedom. This implies an invariance of spins

under time reversal T̂ : t → −t, with states transforming according to the

relation Û
(α)
θ |ψ〉 = |ψ〉 for any θ ∈ R and α = 1, 2, 3. Accordingly, the full

symmetry group M of the disordered high temperature phase is antiunitary,

given the presence of nonunitary symmetries, and is constructed by direct

sum with the primed group θG. Described by a type-II Shubnikov (gray)

group M = G⊕θG = G⊗{E, θ}, the paramagnetic phase has C2/m1′ (BNS

12.59) symmetry. The complete set of isometries include primed elements of

the form
{1′|τ1}, {2′010|τ1}, {1′|0}, {m′

010|0},

{1′|τ2}, {2′010|τ2}, {1′|τ3}, {m′
010|τ3}.

(4.3)

A sharp peak in the magnetic susceptibility χ(T ) is manifest below 15 K,

for an excitation field of µ0H = 0.1 T along the crystallographic c-axis. This

evidences a transition from the paramagnetic phase [208]. Dominant anti-

ferromagnetic interactions are suggested2 by a negative Weiss temperature

θ = −9.2 K, obtained from a fit of the inverse susceptibility χ−1(T ) to a Curie–

Weiss law χ(T ) = Nµ2eff/3kB(T − θ) in Ref. [208]. Antiferromagnetic order is

further corroborated by a λ-type anomaly in the specific heat Cp(T ), shown

in Fig. 4.3(a) from Ref. [208], and has been confirmed by neutron powder

2Note the contextual usage of the θ parameter here to describe the Weiss temperature, and
not the time reversal operator, as used previously in the context of magnetic symmetry.
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a b

Figure 4.3: (a) shows the temperature dependence of specific heat Cp(T )
in zero applied field, displaying a λ-type anomaly close to TN. (b) shows
an estimation of the magnetic contribution to the specific heat, CM(T ),
calculated by subtraction of the lattice contribution, estimated by a fit
to the Einstein model for temperatures 50−222 K. The entropy removal
is then calculated by integration SM(T ) =

∫
CM(T )/T dT and appears

consistent with Co2+ ions in a low spin S = 1
2 state. Adapted from

Ref. [208].

diffraction, which finds Néel type ordering of localized Co2+ moments with

propagation wavevector k⃗ = (1, 0, 12) [4, 209]. The ground state is discussed in

more detail in Secs. 4.5.1 and 4.5.2, where neutron single crystal and powder

diffraction results from the WISH and RITA-II instruments are presented.

The estimated SM(T ) at 20 K is shown in Fig. 4.3(b) from Ref. [208], and

is smaller than is expected to result from S = 3
2 Ising moments — instead, a

limiting value of SM = R ln2 is instead observed, consistent with S = 1
2 [208].

Moreover, a release of entropy below 20 K suggests the intra-chain degree

of freedom is frozen out, resulting in the formation of a 1D chain configura-

tion with strong in-chain coupling and weak inter-chain coupling [208]. This

is supported by results from inelastic neutron scattering (INS) [207]. The
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a b c

Figure 4.4: (a) shows the T dependence of magnetization plateaus below
TN, showing an increase in hysteresis and fine structure of with decreas-
ing temperature, along with an evolution of the critical fields. (b-c)
shows the directional dependence of the magnetization for field in the
bc- and ac-plane respectively. Adapted from Ref. [9].

susceptibility response and decay rate for field µ0H applied along the a and

b-axes is far smaller [3]. This suggests an easy axis perpendicular to the chain

direction — that is, along the c-axis. Meanwhile3, a modest linear response is

observed in the magnetization M for µ0H applied along the a and b-axes be-

low TN, thereby providing additional evidence for a uniaxial anisotropy [208].

Of particular interest, a hysteric and cascading series of magnetization

plateaus are manifest for T < TN, in which the total quantity Sz
tot =

∑
i S

z
i is

robust to varying applied fields [4–9]. For µ0H along the c-axis, an M/Ms =
1
3

plateau4 is stabilized, with additional steps observed upon decreasing tem-

perature [4]. This is accompanied by enhanced hysteresis at lower tempera-

tures [4]. The magnetization as a function of temperature below TN is shown

3Note the contextual usage of the M parameter here to describe the magnetization, and
not the magnetic space group, as used previously in the context of symmetry.

4We use Ms to represent the saturation magnetization.
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in Fig. 4.4(a) from Ref. [9]. The total moment in the plateau estimated

as ∼ 4.6µB/Co2+, far greater than is expected for a spin-only complex —

this discrepancy therefore suggests a significant orbital contribution [4–9].

Rich hysteretic phenomena are manifest below 5 K, as shown in Fig. 4.4(a),

along with a shifting of the critical fields as temperature is varied. Moreover,

Figs. 4.4(b−c) demonstrate the fragility of the plateau state and critical tran-

sition fields to the direction of applied field. Initially suggested in Ref. [3]

from magnetization measurements, this was later confirmed by x-ray mag-

netic circular dichroism [210], which also supports strong compression of the

CoO6 octahedra — consistent with the 2/m symmetry of the Co 2c site [210].

Neutron powder diffraction found that in the vicinity of the M/Ms = 1
3

plateau, the magnetic propagation vector shifts to k⃗ = (−1
3 , 1,

1
3). This break-

ing of symmetry is associated with a group-subgroup relation, marking a

change of phase as a long-range ferrimagnetic structure is stabilized [211, 212].

Meanwhile, INS on powdered samples found spin-orbit transitions between

the ground jeff = 1
2 doublet and the jeff = 3

2 and jeff = 5
2 multiplets. An

appreciable energy separation between the jeff = 3
2 spin-orbit levels and

jeff = 1
2 ground state results from the combination of the local octahedral

crystal field and SOC, while the small exchange coupling between the spins

relative to the anisotropy energy is suggestive of an underlying uniaxial Ising

symmetry [207]. The ground state of Co2+ can be projected onto a jeff =
1
2

state [208, 213], and is well separated in energy from the jeff =
3
2 spin-orbit

levels [207], differing from rocksalt CoO, in which strong mixing between the
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jeff spin-orbit levels is induced by a large exchange constant [213–215].

Low energy magnetic excitations are found deep within the Néel state,

taking the form of either two distinct modes or a single dispersing band

as shown in Fig. 4.5 from Ref. [207]; in either case, these data suggest a

gap in the magnetic dynamics5. Local distortions of the crystalline electric

field further support an Ising anisotropy [210, 217] — this is evidenced by the

gap in the magnetic dynamics, along with the magnetic critical scattering

discussed in Sec. 4.5.3. Closer examination of the magnetization curve below

5 K presented in Fig. 4.4(a) from Ref. [9] (as well as at dilution temperatures

in Secs. 4.5.3 and 4.5.4) reveals fine structure beyond that of the well-studied

M/Ms = 1
3 plateau found to be associated with a long-range ferrimagnetic

transition of the magnetic structure [211, 212]. The satisfactory explanation

of the stabilization of these states has proven difficult to tackle and has, as

such, remained an open question in the literature.

4.3 Theoretical considerations

It is natural to ask whether the emergence of such fractional plateaus coin-

cides with the onset of distinct magnetic correlations. In the following expo-

sition, we address this question and discuss two predictive models, exploiting

different features of the crystal and magnetic symmetry.

5To elucidate the exact nature of these low temperature modes, single-crystal INS is nec-
essary to determine their Q⃗-dependence. We had prepared to conduct this experiment
on the IN5 beamline [216] (ILL, France), but unfortunately, both of our beamtime
applications were unsuccessful.
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a b

Figure 4.5: Low energy magnetic excitations within the Néel state ob-
served from INS on powder samples in α-CoV2O6 . Either two separate
excitations or a broad band of excitations are present, suggesting the
possibility of a gapped spectrum of states. Adapted from Ref. [207].

4.3.1 TLA and ANNNI models

Somewhat subtle, yet nonetheless striking, is the anisotropic triangular mo-

tif that defines a network of magnetic exchange out of the ac-plane; with

this in mind, the role of competing interactions and magnetic frustration is

called into question. We note a resemblance of this structural feature to the

geometrically frustrated triangular lattice antiferromagnet (TLA), for which

field-induced phases have predicted in Ref. [194] as a function of anisotropy

D and nearest-neighbor exchange coupling J1. This model was originally

developed to explain the noncollinear incommensurate phase observed in fer-

roelectric CuFe2O4 [191, 192, 194, 218]. The phase diagram of the model,

which considers the couplings between magnetic and ferroelectric moments,
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a b c

Figure 4.6: (a) shows the phase diagram of CuFe2O2, displaying an array
of possible collinear phases as a function of anisotropy D, and exchange
J1, with the schematic representations of the collinear phases shown in
(b) with three, four, or five sublattices, where white and red circles denote
magnetic sites of opposite spin direction. From Ref. [194]. (c) shows an
infinity of commensurate phases based upon antiphase boundaries in the
anisotropic next-nearest-neighbor Ising (ANNNI) chain, springing from a
multiphase point at zero temperature, as a function of relative exchange,
−J2/J1. Adapted from Ref. [219].

is shown as a function of D/|J1| in Fig. 4.6(a) from Ref. [194]. Along with

the emergence of equilibrium magnetization plateaus, the model predicts the

realization of numerous collinear and noncollinear ordered states, which stabi-

lize depending on the ratio D/|J1|. A subset of these, with varying numbers

of sublattices, are shown in Fig. 4.6(b) from Ref. [194]. A central prediction

of the model is the instability of collinear phases to noncollinear order with

decreasing anisotropy. Given its large anisotropy, α-CoV2O6 may present an

interesting case where a suitable balance of interactions facilitate the stabi-

lization of collinear phases that may be observed in diffraction experiments.

Equipped with a strong uniaxial anisotropy, ferromagnetically coupled

chains of localized Co2+ moments imbue the crystal structure and define
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a second key structural feature. Casting the problem in this light provides

the opportunity, by course-graining, to reduce the complexity of the inter-

action problem. In Fig. 4.6(c), the phase diagram of an anisotropic next-

nearest-neighbor Ising model (ANNNI) as a function of the ratio κ = −J2/J1

is presented from Ref. [219]. Central to the model is the stipulation of an

on-site Z2 symmetry about a global axial direction, with nearest-neighbor

exchange interactions J0, J1 > 0 within S = 1
2 layers and competing next-

nearest-neighbor couplings J2 = −κJ1 between layers. Unlike the TLA model

discussed previously, the ANNNI model is restricted to the consideration of

commensurable collinear phases, emerging at low temperatures.

The resulting phase space is no less rich, however, with an infinity of dis-

tinct, spatially modulated phases predicted to spring from a multiphase point,

based upon antiphase boundaries with wavevectors qj = πj/[(2j + 1)a] for

j ∈ N0 [219]. These states are notated by 〈2j−13〉; referring to the axial

symmetry, the states comprise j − 1 pairs of lattice layers pointing two-up,

two-down, followed by three layers all pointing up. For instance, the state

〈233〉 ≡ (2, 2, 3) takes the form . . . ↑↑↓↓↑↑↑↓↓↑↑ . . . , with the antiphase

boundary about the center clear. For κ > 1
2 , the ground state is the four-fold

degenerate antiphase 〈2〉 phase with wavevector q = qinf = 2π/4a [219]. Ex-

perimentally, the formation of antiphase states would manifest a response in

S(Q⃗) resembling the characteristic signature of stacking fault defects, with

magnetic spectral weight in reciprocal space redistributed among short-range

correlations.
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4.3.2 Haldane’s conjecture

Exotic in nature, 1-dimensional (1D) antiferromagnets are chiefly charac-

terized by the stabilization of disordered ground states [220]. Referring to

Ref. [221], we consider the antiferromagnetic Heisenberg model with spin

S = 1
2 , 1,

3
2 , . . . on the 1D lattice ΛL = {1, 2, . . . , L}, where L is even. Hal-

dane argued in 1983 that an excitation gap is manifest for chains of integer

spins, but is absent in the case of half-integer spins [10, 11]. In the following

exposition, we present arguments from Ref. [221] to support the manifesta-

tion of this behavior.

Spin operators act on a (2S + 1) dimensional Hilbert space, denoted by

h0. A spin is present on each lattice site x ∈ Λ, and is associated with a

Hilbert space hx identical to that of h0. The basis state of hx corresponding

to |ψσ〉 ∈ h0 is denoted by |ψσ
x〉, while spin configurations are determined

by the multi-index σ = (σx)x∈Λ, with σx = −S, . . . , S − 1, S. The Hilbert

space of the spin system on the lattice Λ is given by H =
⊗

x∈Λ hx, and has

dimension (2S+1)|Λ|. These definitions facilitate the definition of a standard

basis, as given by the expression

|ψσ〉 =
⊗
x∈Λ

|ψσx
x 〉 . (4.4)

Invoking periodic boundary conditions, we identify ŜL+1 with Ŝ1 and finally
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define the spin Hamiltonian for our system by

Ĥ =
L∑

x=1

Ŝx · Ŝx+1. (4.5)

Assuming that our antiferromagnetic spin system occupies a connected

bipartite lattice, with sublattices |A| = |B|, the Marshall-Lieb-Mattis theo-

rem [222, 223] is valid and states that the ground state can be expanded in

the standard basis [Eq. (4.4)]

|ΦGS〉
∑
σ

(σ=0)

{∏
x∈B

(−1)σ,−S

}
cσ |ψσ〉 , (4.6)

with coefficients satisfying cσ > 0 for any σ with σ = 0. In Eq. (4.6), we have

also used the definition σ =
∑

x∈Λ σx. This theorem guarantees that the

ground state |ΦGS〉 is unique and has Stot = 0; this implies (Ŝtot)2 |ΦGS〉 = 0,

and furthermore that Ŝ(α) |ΦGS〉 = 0, for α = 1, 2, 3. The rotation operator

is defined by

Û
(α)
θ = exp

[
−iθŜ(α)

tot

]
=
∏
x∈Λ

exp
[
−iθŜ(α)

x

]
, (4.7)

and from this, we can see the ground state is SU(2) invariant for any θ ∈ R,

since we have Û (α)
θ |ΦGS〉 = |ΦGS〉 for α = 1, 2, 3.

The S = 1
2 antiferromagnetic Heisenberg chain is among the most well-

studied problems in many-body physics; it is known to be ‘exactly solvable’,
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thereby allowing physical quantities to be calculated under a set of plausible

assumptions. The first exact solution was obtained by Bethe in 1931 [224]

using an ansatz method which allowed for the computation of energy eigen-

states as well as their eigenenergies. Based on exact computations such as

these, the ground state and low-energy excitations of the model are gener-

ally believed to satisfy the following conditions, namely (a) the ground state

is unique for both finite and infinite L, (b) there is no energy gap above

the ground state energy, and finally (c) the ground state correlation func-

tion decays slowly following a power law. The Marshall-Lieb-Mattis theorem

[Eq. (4.6)] guarantees the uniqueness of the ground state, as stated in (a) for

finite L. In the case of L→ ∞, uniqueness implies an absence of long-range

order, or equivalently, an absence of spontaneous symmetry breaking (c.f.

Shastry’s theorem [225, 226]). In 1D, the stabilization of antiferromagnetic

order in the ground state order is inhibited by strong ‘quantum fluctuations’.

When we refer to an absence of a gap, there is in fact a state with an

infinitesimally higher energy than the ground state; this scales according to

O( 1L), and as L grows, a gapless continuum is manifest in the L → ∞ limit.

In terms of (c) above, it is believed that the two-point correlation function

in the ground state has asymptotic behavior, with the functional form

〈ΦGS| Ŝx · Ŝy |ΦGS〉 ∼ (−1)x−y

√
log |x− y |
|x− y |

, (4.8)

valid for 1 � |x − y | � L. Leading order behavior is manifest due to the
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(−1)x−y/|x− y | term and gives rise to a slow decay, while by the logarithmic

term provides a subtle correction [227–229]. We see that the sign factor is

consistent with the expression 〈ΦGS| Ŝx · Ŝy |ΦGS〉 > 0 when x, y ∈ A or x, y ∈

B and 〈ΦGS| Ŝx · Ŝy |ΦGS〉 < 0 when x ∈ A, y ∈ B or x ∈ B, y ∈ A. These

inequalities follow from the Marshall-Lieb-Mattis theorem, with the sets A

and B referring to each sublattice of the bipartite lattice. The functional

form of the correlation function bears resemblance to that of the power law

decay manifest in the classical D ≥ 2 Ising model [230, 231]; this is generally

associated with critical phenomena, and indeed, a quantum critical point is

well known to manifest in the S = 1
2 antiferromagnetic Heisenberg chain.

In the parlance of field theory, the generally accepted assumptions about

the model are consistent with a description of the low energy properties in

terms of a massless field theory, without the presence of spontaneous symme-

try breaking. In this case, gapless behavior is manifest corresponding to the

creation of massless particles from the vacuum with infinitesimally small en-

ergy cost; such particles are mediated by a long-ranged force, decaying with

a power law as in Eq. (4.8).

While it is only possible to obtain exact solutions in the case of S = 1
2 ,

it was argued by Haldane in two 1983 papers that qualitative differences

can be discerned between the low energy properties of the model, depending

on whether the value of S is a half-odd integer or a whole integer [10, 11].

While both half-odd and whole integer spin chains share the property of a

unique ground state for both finite and infinite L, quantum fluctuations are
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much stronger in the latter case. In the case of half-odd integer S, Haldane

argued that the low-energy properties are characterized additionally by (a)

the lack of an energy gap above the ground state, and (b) the slow decay

of the ground state correlation function, following a power law; for these

reasons, the ground state is critical in the parlance of statistical mechanics,

and massless in the parlance of quantum field theory. These properties are in

contrast to the case of integer S, which Haldane argued is characterized by

(a) the existence of a nonvanishing energy gap above the ground state energy,

and (b) the exponential decay of the ground state correlation function.

The existence of a gap for integer S, as stated in (a) above, implies that

there exists a strictly positive difference between the ground state energy

and the first excitation energy — which is nearly independent of the system

size L— with the energy difference ∆H known as the Haldane gap. Haldane

argued, with a field theoretic analysis [10, 220, 232], that the gap energy

varies according to ∆E ' 2S exp(−πS) for S � 1. As discussed in (b)

above, the ground state correlation function decays exponentially, implying

that asymptotic behavior is manifest; the functional form varies according to

〈ΦGS| Ŝx · Ŝy |ΦGS〉 ∼
(−1)x−y

|x− y |1/2
exp

[
−|x− y |

ξ

]
, (4.9)

and is valid for x and y such that ξ � |x− y | � L. Here, ξ is the correlation

length with 0 < ξ <∞, with the main term given by (−1)x−y exp[−|x− y |/ξ].

A power law correction, given by |x−y |−1/2, is present as a generic feature of
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the disordered ground state in 1D quantum systems and in equilibrium states

of 2D classical systems. The asymptotic behavior is essentially the same as

the Ornstein-Zernike form, manifest in 2D Ising model at T > Tc, with the

addition of an oscillating sign factor on account of the antiferromagnetism.

Disorder is expected in the ground state of integer S chains at low temper-

atures akin to that manifest generally at higher temperatures where strong

thermal fluctuations dominate; the origin of this disorder is instead thought

to originate from strong quantum fluctuations.

4.3.3 Lieb-Schultz-Mattis theorem

By Haldane’s conjecture, we do not expect an energy gap to manifest in the

spectrum of the half-integer S chain; on account of this, we therefore do

not expect the presence of magnetization plateaus in this system based on

energetics alone. In the case of dimerized S = 1
2 magnets, however, a gap

in the energy spectrum is manifest [177, 178], and thereby allows the system

to support the emergence of magnetization plateaus [233]. Half-integer S

chains have been proposed to host analogous Haldane gapped phases [176],

and hence, plateaus of the magnetization based on general reasoning and

the Lieb-Schultz-Mattis (LSM) theorem [12]. Following from this realization,

spatially short ranged dilute-dimerized phases have been predicted to exist

in half-integer spins [234].

Alternative explanations for the presence of magnetization plateaus in

half-integer S chains include, for instance, the order by disorder mecha-
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nism in which a ground state is stabilized on account of quantum fluctua-

tions [235–237]. However, the LSM theorem states that it is possible for a

spin chain to have an energy gap without breaking long-range translational

symmetry in the case where the magnetization per spin satisfies the condi-

tion (S − m) ∈ Z. In the case that (S − m) = p/q where p and q are

coprime [i.e. gcd(p, q) = 1], a short-range ordered state can be stabilized

preserving gauge-invariance with a periodicity of T̂ q. In the case where mag-

netization plateaus are manifest, one can assign to each plateau a value of

p/q and hence extract the translational symmetry of the ground state, us-

ing the general arguments outlined previously. Such periodicities represent a

state magnetization induced symmetry; they are associated with modulated

ground states, although their stability is dependent on the interaction terms

present microscopic Hamiltonian.

Referring to Refs. [12, 176, 234], we consider a Hamiltonian Ĥ that is in-

variant under rotations about the z-axis. We define a unitary transformation,

according to

Û = exp

−i L∑
j=1

(
2πj

L

)
Ŝz
j

 , (4.10)

where L specifies the size of the system. Considering a state |ψ〉 with energy

ϵ, we perform a unitary rotation about the z-axis to acquire a new, rotated

state with an energy ϵ′

Ĥ(Û |ψ〉) = ϵ′(Û |ψ〉). (4.11)
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This leads, after algebraic manipulation, to the relation

〈ψ| (Û †ĤÛ) |ψ〉 = ϵ′ − ϵ = δ, (4.12)

where we have defined δ = ϵ′−ϵ; subsequent expansion of the unitary rotation

operator then yields

〈ψ| {[1 +O( 1L)]Ĥ[1 +O( 1L)]− Ĥ} |ψ〉 = δ, (4.13)

therefore implying that δ ∼ O( 1L). From this, we can infer that there exists

an excited state with an energy O( 1L), unless Û |ψ〉 and |ψ〉 are not mutually

orthogonal, in which case, we instead have ϵ = ϵ′. We can demonstrate this

through consideration of two eigenstates of the Hamiltonian, namely |ψ1〉

and |ψ2〉, having energies ϵ1 and ϵ2 respectively. By premultiplication of each

state’s Schrödinger equation with the other state, we obtain the relations

〈ψ2| Ĥ |ψ1〉 = ϵ1 〈ψ2|ψ1〉 , (4.14)

〈ψ1| Ĥ |ψ2〉 = ϵ2 〈ψ1|ψ2〉 . (4.15)

The Hermitian conjugate of Eq. (4.15) can be equated with the LHS of

Eq. (4.14), from which it is clear that the equality

ϵ2 〈ψ2|ψ1〉 = ϵ1 〈ψ1|ψ2〉 (4.16)
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holds only if ϵ1 = ϵ2 or 〈ψ2|ψ1〉 = 0. In other words, in the case where

differing eigenvalues |ψ1〉 and |ψ2〉 are manifest, it must be the case that they

are orthogonal. Therefore, if there is a low-lying state with a different energy

to the ground state, then |ψ〉 and Û |ψ〉 are necessarily orthogonal.

We suppose now that Ĥ is invariant under lattice translations, as encoded

by the operator T̂ ; this symmetry of the system provides the mapping

Û → T̂ Û T̂ , (4.17)

and by inserting our definition of the unitary operator [Eq. (4.10)], we find

T̂ Û T̂ = exp

−i L∑
j=1

(
2πj

L

)
Ŝz
j+1


= exp

−i L∑
j=1

(
2πj

L

)
Ŝz
j

 exp

−i(2π

L

) L∑
j=1

Ŝz
j

 exp
(
2πŜz

1

)
.

(4.18)

This leads us to the equality

T̂ Û T̂ = Û exp

2πiŜz
1 − i

(
2π

L

) L∑
j=1

Ŝz
j


= Û exp [2πi (S −m)] ,

(4.19)

where we have used periodic boundary conditions in simplifying the expres-

sion, and further identified the magnetization per site as m = 1
L

∑L
j=1 Ŝ

z
j . We
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find, therefore, that the effect of the translation operator is to introduce a

phase factor, akin to a Berry phase, with the topological index C = (S −m).

We revisit the considerations of orthogonality of |ψ〉 and Û |ψ〉, and apply

the mapping of Û , as provided by Eq. (4.17). If these two states are to be

orthogonal, then we require that

〈ψ| Û |ψ〉 = 〈ψ| Û |ψ〉 exp [2πi(S −m)] . (4.20)

It is clear that for this to hold true, we require (a) that the initial and rotated

states are orthogonal, and (b) (S−m) ∈ Z. In the case that (S−m) /∈ Z, there

exists a low lying state with energy O( 1L). As L → ∞ we therefore expect

a continuum of such states, and hence gapless excitations. By contrast, if

(S − m) ∈ Z there is no low-lying state with energy O( 1L); a gap to the

first excited state is therefore manifest. When a gap to the first excited

state is present, a slowly ramping applied magnetic field will not give rise

to a deformation of the ground state to another eigenstate. Consequently, a

magnetization plateau can be realized; this argument can also be applied in

these cases of higher order T̂ q symmetries, with the quantization condition

given by n(S −m) ∈ Z.

An analogy with the fractional quantum Hall effect (FQHE) can be made

if we consider cases where the quantization is not met. For instance, consider

the case where (S − m) = 1
4 ; from Eq. (4.18), we know that the unitary

rotation Û has the effect of changing the eigenvalue of T̂ by a phase factor
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exp [2πi(S −m)]. In this case, repeated application of the Û operator three

times results in three distinct T̂ eigenvalues, with the fourth application of

Û resulting in the same eigenvalue as |ψ〉. Since the three orthogonal rotated

states have low energy ∼ O( 1L), in the limit L → ∞ the un-rotated state

and its three rotated states form a four-fold degenerate subspace. These

four states all have different eigenvalues of T̂ , however; consequently, the

(S − m) = 1
4 state is endowed with a T̂ 4 symmetry. We should therefore

expect a gap in this four-site translation-invariant state, as it is not possible

for it to be rotated by Û to an orthogonal state with an energy O( 1L).

If the energies can be accessed, in theory other T̂ q states can be probed.

Some of these may be unstable, however, and a more detailed examination of

the interaction terms in Hamiltonian via a bosonization procedure could im-

part a more rigorous understanding of plateau selection rules. Alternatively,

based on an intuition for the ground states of chain-like systems, we may hy-

pothesize that from classical point of view, possible ground states may mani-

fest in the form of (a) the T̂ 2 state with (S−m) = 1
2 given by . . . ↑↓↑↓ . . . , or

(b) the T̂ 4 state with (S −m) = 1
4 given by . . . ↑↑↓↓↑↑↓↓ . . . . Other possible

ground states could be stabilized such as VBS-like states, or ‘dimer density

waves’ type states; in the case of integer values, however, states are gapped

and cannot be smoothly transformed with the application of field, leading

to the emergence of magnetization plateaus and a Bloch state analogue of

QHE [168, 169, 176].
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4.4 Experimental details

Before embarking on an investigation of the field induced plateau states, as

described in Sec. 4.5.3, a concrete understanding of the virgin state is re-

quired. In general, the long wavelength properties of correlated d-electron

systems are complicated by an active orbital degree of freedom. For instance,

orbital ordering has been found to drive multiferroicity and magnetoelectric

coupling in GeV4S8 [238], while in the related ferroelectric Vanadate system

Co2V2O7, a noncollinear magnetic ground state has been reported in con-

cert with magnetoelastic coupling [239]. After developing a more complete

understanding of the ground state, we investigate field-induced magnetic cor-

relations in the vicinity of the plateaus in Sec. 4.5.3 and the stability of these

states in Sec. 4.5.4.

Single crystal [3] and powder [209] samples of α-CoV2O6 used in the ex-

periments described in this chapter were prepared using the flux method by

colleagues Chris Stock and Manila Songvilay at the University of Edinburgh.

Our samples were characteristically small with typical masses in the range

m = 0.6 − 4 mg, and spatial dimensions typified by the following ranges of

length l = 2 − 4 mm, width w = 0.6 − 2 mm, and thickness t = 0.3 − 0.7 mm.

The morphological characteristics of our single crystal samples were investi-

gated by XRD, carried out on a number of a number of samples using a Laue

diffractometer at the materials characterization lab (ISIS, UK). Our samples

were found to reliably conform to the features expected from crystals of the
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Brannerite series; these synthetic Vanadates form with a prismatic habit and

commonly display an orthogonal prism zone, as illustrated in Fig. 4.2(a).

This morphological feature is useful for coalignment since prominent (h, 0, l)

and (h, 0, l) faces manifest on opposite sides of the crystal, thereby allowing

for the convenient assembly of large crystal volumes with minimal mosaic —

albeit at the cost of introducing an inconsequential π-domain.

4.4.1 Ground state magnetism

The WISH diffractometer (ISIS, UK) was used to characterize the tempera-

ture dependence of single crystals and powders in zero applied magnetic field;

the results of these investigations are presented in Secs. 4.5.1 and 4.5.2 respec-

tively. A 4.36 g powdered sample was sealed within a 6 mm Vanadium can

to achieve a low degree of background contamination. Data were collected in

increments of 0.5 K from 1.4 K before decrementing to increments of 0.25 K

near TN for enhanced detail in the vicinity of the critical region around the

antiferromagnetic transition.

For this experiment, the piezoelectric jaws in the last few meters of the

instrument were configured to deliver a beam divergence of 0.2°, while the

counter-rotating Fermi choppers along the primary flight path of the beamline

were phased to provide measurements in a single time-of-flight frame, thereby

reducing the degree of frame overlap. This facilitates measurements with a

spatial resolution of ∆Q/Q = 0.03 %, as defined in Chap. 3, necessary for

accurate Le Bail refinements to track the evolution of unit cell parameters.
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Good counting statistics were required in this investigation of the coupling

between spin and lattice systems for the sufficiently accurate determination

of bond lengths and their evolution with temperature. Accordingly, data was

collected continuously until a beam current of 33 µA was obtained at 16 K

to facilitate an accurate refinement of paramagnetic structure, while in the

ordered phase at 1.5 K an incident beam current of 10 µA was recorded. At

intermediate temperatures, an incident beam current of 5 µA was recorded

to facilitate a cyclic refinement of the structure with changing temperature.

Data was normalized to the incoherent scattering of Vanadium and grouped

into two sets of five banks, sharing an average 2θ value, using the MantidPlot

program [38]. Structural refinements6 were carried out using the Jana2006

program [143], with a separate instrument resolution function used for each

set of angle-grouped banks.

The temperature dependence of nuclear and magnetic reflections was stud-

ied on a single crystal sample aligned with (h, 0, l) in the horizontal scattering

plane, mounted upon a small Aluminum goniometer, secured in Aluminum

foil, and tied off with Cadmium wire. The segments of the mount exposed

to the beam shielded were with Cadmium for a minimal and predictable

background signal, and further improved through use of a dedicated low-

6We note that the neutron refinements would have benefited from the refinement of the
Vanadium position and anisotropic displacement factors (ADPs) from XRD data (as
defined in Chap. 3), on account of the small coherent neutron scattering length for
Vanadium. Due to technical difficulties with the low temperature x-ray diffractometer
available to us at the Centre national de la recherche scientifique (CNRS), however, this
was unfortunately not possible.
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background Oxford Instruments Variox cryostat. The Fermi choppers along

the primary flightpath were phased to deliver a double frame for maximum

flux at the sample position. Characterization on the RITA instrument, as

described in Sec. 4.4.2, found an enhancement of intensity of the nuclear

Q⃗ = (0, 0, 2) reflection below TN. To investigate the possibility of a poten-

tially weak incommensuration — that is, an additional k⃗ = 0 component —

the equivalent Q⃗ = (0, 0, 2) reflection was oriented and measured at 90°,

where diffracted flux is at its highest for comparison to the RITA data. This

reflection is appropriate since it occurs at low Q and therefore suffers minimal

dampening from the effects of the magnetic form factor f(Q).

For this experiment, the piezoelectric jaws were configured to deliver a

beam divergence of 0.4°, with the beam-scraper configured to shape the exit

profile of the beam to 20× 40 mm. Data were collected between the cryostat

base temperature 1.43 K and 15.5 K, with counting statistics defined by the

requirement of 10 µA beam current per run. Temperature increments between

runs were decremented to steps of 0.125 K between 12 and 15.5 K for detail

around the transition, with the final run at 16 K in the paramagnetic phase

having counting statistics defined by a collected beam current of 15 µA to

enable robust comparisons. In addition to the primary crystallite, intensity

from a smaller, secondary crystallite is present; these contact twins are related

by an Albite twin law, characterized by the twin-plane {h, 0, 0}. Separate UB

matrices were refined for each crystallite, used in the conversion between the

lab frame and reciprocal lattice frames. These were maintained throughout
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subsequent analysis of reflections. Raw data was normalized to incident beam

current (µA) and to incident monitor counts after being cropped between

the resolution limits 6 × 103 − 99 × 103 µs of time-of-flight. Both panel and

monitor data were normalized to the incoherent scattering of an absorption

corrected V0.95/Nb0.05 sphere dataset with excellent statistics.

4.4.2 Field-induced magnetism

Exploratory magnetization experiments below 0.1 K were carried out by col-

leagues at the Institut Néel in Grenoble on a single crystal sample, with field

oriented approximately along the c-axis, using a low temperature SQUID

magnetometer [240] and a Physical Properties Measurement System (PPMS).

The results of these measurements are presented alongside in-field neutron

diffraction data in Sec. 4.5.3.

Further magnetization measurements were carried out using a coaligned ar-

ray of single-crystals of total mass 6 mg, mounted by GE varnish to a copper

plate with dimensions 4 mm × 4 mm × 0.1 mm. Measurements at T = 2.5 K

were carried out in a PPMS, equipped with vibrating sample magnetome-

ter (VSM) at Cardiff University. Additional magnetization measurements at

T = 0.4 K were performed in a Magnetic Properties Measurement System

(MPMS3) equipped with a sub-2 K iHelium3 dilution system at the materi-

als characterization lab, ISIS, UK. In both cases, the coaligned sample array

was secured in a standard-issue Quantum Design straw mount. The degen-

eracy of the states underlying the magnetic transitions were investigated by
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examining the hysteresis effects associated with minor field-loops, along with

the dynamical properties of the plateaus, as described in Sec. 4.5.4; these

were investigated by considering the effects of varying field-sweep rates, as

well as the magnetic relaxation resulting from interrupted field sweeps. The

coaligned sample array was aligned such that the vertical magnetic field was

orientated principally along the easy c-axis, but with a small component out

of the ac-plane. Despite best efforts to mount the sample array robustly,

comparison against directionally dependent magnetization data in Ref. [9]

suggests that some slip or reorientation occurred in applied fields, and was

most severe at low temperatures. It is possible that this was caused by shear

forces on the corners of the copper plate — initially installed biting into the

internal walls of the straw — induced by thermal contraction during cooling.

Neutron diffraction experiments under applied magnetic fields were carried

out on the WISH diffractometer (ISIS, UK). Due to kinematic constraints of

the vertical magnetic field layout, access to magnetic Bragg peaks given the

reduced detector coverage required an appreciable component of the magnetic

field out of the ac-plane. Refined from a single nuclear and single magnetic

Bragg reflection, the sample orientation was defined by a UB matrix with

components of 2.1°, 15.2°, and 85.3° along the a, b, and c axes respectively.

Single crystals were studied between T = 0.1 − 4.5 K over the course of two

beamtime cycles, with great care taken to ensure that the sample orienta-

tion was the same each time; the results obtained from these experiments are
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presented in Sec. 4.5.3. Data were collected between absolute field limits7 of

µ0H = 0.015−6 T in all four quadrants of the magnetization curve. This pro-

vided information on the hysteretic nature of the magnetic correlations, with

counting statistics of 30 µA recorded at each field step. Raw data was normal-

ized to incident beam current (µA) and to incident monitor counts after being

cropped between the resolution limits 6 × 103 − 99 × 103 µs of time-of-flight.

Both panel and monitor data were normalized to the incoherent scattering of

an absorption corrected V0.95/Nb0.05 sphere dataset with excellent statistics.

The intensity of magnetic reflections was obtained by spherical integration in

reciprocal space, while linecuts through the diffuse scatter were calculated by

binning along, and perpendicular to, the direction of the antiferromagnetic

propagation wavevector, k⃗ = (1, 0, 12). The µ0H = 6 T and −6 T runs, at

which the magnetic structure is fully polarized in the ferromagnetic phase,

are used for background subtraction — the corresponding background sub-

traction for each run was dependent upon whether the given value of applied

field was within the first two or last two quadrants respectively.

The MORPHEUS instrument was used to align a single crystal sample with

(h, 0, l) in the horizontal scattering plane ahead of a diffraction experiment

in horizontal magnetic field using the RITA triple-axis spectrometer (both at

PSI, Switzerland), to explore the directional dependence of applied field on

the magnetic correlations manifest at low temperatures. An initial character-

7A small field of µ0H = 0.015 T was used as an effective ‘zero’ since the Aluminum
components of the sample environment are superconducting at this temperature in the
absence of a magnetic field.
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ization was carried out in an Orange cryostat in zero applied magnetic field,

and the magnetic order parameter was measured in the Néel state over the

range T = 1.8 − 16 K. Interestingly, the nuclear Q⃗ = (0, 0, 2) reflection was

found to display a temperature dependence resembling that which would be

expected from a second-order magnetic transition. This observation partly

motivated a reinvestigation of the magnetic ground state — as described in

Secs. 4.5.1 and 4.5.2 — specifically aiming to harvest more reflections since

the detector coverage of RITA is limited, and to track their temperature de-

pendence in order to determine whether this observation was the signature

of an incommensuration of the magnetic ground state previously overlooked,

or perhaps resulting from magnetoelastic coupling. Measurements in applied

magnetic field were carried out using a dilution refrigerator insert to study

the field dependence of the magnetic correlations in the vicinity of the mag-

netization plateaus at T = 0.1 K, with the horizontal magnetic field oriented

along the c-axis, and with fixed a Ei ≡ Ef = 5 meV. Data were collected

at fields up to µ0H = 6 T, normalized to incident monitor count rate, and

placed on an absolute scale by normalization to the incoherent scattering of a

standard Vanadium dataset with good counting statistics. Given the reason-

ably low background achieved in the experiment, no subtraction was applied

to the data, as presented in Sec. 4.5.3.

To reconcile the results obtained from differing field geometries on the

WISH and RITA instruments — having nonzero and zero components of field

along the b-axis respectively — neutron powder diffraction was carried out at
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T = 0.1 K using a dilution refrigerator insert, and additionally at T = 1.5 K

on the TASP triple-axis spectrometer (PSI, Switzerland). Both a monochro-

mator and analyzer were employed, with a fixed Ei = 3 meV selected to

achieve a low degree of background contamination of the diffraction signal.

A 6 g powdered sample was pressed into a polycrystalline pellet to prevent

the reorientation of grains in applied field and mounted in an Aluminum can;

given the statistically random distribution of grains in powder, the applied

field acted isotropically upon the sample. Cooling was enhanced by supple-

mentary Helium exchange gas pressurized to 10 mbar, and connected to the

mixing chamber of the dilution refrigerator via a weak link, which served as

an additional pathway of heat transfer away from the sample. Beam shaping

was achieved using a Beryllium filter, with 80′ collimation on the scattering

side. The results obtained from these experiments are presented in Sec. 4.5.3,

with data normalized to incident monitor count rate for relative comparisons

of the distribution of intensity throughout reciprocal space.

4.5 Results and discussion

We first discuss the characterization of the magnetic ground state by single

crystal and powder neutron diffraction on the WISH instrument (ISIS, UK).

Motivated by the observation of a second-order type development of intensity

on the Q⃗ = (0, 0, 2) position from zero-field measurements on the RITA-II

instrument (PSI, Switzerland) below TN — kshown in Fig. 4.7 — we consider
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Figure 4.7: Temperature dependence of the Q = (0, 0, 2) reflection ob-
served on the RITA-II instrument in zero applied magnetic field. The
enhancement of intensity below TN is anomalous and suggests either the
presence of an antiferromagnetic k⃗ = 0 component, or strain arising
from magnetoelastic coupling. This observation motivates a reinvestiga-
tion of the nature of the magnetic ground state, discussed in Secs. 4.5.1
and 4.5.2.

the possibility of an incommensuration of the Néel state. Since no opening

of the magnetization curve is observed in this temperature region, any mani-

festing k⃗ = 0 component would be associated with an antiferromagnetic-type

distortion. The intensity variation appears to track that of the magnetic order

parameter, so we note the possibility that multiple scattering is responsible,

as well as the possibility of the coincidence of a twin satellite reflection on the

Q⃗ = (0, 0, 2) position. To investigate this, we carried out single-crystal neu-

tron diffraction on WISH to follow the temperature dependence of a number

of magnetic reflections in the (h, 0, l).
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On the other hand, the intensity enhancement below TN may be the sig-

nature of a magnetoelastic distortion giving rise to strain as a result of spin-

phonon coupling, with a concomitant release of extinction. We carried out

neutron powder diffraction on WISH to investigate any change to the struc-

ture, comparing refinements at each temperature step below TN. We seek

clarification of this question in the following sections Secs. 4.5.1 and 4.5.2,

and aim to explain the result obtained on RITA-II before proceeding to in-

vestigate the field-induced correlations in the vicinity of the observed magne-

tization plateaus.

4.5.1 Néel state robust to incommensuration

In the ordered phase, the magnetic structure is defined by the Néel wavevector

k⃗ = (1, 0, 12) which corresponds to an (a, b, 2c; 0, 0, 0) supercell, characterizing

the magnetic lattice Λk [209, 212]. Diagonal stripe-like order is manifest on

account of the centering of k⃗, while the modulation of the crystal potential can

be can be identified with a distortion at the M -point of the BZ. This provides

insight into the nature of the irreducible representations (irreps) involved in

the stabilization of the ordered state. Considering the Néel wavevector, the

little co-group of unitary symmetries is Gk = 2/m, with elements

{1|0}, {2010|0}, {1|0}, {m010|0},
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Table 4.1: The characters of the irreducible representations of
the unitary little co-group χD(g) = TrD(g) for matrix repre-
sentations D of the elements g ∈ Gk = 2/m. The decomposi-
tion with respect to the M point (1, 0, 12) of the BZ, associated
with the magnetic ordering of Co2+ moments occupying the 4c
Wyckoff position, results in the sum of irreducible representations
Γ = 2mM−

1 ⊕mM−
2 = 2Γ2 + Γ1.

Irrep Basis vector TrD(g) for g ∈ Gk

{1|0} {2010|0} {1|0} {m010|0}

Γ1 = mM+
1 − 1 1 1 1

Γ2 = mM−
1

ψ1 = (100)
1 1 −1 −1

ψ2 = (001)
Γ3 = mM+

2 − 1 −1 1 −1
Γ4 = mM−

2 ψ3 = (010) 1 −1 −1 1

while the magnetic little co-little group, Mk, is the antiunitary group 2/m1′

of primed elements.

The magnetic representation for a given point in the BZ can be decom-

posed into contributions from the irreps of the little co-group Gk = 2/m

via the relation Γ =
∑

ν nνΓν , where nν is the multiplicity of the irrep Γν

calculated by the relation nν = [n(Gk)]
−1
∑

h∈Gk
χΓν (h)χΓ∗

ν
(h). The Néel

wavevector alone completes the star of k⃗ with degenerate forms related by

lattice translations {1|⃗t} ∈ Λ. By considering magnetic distortions about

the Co 4c Wyckoff site, the possible irreps of the magnetic phase can be

elucidated. In line with expectations from Landau theory, a single k⃗-active

defines the transition. The only irrep compatible with the manifesting mag-

netic order is the mM−
1 mode. Its action on elements of the little co-group
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Figure 4.8: (a) shows the magnetic structure of the Néel state, with ori-
gin at the central 2/m′ position. The stabilization of the long-range
ordered phase below TN is associated with a reduction of symmetry con-
sistent with the group–subgroup relation C2/m′ (BNS 12.59) → Cc2/c
(BNS 15.90). (b-c) shows the symmetries of the magnetic structure. See
Refs. [54, 154] for notation.

g ∈ Gk, along with the basis vectors of the representations Γm(4c) of Gk, are

tabulated in Table 4.1.

The ordered phase is characterized by the magnetic space group Cc2/c

(BNS 15.90) [209, 212], and is shown in Fig. 4.8(a) along with the magnetic

symmetries in Fig. 4.8(b-c). We confirm the nuclear and magnetic structures

by the refinement of neutron powder diffraction data obtained from the WISH

diffractometer (ISIS, UK) at T = 16 K and T = 1.4 K respectively. Data was

processed and grouped by bank in the MantidPlot program, and Rietveld

refinements were carried out using the Jana2006 program. Data from the

2θ = 90° detector banks was refined above transition to obtain the nuclear
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Table 4.2: Crystal structure parameters for α-CoV2O6 at T = 16 K > TN,
obtained from a refinement of neutron powder diffraction data taken on the
WISH instrument, ISIS. Data processing and grouping of banks by average 2θ
was achieved using the MantidPlot framework [38]. The whole reduced dataset
was used in a refinement of the nuclear structure using Jana2006 [143], with
separate instrument resolution functions for each set of grouped banks. For
each atom type, the Wyckoff position (WP) and site symmetry are given, along
with its fractional coordinates (x/a, y/b, z/c), isotropic displacement factor
(Biso), and site occupation factor (SOF).

Atom x y z Biso SOF WP Site symmetry
Co 0.0000 0.0000 0.5000 0.0067(12) 1.00 2c 2/m
V 0.188(3) 0.0000 0.129(4) 0.027(5) 1.00 4i m
O1 0.0348(2) 0.0000 0.2239(3) 0.0028(5) 1.00 4i m
O2 0.3476(2) 0.0000 0.3911(3) 0.0033(4) 1.00 4i m
O3 0.6916(2) 0.0000 0.0623(3) 0.0015(4) 1.00 4i m

G = C2/m, a = 9.2305(2) Å, b = 3.50243(8) Å, c = 6.59994(16) Å, β = 112.0457(14)◦

GOF = 8.78%, Rp = 3.67%, Rwp = 4.85%

structure, while data from the 2θ = 122° detector banks was refined below

the Néel transition to obtain the magnetic structure at both base tempera-

ture and intermediate temperatures. The fitted profiles are shown shown in

Fig. 4.9(a) above the transition and Fig. 4.9(b) at base temperature respec-

tively. The comparison between observed and calculated structure factors

are shown in the insets, summarizing the quality of the refinements.

The refinement of the paramagnetic phase above the transition at T = 16 K

was terminated with figures of merit given by GOF = 8.78%, Rp = 3.67%,

and Rwp = 4.85%. The atomic positions and isotropic displacement factors

obtained from this refinement are given in Table 4.2. We note that a more
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a

b

Figure 4.9: Neutron powder diffraction results obtained on the WISH
diffractometer in zero applied field, at (a) T = 16 K and (b) T = 1.4 K <
TN. Rietveld refinements of the nuclear [panel (a)] and magnetic [panel
(b)] phases are shown, with reflection positions indicated. Below TN,
the intensity profile of the diffraction is marked by enhanced spectral
weight at reflection positions consistent with the propagation wavevector
k⃗ = (1, 0, 12) at theM point of the BZ. The relationship between observed
and calculated structure factors Fcalc/Fobs for the refined models are
shown in the insets. The refinement above TN, at 16 K, was terminated
with GOF = 8.78%, Rp = 3.67%, and Rwp = 4.85%. Meanwhile, deep
within the Néel state at cryostat base temperature, T = 1.4 K, the profile
was refined with overall figures of merit GOF = 5.40%, Rp = 4.20%, and
Rwp = 5.32%. The refined moment at base temperature was found to
have components ma = 0.951(64),mb = 0.000(0), and mz = 5.394(79),
with a total moment of mtot = 4.721(79) consistent with the ranges
reported in previous reports [209, 212].
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accurate refinement could have been obtained if XRD was carried out at the

same temperature to refine the Vanadium position and isotropic displacement

factor, subsequently fixing these parameters in the neutron refinement, since

the coherent neutron scattering length of Vanadium is small. The diffrac-

tometer available to us at the CNRS was experiencing technical difficulties,

however, so this could not be done. Despite this, considering the figures of

merit obtained and the linear relationship between observed and calculated

structure factors with few outliers, the fit quality is acceptable.

Meanwhile, the refinement of the ordered phase at T = 1.4 K was termi-

nated with figures of merit given by GOF = 5.40%, Rp = 4.20%, and Rwp =

5.32%. A similar relationship between observed and calculated structure

factors was obtained, characterizing an acceptable refinement. The refined

moment in the Néel phase had components ma = 0.951(64),mb = 0.000(0),

and mz = 5.394(79), with a total moment of mtot = 4.721(79) consistent

with previous reports [209, 212]. No spectral weight was found to distribute

among incommensurations of the Néel state, with no addition satellite peaks

characterizing the presence of a second propagation vector manifest.

We show in Fig. 4.10 variation of the integrated intensity of the Q⃗ =

(3, 0, 12) and Q⃗ = (0, 0, 2) reflections obtained from single crystal on WISH,

along with the variation of integrated intensity of the Q⃗ = (1, 0, 12) obtained

from single crystal on RITA-II. The intensity variation of the magnetic peaks

characterize the magnetic order parameter |M |2 ∝ |T−TN|2β and are in broad

agreement across instruments, corroborating the underlying Ising nature of
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Figure 4.10: Magnetic order parameter |M |2 ∝ |T −TN|2β. Shown is the
temperature dependence of the (1, 0, 12) reflection measured on RITA-
II, along with the (3, 0, 12) and nuclear (0, 0, 2) reflections measured on
WISH. No additional satellite peaks were observed at the temperatures
studied, while the variation of the nuclear (0, 0, 2) is centered on a con-
stant value, within errorbar, indicating no magnetic k⃗ = 0 contribution
at the BZ center.

the material. The fit from WISH reveals β = 0.16(2) consistent with the

2D-Ising universality class [241].

Our WISH data shows no evidence of the enhancement of intensity found

for the Q⃗ = (0, 0, 2) reflection on the RITA-II instrument, with the equiva-

lent Q⃗ = (0, 0, 2) reflection effectively constant with decreasing temperature

below TN. Indeed, no other nuclear reflections were found to display anoma-

lous temperature dependence, suggesting that there is in fact no additional

k⃗ = 0 contribution, and purely magnetic incommensuration of the ground

state. These data suggest that the magnetic transition is driven by a single

active irreducible representation, with agreement between WISH and RITA-
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II, except with regard to the temperature variation of the Q⃗ = (0, 0, 2) type

reflection. This observation lends weight to the possibility that multiple scat-

tering, or perhaps the coincidence of a magnetic satellite from a twin crys-

tallite with the Q⃗ = (0, 0, 2) position, explains the anomalous temperature

dependence observed on RITA-II.

4.5.2 Néel state robust to magnetoelastic distortions

The temperature dependence of the lattice parameters was obtained from

the refinement of our neutron powder diffraction data collected on the WISH

instrument. These results are shown in Fig. 4.11, with the Q-resolution of

WISH indicated. After the initial refinements of the nuclear structure at

T = 16 K and magnetic structure at base temperature T = 1.4 K, a cyclic

refinement was carried out to refine the magnetic structure at intermediate

temperatures using the Jana2006 program. The refinement was run twice —

once starting from base temperature and running up to T = 15.5 K, and then

additionally in reverse order to check thata the refinement did not terminate

along the way in local minima. The results from both sets of cyclic refine-

ments were consistent, and demonstrate that the lattice parameters do not

vary beyond experimental Q-resolution. For these measurements, WISH was

run in high-resolution mode with ∆Q/Q = 0.03%.

Similarly, no variation to the bond lengths defining the oxygen coordina-

tion environments was found, suggesting no active distortion modes coupling

the magnetic and structural subsystems, as would be observed for the case of

http://jana.fzu.cz/
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Figure 4.11: Temperature dependence of unit cell metrics. Within reso-
lution ∆Q/Q = 0.03, there is no significant change to the lattice param-
eters, and therefore based on this there is no measured magnetoelastic
effect in the virgin state.

Jahn-Teller or Spin-Peierls distortions. We conclude this section by suggest-

ing that the anomalous temperature dependence of the Q⃗ = (0, 0, 2) reflection

observed on RITA-II was most likely an artifact resulting from either mul-

tiple scattering, or from the coincidence of a magnetic satellite from a twin

crystallite with the position of the nuclear Q⃗ = (0, 0, 2) reflection in recipro-

cal space. Having now achieved a satisfactory understanding of the nature

of the magnetic ground state, we continue to investigate the more complex

phenomena observed in applied magnetic fields.

4.5.3 Commensurable SRO induced by applied fields

In this section, we combine low temperature magnetization with neutron

diffraction measurements, to develop an understanding of the magnetic cor-



184 4. Short-range order and topology in Ising α-CoV2O6

relations in states induced by applied fields. We first consider the results of

single crystal neutron diffraction carried out on the WISH instrument (ISIS,

UK). As discussed in Sec. 4.4, the sample was aligned in the (h, 0, l) plane

and mounted in the vertical magnet. The detector coverage is limited in this

reduced geometry configuration, so while it was possible to align the easy

c-axis approximately parallel to the vertical direction of applied field, it was

necessary to impose a slight misorientation of the sample to provide access

to the required magnetic reflections. The resulting sample orientation was

such that the vertical magnetic field had components of 2.1, 15.2, and 85.3°

along the a, b and c axes respectively. A summary of results obtained at

T = 0.1 K after zero-field cooling are shown in Fig. 4.12. Linecuts parallel to

the direction of the antiferromagnetic propagation vector [h, 0, 12h] are shown

alongside the corresponding (h, 0, l) plane for magnetic fields increasing and

decreasing about saturation at µ0H = 6 T where the magnetic structure is

fully polarized in the k⃗ = 0 ferromagnetic phase. As described in Sec. 4.4,

this run at µ0H = 6 T has been used as a measure of the background signal,

and has thus been subtracted from the data presented.

The Q⃗ = (1, 0, 12) peak observed at8 µ0H = 0.015 T is shown in Fig. 4.12(a)

and is representative of long-range magnetic order, consistent with the virgin

antiferromagnetic propagation wavevector, corresponding to the (a, b, 2c; 0, 0, 0)

8We note that instead of a starting measurement at zero applied field exactly, a small ap-
plied field (namely µ0H = 0.015 T) was necessary to inhibit a superconducting response
in Al components of the sample environment that would contribute to an increased
background in the scattering response.
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supercell described in Secs. 4.5.1 and 4.5.2. No other magnetic peaks were

observed at this temperature and field, which confirms the stability of the

magnetic ground state down to T = 0.1 K; in terms of the magnetic symme-

try, we can ascribe the periodicity 〈T̂ 2〉 = ↑↓ to this state. Upon increasing

the applied field to µ0H = 3.25 T [shown in Fig. 4.12(b)], magnetic spectral

weight in reciprocal space is redistributed from the long range 〈T̂ 2〉 = ↑↓

peak at Q⃗ = (1, 0, 12) among new momentum broadened magnetic peaks at

positions consistent with the propagation wavevector k⃗ = (12 , 0,
1
4). These

peaks are characteristic of spatially short-range magnetic correlations with a

translational periodicity of either a 〈T̂ 4〉 = ↑↑↓↓ state, or a ↑↑↑↓ state. We

note that while there is an inherent ambiguity of the relative arrangement

of spins for 〈T̂ 4〉 magnetism from the momentum dependence alone, both of

the possible states exhibit antiphase boundaries.

Upon cycling through to saturation at µ0H = 6 and subsequently decreas-

ing the magnetic field, new momentum broadened magnetic peaks are man-

ifest at positions consistent with the commensurate propagation wavevec-

tor k⃗ = (23 , 0,
1
3), and with a state of 〈T̂ 3〉 periodicity. These are shown

at µ0H = 2.25 T in Fig. 4.12(c) and marked by clear extinction at the

Q⃗ = (1, 0, 12) position, indicating a lack of contribution from the 〈T̂ 2〉 state,

contrasting that observed on the upwards field sweep. Occurring in concert

with a M/Ms = 1
3 of the bulk magnetization [shown later in Fig. 4.17(a)],

the 〈T̂ 3〉 periodicity is expected based on previous powder diffraction and

reports of plateaus of the saturated magnetism [4–9]. Upon returning to
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Figure 4.12: WISH SX, T = 0.1 K with µ0Hb 6= 0. A 6 T background run
has been subtracted from the data. In panel (a), long range magnetic
order is seen at 0.015 T, with this small field used to kill the super-
conductivity in the Aluminum sample environment at these low tem-
peratures of 0.1 K. In panel (b), intensity from the long range Néel
wavevector k⃗ = (1, 0, 12) is redistributed among short-range magnetic
correlations with k⃗ = (12 , 0,

1
4) below the ferromagnetic phase boundary

above 4 T. In panel (c), the wavevector has shifted from k⃗ = (12 , 0,
1
4)

to k⃗ = (23 , 0,
1
3), and the long range Néel wavevector is absent. Upon

return to µ0H = 0.015 T, the Néel phase is disordered, showing the hys-
teresis effect. Lineshapes have been fit with a lattice Lorentzian given
in Eq. (4.21).
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µ0H = 0.015 T [shown in Fig. 4.12(d)], the long-range ordered k⃗ = (1, 0, 12)

state is not fully recovered; it displays, instead, spatially short-range corre-

lations based on the broadening of the Q⃗ = (1, 0, 12) reflection in momentum.

This observation is indicative of a hysteretic response, with different 〈T̂ q〉

correlations manifest based on field-history.

A Lorentzian lineshape is traditionally used in scattering experiments to

fit the Q⃗-dependence of the magnetic reflections and subsequently extract

a correlation length. The use of this functional form can be problematic,

however, since the integral does not converge for dimension, D > 1. As

discussed in Refs. [242, 243], resolution to this problem can be sought through

the use of lattice-Lorentzians, for which the Q⃗-dependence of the scattered

intensity is given by the relation

I(Q⃗) ∝ sinh(aαξ−1
α )

cosh(aαξ−1
α )− cos(Q⃗ · a⃗α)

, (4.21)

where the correlation length along a particular direction a⃗α is given by ξα.

We note that the diffraction experiments on WISH are energy integrating,

providing a measure of S(Q⃗) ≡
∫
S(Q⃗, ω)dω. The correlation lengths are

therefore the instantaneous values [70]. Eq. (4.21) is the functional form of

the lineshape used to extract the correlation lengths, with fits of the extracted

cuts along the [h, 0, 12h] direction shown in Fig. 4.12.

The shift of the propagation wavevector for field cycled up/down about sat-

uration in the ferromagnetic phase at µ0H = 6 T is clearly seen in Fig. 4.13. In



188 4. Short-range order and topology in Ising α-CoV2O6

a

b

c

Figure 4.13: Lineshapes of the diffuse scattering observed on the WISH
diffractometer in applied fields along the [h, 0, 12h] direction are shown
in panel (a), and along the [h, 0, 2h+ ζ] direction, perpendicular to the
Néel wavevector, in panel (b). The lineshapes out of the (h, 0, l) plane
along the [0, k, 0] direction are shown in panel (c). A hierarchy of length
scales are clearly observed, with very short-range magnetic correlations
along the direction of the Néel wavevector, shorter than those observed
in the perpendicular direction. Out of plane, correlations are compara-
tively long-range, consistent with the 2D nature of the short-range order.
Lineshapes have been fit with a lattice Lorentzian given in Eq. (4.21).
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addition to the changing localization of the short-range magnetic correlations

in reciprocal space, we observe a marked difference in the correlation lengths

parallel [Fig. 4.13(a)] and perpendicular [Fig. 4.13(b)] to the direction of

the antiferromagnetic propagation wavevector. This anisotropic broadening

gives insight into the nature of the magnetic structure and suggests enhanced

disorder along the [h, 0, 12h] direction. In Fig. 4.13(c), we see that magnetic

correlations out of the (h, 0, l) plane are long-range, which suggests that the

ferromagnetic nature of the spin-chains along the [0, k, 0] direction is not

compromised. These observations suggest the possibility of ferromagnetic

spin-planes stacked in antiferromagnetic antiphase arrangements along the

direction of the antiferromagnetic propagation wavevector. Based on this

idea, the proposed magnetic structures of the 〈T̂ 2〉, 〈T̂ 3〉, and 〈T̂ 4〉 states

observed on WISH are shown in Fig. 4.14.

In Figs. 4.15 and 4.16, we compare the influence of temperature on the

manifesting magnetic correlations for up and down field cycles about satu-

ration at µ0H = 6 T respectively. Three sets of neutron data at different

temperatures were collected over the course of two beamtime cycles. As

discussed in Sec. 4.4, the low temperature data at T = 0.1 K was collected

separately to the data at T = 1.6 K and T = 4.5 K in the following cycle,

with great care taken to ensure that the alignment of the sample was con-

sistent for both experiments. At the start of each cycle, a long Vanadium

dataset is collected on WISH for the purposes of normalization to the incoher-

ent scattering; the data presented here were normalized with the appropriate
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a b

Figure 4.14: Magnetic structures projected in the ac-plane based on an-
tiphase boundaries showing the long-range Néel state with 〈T̂ 2〉 symme-
try in panel (a), and short-range structures with 〈T̂ 3〉 and 〈T̂ 4〉 period-
icities in panels (b) and (c) respectively. Red (blue) circles represent
chains of up (down) spins along the crystallographic b-axis.

absorption corrected Vanadium run for their respective beamtime cycle.

In Figs. 4.15(a-c), the temperature dependence zero-field cooled states are

shown for the field-cycling sequence µ0H : 0 → 6 T at T = 0.1 K. Inten-

sity from the long range k⃗ = (1, 0, 12) is increasingly redistributed among

short-range correlations at positions consistent with the magnetic propa-

gation wavevector k⃗ = (12 , 0,
1
4) with increasing field, before saturation in

the k⃗ = 0 ferromagnetic phase above µ0H = 4 T. In Figs. 4.15(d-f), at

T = 1.6 K, a coexistence of 〈T̂ 3〉 and 〈T̂ 2〉 orders is observed, before sub-

sequently yielding to a state of pure 〈T̂ 3〉 order with magnetic propagation

wavevector k⃗ = (23 , 0,
1
3) as field is increased. Meanwhile, in Figs. 4.15(g-i),

at T = 4.5 K, very weak 〈T̂ 3〉 order can be seen to coexist with the 〈T̂ 2〉

phase, before again yielding to the 〈T̂ 3〉 phase at higher fields. The spectral



4.5 Results and discussion 191

weight distributed among short-range correlations is increasingly suppressed

with increasing temperature, which suggests that the short-range antiphase

states are fragile to increasing temperature.

In Figs. 4.16(a-c), the temperature dependence zero-field cooled states are

shown for the downward field cycling from saturation in the k⃗ = 0 ferromag-

netic phase, according to the sequence µ0H : 6 → 0 T at T = 0.1 K. There

is a marked absence of magnetic correlations consistent with the wavevector

k⃗ = (12 , 0,
1
4), with broad diffuse scattering distributed among 〈T̂ 3〉 correla-

tions instead. In addition, a background of paramagnetic diffuse scattering

is manifest, indicating enhanced disorder. The 〈T̂ 2〉 state does not make

full recovery upon returning to µ0H = 0.015 T and maintains short-range

correlations after field cycling, as evidenced by its broad Q⃗-dependence.

The evolution of magnetic correlations at higher temperatures follow a sim-

ilar pattern with the response at T = 1.6 K [shown in Figs. 4.16(d-f)] and at

T = 4.5 K [shown in Figs. 4.16(g-i)], both characterized by the coexistence of

〈T̂ 3〉 and 〈T̂ 2〉 orders. We find, therefore, that the spatially short-range 〈T̂ 4〉

periodicity is only stabilized in field at low temperatures, while the stabiliza-

tion of the long-range 〈T̂ 3〉 state at higher temperatures is consistent with the

results of previously published in-field neutron powder diffraction [199, 211].

Finally, these results show that the suppression of long-range order is nega-

tively correlated with increasing temperature, with the long-range 〈T̂ 2〉 state

almost fully recovered on return to µ0H = 0 T at T = 4.5 K.

In Fig. 4.17, the low temperature magnetization — measured at T = 0.085 K —
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Figure 4.15: The temperature dependence of short-range magnetic corre-
lations observed for field cycling from a zero-field cooled state is shown
for the sequence µ0H : 0 → 6 T. Results at T = 0.1 K are shown in
panels (a-c) for increasing field, and demonstrate a coexistence of 〈T̂ 2〉
and 〈T̂ 4〉 periodicities. In panels (d-f), results obtained for increasing
field at T = 1.6 K are shown, with coexisting 〈T̂ 2〉 and 〈T̂ 3〉 orders man-
ifest. Finally, results obtained at T = 4.5 K are shown in panels (g-i),
with very weak 〈T̂ 3〉 order seen to coexist with the 〈T̂ 2〉 phase before
the onset of long-range 〈T̂ 3〉 order at higher field, suggesting a fragility
of the antiphase order to increasing temperature.
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Figure 4.16: The temperature dependence of short-range magnetic cor-
relations observed for the field sequence µ0H : 6 → 0 T. Results at
T = 0.1 K are shown in panels (a-c) for decreasing field and demon-
strate short-range 〈T̂ 3〉 order before above 〈T̂ 2〉 at µ0H = 0.015 T, with
reduced correlation length. Paramagnetic background scattering is en-
hanced, suggesting increased disorder. In panels (d-f), results obtained
for decreasing field at T = 1.6 K are shown. Coexisting 〈T̂ 2〉 and 〈T̂ 3〉 or-
ders are manifest above the 〈T̂ 2〉 phase, with reduced correlation length.
Finally, results obtained at T = 4.5 K are shown in panels (g-i), with a
similar pattern of spin orders emerging, characterized by the coexistence
of 〈T̂ 3〉 and 〈T̂ 2〉 periodicities. In contrast to the results obtained at
lower temperatures, the 〈T̂ 2〉 phase makes full recovery.
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is shown alongside the integrated intensities and correlation lengths of the

magnetic reflections observed on WISH at T = 0.1 K. The correlation lengths

parallel (ξ∥) and perpendicular (ξ⊥) to the direction of the antiferromagnetic

propagation wavevector, along which the peaks broaden, was extracted from

fits to Eq. (4.21). With field increasing from zero, intensity is redistributed

from the Q⃗ = (1, 0, 12) among short-range 〈T̂ 4〉 correlations and the k⃗ = 0

component. With further increasing field, the 〈T̂ 4〉 peaks give up intensity

to the nuclear Q⃗ = (0, 0, 2) peak which captures nearly all spectral weight

by saturation. With decreasing field from saturation, the intensity from the

nuclear Q⃗ = (0, 0, 2) is redistributed among 〈T̂ 3〉 correlations, before finally

feeding into the Q⃗ = (1, 0, 12) peak characterizing short-range 〈T̂ 2〉 order.

The anisotropy of the magnetic correlations is clearly shown in Figs. 4.17(c-

d), where the correlation length parallel to the broadening direction is bound

by a maximal value of just a few unit cells which is much smaller than that

observed perpendicular to the broadening direction.

To further investigate the effect of applied field direction on the stabiliza-

tion of spin orders, we conducted a single-crystal neutron diffraction experi-

ment on the RITA-II triple-axis spectrometer (PSI, Switzerland) in horizontal

magnetic field, where the kinematic restrictions manifest on WISH did not

pose an issue. The results of this experiment are shown in Fig. 4.18 overleaf,

with field parallel to the crystallographic c-axis and minimal components

along the crystallographic a- and b-axes. Linecuts parallel to the antifer-

romagnetic propagation vector along the [h, 0, 12h + 1] direction are shown
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Figure 4.17: Low temperature magnetization at T = 0.085 K is shown
in panel (a) along with integrated intensities (panel b), and correlation
lengths parallel (panel c) and perpendicular (panel d) to the direction
of the antiferromagnetic propagation wavevector, extracted from single-
crystal neutron diffraction on WISH at T = 0.1 K. On increasing field,
intensity from the antiferromagnetic Q⃗ = (1, 0, 12) is redistributed among
〈T̂ 4〉 correlations, which finally are directed into the k⃗ = 0 channel as
the structure saturates in the ferromagnetic phase. With decreasing
temperature, the ferromagnetic k⃗ = 0 phase gives up spectral weight to
〈T̂ 3〉 correlations, with magnetic spectral weight recovered by the short-
range 〈T̂ 2〉 phase on return to zero field. Very short-range correlations
of just a few unit cells are manifest along the stacking direction, with
longer correlation lengths in the perpendicular direction characterizing
the anisotropy of the correlations.
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alongside the corresponding (h, 0, l) planes.

In Figs. 4.18(a-b), the results obtained for the field cycling sequence µ0H :

0 → 4.5 T at T = 0.1 K are shown, starting from an initial zero-field cooled

state. Long-range resolution limited 〈T̂ 2〉 order is manifest at µ0H = 2 T,

and is evidenced by a sharp peak at the Q⃗ = (1, 0, 32) position [shown

in Fig. 4.18(a)]. With increasing applied field, a shift of the propagation

wavevector from k⃗ = (1, 0, 12) to k⃗ = (23 , 0,
1
3) occurs, with long-range reso-

lution limited 〈T̂ 3〉 order evidenced by a peak at the Q⃗ = (23 , 0,
4
3) position

for µ0H = 3 T [shown in Fig. 4.18(b)]. Upon decreasing field from satura-

tion in the ferromagnetic phase at µ0H = 4.5 T, no shift of the propagation

wavevector is observed, in contrast to that observed on WISH. The 〈T̂ 3〉

phase is consequently robust to the cycling of field about the ferromagnetic

phase when field is applied strictly along the crystallographic c-axis. This

is demonstrated at µ0H = 3.25 T and 1.5 T in Figs. 4.18(c-d) respectively,

which show the development of a long-range, resolution limited Bragg peak

at the Q⃗ = (23 , 0,
4
3) position.

As compared to the results obtained on WISH, we observe fewer instabil-

ities on changing magnetic field at low temperatures below on the onset of

Néel order, as well as a lack of hysteresis. On WISH, we observed that local

antiphase boundaries form when the field is rotated away from the c-axis,

allowing spin orders with 〈T̂ 4〉 periodicity to emerge. These, we note, can be
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Figure 4.18: The field dependence of magnetic correlations observed on
the RITA-II instrument, with horizontal magnetic field parallel to the
crystallographic c-axis at T = 0.1 K. Linecuts along the [h, 0, 12h+ 1] di-
rection, parallel to the antiferromagnetic propagation vector, are shown
alongside the corresponding (h, 0, l) for field cycles about saturation in
the ferromagnetic phase at µ0H = 4.5 T, starting from a zero-field cooled
state. In contrast to the results obtained on WISH, no 〈T̂ 4〉 order was
observed, suggesting this phase is unstable to applied field direction,
manifesting only when field is rotated away from the crystallographic
c-axis.
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constructed9 as 〈T̂ 4〉 = ↑↑↓↓ or ↑↑↑↓, consequently manifesting as 〈T̂ 3〉 order

with antiphase boundaries [244]. We conclude that based on the absence of

these effects in the RITA-II data, where field was applied strictly along the

crystallographic c-axis (made possible by favorable kinematics of the horizon-

tal magnet geometry, in contrast to the limited out-of-plane coverage in the

vertical magnet on WISH), that the switching of the propagation wavevec-

tor and strong hysteresis observed on WISH are instabilities that depend

sensitively on the direction of applied field.

We emphasize that the spatially short-range ordered states observed on

WISH are not compatible with an interpretation based on magnetic field in-

duced phase transitions, since there is no breaking of long-range translational

symmetry. Since the spin orders have finite correlation length, long-range

translational symmetry is not broken, and there is no change to either the di-

mension of the irrep or the little co-group Gk; consequently, the symmetry of

the BZ remains unchanged in these short-range ordered states. Demonstrated

in Fig. 4.17 is the clear manifestation of a hysteresis effect when cycling the

field through to saturation in the ferromagnetic phase and returning back to

zero applied field. Short-range antiphase order with 〈T̂ 4〉 periodicity is stabi-

lized on increasing applied field, while short-range 〈T̂ 3〉 order, followed finally

by 〈T̂ 2〉 order is stabilized on decreasing field from saturation. With reference

9Consider, for instance, a ⟨T̂ 3+⟩ = ↑↑↓ state and a ⟨T̂ 3−⟩ = ↓↓↑ state. We note
the following equivalence of antiphase states, ⟨T̂ 3+T̂ 3+T̂ 3−T̂ 3−⟩ = ↑↑↓↑↑↓↓↓↑↓↓↑≡
⟨T̂ 3+T̂ 4T̂ 2T̂ 3−⟩, which therefore implies that coexisting ⟨T̂ 2,3,4⟩ can be created with
⟨T̂ 3⟩ order with antiphase boundaries.
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to the hysteresis reported in Fig. 4.17, given the insulating nature [245] and

the requirement of gauge invariance, we note that the observed change in

the ground state — despite having completed a closed loop of abelian unitary

transformations — may be indicative of an non-trivial, underlying topological

structure.

Based on the large gap to magnetic excitations (∼ 1 meV) in comparison

to the applied fields (1 T ∼ 0.1 meV), we do not expect a violation of the

adiabatic theorem. However, a highly degenerate ground state is expected

for Ising spins on a triangular motif [246], and we note reports of hysteresis

effects in fractional quantum Hall systems [247, 248]. The local 〈T̂ 4〉 order

stabilized in α-CoV2O6 at low temperatures with a field component along the

crystallographic b-axis has a correlation length of only a few unit cells along

the stacking direction, and coexists with other periodicities. These states are

analogous to the ‘dilute’ dimer phases proposed for alternating S = 1
2 chains

in the presence of next-nearest-neighbor interactions [234]. Together, these

results support the prediction of an infinite number of collinear, commen-

surate magnetic phases in anisotropic next-nearest-neighbor Ising (ANNNI)

systems with −J2/J1 > 1/2 as T → 0 K [219].

The presence of plateaus in the magnetization implies an energetic gap; we

seek resolution by appeal to an extension [176] of the Lieb–Schultz–Mattis

theorem [12] which, as described in Sec. 4.3.3, supposes that an energetic

gap can occur without breaking translational symmetry if the magnetization

per spin m = 1
L

∑L
i=1 S

z
i satisfies (S −m) = p/q, where p and q are coprime
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Table 4.3: Values of (S −m) = p/q for each of the magnetization
plateaus observed in Fig. 4.17, with m = 1

L

∑L
i=1 S

z
i characteriz-

ing the observed periodicities.

(S −m) = p/q M/Ms 〈T̂ q〉
1
2 − 1

2 = 0 1 〈T̂ 1〉 = ↑↑

1
2 − 0 = 1

2 0 〈T̂ 2〉 = ↑↓

1
2 − 1

6 = 1
3

1
3 〈T̂ 3〉 = ↑↑↓

1
2 − 1

4 = 1
4

1
2 〈T̂ 4〉 = ↑↑↓↓, ↑↑↑↓

p, q ∈ Z satisfy gcd(p, q) = 1

[such that gcd(p, q) = 1], since the ensuing 〈T̂ q〉 symmetry is gauge invari-

ant. In the presence of this gauge symmetry, the Hamiltonian H is invariant

under the slow unitary rotation of localized magnetic moments, according

to 〈ψ|U †HU − H |ψ〉 = O(1/L), with a concomitant increase in magnetiza-

tion if the rotated state U |ψ〉 ⊥ |ψ〉. In Table 4.3 we show the prescription

of a value p/q to each of the magnetization plateaus and hence extract the

translational symmetry of the ordered phase.

To reconcile our results from the WISH and RITA instruments, we per-

formed a neutron powder diffraction experiment on the TASP triple-axis

spectrometer (PSI, Switzerland), with results shown in Fig. 4.19. In this ex-

periment, due to the nature of powder containing a random distribution of

grain orientations, the applied field was isotropic among grains. In order to

prevent the reorientation of grains in field and to preserve the isotropic nature
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Figure 4.19: Results from neutron powder diffraction on the TASP in-
strument showing the presence of both 〈T̂ 3〉 and 〈T̂ 4〉 periodicities at
T = 0.1 K. The powder sample was pressed into a pellet to prevent re-
orientation in field, placed in an Aluminum can and supplemented with
3He exchange gas to enhance cooling. Note the coexistence of multiple
orders due to the isotropic nature of the applied field on the powder
sample, with distribution of orientations.
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of applied field, we used a pressed polycrystalline pellet in our measurements

at T = 0.1 K. The resulting diffraction pattern on the zero-field cooled sam-

ple at an applied field of µ0H = 2 T is shown in Fig. 4.19(a). Long-range

magnetic order is evidenced by the emergence of resolution limited magnetic

Bragg peaks; these satellite reflections occur at d-spacings consistent with the

propagation wavevector k⃗ = (1, 0, 12), and also with our results from WISH

and RITA-II.

With increasing applied magnetic field, a complex series of peaks at d-

spacings consistent with simultaneous emergence of spin orders based on 〈T̂ 3〉

and 〈T̂ 4〉 periodicities, coexisting with 〈T̂ 2〉 order, is shown in Figs. 4.19(b-

d). The distribution of spectral weight is modulated with increasing applied

field, demonstrating that the stabilization of different 〈T̂ q〉 correlations is

dependent on the strength and direction of applied field, therefore accounting

for the discrepancies obtained in the results of our experiments on the WISH

and RITA-II instruments.

4.5.4 Stability of field-induced magnetization plateaus

We consider, finally, the stability of the field induced magnetization plateaus

at low temperatures, and investigate the magnetic dynamics through mea-

surements of the bulk magnetization at various sweep rates, dH(t)/dt. Based

on single-crystal x-ray Laue diffraction measurements on a number of samples

from our batch of single-crystals, the morphological features of α-CoV2O6

were deduced. The reciprocal lattice directions and their corresponding crys-
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tal faces were deduced from these measurements and are illustrated along

with the crystal structure and BZ in Fig. 4.2. These crystal features were

used to construct a coaligned array of single-crystals of total mass of 6 mg.

This was attached to a 4 mm × 4 mm × 0.1 mm copper plate by GE varnish

suitable for measurements at dilution temperatures with favorable thermal

transport properties, and subsequently secured in a standard PPMS/MPMS3

straw mounting system. As described in Sec. 4.4, the magnetization was

measured at T = 0.4 K in an MPMS3 with with a sub-2 K iHelium3 dilution

system, and also at T = 2.5 K in a PPMS with VSM insert. The results for

a number of different sweep rates are shown in Fig. 4.20.

The results obtained from cycling the magnetic field between µ0H = 0−6 T

on a zero-field cooled state are shown for sweep rates of dH(t)/dt = 2.5 and

100 Oe/s at T = 0.4 K in Fig. 4.20(a). Since the saturated moment is lower

than expected [4–9], it is possible that the orientation of the sample mounted

in the straw was compromised upon cooling to dilution temperatures, caused

by the changing shear forces acting upon the edges of the copper plate hous-

ing the sample array, as the straw is subject to thermal contraction with

decreasing temperature, combined with subsequent misalignment of the sam-

ple array in applied field. Moreover, the difference in magnetization at small

fields observed between the major and minor loops is likely the result of

the stabilization of different modulated magnetic states. This difference was

observed when investigating minor loops in the magnetization; in order to re-

move this difference, a careful sequence of field de-training on the downward
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sweep would have been required, but was not possible due to the limited

time available to us on the MPMS3 at the materials characterization lab

(ISIS, UK) during COVID-19.

In Fig. 4.20(b), for magnetic field sweep rates dH(t)/dt = 0.5 Oe/s, 20

Oe/s, and 100 Oe/s at T = 2.5 K, we observe shifting of the critical fields

and additional fine structure below the M/Ms = 1
3 plateau consistent with

previous reports [9]. The series of plateaus observed T = 0.4 K, shown in

Fig. 4.20(a), are distinctly different, however, manifesting at multiples of 1
12

and presenting plateaus at M/Ms = 1
4 , 1

3 , 1
2 , 3

4 , although distorted slightly

by the effects of demagnetization, which have not been corrected for. These

observations are consistent with the short-range commensurate spin orders

described in Sec. 4.5.3, and are deeply related to the stabilized magnetization

plateaus through the symmetry of the underlying magnetic correlations.

The magnetic relaxation was measured at T = 0.4 K from the M/Ms =
1
2

plateau state, accessed by ramping the applied field to µ0H = 3.5 T at rates

of dH(t)/dt = 20 Oe/s, 100 Oe/s, and 500 Oe/s, before abrupt removal of the

field. The relaxation from this prepared state initially decreased very quickly,

with the evolution of the long-timescale component of the relaxation, after

this initial drop shown in Fig. 4.21(a). The timescales of magnetic relaxation

characterized as a function of field ramping rate with a phenomenological

stretched exponential model of the form M(t) = M0 ±M1 exp
{
[−(t/τ)β]

}
,

as shown in Fig. 4.21(b). Fits to this component of the relaxation reveal

a slow timescale, on the order of 2000 s, which supports suggestions of the
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a

b

Figure 4.20: Major and minor hysteresis loops observed for a number
of rates of magnetic field sweep dH(t)/dt on a zero-field cooled state at
temperatures T = 0.4 K and T = 2.5 K obtained using a PPMS with
VSM insert and in an MPMS3 with sub-2 K iHelium3 dilution system
respectively.

metastability of the plateaus [4–9].

The magnetic relaxation was additionally measured at T = 2.5 K in two

modalities, as shown in Fig. 4.22. In Fig. 4.22(a), the magnetic field was held
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Figure 4.21: Interrupted field-sweeps at T = 0.4 K. The relaxation of
the magnetization for a field ramping rates of 20, 100 and 500 Oe/s is
shown in (a) with fits to a stretched exponential mode. Fits to a phe-
nomenological stretched exponential model yield an exponent β = 0.491,
with (b) showing the sweep-rate dependence of the extracted timescales,
in which the broken line a guide to the eye.

constant in the vicinity of the M/Ms plateau at µ0H = 2.2 T and the evolu-

tion of the magnetization M(t)/M(0) tracked with time. Fits to a stretched

exponential model reveal different timescales of the dynamical evolution of

the magnetization when field was set to the target field with different sweep

rates of 2 Oe/s and 20 Oe/s. The relaxation of the magnetization shown in

Fig. 4.22(b) is much faster than that observed at T = 0.4 K, which suggests

a critical slowing down of the dynamics at lower temperatures.

While we do observe a clear difference in the magnetic dynamics at T =

0.4 K and T = 2.5 K, more measurements are required to gain further in-
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a

b

Figure 4.22: Magnetic dynamics observed at T = 2.5 K for sweep rates
dH(t)/dt = 2 Oe/s and 20 Oe/s for (a) field held at µ0H = 2.2 T in the
vicinity of the M/Ms =

1
3 plateau and (b) for relaxation after the field

is set to µ0H = 0 T.

sight into the stability of the states. However, our results are not consistent

with a violation of the adiabatic theorem, which supports the notation of

an underlying non-trivial topological structure in α-CoV2O6 . More detailed

measurements of minor hysteresis loops, for instance, would be particularly

useful to further investigate the topological structure and learn more about
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the stability of the field induced magnetic transitions pertaining to the nature

of the magnetic Hamiltonian.

4.6 Conclusions

We have re-investigated the nature of the Néel state based on the observation

of an enhancement of intensity of the nuclear Q⃗ = (0, 0, 2) reflection below TN

on the RITA-II instrument in zero applied magnetic field. Single-crystal neu-

tron diffraction measurements in zero applied field on the WISH instrument

did not find any nuclear peaks to display such a temperature dependence.

The magnetic order parameter, measured as |M |2 ∝ |T − TN|β, revealed a

critical exponent of β = 0.16(2) which suggests that α-CoV2O6 belongs to

the 2D Ising universality class [241].

We find additionally, by neutron powder diffraction on WISH, no evidence

for magnetoelastic coupling that may have contributed strain and a con-

comitant release of extinction to explain the RITA-II result, with lattice

parameters and bond lengths not found to vary beyond the ∆Q/Q = 0.03%

resolution of WISH. The fidelity of the ground state is therefore preserved,

with the most likely explanations for the RITA-II result being the coincidence

of a twin magnetic reflection with the nuclear Q⃗ = (0, 0, 2) reflection, or per-

haps multiple scattering with multiple diffraction vectors adding up on the

surface of a Laue sphere.

We have applied low temperature magnetization and neutron diffraction
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to study the emergence of multiple field induced commensurate periodicities

in an Ising jeff = 1
2 magnet. We find these to occur in concert with a se-

ries of metastable magnetization plateaus, with the nature and periodicity

〈T̂ q〉 of the spin ordered states found to depend sensitively on the direction

of applied field. When field is applied strictly along the crystallographic

c-axis, long range resolution limited Bragg peaks, with 〈T̂ 2〉 and 〈T̂ 3〉 pe-

riodicities, define the response observed in the equilibrium structure factor

S(Q) ≡
∫
S(Q,ω)dω. When field is rotated away from the c-axis, we observe

short-range ordered states of the same periodicities, states additionally based

on 〈T̂ 4〉 periodicity. The 〈T̂ 4〉 state is only observed at low temperature, just

as for the M/Ms =
1
4 ,

1
2 ,

3
4 magnetization states, with the short-range ordered

antiphase states and the resulting diffuse scattering found to be fragile to tem-

perature, tending towards long-range ordering with increasing temperature

supporting the results of previous neutron powder diffraction [199, 211].

Since the short-range ordered commensurable states observed on WISH

do not break long-range translational symmetry, we interpret these states —

based on antiphase boundaries — as a manifestation of an underlying topolog-

ical structure, based on the Lieb–Schultz–Mattis theorem; in this framework,

we prescribe a topological index to the magnetization plateau and find this

to be deeply connected to the symmetry of the short-range field induced spin

orders in its vicinity.





Chapter 5

Far-from-equilibrium correlations in

Dy2Ti2O7

5.1 Chapter summary

The spin ice material Dy2Ti2O7 is a frustrated material where the magnetic

spins on a tetrahedron can only point into or out of the 〈1, 1, 1〉 crystallo-

graphic axis due to the competition between the long range dipolar inter-

action and the local exchange interaction. Consequently, the ground state

is degenerate, realizing a manifold of lowest energy states. Excitations out

of this ground state make a 3-in, 1-out excitation which is shown to behave

like a magnetic monopole. These monopoles are thermally created, and the

density of the monopoles can be controlled by cooling through a transition.

We have developed a new technique to do this, which we implement on the

WISH instrument to study the microscopic evolution of the correlations as the

monopole density is changed. In doing so, we demonstrate a novel technique

211
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for the study of non-equilibrium studies using neutron scattering.

The contributions to this chapter are as follows. The design and testing

of the avalanche quench methodology was carried out by Lewis Edwards

(Cardiff) and Sean Giblin (Cardiff). Testing of the methodology in the E18

refridgerator at ISIS was carried out by Lewis Edwards (Cardiff), Sean Gib-

lin (Cardiff), Chris Lawson (ISIS), and Pascal Manuel (ISIS). Single-crystal

neutron scattering data was collected on WISH at ISIS by Lewis Edwards

(Cardiff), Sean Giblin (Cardiff), and Pascal Manuel (ISIS). Analysis of data

was carried out by Lewis Edwards (Cardiff).

5.2 Introduction

The rare-earth pyrochlore Dy2Ti2O7 (DTO) is a classical spin ice material

crystallizing in the cubic Fd3m pyrochlore structure, as shown in Fig. 5.1.

The A and B sites of the lattice are populated by Dy3+ and Ti4+ions respec-

tively, forming a network of corner sharing tetrahedra with local D3d point

group symmetry. The localized magnetic moments are of Ising character

and are constrained to point parallel or anti-parallel to their local 〈1, 1, 1〉

directions due to the effects of the crystal electric field and strong single

ion anisotropy. The spin ice state is termed thus due to the similarity of

its magnetic ground state to the structure of water ice, wherein a 2-near,

2-far H+ configuration — with respect to the pyrochlore lattice of covalent

O2– bonds — gives rise to a degenerate ground state and a finite entropy of
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ba

Figure 5.1: Geometry of the (a) Kagomé and (b) the pyrochlore lat-
tice [250]. The Kagomé is in some sense the equivalent of the pyrochlore
lattice in 2D, and is the most basic frustrated lattice. In the case of
the canonical ‘227’ spin ices with general composition A2B2O7 and the
symmetry of the Fd3m Federov group, magnetic A and B type ions es-
tablish a network of corner sharing network; the central points of the
tetrahedra define a medial, or dual, diamond lattice.

R log(3/2), even at zero temperature. Experimental measurements of this

effect in spin ice, often referred to as the Pauling entropy, are shown in

Fig. 5.2, and is one of the defining features of the state. The multiplicity of

the ground state is 22N , where N denotes the number of tetrahedra. Not-

ing the geometric frustration and the so-called ‘ice rules’ that stipulate a

2-in, 2-out condition on each tetrahedron, a factor of (6/16)N contributes to

the multiplicity, finally leading — via the Boltzmann entropy formula — to a

residual entropy in spin ice of R/2 log(3/2) per mole [249].

DTO has a large energy gap of 380 K between the ground and excited

state [251], and a partially filled f -band. Interactions between the unpaired

4f electrons are responsible for the low energy properties and — by a hier-
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archy of energy scales — the manifestation of the spin ice state in A2B2O7

oxides [250]. For rare earth ions, a 2S+1LJ ground state follows from Hund’s

rules and consists of 2J + 1 states, expressed as |J, Jz〉; Dy ions in partic-

ular have J = 15/2 with L = 5 and S = 5/2. The Stevens operators

Om
l (Ĵ) allow for the expression of the crystal field interaction in terms of

angular momentum operators by the Wigner Eckart theorem (see Ref. [45]),

Hcf =
∑

l,mB
m
l O

m
l (Ĵ). As discussed in Refs. [252, 253], the local D3d

point symmetry relevant to the A and B sites of the lattice allows the

crystal field to be constrained, leading to an effective Hamiltonian [254]

Hcf = B0
2O

0
2 +B0

4O
0
4 +B3

4O
3
4 +B0

6O
0
6 +B3

26
6
3 +B6

2O
6
6. As noted in Ref. [253],

the B0
2O

0
2 term is of particular relevance to the determination of the easy-axis

anisotropy direction, where the operator is O0
2(Ĵ) = 3Ĵ2

z − J(J + 1). When

this term dominates, a negative B0
2 will prefer an easy axis-ground state with

Jz = ±J . The oxygen environment is characterized by O(1) atoms external

to the tetrahedra occupying the low symmetry 48f positions, and O(2) atoms

internal to the tetrahedra occupying the 8b sites. These oxygen positions in

the lattice define a cage surrounding rare-earth atoms; its geometry is that of

a perfect cube for the free O(1) position, x = 3/8, and becomes increasingly

distorted for greater deviations from this. In Dy2Ti2O7 , the cage is distorted

along the local cubic 〈1, 1, 1〉 direction.

The nearest neighbor exchange interaction is ferromagnetic, and is frus-

trated by the dipolar interaction [255]. With J the exchange coupling con-

stant, D the dipolar coupling constant, and rnn the nearest neighbor distance,
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a b

Figure 5.2: Specific heat and entropy in DTO spin ice. (a) shows the
specific heat at µ0H⃗ = 0 and µ0H⃗ = 0.5 T, while (b) shows the entropy
change ∆S =

∫ T2

T1
C(T )/T dT . From Ref. [249].

the spin ice Hamiltonian is [256]

H = −J
∑
⟨ij⟩

S⃗i · S⃗j +Dr3nn
∑
i>j

[
S⃗i · S⃗j
|rij |3

− 3(S⃗i · r⃗ij)(S⃗j · r⃗ij)
|rij |5

]
. (5.1)

Local violation of the ‘ice rule’ by thermally activated spin flips to configura-

tions with 3-in/1-out gives rise to a pair of deconfined, pointlike topological

defects with magnetic charges ±Qm on adjacent sites, which can propagate

via subsequent spin flips [257]. These defects are flux sources of an emergent

gauge field ∇⃗ × A⃗ governed by the Maxwell action −1/4
∫
FµνF

µνd4x, and

their presence modifies spin entropy, induces an entropic force, and gives

rise to long-distance dipolar spin correlations with a temperature dependent

Coulomb interaction between defects [258]. These defects are emergent quasi-

particle excitations resulting from the fractionalization of the local dipolar

interaction, and resemble magnetic monopoles.
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The diffraction response in spin ice is shown in Fig. 5.3 in the (h, h, l) plane

at T = 20 K, 1.3 K, and 0.3 K. The scattering response features spectral

weight concentrated at the zone boundaries, as well as pinch point singulari-

ties at BCC lattice points; these are a characteristic signature of long-range

dipolar correlations in the magnetic structure factor Sαβ(Q⃗), with their width

providing a measurement of the screening of fields at long distances [259].

While polarized neutron scattering has been used with great success in mea-

suring the diffuse scattering from spin ice materials in separating spin flip

and non-spin flip correlations, temperature subtractions have been success-

fully used in non-polarized diffraction to access the magnetic correlations,

most recently in Ref. [115].

While spin ice is predicted to order at low temperatures, no experimen-

tal evidence has yet been put forth to substantiate this claim, although

specific heat measurements showing an upturn at low temperatures over

long timescales have claimed this to be a signature of the effect [261]. A

neutron diffraction experiment on the WISH diffractometer during a facil-

ity shutdown following — and even extending — their 600 s waiting protocol,

however, found no evidence of this insofar as the magnetic correlations are

concerned [115]. Seeing that oxygen defects are reported in Ref. [262], sam-

ple quality is a potential explanation for the results obtained in Ref. [261].

In Ref. [115] where no ordering was found, the structural characterization

of the neutron sample on the SXD instrument at ISIS found little disorder,

revealing a high quality sample [115].
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Figure 5.3: Diffuse scattering in spin ice at (a) T = 20 K, (b) T = 1.3 K,
and (c) T = 0.3 K, showing the development of magnetic correlations
with decreasing temperature. From Ref. [260].
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Figure 5.4: The avalanche quench method used to induce an out-of-
equilibrium monopole population in DTO. The application of magnetic
fields raises the sample temperature to 900 mK, before it is rapidly
quenched through the spin ice freezing temperature, the dilution refriger-
ator mixing chamber temperature remaining under 200 mK throughout.
Reproduced from Ref. [13].
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Below a temperature of Tf ∼ 650 mK, the spin ice state freezes, with the

dynamics becoming much slower, thereby falling out of its equilibrium state

with a small monopole population [263]. By providing a burst of thermal

energy to the sample, an abundance of monopole/anti-monopole pairs can

be created, with density quantified by the monopole current ∂M⃗/∂t. This

has been achieved using a method based upon the magnetothermal avalanche

quench phenomenon at low temperatures in Ref. [13], illustrated in Fig. 5.4.

At low temperatures where the population of occupied phonon modes is van-

ishing, the spin-spin channel dominates the dynamics and results in the slow

relaxation of the equilibrium state. By cooling this thermally excited state

rapidly through the spin ice freezing transition, a non-equilibrium monopole-

rich state can be prepared [13]. Isotopically enriched 162DTO has zero nu-

clear spin moment, so no relaxation can occur by assisted tunneling pro-

cesses [14] — these states are metastable on the order of neutron scattering

counting timescales, which provides an opportunity to investigate the spin

correlations in this regime through the measurement of the magnetic neutron

cross section, dσ/dΩ = A(δαβ − Q̂αQ̂β)S
αβ(Q⃗).

5.3 Experimental details

As previously mentioned, spin ice undergoes a freezing transition at T ∼

0.65 K, during which it falls out of its equilibrium state with a small monopole

population [263]. Careful bulk measurements on DTO by means of the novel
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magnetothermal avalanche quench cooling protocol (AQP) [13] have found

evidence for a magnetic analog of the Wien effect [264]. This places DTO

in the regime of a weak magnetolyte. Other out-of-equilibrium phenomena

have been observed during magnetic field sweeps — among which, magnetic

avalanches — which were found to have a strong dependence on the thermal

coupling of the sample to the heat reservoir: the mixing chamber plate of the

dilution fridge.

The magnetothermal avalanche cooling method is reliant upon the conver-

sion of magnetic work done to internal heat. At base temperature ∼ 100 mK

in a dilution fridge, the application of a local magnetic field (∼ 0.2 T) induces

an increase in the internal heat of a sample, which can occur up to 0.9 K. The

temperature is measured by mounting a thermometer directly to the sample

during the AQP, and inferred from the increase in sample magnetization after

the AQP to the equivalent isothermal magnetization at 0.9 K. At its return

to thermal equilibrium at 0.9 K, the sample can cool quickly. Given that

relatively little heat is transferred, the mixing chamber — the thermal reser-

voir — retains its cold temperature. Consequently, the sample cools rapidly;

Fig. 5.4 reflects the cooling process, as well as the required field flips. This

method facilitates a control over the cooling rate as the spin ice undergoes

freezing transition.

The enabling of both rapid and slow cooling allows different densities of

monopoles to be frozen in. The monopole population has previously been

quantified through the monopole current J = dM/dT ; this is reflected in
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Figure 5.5: As compared to a conventional cooling protocol, the
avalanche quench cooling method has been shown to result in the trap-
ping of a reproducibly higher monopole population. From Ref. [264].

Fig. 5.5 alongside a bigger monopole current that is associated with a greater

population. That the monopole current is larger than in the case of a con-

ventional slow cooled sample is evidence that the avalanche quench protocol

freezes in a greater population of monopoles. The potential for the creation of

reproducible non-equilibrium states in spin ice was also demonstrated in pre-

vious experiments [13]. A large, high quality single crystal of 162DTO — the

same as that used in Ref. [115] — with mass 1.4 g was used in this experiment,

and has previously been characterized using the SXD instrument, finding
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very little structural disorder. We used this sample in our experiment since

it has previously been very well characterized. The out-of-equilibrium states

are metastable on the order of many days; here, we investigate the effect of

the avalanche cooling protocol on the spin correlations as seen in the diffuse

scattering, manifest in the equilibrium structure factor S(Q⃗) ≡
∫
S(Q⃗, ω)dω.

Working closely with the ISIS technical staff, we prepared a simpler method

to be used in the cryogen free E18 dilution refrigerator. Testing our method

at Cardiff in a similar BlueFors dilution refrigerator, we were able to achieve

cooling rates up to a maximum of ∼ 150 mK s−1 using a heater attached to

the end of the sample, with a similar thermometer set up, as shown in panels

(a) and (b) of Fig. 5.6. The cooling curve is shown in panel (c) of Fig. 5.6,

which shows a much greater cooling rate than the ∼ 70 mK s−1 achieved

previously in Ref. [13]. WISH was required due to the much-needed high

resolution at low Q⃗, owing to the fall off of the magnetic form factor and low

background required for discerning subtle diffuse features in the scattering.

Measurement of the magnetization during the warming and cooling processes

is perhaps the best case scenario; directly monitoring the sample temperature

with a thermometer mounted to the bottom of the sample is, however, an

equally effective method. The manipulation of monopole density by AQP

supports the two key aims of this experiment: first, to develop experimental

methods to probe non-equilibrium systems probed by neutrons, and second,

to probe monopole rich states on the microscopic scale. The latter is of

fundamental interest, given that monopoles may have some non-trivial types
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Figure 5.6: (a-b) Sample mount of Dy2Ti2O7. (c) cooling curve achieved
in the BlueFors dilution refrigerator at Cardiff using a pulse cooling
method, with a resistive heater attached directly to the sample. This is
more than double the cooling rate achieved in Ref. [13] of ∼ 70 mK s−1

so is likely to be sufficient when factors such as beam heating are taken
into account.

of correlations. When the experiment was conducted, Dy2Ge2O7 provided

the only means of studying a state with more monopoles but was not available

as a crystal.

Unfortunately, the E18 dilution refrigerator was damaged at ISIS in a
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magnet quench during routine testing — a situation beyond our control —

before we were able to test our pulse cooling method in the exact setup to

be used on the beamline. As such, we were required to modify our setup as

best as we could, and to work other standard equipment available to us. We

had access to an Oxford instruments Kelvinox dilution insert (NDRI-2), to

be used in conjunction with an Oxford Instruments Variox (OXF-09); it was

therefore necessary to modify our experimental setup to accommodate the

reduced cooling power.

Drawing from Refs. [265, 266], the heat transfer in solids by conduction

follows the Fourier law

q⃗ = −k(T )∇⃗T, (5.2)

where q is the heat flux density, k(T ) the temperature dependent thermal

conductivity, and T the temperature. In one dimension,

q = −k(T )dT
d ⇒ Q

∫ L

0

dx
A

=

∫ T2

T1

k(T )dT, (5.3)

where Q is the power, L the length along the x-axis, and A the cross section.

For constants A and L, this simplifies to

Q

A
=

1

L

∫ T2

T1

k(T )dT. (5.4)

For most materials, k(T ) is strongly temperature dependent. For practical

calculations, an average over the temperature region of interest is used, given
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by the expression

k =
1

T2 − T1

∫ T2

T1

k(T )dT. (5.5)

Assuming perfect thermal contact with a heat bath and no internal dissipa-

tion, a steady-state thermal resistance can be defined from Eq. (5.4). For a

rod with constant cross section A and length L, the thermal resistance takes

the form

Rth =
T2 − T1
Q

=
L

kA
. (5.6)

For transient conduction processes, energy conservation leads to a diffusion

equation of the form

ρC
∂T

∂t
= ∇⃗ · [−k(T )∇⃗T ] +Q, (5.7)

where ρ is the density and C the specific heat capacity of the solid. The term

on the left-hand side is identified with a thermal inertia. The first term on

the right-hand side accounts for conduction and the second term represents

a heat source. In 1D with constant thermal properties,

∂T

∂t
= D

∂2T

∂x2
+Q⋆, (5.8)

where thermal diffusivity D = k/ρC. From D, a characteristic diffusion time

τ can be calculated, arising from the thermal perturbation, and is obtained

by solving Eq. (5.8).

The cooling power of the Kelvinox NDRI-2 dilution fridge insert used in test
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Figure 5.7: Kelvinox NDRI-2 dilution fridge insert cooling power curve.
A fit to a function of the form P (T ) = aT 2 was made using the data
points (T, P ) = (15.75, 0) and (25, 88) [mK, µW] from the manual. Ex-
trapolation of this fit gives the cooling power at temperatures of interest,
(T, P ) = (300, 353) and (900, 3484) [mK, µW].

experiments is shown in Fig. 5.7. A fit to a function of the form P (T ) = aT 2

was made using two data-points from the manual and extrapolated to higher

temperatures, covering the temperature range of interest. At 300 mK the

unit provides a cooling power of 353 µW, and at 900 mK, a cooling power

of 3484 µW. The cooling power at 900 mK defines the upper limit of heat

load that can be provided during the pulse heating protocol. The sample

rig is essentially a spacer/adapter that allows the copper goniometer/sample

mount to attach to the dipstick. On the dipstick end, the connection is M6

female and the goniometer/sample mount is M6 male. It is defined by the
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Figure 5.8: Dy2Ti2O7 sample thermal conductivity measurement.

following dimensions

A = πr2 = 103.87× 10−9 m2, (5.9a)

L = 33× 10−3 m. (5.9b)

The sample is enclosed in a copper clamp which provides the thermal path

through the adapter rig to the cold bath (mixing chamber). A 47 kΩ resistive

heater glued directly to the sample on Rizla with GE varnish is used to heat

the sample. A resistive thermometer is glued directly to the sample with GE

varnish; this is not in direct contact with copper, and thus enables accurate

measurement of sample temperature. An effective thermal conductivity at
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each temperature can be calculated from

keff =
QL

A (T2 − T1)
, (5.10)

with Q the heater power, T1 the mixing chamber temperature, and T2 the

sample temperature. After the determination of the thermal conductivity at

each of these temperatures, k can be calculated for temperatures between

300 and 900 mK.

Calculations on the optimization of the thermal link are shown in Fig. 5.9.

From these calculations and from the perspective of achieving maximal heat

transfer for the fastest cooling, the best course of action was to screw the Cop-

per M6 goniometer directly to the mixing chamber (MXC) flange (without

the shown copper cell) in order to maximize contact area of thermal pathway

from sample to MXC. We used Gadolinium foil attached via Aluminum tape

on the outer wall of the inner vacuum chamber (IVC) for collimation. The

sample was enclosed firmly in copper cage to provide good thermal contact

for heat transfer through goniometer to MXC stage, with a 2.096 kΩ resistive

heater attached firmly to the extreme end of the sample, located furthest

from MXC plate, on a flat portion of the crystal surface using thin nylon

wire and GE varnish. The thermometer was clamped between the copper

cage wall and in direct thermal contact with a large flat planar surface of

the sample. We achieved 4-wire measurements of the thermometer voltage

using a Stanford SR850-DSP lock-in amplifier while current was applied to a
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c

Figure 5.9: Optimization of the setup to be adapted for use in the less
powerful Kelvinox dilution refrigerator insert, necessary since the cool-
ing rate of ∼ 8.8 mK s−1 through the freezing transition to 300 mK is
insufficient. From fits to the cooling curve we were able to extract a
specific heat capacity and then investigate the effect of varying length
and surface area. The best mount has the smallest thermal link distance
and greatest surface area — for the best cooling rate, we simply screwed
the goniometer directly into the MXC flange of the Kelvinox.

resistive heater with a Keithley-220 power supply. Instrument control, data

acquisition, and temperature conversion were achieved using LabVIEW-2019.

The beam-scraper was set to 20 mm×40 mm, with beam divergence slits in

medium resolution mode (0.4°), and choppers phased in double-frame mode.
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The sample was aligned with (h, h, l) in the horizontal scattering plane and

the rotation stage fine tuned such that the (0, 0, 4) zone center was posi-

tioned close to 90° in detector bank 4, for the best statistics in this region of

interest. Further, this matched initially the sample position in Ref. [115] for

comparison, leaving 2 days for exploration after these initial measurements

were obtained. Fast cooling protocol runs were carried out to probe spin

correlations in non-equilibrium regime. Additionally, a slow cooling protocol

run was carried out for comparison to fast cooled measurements. Finally, a

high temperature run at 10 K was carried out for background subtraction to

reveal the spin correlations, since polarization analysis was not available to us

on WISH. Unfortunately, half way through the experiment, the facility had

to shut down due to the COVID-19 pandemic, cutting our experiment short.

Had the remainder of our beam-time been available to us, we would have

adjusted the sample position to measure the Q⃗ = (0, 0, 2) position, where the

Bragg peak is extinct and a pinch point manifest. As such, we present only

an investigation of the zone boundary scattering around the Q⃗ = (0, 0, 3)

position in reciprocal space, since the Q⃗ = (0, 0, 4) position is contaminated

by nuclear Bragg contribution.

The data in detector space shows clear evidence for the existence of two

crystallites; the dominant of these is hereafter referred to as ‘main’ and the

weaker as ‘secondary’. Main and secondary UB matrices have been optimized

via an iterative process of manual peak indexation and refinement. Opti-

mized lattice parameters are a = b = c = 10.146(2)Å and α = β = γ = 90°.
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Observed reflections and systematic absences are consistent with an F cen-

tered unit cell, as expected for the space group. The main and secondary

UBs are given by the matrices

Um =


−0.53724968 −0.64230721 0.54662989

0.74125171 −0.66877679 −0.05730186

0.40237878 0.37440493 0.83541143

 , (5.11)

Us =


−0.53348602 −0.66060023 0.52820451

0.75269851 −0.65564734 −0.05976218

0.38579479 0.36569646 0.84701150

 . (5.12)

Associated with these matrices are the angular values tr Um = 1+2 cosφm =

−0.37061504 (which gives φm = 133.3◦ for the main crystallite) and tr Us =

1+2 cosφs = −0.34212186 (which gives φs = 132.1◦ for the secondary crystal-

lite). The main and secondary sets of peaks predicted from these UB matrices

are shown in Fig. 5.10. Based on these angles, the angular separation of the

two crystallites can be calculated as δφ = (φm − φs) = 1.2◦. In terms of the

resultant diffuse scattering, such a small angular separation will not distort

the response in any meaningful way.

The panel/monitor data was cropped between TOF = 6000−99000 µs and

normalized by proton charge. Panel data was then normalized to incident

monitor data (monitorID = 4), and normalized to the incoherent scattering
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Figure 5.10: Indexation of Bragg peaks in detector space at T = 0.35 K.
Predicted peaks calculated for the F -centered lattices of the main and
secondary crystallites are shown in red and green respectively. These
orientation matrices are used to transform the data to reciprocal space
since sample orientation is fixed across runs.

of a standard absorption corrected Vanadium run. The normalized data was

then treated with a Lorentz correction (λ = 0.8 − 9.3 Å) and finally subject

to a magnetic form factor correction for Dy3+ ions.

5.4 Results

The cooling rates achieved on the beamline are shown in Fig. 5.11. Given

the limited cooling rate of the Kelvinox, as compared to the E18 cryogen

free refrigerator, the cooling curves appear to plateau in the vicinity of the
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Figure 5.11: Cooling rates achieved on the beamline. In addition to a
conventional slow cooling run, three attempts were made to achieve as
fast a cooling rate as possible in the Kelvinox. All three fast runs were
much slower than that of the 70 mK s−1 in Ref. [13].

freezing temperature, suggesting perhaps a degree of dynamical arrest thereby

inhibiting the rapid cooling of the sample, as achieved on BlueFors at Cardiff.

In panel (a) of Fig. 5.12 we show a high temperature subtraction from the

slow cooled (0.2 mK s−1) state at base temperature (T = 0.3 K) in the (h, h, l)

reciprocal plane, confirming the usual pattern of diffuse scattering observed

in previous experiments [260]. By comparison, in panel (b) we show the net

scattering resulting from the fastest pulse cooling rate achieved (9.5 mK s−1),

with the slow cooled measurement shown in (a) subtracted from it. As can

be seen, there is no significant change to the magnetic correlations manifest

in the (h, h, l) plane for a fast cooling rate of (9.5 mK s−1) as compared to

(0.2 mK s−1).
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a b

Figure 5.12: Diffuse scattering in (h, h, l) for slow and fast cooled states.
Panel (a) shows the slow cooled (0.2 mK s−1) state with a high tem-
perature run at 10 K subtracted, showing the usual pattern of diffuse
scattering observed in previous experiments [260].

Figure 5.13: Linecut along the (0, 0, l) direction for fast and slow cooling
rates, showing no appreciable differences between cooling rates above
the noise floor.



5.5 Conclusions 235

Linecuts along the (0, 0, l) direction are given in Fig. 5.13 for both slow and

fast cooling rates, and show no appreciable difference between the fast and

slow cool measurements. Despite not having access to the (0, 0, 2) position,

in the vicinity of a pinch point feature, given that no differences in spectral

weight along the rest of the zone axis were observed, it seems unlikely that

such a difference would manifest here.

5.5 Conclusions

We have investigated the effect of cooling rate on the spin correlations at low

temperature in the classical spin ice material Dy2Ti2O7, and have shown that

the rapid cooling rates achieved by the avalanche quench cooling protocol in

Ref. [13] can be obtained more simply, and in a manner more amenable to

beamline measurements, with a heat pulse protocol described in this chapter.

Noting the reduced cooling rate of the Kelvinox dilution refrigerator as com-

pared to that of E18 which we had planned to use, we can place an upper

bound on the manifestation of non-trivial spin correlations resultant from

quench cooling of 9.5 mK s−1 based on our measurements.





Chapter 6

Conclusion and outlook

In conclusion, this thesis has focused primarily on the application of single-

crystal neutron diffraction techniques to the study of frustrated and corre-

lated magnetic materials. The primary results obtained over the course of

the experiments that form the basis to this thesis are summarized as follows.

In Chap. 3, we have presented the development of a new single-crystal al-

gorithm, namely LinkedUBs which has been included in mantid, designed

principally for the WISH diffractometer at the ISIS Pulsed Neutron and

Muon Source, Didcot, UK. Foremost a powder instrument, WISH has limited

out-of-plane coverage, thereby requiring multiple rotations of the sample in

single-crystal experiments to achieve sufficient coverage in reciprocal space

to facilitate quantitative structural characterizations. This novel algorithm

is necessary to ensure that a continuous reciprocal space is maintained in the

analysis of data, with initial direction choices made in the construction of

the initial UB matrix maintained subsequently. Without the imposition of

this constraint, spurious domain structure can appear manifest and thereby

237

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
https://github.com/mantidproject/mantid
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inhibit the solution for space groups other than the highly symmetrical cubic

family, where degeneracy of directions is manifest. We have also demon-

strated the utility provided by the combined usage of LinkedUBs with an

implementation of a method for the stitching together of runs with differ-

ent statistical weightings in reciprocal space; the resulting reciprocal space

volumes are especially useful in the analysis of diffuse scattering data and

further extends the utility of the WISH instrument to deal routinely with

single-crystal experiments and thereby enhance the science program of the

instrument.

We have presented quantitative refinements of the crystal structure of the

garnet material Ca3Ga2Ge3O12 and the crystal and magnetic structures of

MnF2 as proof of its utility. Given the ability of WISH to measure small

magnetic moments and small sample volumes, the scope of the instrument is

thereby broadened to allow for its strengths in this capacity to be expanded

to the realm of single-crystal determination for complex magnetic structures.

Moreover, the UB matrices produced by this algorithm can be used in the

stitching together of runs to produce detailed reciprocal space planes, and

we have demonstrated this utility by presenting magnetic diffuse scattering

measurements in GeNi2O4, showing previously unseen magnetic correlations.

This is a useful feature for diffuse scattering studies which are becoming

increasingly common in the literature, and at higher demand by non-specialist

neutron beam users.

In Chap. 4, we have applied single-crystal neutron diffraction and mag-

https://docs.mantidproject.org/v4.0.0/algorithms/LinkedUBs-v1.html
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netization measurements in an applied magnetic field to study the multiple

commensurate periodicities manifest in an Ising jeff =
1
2 magnet, published

in Ref. [167]. From our single-crystal results on the WISH and RITA in-

struments, as well as our powder results from WISH and TASP, we have

found a correspondence between short range ordered states and magnetiza-

tion plateaus. Furthermore, we have found a co-existence of multiple short

range symmetries when magnetic field is applied out of the easy plane. When

magnetic field is applied strictly along the easy c-axis, only 〈T̂ 3〉 symmetry is

observed. This is in contrast to the case where field is applied out of the ac-

plane, resulting in a component of field along the b-axis. In this case, as well

as stabilizing multiple co-existing symmetries — including 〈T̂ 4〉 periodicity —

we observe a hysteresis effect and interpret our results based on the formation

of magnetic antiphase boundaries. It would be worthwhile in the future to

measure the Q⃗-dependence of magnetic excitations below TN in an inelastic

neutron scattering experiment, as we had intended to carry out. Further

magnetization measurements in combination with single-crystal diffraction

would be worthwhile in the search for new periodicities at low temperature,

in particular, investigating the microscopic nature of states prepared by cy-

cling field in minor loops.

In Chap. 5, we describe a new method of quench cooling to prepare out-of-

equilibrium states in spin ice, achieving a maximum rate of 150 mK s−1 in a

BlueFors dilution refridgerator at Cardiff University. Due to complications

relating to the maintenance of the E18 dilution refridgerator at ISIS, we were
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unable to use this in our beamline experiment; instead, we adapted our cool-

ing protocol to work with the lesser powered Kelvinox dilution refrigeration

insert in conjunction with an Oxford Instruments Variox cryostat. Aiming

to measure spin correlations in an out-of-equilibrium prepared monopole rich

state, we implemented our cooling protocol on the beamline, as summarized

by the rapid cooling of a heat pulse given to the sample through the spin

ice freezing temperature, which thereby traps in an out-of-equilibrium pop-

ulation of monopoles. Our results did not indicate any change to the spin

correlations in our fast cooled states up to a maximum of 9.5 mK s−1, as com-

pared to conventional slow cool states. These results indicate a lower bound

on the stabilization of non-equilibrium monopole populations amenable to

changes in the spin correlation function and to the screening of the dipolar

interaction at long distances, as evidenced by changes to the pinch points. It

would be worthwhile to carry out the experiment we had set out to conduct

using the same methodology in the more powerful E18 refrigerator. Our test-

ing using a similar refrigerator at Cardiff indicated that the cooling through

the spin ice freezing transition is sufficient to induce an enhanced monopole

population, so if any change to the diffuse scattering — be they changes to

the width of the pinch points, indicating a change to the screening of dipolar

fields at long distances [259], or changes to the zone boundary scattering —

they should be visible in a follow-up experiment when the E18 refrigerator is

repaired.
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