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Abstract 14 

Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown.  Here, 15 

we aimed to determine whether triggering reactivation in sleep could facilitate this process. 16 

We paired abstraction problems with sounds, then replayed these during either slow wave 17 

sleep (SWS) or rapid eye movement (REM) sleep to trigger memory reactivation in 27 human 18 

participants (19 female).  This revealed performance improvements on abstraction problems 19 

which were cued in REM, but not problems cued in SWS. Interestingly, the cue-related 20 

improvement was not significant until a follow up retest one week after the manipulation, 21 

suggesting that REM may initiate a sequence of plasticity events that requires more time to 22 

be implemented. Furthermore, memory-linked trigger sounds evoked distinct neural 23 

responses in REM, but not SWS.  Overall, our findings suggest that targeted memory 24 

reactivation in REM can facilitate visual rule abstraction, although this effect takes time to 25 

unfold. 26 

 27 

Keywords: sleep, rule abstraction, targeted memory reactivation, REM, SWS, synthetic visual 28 

reasoning task, event-related potentials, P300.  29 
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Significance Statement 31 
 32 
The ability to abstract rules from a corpus of experiences is a building block of human 33 

reasoning. Sleep is known to facilitate rule abstraction, but it remains unclear whether we can 34 

manipulate this process actively and which stage of sleep is most important. Targeted Memory 35 

Reactivation (TMR) is a technique which employs re-exposure to learning-related sensory 36 

cues during sleep in order to enhance memory consolidation. Here, we show that TMR, when 37 

applied during REM sleep, can facilitate the complex recombining of information needed for 38 

rule abstraction. Furthermore, we show that this qualitative REM-related benefit emerges over 39 

the course of a week after learning, suggesting that memory integration may require a slower 40 

form of plasticity. 41 

  42 
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Introduction 43 

Abstraction, or the process of formulating generalized ideas or concepts by extracting common 44 

qualities from specific examples, is a core component of fluid intelligence (Welling, 2007). 45 

Sleep has been suggested to play an active role in rule abstraction (for reviews see (Chatburn 46 

et al., 2014; Lerner and Gluck, 2019)).  For instance, some experimental paradigms which 47 

probe rule abstraction such as statistical learning of tone transition patterns have been shown 48 

to benefit from slow wave sleep (SWS) (Durrant et al., 2011, 2013, 2016), whereas others, 49 

like the weather prediction task, seem to benefit from rapid eye movement sleep 50 

(REM)(Barsky et al., 2015).  Rule-learning related neural patterns have even been shown to 51 

reactivate in the rat medial prefrontal cortex during SWS (Peyrache et al., 2009).  However, 52 

the mechanisms supporting abstraction in sleep are unknown.  It is unclear if one specific 53 

sleep stage is more important, and whether the benefit stems from memory reactivation or 54 

other types of processing in sleep.   55 

Targeted memory reactivation (TMR) is a method for explicitly controlling memory reactivation 56 

in the sleeping brain (Oudiette and Paller, 2013).  In TMR, sounds that have been 57 

simultaneously paired with recently learned material during wake are softly re-presented 58 

during subsequent sleep to trigger reactivation of the associated memories and boost 59 

consolidation.  TMR is most commonly applied during non-REM (NREM) sleep, where it is 60 

known to strengthen memories (Rasch et al., 2007; Rudoy et al., 2009; Antony et al., 2012), 61 

but has also been linked to qualitative changes, such as the emergence of explicit knowledge 62 

of formerly implicit memories (Cousins et al., 2014). There is currently a debate in the literature 63 

regarding whether or not memories can be reactivated during REM sleep using TMR, with 64 

some studies reporting null findings (Rasch et al., 2007; Hu et al., 2020), and others reporting 65 

significant effects (Sterpenich et al., 2014; Hutchison et al., 2021; Picard-Deland et al., 2021). 66 

The present study aims to address this issue within the realm of rule abstraction, since the 67 

question of whether TMR can also boost this skill, in addition to memory consolidation, 68 

remains to be answered. It is also unclear whether rule abstraction would benefit most from 69 
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reactivation in SWS or in REM, given the proposed role of these sleep stages in memory 70 

restructuring (Landmann et al., 2015) and generalisation (Lewis and Durrant, 2011; Sterpenich 71 

et al., 2014; Pereira and Lewis, 2020).  One study did apply SWS TMR to an abstraction task 72 

and suggest a benefit, but the lack of a non-cued control makes the results difficult to interpret 73 

(Batterink and Paller, 2017). Another study showed no effect of SWS TMR on generalisation 74 

(Witkowski et al., 2021), while in a third study, such stimulation appeared to produce a deficit 75 

in abstraction (Hennies et al., 2017). Nonetheless, SWS has been linked to positive effects in 76 

numerous abstraction-related tasks (see (Lerner and Gluck, 2019) for a review).  77 

In the current report, we address the above questions by using TMR to reactivate rule 78 

abstraction problems in SWS and REM, with different problems cued in each stage. We used 79 

a visual abstraction task called the Synthetic Visual Reasoning Task (SVRT)(Fleuret et al., 80 

2011) which requires participants to abstract rules that define ‘families’ of abstract visual 81 

patterns through trial and error exposure.  For example, in the problem depicted in Figure 1, 82 

the rule is that each image contains two identical shapes.  In training, participants are shown 83 

a series of images and asked to categorise them as belonging to the family in question or not.   84 

They are given feedback on each correct/incorrect categorisation.  Each family of shapes is 85 

associated with a consistent reference image.  At test, participants have to indicate whether 86 

or not a given sample image follows the same rule as the reference image for that particular 87 

problem. Because the impacts of TMR can last for up to a week(Hu et al., 2015), and may 88 

even amplify across this period(Groch et al., 2017), we re-tested our participants one week 89 

after the TMR manipulation. 90 

 91 

 92 

 93 

 94 

 95 
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Materials and Methods  96 

Participants 97 

Healthy young adults (mean age 22 years old, range = 19 – 30 years) were recruited online 98 

and through advertisements on the university campus to take part in this study. Participants 99 

filled out an online screening form and were excluded if: they had any diagnosed sleep, 100 

neurological or psychiatric disorders, were taking psychoactive medication, travelled more 101 

than two time zones or engaged in regular shift work in the two months prior to the experiment. 102 

Participants reported a regular sleep cycle over a four-week period prior to the experiment and 103 

were instructed to abstain from alcohol (24h) and caffeine (12h) prior to each visit to the 104 

laboratory, as well as daytime napping. Data from 27 individuals (19 females) were collected 105 

and used for behavioural analyses. One participant was excluded from the ERP analyses 106 

since, due to technical difficulties, no EEG triggers were recorded during TMR (n = 26).  All 107 

participants signed informed consent and received monetary compensation for their 108 

participation. This study was approved by the ethics committee of the School of Psychology 109 

of Cardiff University. 110 

Experimental design 111 

The experiment was conducted according to a within-subject design (see Figure 1). 112 

Participants arrived in the evening (between 6 and 8pm) and were prepared for 113 

polysomnography recordings. Subsequently, participants performed a battery of pre-sleep 114 

cognitive testing. First, they performed the Image Familiarisation Task, where they passively 115 

saw all the images (either faces or landscapes) used in the SVRT. To ensure engagement, 116 

participants were instructed to press the space bar whenever a red dot appeared on the 117 

screen. After the Image Familiarisation Task, participants performed the Problem-Image 118 

Association Task, where they learned to associate each SVRT problem with a particular image 119 

of either a face or a landscape. These images were used to group the SVRT problems into 2 120 

categories (category 1: problems paired with faces, category 2: problems paired with 121 
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landscapes). Next, participants performed the Synthetic Visual Reasoning Test (Fleuret et al., 122 

2011), where they were required to categorize a series of samples from 16 problems as either 123 

in-class (following the rule) or out of class (not following the rule) (see Extended Data Figure 124 

1-1). Each problem was always presented in combination with a specific image from one of 125 

the two possible categories (faces or landscapes) and with a 200ms sound. During training, 126 

participants learned through feedback and trial-and-error until they were able to correctly 127 

categorize the samples to 70% accuracy on each problem. During testing, they did not receive 128 

any feedback. The last task before sleep was the Problem-Sound Association Task, where 129 

participants were trained to recognize which sound had been paired with which problem, until 130 

they reached 100% accuracy. This task was introduced to guarantee that the effectiveness of 131 

TMR would not be compromised by a weak association between the sounds and their 132 

respective problems. 133 

Next, participants went to sleep while non-obtrusive brown noise was continuously played 134 

throughout the night. For targeted memory reactivation, each category (sets 1 and 2 of 135 

problems paired with faces or problems paired with landscapes) was assigned to a sleep stage 136 

(either SWS or REM). Assignment of categories to the sleep stages was counterbalanced 137 

across participants. Within each category, half of the problems were cued during sleep and 138 

the other half served as a non-cued control (subsets A and B). Assignment of sets 1A, 1B, 2A 139 

and 2B to each sleep stage and cueing condition was counterbalanced across participants 140 

(see below which SVRT problems were included in each set). The sounds paired with 141 

problems assigned to the cued condition were played at the onset of either SWS or REM, as 142 

well as new, control sounds, not previously presented to the participant. Upon awakening (day 143 

1), participants performed the Image Familiarisation task again, were wired down, showered, 144 

and then were retested on the SVRT. A week later (day 7) participants returned to the lab and 145 

were retested once again on the SVRT. Performance on the SVRT was assessed by the 146 

accuracy at each time point, and by the accuracy change (difference across time points).  147 
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All tasks were implemented in Matlab R2017b using Psychtoolbox 3 and displayed on a 1920 148 

x 1080-pixel computer monitor.  149 

Tasks 150 

Image familiarisation task 151 

This task consisted of 14 blocks of 8 trials (one per problem) for each one of the two categories 152 

(i.e. 8 faces and 8 landscapes, for a total of 16 different images), amounting to 112 image 153 

presentations per category (224 in total). A variable inter-trial interval was set between 1 and 154 

2 seconds. Participants were asked to press the space bar whenever a red dot appeared on 155 

the screen. The red dot was set to appear randomly once every 8 trials. The task was 156 

administered in the evening and again in the morning. 157 

Problem-Image Association task 158 

This task was designed to help participants learn to associate each SVRT problem and its 159 

corresponding sound with a particular image (either a face or a landscape). It consists of 2 160 

phases: learning and test. For each participant, the images and sounds were randomly 161 

assigned to the SVRT problems. During learning, participants performed 3 blocks of 16 trials 162 

(one per problem) where they passively viewed the reference representation of any given 163 

SVRT problem on the left-hand side of the screen and the image it was paired with (either a 164 

face or a landscape) in the centre of the screen, while the 2 second sound paired with that 165 

problem-image dyad was played. Participants were instructed to press the space bar if a red 166 

dot appeared on the screen. The red dot appeared randomly once per block. In the test phase, 167 

participants saw the reference representation in the centre of the screen and heard the same 168 

sound that had been paired with it during learning, but now trimmed to only 200 ms. Next, two 169 

images appeared on the screen and the participant had to indicate which one had been paired 170 

with that particular problem-sound dyad. The test was repeated until participants reached 75% 171 

accuracy.  172 
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These two tasks, image familiarisation and problem-image association, were added to the 173 

experimental design in order to facilitate use of machine learning classification algorithms to 174 

detect replay. We performed extra checks to certify that image category was not influencing 175 

the SVRT task, see results.  176 

Synthetic Visual Reasoning Test (SVRT) 177 

The SVRT task requires participants to indicate whether or not a given sample image follows 178 

the same rule as the reference image for that particular problem (both sample and reference 179 

images were displayed simultaneously). The rule governing each problem had to be 180 

discovered through trial and error during training. We measured accuracy as the ability to 181 

correctly categorize sample images according to whether they followed, or broke, the rule for 182 

that problem (Figure 1). Feedback was given after each trial, informing participants whether 183 

or not their categorisation of the sample image was correct. For more examples of sample 184 

images and rules, please refer to Extended Data Figure 1-1. Each problem was presented in 185 

conjunction with a picture of a face or a landscape, to boost the chances of eliciting classifiable 186 

EEG patterns, as has been done for objects and scenes (Cairney et al., 2018), and for animals, 187 

tools, faces and buildings (Shanahan et al., 2018). Participants were trained on 16 188 

categorization problems, half of which were subsequently used to test the impact of TMR in 189 

SWS (4 were cued in SWS and 4 were used as a control), and the other half (4 cued and 4 190 

control) were used to test the impact of TMR in REM. 191 

The test phase consisted of 5 trials for each problem. Out of a pool of 200 images per problem, 192 

(100 following the rule and 100 not following the rule), 5 images were randomly selected for 193 

each test (pre-sleep, Day 1 and Day 7). 194 

During both training and test phases, a time limit for each response was set to 6 seconds, 195 

after which the next trial would start. After each block (i.e. problem) there was a 15 second 196 

rest break. The order of problem presentation was randomized for each participant. Each trial 197 

began with the presentation of that problem’s reference representation on the left-hand side 198 
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of the screen, the image it had been paired with (either a face or a landscape) in the centre 199 

for the screen, and the 200ms sound that these images were associated with. Then, the image 200 

to be categorized was displayed on the right-hand side of the screen. Participants were 201 

required to press 1 if the image to be categorized was in class (satisfied the rule) or to press 202 

9 if it was out of class (did not satisfy the rule).  Performance on the SVRT was assessed by 203 

the change in accuracy overnight (post-sleep day 1 – pre-sleep), across the week (post-sleep 204 

day 7 – post-sleep day 1). Performance was not affected by the category of the image paired 205 

with each problem (i.e. face or landscape(all t-tests p > 0.4, uncorrected)).  206 

Problem-Sound Association task 207 

This task was designed to ensure that participants were able to correctly identify all sound- 208 

problem dyads introduced while performing the SVRT before sleep, which could otherwise 209 

compromise the effectiveness of TMR. Again, the reference representation was presented in 210 

combination with its corresponding face or landscape image. Next, two 200ms long sounds 211 

were played and the participant indicated which one had been paired with that problem-image 212 

dyad. The test was repeated until participants reached 100 % accuracy. 213 

Stimuli 214 

All sounds were obtained from an online repository (www.freesound.org). Initial sounds (2 215 

seconds long; learning phase of the Sound-Problem Association Task) were trimmed into 216 

200ms long sounds using the software Audacity. A pool of sounds was used for each category 217 

(faces/landscapes), from which sounds were randomly selected and assigned to a specific 218 

SVRT problem.  For faces, generic object sounds were used and for landscapes, generic 219 

nature sounds were used, such as a bird chirping or the wind blowing. For each category 220 

(faces or landscapes) a group of 12 similar but easily distinguishable sounds was selected 221 

and from this pool, 8 sounds were randomly paired with an image and used in the SVRT task 222 

while the remaining 4 sounds were used as controls during TMR. Sounds for faces and 223 

http://www.freesound.org/
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landscapes were matched in duration, and all were played at the same volume within each 224 

participant. 225 

The images of faces were obtained from the Karolinska Directed Emotional Faces (KDEF) 226 

(Lundqvist et al., 1998). Only faces of females with a neutral facial expression at a straight 227 

angle were chosen. The images of landscapes were obtained from an online repository 228 

(www.freeimages.com). All images were edited into grayscale and resized (faces: 325 x 435 229 

pixels; landscapes: 435 x 325 pixels) using the software GIMP. 230 

TMR protocol 231 

Audio cues were embedded in brown noise in order to decrease the likelihood that the TMR 232 

sounds would elicit an arousal. Brown noise was played throughout the entire night while the 233 

cues were only presented when SWS or REM was identified online by the experimenter. Both 234 

stimuli (audio cues and brown noise) were played through loud speakers placed behind the 235 

participant’s bed. The sound volume was manually adjusted for each participant before sleep 236 

according to their comfort level. Each cue (either experimental, e.g. paired with a learned rule 237 

or control, with no rule associated) was played twice in a row before the next cue was played. 238 

All cues were played 4 seconds apart from each other. One loop of cueing consisted of all 8 239 

cues (4 control and 4 experimental) played twice (16 sound presentations). The order of cue 240 

presentation was randomized at each iteration of the loop. A total of 14 loops was played in 241 

each sleep stage (corresponding to approximately 15 min of cueing), adding up to 28 242 

repetitions of each individual sound and 112 cueing events in each condition (control or 243 

experimental). Even though SWS usually occupies a larger proportion of the night than REM 244 

(and would thus allow for an extended cueing time), we wanted to ensure that we would be 245 

able to deliver the same amount of cueing in both sleep stages, and therefore we opted for 246 

limiting cueing to ~ 15 min. Cueing was initiated in the first episode of SWS and REM and was 247 

interrupted whenever an arousal or sleep stage transition was identified. In one participant, 248 

only 7 out of the 14 loops of REM cueing were completed, due to short sleep duration (n = 1) 249 

and in another participant only 8 out of the 14 loops of SWS cueing were completed, due to 250 

http://www.freeimages.com/
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light sleep throughout the night (n = 1). These participants were not excluded from any 251 

analyses. Note that cueing varied between participants, depending on whether or not they 252 

obtained ~15 min of uninterrupted SWS and REM, such that for some cueing was finished 253 

within the first NREM-REM cycle while for others additional cycles were needed. No significant 254 

correlations were found between number of cues delivered in SWS or REM and subsequent 255 

performance (all p > 0.1). Following offline sleep scoring, cueing accuracy (calculated as the 256 

percentage of cues delivered in the intended sleep stage) was determined: 94.44 % for SWS 257 

and 93.72 % for REM. Regarding continuity (i.e. whether or not TMR was completed within on 258 

sleep cycle, SWS TMR was continuous for 19 participants out of 26 participants and REM 259 

TMR was continuous for 1 out of 26 participants only. This is to be expected, since we initiated 260 

REM TMR at the onset of the first REM episode, which tends to be very short and our entire 261 

cueing procedure required at least 15 min to complete, if uninterrupted. Given this distribution 262 

of the data, it is not possible to estimate if the TMR effect differed depending on whether 263 

cueing was continuous or discontinuous. 264 

EEG recordings and sleep analysis 265 

EEG was recorded using BrainVision software during the Image Familiarisation task (in the 266 

pre-sleep evening and morning of post sleep day 1) and during sleep. Recordings were made 267 

at 500 Hz from 22 scalp locations on the standard 10/20 layout (Fz, F3, F4, FC1, FC2, FC5, 268 

FC6, Cz, C3, C4, CP5, CP6, Pz, P3, P4, P7, P8, PO3, PO4, Oz, O1 and O2), referenced to 269 

the mastoids. Impedances were kept below 5 kΩ. Electrooculogram (EOG) and 270 

electromyogram (EMG) signals were also recorded from electrodes next to each eye and 2 271 

electrodes on the chin, respectively. Sleep scoring was accomplished using the guidelines 272 

from the American Association of Sleep Medicine (AASM, v. 2.5), within a custom-made script 273 

implemented in Matlab. Offline scoring was performed by two independent raters, blind to 274 

when cueing occurred, achieving an 88% agreement rate. Discrepancies were resolved by 275 

one of the raters.  276 
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Spindles and slow oscillations were detected from all channels using the SpiSOP toolbox 277 

version 2.3.8.3 (available at https://www.spisop.org/), with the spindle detection algorithm 278 

based on (Molle et al., 2002). Centre frequencies of fast and slow spindles were visually 279 

determined for each participant and used to define the finite impulse response (FIR) filter 280 

(center frequency 13.29Hz (std: 0.69)). The root mean square (RMS) of the filtered signal was 281 

computed using a 0.2s time window and smoothed by a moving average of another 0.2s 282 

window. Any event that surpassed the 1.5 SD of the RMS signal was considered a candidate 283 

spindle. To fit the spindle detection criteria, the candidate events had to last between 0.5s and 284 

3s.  Because we had no apriori hypothesis about specific channels, all correlations were made 285 

with the average across channels. 286 

Similarly slow oscillation detection is based on (Mölle et al. 2002) but also see (Ngo et al. 287 

2013). Prior to the actual detection, the signal is high pass filtered (IIR by default) then low 288 

pass filtered (FIR) to contain frequency components observed in slow oscillations in a 289 

specified band (0.3 to 3.5 Hz). Then all the time intervals with consecutive positive-to-negative 290 

zero crossings are marked. Only intervals with durations corresponding to a minimum (set to 291 

0.5Hz) and maximum (set to 1.11Hz) slow oscillation frequency are considered as putative 292 

slow oscillations. The threshold for negative peaks is set to 1.25 and for negative to positive 293 

peaks amplitude was also set to 1.25 (default parameters).  294 

 295 

EEG pre-processing 296 

First, the data was high-pass filtered at 0.3 Hz and low-pass filtered at 35 Hz. Then, the 297 

continuous EEG was epoched into trials from 1 s before to 3 s after sound cue onset (since 298 

the cues were 4 s apart). Noisy channels were repaired by interpolating data from 299 

neighbouring electrodes and trials containing arousals or movement artefacts (as determined 300 

during sleep scoring) were removed. Finally, any remaining noisy trials were manually 301 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.spisop.org%2F&data=05%7C01%7CSantamariaCovarrubiasL%40cardiff.ac.uk%7C157a0ab51c35462a3bb708da48ad6cd2%7Cbdb74b3095684856bdbf06759778fcbc%7C1%7C0%7C637902206929640355%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=uEJcU4%2B3wvnsnXardXL3q2srtU8CE9gv60ek7MFZVpE%3D&reserved=0
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removed following visual inspection. The number of trials included in the final analysis for each 302 

participant, sleep stage and condition are presented in Extended Data Figure 2-3. 303 

Baseline correction was performed on the single trial level using the entire trial length [-1 3] 304 

(Grandchamp and Delorme, 2011). Trials were then separated into conditions (control and 305 

experimental) and sleep stages (SWS and REM). One participant was excluded from all 306 

analyses, since they did not have EEG triggers during TMR (final n = 26).  307 

EEG analysis 308 

Event-related potentials (ERPs) analyses were carried out in Fieldtrip (Oostenveld et al., 2011) 309 

(available at: http://www.fieldtriptoolbox.org/).  ERPs were calculated for each condition and 310 

sleep stage, and compared within subjects and between conditions, across all channels, within 311 

a time window from 0 to 2000ms (not averaged).  312 

ERPs of control and experimental sounds were compared using Monte-Carlo cluster 313 

permutation tests, corrected for multiple comparisons (Maris and Oostenveld, 2007). The 314 

cluster alpha was set to 0.05 and 150000 randomizations were carried out for every test. 315 

Clusters were considered significant at p < 0.025 (two tailed). Similar parameters were set-up 316 

for time-frequency analysis for each frequency band of interest: theta (4 to 8Hz), spindles (9 317 

to 15Hz) and low-beta (12.5 to 16Hz). More specifically, the time-frequency cluster 318 

permutation analysis was calculated using the average across trials for each participant in the 319 

window of interest (0 to 2s). The statistical analysis was performed for experimental vs control 320 

sounds in SWS, REM and also for their interaction (SWS difference vs REM difference, where 321 

difference was calculated as experimental minus control sounds) for each frequency band. 322 

The minimum number of channels to form a cluster was set to 2, the number of randomisations 323 

set to 250000 and the cluster alpha at p=0.025 (two-tailed). 324 

To determine whether stimulation lead to a change in spindles or slow oscillations, we 325 

calculated the number and duration of spindles and slow oscillations per condition 326 

(experimental and control sounds). We then compared these between conditions using a 327 

http://www.fieldtriptoolbox.org/
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cluster permutation analysis. The cluster alpha was set to 0.05 and 250000 randomizations 328 

were carried out for every test. Clusters were considered significant at p < 0.025 (two tailed).  329 

Finally, we sought to detect memory reactivation after our TMR cues using an EEG classifier.  330 

Thus, ERP values were used as features to feed a linear Support Vector Machine (SVM). To 331 

avoid overfitting, we used 5-fold validation repeated twice. As a performance metric we used 332 

the traditional accuracy but also area under the curve. The classification was performed 333 

separately for SWS and REM stages for each participant. Statistics were performed at a group 334 

level to check if for any above-chance time-cluster. No significant cluster was found for either 335 

of the performance metrics or for either sleep stage. 336 

Statistical analyses 337 

Performance change on the SVRT was compared using a repeated measures ANOVA with 338 

between-subjects factors sleep stage (SWS/REM), cueing condition (cued/non-cued) and 339 

session (overnight/across the week) as repeated factor. We ran an outlier analysis using the 340 

ROUT method (Q = 1%) and identified two outliers on the SWS cued group. Upon removal of 341 

these outliers, the results remained the same as those in Figure 2A, where no significant 342 

differences were found between overall performance change on SWS cued and non-cued 343 

problems (t (1,24) = 1.132, p = 0.269). 344 

Descriptive statistics (mean, standard deviation, standard error of the mean and confidence 345 

intervals) are presented in Figure Extended Data Figure 2-4 The combined performance 346 

change was compared between non-cued and cued conditions using paired t-tests. Pearson’s 347 

correlations were calculated between the combined performance change and the average 348 

number of slow oscillations and spindles in frontal, central and parietal derivations. Data are 349 

presented as mean ± SEM and we report eta squared (ƞ2) and Cohen’s d as effect size 350 

estimates for significant findings.  351 
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Statistical analyses of the behavioural data were conducted on JASP 0.10.2.0 while statistical 352 

analyses of EEG data were conducted on Matlab R2017b using the Fieldtrip toolbox (version 353 

20190904). 354 

  355 
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Results 356 

TMR in REM improves rule abstraction 357 

We examined baseline performance (pre-sleep) using an ANOVA with the factors cueing 358 

condition (cued/non-cued) and Sleep stage (SWS/REM). No differences or interaction were 359 

found (smallest p=0.666).  Refer to Figure 2.B and Extended Data Figure 2-1a for full statistical 360 

details.  361 

To assess the impact of cueing, upon consolidation across a retention interval, we compared 362 

SVRT performance change (overnight accuracy change: post-sleep day 1 - pre-sleep; and 363 

across a week: post-sleep day 7 - post-sleep day 1) using a repeated measures ANOVA with 364 

factors sleep stage (SWS and REM), cueing condition (cued and non-cued), and retention 365 

interval (overnight and across a week post-sleep) as repeated measure. This showed a 366 

significant sleep stage*cueing condition interaction (F(1,26) = 6.091, p = 0.020, ƞ2 = 0.013), with 367 

no other factor or interaction being significant (smallest p=0.128, Figure 2A, Extended Data 368 

Figure 2-1b). This indicates that cueing had different effects when applied in SWS and REM. 369 

To investigate this, we conducted a simple main effects test (sleep stages x cueing), which 370 

revealed better performance in the cued condition for REM than SWS (F(1,26)  = 4.463, p = 371 

0.044), with no differences between SWS and REM in the non-cued control condition (F(1,26)  = 372 

0.774, p = 0.387; Figure 2A). This result could suggest that cueing benefited rule abstraction 373 

when delivered during REM sleep, but not SWS.   374 

To better understand this pattern of results, and also to gain statistical power, we next 375 

analysed each sleep stage separately using a 2-way ANOVA with factors cueing condition 376 

(cued and non-cued) and retention interval (overnight and across a week post-sleep). For 377 

SVRT problems cued in SWS, there was no effect of cueing, session or interaction between 378 

these (smallest p=0.198). For problems cued in REM sleep however, we found a significant 379 

cueing effect (F(1,26) = 7.930, p = 0.009, ƞ2 = 0.019), indicating that performance improvements 380 

were superior for cued problems, compared to non-cued problems. There was no effect of 381 
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session or cueing*session interaction (smallest p=0.231). To further understand the origin of 382 

the cueing effect in REM sleep we performed a paired t-test (cued vs non-cued) on accuracy 383 

at each session (Pre-sleep, post-sleep day1 and post-sleep day 7), Figure 2B and Extended 384 

Data Figure 2-3 for full statistical results. Accuracy was superior for REM cued problems, as 385 

compared to non-cued (t(26) = 3.357, p = 0.002, Cohen’s d = 0.646) only at Post-sleep day 7.   386 

Overall, these findings suggest that reactivating problems during REM leads to a significant 387 

advantage in rule knowledge after seven days and nights.  388 

 389 

Event-related potentials in REM differ between control and experimental sounds 390 

To examine neural processing associated with TMR cues, we plotted sound-evoked ERPs for 391 

each sleep stage of cueing (SWS and REM) and sound category (control and experimental) 392 

at Cz for illustration purposes, see Figure 3. Topographies showing the spatial distribution of 393 

significant channels over time are available in the (Figure 4 for all EEG channels).  We 394 

analysed a large time window (0–2000ms), which includes all known auditory event-related 395 

potentials (Winkler et al., n.d.) and has previously been associated with processing auditory 396 

stimuli in both NREM and REM sleep (Campbell and Muller-Gass, 2011).  To determine 397 

whether the response to control and experimental sounds differed in each sleep stage, we 398 

performed a cluster analysis on the ERP amplitudes (all channels, not averaged). This 399 

revealed a significant difference between experimental (familiar) and control (new) sounds in 400 

REM sleep (cluster corrected for multiple comparisons, p=0.048), but not in the SWS (all p > 401 

0.05). This negative cluster ranges from 228ms to 400ms. The elicitation of a larger ERP 402 

amplitude for new sounds than for familiar sounds demonstrates an ability to detect novelty.  403 

Our observation of this response in REM but not SWS is in keeping with prior literature 404 

showing greater responsivity in REM compared to SWS (see(Ibáñez et al., 2009) for a review). 405 

To probe the data further, we performed a time-frequency analysis per sleep stage in the same 406 

time window (0-2000ms) choosing relevant frequency bands based on previous work on SWS: 407 
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theta-band (4-8Hz) and spindle band (9-15Hz), and lower beta band (13-16Hz) for REM sleep. 408 

Cluster statistics revealed nothing significant for either frequency band or sleep stage 409 

(smallest p-value 0.052). Full list of results in Extended data Figure 4-1.  410 

 411 

Does cueing in each sleep stage interfere with consolidation of cueing in the other? 412 
 413 
Because we applied TMR in both SWS and REM (though stimulating different problems in 414 

each stage) we were interested to know whether TMR in REM might have obscured or 415 

interfered with the effects of TMR in SWS. In the case of direct interference, we might expect 416 

a negative correlation between the extent to which participants benefit from REM TMR and 417 

the extent to which they benefit from SWS TMR.  To test for this, we looked for a relationship 418 

between performance on problems cued in SWS and REM in two different ways, using 419 

overnight gain and using TMR cueing benefit.  Thus, we ran a correlation between overnight 420 

performance change (difference between post-sleep and pre-sleep) for problems cued in SWS 421 

and overnight performance change for problems cued in REM. This showed no correlation (r 422 

= -0.162, p = 0.420). Next, we calculated the cueing benefit (difference between performance 423 

on cued and non-cued problems) for SWS-related problems and REM-related problems at 424 

each session and across sessions, to check if TMR-related improvements in REM problems 425 

were obtained at the expense of cueing benefit in problems cued in SWS.  This showed no 426 

significant relationships (p > 0.05, uncorrected; Table 2).  These results show that the extent 427 

of TMR related consolidation in REM doesn’t predict any specific deficit in the benefit accrued 428 

from equivalent cues in SWS.  429 

 430 

There is no relationship between time spent in non-manipulated REM sleep and 431 

performance on problems cued in SWS 432 

It could be argued that successive TMR in SWS and REM might have curtailed the amount of 433 

non-manipulated REM available to further advance any consolidation processes initiated by 434 

TMR in SWS, thus disrupting any potential benefits from this manipulation. We inspected sleep 435 
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architecture in relation to TMR and found that 25 out of 26 participants had a period of non-436 

manipulated REM sleep after REM cueing had terminated: an average of 65.9 min (ranging 437 

from 24 min to 117.5 min). Furthermore, the amount of non-manipulated REM sleep in each 438 

participant was not correlated with performance on SWS cued problems on either post-sleep 439 

day 1 (r = 0.284, p = 0.160) or post-sleep day 7 (r = 0.166, p = 0.419). 440 

 441 

Relation between rule abstraction and NREM graphoelements 442 

Sleep architecture data from all 27 participants is presented in Table 1.  443 

Slow oscillations and sleep spindles are thought to mediate TMR-related benefits to memory 444 

consolidation(Schouten et al., 2017; Cairney et al., 2018; Göldi et al., 2019). In order to 445 

determine if the same was true for rule abstraction, we counted the number of slow oscillations 446 

and sleep spindles in NREM sleep for each participant and checked for correlations between 447 

each of these and the SVRT performance change for problems cued in SWS and REM, as 448 

well as the control non-cued problems for each sleep stage. In line with the observation that 449 

TMR in SWS did not improve rule abstraction, we found no correlation between performance 450 

on the SVRT task and either spindles or slow oscillations (all p >= 0.1, uncorrected, Table 4). 451 

Next, we wanted to determine whether TMR cueing altered spindles or slow oscillations in a 452 

way that related to subsequent changes in performance on our task.  We thus calculated the 453 

number and duration (samples) of spindles and slow oscillation in the 3 second epoch 454 

following TMR stimulation for each condition (experimental and control). No significant results 455 

were found for spindles (smallest p value=0.06, see topography in Figure 5). But two 456 

significant clusters were found for the number of SOs. One in the left hemisphere, t=-9.08 p 457 

value=0.007, and one on the right hemisphere (t=-6.50, p=0.012), see Figure 5. Both indicated 458 

a higher number of SO after control than experimental sounds.  We then correlated the mean 459 

number of SOs detected in each cluster with behavioural performance change for items (cued 460 

in REM/SWS and non-cued for both stages) both overnight and over the subsequent week 461 

and for both cued and non-cued items.  This revealed a significant positive relationship 462 
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between both the right hemispheric cluster (Rho = .44, p=0.03) and the left hemispheric cluster 463 

(Rho = .42, p= 0.04), uncorrected.  Overall, these data appear to suggest that cueing with the 464 

experimental TMR tone lead to a reduction in SOs over these electrodes and this seems to 465 

be associated with TMR benefit, although the correlations do not survive correction for multiple 466 

comparisons. However, because we had no apriori hypothesis to this effect, and the 467 

correlations do not survive correction for multiple comparisons, we feel this should be treated 468 

with caution.  469 

 470 

Image category did not affect SVRT performance 471 
 472 
To determine whether being associated with the face/object sounds versus the 473 

landscape/nature sounds had any impact on behaviour, we directly compared performance 474 

on problems associated with faces and landscapes, irrespective of sleep stage or cueing 475 

condition. There were no differences in performance between the two. We conducted a two-476 

way repeated measures ANOVA on the raw accuracy values with the factors category: (faces 477 

and landscapes) and session: (pre-sleep, post-sleep day 1 and post-sleep day 7). There was 478 

no effect of category (F(1,26) = 0.362; p = 0.553; ƞ2 = 0.003) or session (F(1,26) = 2.054; p = 479 

0.139; ƞ2 = 0.007) , and no interaction (F(1,26) = 0.253 ; p = 0.778; ƞ2 = 0.001). The same 480 

analysis was conducted on the performance changes (overnight, over a week and overall 481 

change), with Greenhouse-Geisser sphericity correction. Similarly, no effect of category (F(1,26) 482 

= 0.365; p = 0.551; ƞ2 = 0.004) or session (F(1,26) = 0.610; p = 0.480; ƞ2 = 0.004) was found, 483 

and there was no interaction (F(1,26) = 0.165; p = 0.729; ƞ2 = 0.002). We ran paired t-tests 484 

between the same time points in each category (e.g. Faces at pre-sleep vs Landscapes at 485 

pre-sleep). No differences were found (all p > 0.4, uncorrected). 486 

 487 

Discussion  488 

This study shows that rule abstraction, one of the building blocks of human reasoning, can be 489 

facilitated by applying targeted memory reactivation during sleep.  Interestingly, when different 490 
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problems were cued in SWS and REM within the same night, the problems cued in REM 491 

benefitted from offline rehearsal, shedding light on a possible role for previously detected 492 

reactivation during REM (Maquet et al., 2000; Louie and Wilson, 2001; Mainieri et al., 2019).  493 

Furthermore, we found that REM TMR mediated facilitation of abstraction requires time to 494 

emerge, since cued problems have a significant advantage over non-cued problems one week 495 

after the manipulation.  This is important, because it joins a small but growing literature 496 

suggesting that some sleep-related memory benefits may require more than just one episode 497 

of sleep to emerge (Groch et al., 2017; Cairney et al., 2018).  498 

Abstraction underpins the ability to categorise items and generalize rules to new, never before 499 

seen exemplars.  This is a core component of fluid intelligence(Otero, 2017), and is particularly 500 

important when one is faced with a new problem that cannot be solved exclusively by prior 501 

knowledge. Our data appear to show a dissociation between REM and SWS, with TMR in the 502 

former but not the latter facilitating performance on a complex task requiring rule abstraction 503 

and pattern categorization. Un-manipulated SWS has been shown to be involved in both 504 

quantitative (Rasch and Born, 2013) and qualitative changes to recently encoded memories 505 

(Wagner et al., 2004; Lau et al., 2010; Durrant et al., 2011, 2013; Wilhelm et al., 2013; Kirov 506 

et al., 2015), while REM has been suggested to be more involved with qualitative changes, 507 

such as forming unexpected links between different memories or concepts (Lewis et al., 2018). 508 

This possibility is supported by studies showing that REM duration predicts visual abstraction 509 

(Lutz et al., 2017), category learning (Djonlagic et al., 2009), lexical integration (Tamminen et 510 

al., 2017) and grammar learning (Batterink and Paller, 2017), all of which are highly integrative 511 

forms of memory.  Our finding with respect to REM is also in line with a recent review 512 

suggesting that abstraction of explicit rules based on prior knowledge is often linked to REM 513 

sleep (Lerner and Gluck, 2019), and extends these ideas by providing clues to the underlying 514 

mechanisms of REM-dependent rule abstraction.  In addition, one study demonstrated that 515 

TMR in SWS can actually impair the abstraction of grammar-like transition statistics(Hennies 516 

et al., 2017), suggesting that promotion of memory for specific episodes through reactivation 517 
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in SWS may disrupt the abstraction of generalised statistics. Taken together with this literature, 518 

our findings suggest that REM TMR may have the capacity to directly promote abstraction. 519 

Supporting this, studies using REM TMR to investigate qualitative changes, such as the 520 

affective tone of emotional memories (Rihm and Rasch, 2015; Lehmann et al., 2016) and the 521 

generalization/integration of pictures with emotional content (Sterpenich et al., 2014), typically 522 

do find a benefit from REM TMR, as did our current study.  If abstraction-like processing turns 523 

out to be the main function of REM for memory, that could explain why most REM TMR studies 524 

have shown little or no benefit to memory consolidation (for a meta-analysis see (Hu et al., 525 

2019)), since such studies typically assessed quantitative, rather than qualitative changes, 526 

and thus do not test abstraction.   527 

In the current study, while TMR in REM facilitated rule abstraction, TMR in SWS did not.  Given 528 

this result, it might be tempting to conclude that TMR in SWS does not facilitate this kind of 529 

abstraction.  However, we cannot exclude the possibility that cueing problems in SWS 530 

triggered a consolidation process which would have facilitated abstraction, but which was 531 

disrupted by subsequent cueing in REM.  We ran several analyses to investigate this 532 

possibility and found that there is no relationship between the extent to which SVRT 533 

performance benefitted from cueing in REM and cueing in SWS.  We also found that the vast 534 

majority of participants had epochs of non-manipulated REM sleep after REM cueing had 535 

ceased, which presumably provided an opportunity for items that had been cued in SWS to 536 

continue their consolidation in REM as needed. Nonetheless, we still cannot rule out some 537 

kind of interference and thus remain cautious in our interpretation.  We therefore conclude 538 

only that REM TMR is sufficient to start a consolidation process which facilitates rule 539 

abstraction and cannot draw conclusions about the impacts of SWS TMR on this process 540 

based on the current data alone. 541 

Regarding the timing of the TMR effects, our data suggest that the impact of TMR may 542 

continue to unfold for at least a week, with performance on cued and non-cued problems only 543 

becoming significantly different after that temporal delay. Notably, we did not test performance 544 
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between days one and seven, so we do not know how quickly this process unfolds.  If 545 

qualitative changes in memory representations, such as abstraction, require longer periods of 546 

time to evolve (Sterpenich et al., 2014; Lutz et al., 2017), then they may escape detection by 547 

the commonly used 12 hour test-retest paradigm. Prior studies have considered longer test 548 

periods and have shown that TMR-related benefits sometimes disappear over a week 549 

(Shanahan et al., 2018), but can also persist over this period (Hu et al., 2015; Groch et al., 550 

2017; Simon et al., 2018). Our current study builds on these reports by showing that the benefit 551 

to abstraction which was not significant at day one post-sleep became significant by day 552 

seven.  This is in keeping with a study of emotional processing, which showed that the impact 553 

of NREM TMR on emotional content was amplified across a week (Groch et al., 2017), and 554 

also with our own work on the serial reaction time task which shows that benefit from TMR 555 

can emerge after 10 days or more (Rakowska et al., 2021).   556 

Building on a model of synaptic plasticity across brain states (Redondo and Morris, 2011; Seibt 557 

and Frank, 2019),  we have recently proposed a series of plasticity-related events that take 558 

place in both NREM and REM which could explain why the effect of sleep on memory 559 

consolidation may require extended periods of time before it becomes detectable (Pereira and 560 

Lewis, 2020). According to a recent framework (Seibt and Frank, 2019), neuronal ensembles 561 

associated with the task are tagged during wakeful encoding. During subsequent NREM 562 

reactivation, mRNAs or other Plasticity-Related Products (PRPs) are captured by these 563 

tagged synapses. Finally, in subsequent REM, these PRPs are translated into proteins which 564 

enable synapses to undergo intense remodelling. In light of our current results, we speculate 565 

that applying TMR in REM might potentially bypass the need for PRP capture in NREM, 566 

instead promoting PRP capture and translation at task-related synapses. Given the time-567 

consuming nature of these processes, multiple nights of sleep could be required before 568 

measurable behavioural effects emerge.  Of course, this does not explain why TMR cueing in 569 

SWS, which might reasonably be expected to result in extra PRP capture by task-related 570 

synapses, did not result in a behavioural benefit.  We can only speculate that such PRP 571 
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capture is not sufficient in the case of our abstraction task.  Alternatively, it is also possible 572 

that cueing in REM subsequent to SWS somehow interfered with consolidation such that 573 

PRPs capture during SWS cueing were not subsequently translated. More work will be needed 574 

to disentangle such effects. 575 

Our ERP analysis complements our behavioural findings by revealing differential neural 576 

responses to experimental and control stimuli in REM, but not SWS. These differential 577 

responses were found between 228 to 400ms post cue onset, a time window during which 578 

auditory stimuli are known to be extensively processed in both NREM and REM sleep 579 

(Campbell and Muller-Gass, 2011) and which is also associated with the P300 component 580 

(Picton, 1992). The P300 is thought to reflect higher order cognitive processing related to 581 

selective attention and resource allocation, with its amplitude proportional to the amount of 582 

attentional resource recruited for scrutiny of a given stimulus (Ibáñez et al., 2009). The P300 583 

has also been detected during REM, with larger peak amplitudes occurring for rare sounds in 584 

the oddball paradigm (Cote and Campbell, 1999).  Our data mirror this result by showing that 585 

‘new’ control sounds elicited greater P300 waves than ‘familiar’ task-related sounds. 586 

Interestingly, the P300 has been found in response to hearing one’s own name in REM sleep, 587 

but not in response to hearing another name.  This could indicate that some level of cognitive 588 

processing persists during REM (Bastuji et al., 2002). The fact that we observed a difference 589 

between familiar and unfamiliar P300 responses in REM but not in SWS, is therefore in 590 

keeping with the literature.  Other authors have interpreted such results as suggesting that 591 

stimuli are processed at a deeper, more cognitive, level during REM (see (Ibáñez et al., 2009) 592 

for a review).  593 

 594 

Conclusion 595 

In sum, we found that TMR in REM is sufficient to benefit a visual reasoning task commonly 596 

used in the field of Artificial Intelligence (Fleuret et al., 2011; Ellis et al., 2015), but never before 597 



25 
 

tested in a sleep study. Furthermore, ERPs suggested a deeper level of processing in REM 598 

than SWS, and behavioural findings suggest that the process started by TMR in REM requires 599 

more than one night of sleep to unfold. These findings open exciting new avenues for exploring 600 

TMR as a tool to enhance higher order cognitive functions such as abstraction, a core 601 

component of fluid intelligence and creativity. 602 
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 782 
 783 
 784 
 785 

Table 1. Sleep architecture (n = 27) 786 

Sleep variable Mean SEM 

TST (min) 490.3 10.5 

Sleep latency (min) 20.6 2.9 

WASO (min) 15.9 3.8 

Micro-arousals (#) 39.3 4.6 

NREM 1 (min) 33.5 3.0 

NREM 2 (min) 254.9 7.9 

SWS (min) 85.7 4.2 

REM (min) 100.3 4.9 

WASO (%) 3.2 3.2 

NREM 1 (%) 6.7 0.5 

NREM 2 (%) 52.0 1.2 

SWS (%) 17.7 0.9 

REM (%) 20.3 0.9 

                               Total sleep time (TST); Wake after sleep onset (WASO). 787 

 788 
  789 
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 790 
 791 
 792 
 793 
 794 

Table 2 – Correlations between Cueing Benefit* in REM and SWS 795 
   Pearson’s r p† 

SWS Pre-sleep with   REM Pre-sleep -0.205 0.304 

SWS Day 1 with   REM Day1 -0.003 0.987 

SWS Day 7 with   REM Day7 -0.147 0.465 

SWS Overnight with   REM Overnight -0.086 0.669 

SWS Week with   REM Week -0.207 0.300 

SWS Total with   REM Total -0.338 0.085 

 796 

*cueing benefit = cued – non-cued; Overnight = Day 1 – Pre-sleep; Week = Day 7 – Day 1; 797 
Total = Day 7 – Pre-sleep; uncorrected †p-value. 798 

 799 

 800 

Table 3. Spindles and Slow Oscillations identified in epochs after control and 801 
experimental sounds 802 

  Number  Duration (samples)  

Spindles    

      Control 43.75 (2.01) 78.16 (0.28)  

      Experimental 43.63 (2.02) 77.20 (0.29)  

Slow Oscillations    

      Control 59.96 (2.17) 215.46 (1.64)  

      Experimental 56.39 (2.03) 221.03 (1.65)  

 803 

Table 3:  Spindles and slow oscillations summary, averaged across participants and 804 
channels separately for control and experimental epochs. Values within brackets indicates 805 
SEM.  806 

  807 
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Table 4:  Spindles and slow oscillations summary, averaged across participants and 808 
channels separately for control and experimental epochs. Values within brackets 809 

indicates SEM error. 810 

 811 
Sleep Stage Cueing 

Condition 
Oscillation  Pearson’s r p 

SWS 

Non-cued  Spindles (#)  0.008 0.97 

Sos (#)  -0.015 0.94 

Cued  Spindles (#)  0.118 0.56 

Sos (#)  0.148 0.46 

REM 

Non-cued Spindles (#)  0.324 0.10 

Sos (#)  0.231 0.25 

Cued Spindles (#)  -0.114 0.57 

Sos (#)  0.016 0.94 

        Slow Oscillations (Sos); Number (#). N = 27 812 

  813 
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 814 
 815 

 816 

 817 

 818 

 819 

 820 

 821 

  822 
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Figure 1. Experimental design. A) Before sleep, participants learned to pair each image (a 823 

face or a landscape) with an SVRT problem and its associated sound (Problem-Image 824 

Association task). Next, they were trained and tested on the SVRT task, where they had to 825 

decide whether or not the test image followed the same rule as the reference image for any 826 

given problem, as shown in the upper panel in A. For example, in the problem shown here the 827 

rule is: each image contains two identical shapes(Fleuret et al., 2011), see Extended Data 828 

Figure 1-1 for another example. Immediately before sleep, participants were probed on their 829 

ability to recall which sound (speaker symbols) had been paired to which SVRT problem 830 

(Problem-Sound Association task). TMR was applied to different problems during REM and 831 

SWS during the night (see B). Finally, participants were retested on the SVRT both next 832 

morning (post-sleep day 1) and a week later (post-sleep day 7).  B) Representative hypnogram 833 

depicting the TMR protocol. During TMR in the night, sounds associated with four problems 834 

were replayed in SWS and sounds associated with four other problems were replayed in REM. 835 

Control sounds that had not been associated with any problems (new sounds) but instead 836 

served as controls for auditory responses were also replayed in both sleep stages. Cueing 837 

started with the first instance of SWS and REM and terminated once control and experimental 838 

sounds had been presented 28 times each (twice per loop, 14 loops). 839 

 840 

Extended Data Figure 1-1 SVRT stimuli examples. Sample images from problem 1 (top 841 

panel) and problem 2 (bottom panel), that either follow the rule (on the left) or break the rule 842 

(on the right)(Fleuret et al., 2011). For problem 1 the rule is that: each picture contains two 843 

identical shapes. The squiggly lines were introduced as distractors (not a part of the rule), to 844 

increase the difficulty level. For problem 2 the rule is each image contains two shapes of 845 

different sizes, the smaller one inside the larger one, roughly centred. The black filling of the 846 

smaller shaped was added in some images as a distractor to increase the difficulty level. Other 847 

problems had rules relating, for example, to the number of identical shapes (pairs or triplets), 848 

their position (mirrored or translated, touching or not touching, inside or outside one another, 849 
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aligned or not aligned, etc.) or their arrangement (odd shape in the middle, bigger shape at 850 

the edge, etc.). 851 

 852 
 853 
Figure 2 –TMR in REM improves rule abstraction.  854 

A) SVRT accuracy change overnight (post-sleep day 1 – pre-sleep) and across the week 855 

(post-sleep day 7 – post-sleep day 1) is plotted for each sleep stage (SWS and REM) and 856 

cueing condition (non-cued and cued). A repeated measures ANOVA revealed a significant 857 

sleep stage*cueing condition interaction (p = 0.013) and a simple main-effects analysis 858 

showed better performance for problems cued in REM, as compared to problems cued in SWS 859 

(p = 0.044).  See Extended Data Figure 2-1. B) In SWS problems (left), there was no difference 860 

between cued and non-cued accuracy in any individual session (p > 0.3).  In REM problems 861 

(right) there was no difference between cued and non-cued conditions on day 1 (p = 0.550), 862 

but at day 7, accuracy was higher on cued compared to non-cued problems (p = 0.002).  Mean 863 

and SEM are depicted, see also Extended Data Figure 2-2. See Extended Data Figure 2-3 for 864 

numbers of trials. 865 

 866 

Extended Data Figure 2-1a – SVRT accuracy at baseline (pre-sleep). ANOVA with Cueing 867 

(cued/non-cued) and Sleep stage (REM/SWS) as factors.  868 

Extended Data Figure 2-1b – TMR benefit. Repeated measures ANOVA on retention interval 869 

(overnight/week) and Cueing (cued/non-cued) and Sleep stages (SWS/REM). Shaded areas 870 

highlight significant results. Overnight benefit is calculated as the difference between Post-871 

sleep day 1 and pre sleep and the week performance is calculated as the difference between 872 

both post sleep sessions (Day 7 – Day 1). 873 

Extended Data Figure 2-1c – TMR benefit post-hoc analysis. Paired t-test for REM 874 

conditions to understand the differences between cued and non-cued problems per session 875 

(Post-sleep Day1 and Day 7) and also the cueing benefit overnight (difference between Post 876 
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sleep Day1 and Pre-sleep), a week after (Post-sleep Day7 vs. Pre-sleep) and also the 877 

difference between Day 7 and Pre-sleep.  878 

Extended Data Figure 2-2:  Accuracy on the SVRT per group and session  879 

Extended Data Figure 2-3. Number of trials used per participant and condition 880 

 881 

 882 

Figure 3 – Event-related Potentials at Cz during Targeted Memory Reactivation.  Cz 883 

ERPs in SWS (blue top panel) and REM (red bottom panel) elicited by control (new) and 884 

experimental (task-related) sounds. The vertical dashed line at 0 indicates cue onset (200ms 885 

long). A cluster analysis revealed a significant difference between ERPs in response to control 886 

and experimental sound in REM between 228ms and 400ms (cluster corrected *p =0.048). 887 

Data are depicted as mean ± SEM (n = 26). 888 

 889 

Figure 4 – Spatial distribution of channels with a statistically significant difference 890 

between experimental and control sounds during REM. Data is displayed as the averaged 891 

difference (n=26) between experimental and control sounds ERPs in 20ms time bins. * 892 

Indicates the position of a significant channel.  The time-frequency cluster permutation 893 

analysis for these data is shown in Extended Data Figure 4-1. 894 

Extended Data Figure 4-1. Time-frequency cluster permutation analysis. When more than 895 

one cluster is present, the lowest p-value was selected. When no clusters are found is indi-896 

cated by (-). No statistically significant clusters were found.   897 

Figure 5:  Spindles and slow oscillations evoked by TMR. Top row shows the average of 898 

differences in spindles following experimental and control TMR cues, while the bottom line 899 

shows the same for slow oscillations. Durations are shown on the left and count is shown on 900 

the right. Blue colours indicating higher spindle duration/count for control than experimental. 901 

Significant clusters are highlighted with a white star.  902 


