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Abstract 

Damage modelling is essential in preliminary structural design and non-destructive damage 

detection. This paper investigates changes in natural frequencies of plates due to an arbitrarily 

aligned crack. A novel hybrid method couples an exact strip model for the intact part with a 

finite element model for the cracked part. The crack is modelled as a rotational spring with 

additional rotational freedoms being added to the finite element nodes. The method is validated 

against published results for through-the-depth cracks. Cracks with varying direction, location, 

depth and length are used to study the effects of changing the crack parameters. 

Keywords: plates, cracks, damage detection, exact strip, finite element, Wittrick-Williams 

algorithm 

 

1. Introduction 

Thin plates and shells are widely used in aerospace and other applications. Plate structural 

failures can be caused by many factors, such as unexpected loading or environmental 

conditions leading to defects in the material or damage to the structure, insufficiency in design, 

and inadequacies in construction or maintenance. Damaged structures can have significantly 

reduced structural properties leading to sudden failure with potentially catastrophic 

consequences, including in the worst cases loss of life. This is particularly true for thin-walled 

structures, where potential instability is a significant factor. For this reason, the ability to detect 
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damage in terms of localisation and assessment of severity at the very early stages of 

propagation can enhance the performance and safety of these structures. 

Structural performance is degraded by the presence of damage such as cracks, which are often 

difficult to detect visually, particularly in built-up structures such as wings and fuselage panels 

[1-6]. Changes in vibration behaviour enable damage to be identified using non-destructive 

testing techniques, which can be employed with minimal instrumentation if attention is 

confined to the natural frequencies rather than the vibration modes [7]. By studying changes 

in either natural frequencies or mode shapes, it is possible to infer the location and severity of 

damage by comparison with the behaviour of an undamaged structure. This is achieved in two 

stages, the direct problem and the inverse problem. In the direct problem the effect of damage 

with a range of severities in different locations is determined. Using this information, the 

inverse problem is solved to locate and characterise the damage based on changes in vibration 

behaviour.  

The vibration responses of rectangular plates with cracks or singularities under different 

loading and boundary conditions has been the subject of significant investigation and many 

methods have been presented to solve this problem. The direction and severity of a crack will 

impact on both vibrational characteristics and material properties. 

A number of studies have been performed to study the effect of cracks running along an axis 

of symmetry, examples include Stahl and Keer [8], Liew et al. [9], Bose and Mohanty [10], 

and Huang and Leissa [11] which will be chosen as comparators for the present work. Despite 

some success, researchers have found it difficult to obtain accurate natural frequency results 

when the crack extends over the full width of the plate [11] or when its length is small (e.g. 

less than 20% of the plate width [10]). Stahl and Keer [8] used homogeneous Fredholm integral 

equations of the second kind to obtain the natural frequencies of a plate with different crack 

locations. A finite Fourier transform to the differential equation was also used [12-14], with a 

system of integral equations representing the unknown singularity around the crack. The 

unknown quantities were expanded into a Fourier series, but the method was limited to the 

localisation of the crack and to particular boundary conditions of the plate. Qian et al. [15] 

established a finite element model to investigate the vibration response of a cracked plate. 

Krawczuk [16] presented a closed form solution formulating the stiffness matrix required to 

simulate a static through crack in an element to substitue the whole damaged plate. Changes 

in natural frequencies could be formulated as a function of the length and location of the crack, 



3 

 

the boundary conditions, and the mode shape. Liew et al. [9] applied domain decomposition 

with the Rayleigh-Ritz method to find the upper bound of natural frequencies for cracked plates. 

An investigation by Krawczuk et al. [17] on the effect of the plastic zone around a crack on 

the flexibility of the structure, compared with pure elastic behaviour, demonstrated a rather 

small influence in contrast to elastic and elasto-plastic crack models. Fujimoto et al. [18] used 

a hybrid of the finite element method and the body force method to discuss the vibration 

response of a centrally cracked plate under uniaxial tension. Saito et al. [19] used a finite 

element model to analyse the linear and nonlinear vibration response of a cantilever plate 

within a transverse crack. Huang and Leissa [11] used a set of corner functions to simulate the 

stress singularities and extract the natural frequencies of a plate using the Rayleigh-Ritz 

method. Their method was extended to thick rectangular plates with arbitrary cracks using 

Mindlin theory [20]. 

A relationship was found between the crack orientation and the change in natural frequencies 

with different boundary conditions having different effects on the vibration response [10, 11]. 

However, these are two of only a few research studies which describe the effect of changing 

crack angle on vibration response, most of which studied through-the-depth cracks giving no 

results for part through-the-depth cracks [11, 21]. Bose and Mohanty [10] incorporated stress 

theory and strain gradient theory to study the effect of microstructure on vibration response 

using a modified line spring model, but the changes in natural frequencies obtained from this 

study were significantly different from those of previous studies [8, 9]. 

Cracks have been modelled in two different ways: as a reduction in stiffness along the crack 

path; or by a series of springs added along the crack direction [22-25]. In the first approach, 

the reduction in stiffness can be represented by a decrease in either cross-sectional area or 

Young’s modulus of the material [26]. Alternatively, spring models simulate the singularity 

behaviour surrounding a crack by introducing a compliance related to the crack depth. 

Different relationships have been found experimentally using a strain energy density function 

based on fracture mechanics theory [27-31]. 

The crack model used in this paper adopts the second approach, using rotational springs to 

represent the cracks and adding additional rotational degrees of freedom to the finite elements 

in the area of damage. The cracks are assumed to be always open. This approach is analogous 

to that previously applied to beam structures [26, 32], and enables the cracked problem to 

remain linear. In the cracked elements, the construction of a nodal stiffness matrix 
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incorporating crack stiffness and the way in which the rotational spring is formulated are an 

essential part of the present study. 

A hybrid model is proposed which couples exact strip analysis for the undamaged part of the 

plate and finite element analysis for the damaged part as shown in Fig. 1. In the finite element 

part, a crack is modelled as a rotational spring represented by additional degrees of freedom in 

the stiffness matrix. The finite element and exact strip dynamic stiffness matrices are 

assembled into a global dynamic stiffness matrix, using Lagrangian Multipliers to equate the 

displacements at the boundaries of the two parts. Applying an efficient banded solver for Gauss 

elimination, the resulting transcendental eigenvalue problem is solved using a modified form 

of the Wittrick-Williams algorithm [33] for the first few natural frequencies. This novel hybrid 

cracked plate model, having versatility, accuracy and efficiency, is used to predict the effect 

of damage on the plate’s natural frequencies. These natural frequencies can then be used to 

solve the inverse problem, by enabling a quantitative relation between the crack parameters 

and the vibration characteristics to be derived. 

 

 

 

  

Fig. 1. Hybrid cracked plate model, coupling an exact strip model (ESM) and a finite 

element (FE) model, with the crack simulated by a rotational spring of stiffness 𝑘∗. 
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The focus in this paper is the direct problem of calculating the changes in natural frequencies 

of an isotropic simply supported rectangular plate due to a predefined single crack with 

arbitrary direction, location, depth and length, giving a comprehensive understanding of the 

relationship between the location and severity of the crack and the free vibration natural 

frequencies and mode shapes. This study provides a significant advance on other studies where 

results are commonly restricted to cracks located at the centre or at an edge of the plate, running 

parallel to the plate edges, over the full length or width, or through the full thickness [8-10]. 

Section 2 outlines the exact strip and finite element models that are used for the intact and 

damaged parts of the structure. Section 3 explains how cracks are included in the finite element 

model. Then in section 4 the two models are combined to form a hybrid model of the whole 

structure. Section 5 gives numerical results which validate the hybrid model and study the 

effects of the various crack parameters. Finally, conclusions are presented in section 6. 

 

2. Dynamic stiffness matrices for exact strip and finite element models 

The dynamic stiffness method (DSM) provides an efficient, accurate alternative to finite 

element (FE) analysis by constructing a transcendental stiffness matrix based on exact solutions 

to the governing differential equations. Such exact solutions require plate structures and their 

loading to be invariant in the longitudinal (𝑥) direction, so that the vibration or buckling modes 

can be described by sinusoidal terms in this direction [34]. However, for more complicated 

structures or arbitrary damage cases, it cannot establish an appropriate model to obtain the 

vibration characteristics or critical buckling load factors. To balance computational efficiency 

and the ability to model complex structures, a recent hybrid approach by Suliman et al. [35] 

extended the capability of the DSM by coupling the exact strip method (ESM) for the intact 

part of the structure with the more versatile finite element method (FEM) for the damaged part. 

This approach was used to model delamination damage in composite plates. The present paper 

further extends the capability of the DSM by coupling the ESM and FEM to enable the 

modelling of rectangular plates containing cracks of arbitrary length, depth, location and 

orientation. In contrast to the approach of [35] in which the FEM model had separate nodes for 

the regions above and below the delaminations, here the finite element mesh is not modified 

but additional rotational degrees of freedom are assigned to the node of the elements containing 

cracks. 
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2.1 Exact strip model 

DSM is well established and has been incorporated into a range of software giving exact 

formulations for beam-like structures [36]. The elements of the dynamic stiffness matrix are 

highly transcendental functions of the frequency and so lead to a nonlinear eigenvalue problem, 

preventing the use of standard linear eigensolvers to extract the natural frequencies and critical 

buckling loads. Wittrick and Williams [33] proposed an efficient and accurate algorithm that 

gives all required natural frequencies below a chosen trial frequency to any desired accuracy. 

ESM is an extension of DSM for plate-like structures which was first presented by Wittrick 

[37], and is based on obtaining explicit closed form solutions to the governing differential 

equations. Plates are divided where necessary into a series of strips which are rigidly connected 

along their longitudinal edges. The mode shape is assumed to vary sinusoidally in the 

longitudinal direction, with any spatial phase differences in the forces and displacements 

handled by using complex arithmetic. For the common cases of isotropic, orthotropic and 

symmetrically layered composite plates, the displacements are decoupled into out-of-plane and 

in-plane systems [37]. For each strip, separate stiffness matrices are defined for these two 

systems, and it is noted that the lowest natural frequencies are always obtained from the out-

of-plane system. This paper only considers the out-of-plane system, which is sufficient to 

illustrate the proposed hybrid method and to make comparisons with results from the literature.  

As shown in Fig. 1, an ESM model is chosen for the intact portion of the plate and the 

assumption of sinusoidal variation enables the plate structure to be reduced from a two-

dimensional to a one-dimensional element through a dynamic stiffness matrix. Software 

adopting this approach includes VIPASA [34], and its extension VICON [38, 39] which 

handles the skewed mode shapes arising from shear loading or anisotropy by the introduction 

of Lagrangian multipliers to couple sinusoidal responses with different half-wavelengths 𝜆. 

The VICON stiffness equations can be expressed as [39] 

 

[
 
 
 
 
 
 
 
 
𝑙𝐊1 𝟎 𝟎 ⋯ 𝟎 𝐄1

H

𝟎 𝑙𝐊2 𝟎 ⋯ 𝟎 𝐄2
H

𝟎 𝟎 𝑙𝐊3 ⋯ 𝟎 𝐄3
H

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝟎 𝟎 𝟎 𝟎 𝑙𝐊𝑗 𝐄𝑗
H

𝐄1 𝐄2 𝐄3 ⋯ 𝐄𝑗 𝟎 ]
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𝐃2

𝐃3

⋮

𝐃𝑗

𝐏𝐿 ]
 
 
 
 
 
 
 
 

=
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𝐏1

𝐏2

𝐏3

⋮

𝐏𝑗

𝟎 ]
 
 
 
 
 
 
 

 
(1) 
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where 𝐊1, 𝐊2, … , 𝐊𝑗 are the ESM (VIPASA) stiffness matrices derived in [34] using classical 

plate theory for sinusoidal variation with half-wavelengths 𝜆1, 𝜆2, … , 𝜆𝑗 and 𝐃1, 𝐃2, … , 𝐃𝑗 are 

the corresponding displacement vectors; 𝐄1, 𝐄2, … , 𝐄𝑗 are constraint matrices used to enforce 

the longitudinal end conditions; and 𝐏𝐿 is the vector of Lagrangian Multipliers. 𝐏1, 𝐏2, … , 𝐏𝑗 

are random force vectors, while 𝑙  is the length of the plate and H  denotes the Hermitian 

transpose.  

 

2.2 Finite element model 

Classical plate theory is also used in the finite element model used for the damaged part of the 

plate. This region is divided into identical rectangular elements with four nodes and three out-

of-plane degrees of freedom per node, namely out-of-plane displacement 𝑤 and rotations  𝜃𝑥 

and  𝜃𝑦 about the  𝑥 and 𝑦 axes, respectively, see Fig. 1. The static stiffness matrix 𝐤 and mass 

matrix 𝐦 for individual undamaged elements are taken from Przemieniecki [40] in the form 

𝐤 = [

𝐤11 𝐤12 𝐤13 𝐤14

𝐤21 𝐤22 𝐤23 𝐤24

𝐤31 𝐤32 𝐤33 𝐤34

𝐤41 𝐤42 𝐤43 𝐤44

]      ,     𝐦 = [

𝐦11 𝐦12 𝐦13 𝐦14

𝐦21 𝐦22 𝐦23 𝐦24

𝐦31 𝐦32 𝐦33 𝐦34

𝐦41 𝐦42 𝐦43 𝐦44

] (2) 

 
 

 𝐊FE = 𝐊 + 𝜔2𝐌 (3) 

where 𝜔 is the frequency of vibration. 

 

3. Crack modelling 

In the hybrid VICON and FE method (VFM) of this paper, the ESM (VICON) model of section 

2.1 is used for the undamaged parts of the structure, while the FE model of section 2.2 is used 

for the damaged parts. Section 3 describes how damage is introduced to the FE model, in the 

form of an arbitrarily located and aligned crack extending part way through the thickness of 

the plate.  
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3.1 Rotational spring model 

A concentrated open crack in a flat thin plate can be represented by a rotational spring of 

stiffness 𝑘∗ about the crack direction as shown in Fig. 1. In a manner analogous to that used 

for modelling cracks in beams [26, 32, 41], the spring stiffness 𝑘∗ is assumed to be related to 

the crack depth d  by  

 
𝑘∗ =

𝐷

𝑏
×

1

𝜆∗
 (4) 

in which 

 
𝜆∗ =

ℎ

𝑏
× 𝐶 (𝑑 ℎ)⁄  (5) 

where 𝜆∗ is the dimensionless local compliance, 𝑏 is the width of the plate, h is its thickness and 

𝐷 is its flexural rigidity. 𝐶(𝑑 ℎ⁄ ) is a dimensionless function that can be generalised as [26] 

 
𝐶(𝑑 ℎ⁄ ) =

(𝑑 ℎ⁄ )[2 − (𝑑 ℎ⁄ )]

0.9[1 − (𝑑 ℎ⁄ )]2
 (6) 

For crack simulation in plate elements, it is convenient to use the depth-dependent compliance  

 
𝐶∗ =

1

𝑘∗
 (7) 

instead of the stiffness itself to avoid any singularities occurring during the calculation. The 

rotational compliances associated with the crack are determined prior to their being allocated 

to their respective element nodes and thus incorporated into the element stiffness matrices and 

hence the global stiffness matrix.  

 

Fig. 2 (a) Detail of the FE portion of VFM model; (b) Rotational degrees of freedom at 

node 5 of the cracked portion; (c) An example of arbitrary cracked element extracted from 

the FE portion. 
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3.2 Crack modelling for plate elements 

Consider the longitudinal damaged portion of the plate containing the crack as shown in Fig. 

1. Suppose the crack runs along the line PQRS shown in Fig. 2(a), passing through the elements 

numbered I, II and IV. The crack has a depth dependent compliance 𝐶∗̿̿ ̿ per unit length [29], 

which is resolved into rotational components 𝐶𝑥
∗̿̿ ̿ and 𝐶𝑦

∗̿̿ ̿ about the x and y axes, respectively. 

The components in element I are integrated along PQ using shape functions to allocate the 

resulting compliances ( 𝐶𝑥𝑖
∗ , 𝐶𝑦𝑖

∗ ; 𝑖 = 1,2,4,5 ) to nodes (1, 2, 4, 5), respectively. Similar 

allocation of the compliances occurring along QR in element II and along RS in element IV are 

made to nodes (2, 3, 5, 6) and (5, 6, 8, 9), respectively. 

The intact FE model has three degrees of freedom at each node i: out-of-plane displacement 𝑤 

and rotations 𝜃𝑥𝑖  and 𝜃𝑦𝑖  about the x and y axes, respectively. Nodes to which rotational 

compliances (𝐶𝑥𝑖
∗ , 𝐶𝑦𝑖

∗ ) have been allocated (e.g. node 5 in Fig. 2(b)) have different rotations 

(𝜃𝑥𝑖L, 𝜃𝑥𝑖U) and (𝜃𝑦𝑖L, 𝜃𝑦𝑖U) either side of the node, so that the number of degrees of freedom 

is increased from 3 to 5. The elements meeting at node 5 each connect to the appropriate 

degrees of freedom, e.g. element I connects to (𝑤5, 𝜃𝑥5𝐿 , 𝜃𝑦5𝐿) while element II connects to 

(𝑤5, 𝜃𝑥5𝐿 , 𝜃𝑦5𝑈), and so on. Rotational springs of stiffness (1 𝐶𝑥5
∗⁄ , 1 𝐶𝑦5

∗⁄ ) connect the degrees 

of freedom (𝜃𝑥5𝐿 , 𝜃𝑥5𝑈) and (𝜃𝑦5𝐿 , 𝜃𝑦5𝑈), respectively. Note that the out-of-plane displacement 

𝑤5 does not change across the node because the crack is assumed to extend only part way 

through the plate thickness.  

Details of the above calculations will now be given for a typical cracked element, shown in Fig. 

2(c). Within this element the crack runs between the points (𝑥1, 𝑦1) and (𝑥2, 𝑦2), which can lie 

either on the boundaries of the element or in its interior. The crack is aligned at a clockwise 

angle 

𝜃 = tan−1 (
𝑦2 − 𝑦1

𝑥2 − 𝑥1
) (8) 

to the x axis and extends over a length 

𝑙𝑒 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (9) 

within the element. By analogy with crack models for beam-like structures, the rotational 

compliance per unit length about each axis is given as 
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 𝐶𝑥
∗̅̅ ̅  = (𝐶∗ cos 𝜃) 𝑎𝑒⁄      ,     𝐶𝑦

∗̅̅ ̅  = (𝐶∗ sin 𝜃) 𝑏𝑒⁄  

 
(10) 

where the element dimensions (𝑎𝑒 , 𝑏𝑒) are shown in Fig. 2(c). Then, the compliance per unit 

length per element is given by 

 𝐶𝑥
∗̿̿ ̿ = 𝐶𝑥

∗̅̅ ̅/𝑎𝑒     ,     𝐶𝑦
∗̿̿ ̿ = 𝐶𝑦

∗̅̅ ̅/𝑏𝑒 (11) 

Compliances (𝐶𝑥𝑖
∗ , 𝐶𝑦𝑖

∗ ) at each node of the element are obtained by integration along the crack 

direction using a set of shape functions, so that 

 
𝐶𝑥𝑖

∗ =∫ 𝑁𝑖(𝑥, 𝑦) 𝐶𝑥
∗̿̿ ̿

𝑙𝑒

0

𝑑𝑙     ,     𝐶𝑦𝑖
∗ =∫ 𝑁𝑖(𝑥, 𝑦) 𝐶𝑦

∗̿̿ ̿
𝑙𝑒

0

𝑑𝑙 (12) 

where the shape functions are given by 

 
𝑁1  = (1 −

𝑥

𝑎𝑒
) (1 −

𝑦

𝑏𝑒
)   ,     𝑁2  = (1 −

𝑥

𝑎𝑒
) (

𝑦

𝑏𝑒
) 

𝑁3  = (
𝑥

𝑎𝑒
) (

𝑦

𝑏𝑒
)                  ,     𝑁4  = (

𝑥

𝑎𝑒
) (1 −

𝑦

𝑏𝑒
) 

 

(13) 

In order to perform the integrations in Eq. (12)), 𝑑𝑙 is replaced for each axis by 

 𝑑𝑥 = (cos 𝜃)𝑑𝑙     ,     𝑑𝑦 = (sin 𝜃)𝑑𝑙 (14) 

where 

 𝑦 = 𝑦1 + (𝑥 − 𝑥1) tan 𝜃     ,     𝑥 = 𝑥1 + (𝑦 − 𝑦1) cot 𝜃 (15) 

Therefore, substituting Eqs. (14)) and (15)) into Eq. (12)), the additional rotational compliances 

at the nodes become  

 
𝐶𝑥𝑖

∗ =∫
ℎ 𝐶(𝑑 ℎ⁄ ) 𝑁𝑖(𝑥, 𝑦)

𝐷 𝑎𝑒
2

𝑥2

𝑥1

𝑑𝑥     ,     𝐶𝑦𝑖
∗ =∫

ℎ 𝐶(𝑑 ℎ⁄ ) 𝑁𝑖(𝑥, 𝑦)

𝐷 𝑏𝑒
2

𝑦2

𝑦1

𝑑𝑦 (16) 

With the nodal sequence shown in Fig. 2(c), the integrals of Eq. (16) are evaluated as 

 
𝐶𝑥1

∗ =
ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒
3𝑏𝑒

{[𝑎𝑒𝑥1 tan 𝜃 + 𝑎𝑒(𝑏𝑒 − 𝑦1)](𝑥2 − 𝑥1)

− [(𝑎𝑒 + 𝑥1) tan 𝜃 + (𝑏𝑒 − 𝑦1)] (
𝑥2

2 − 𝑥1
2

2
)

+ tan 𝜃 (
𝑥2

3 − 𝑥1
3

3
)} 

(17) 
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𝐶𝑥2
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒
3𝑏𝑒

{[−𝑎𝑒𝑥1 tan 𝜃 + 𝑎𝑒𝑦1](𝑥2 − 𝑥1)

+ [(𝑎𝑒 + 𝑥1) tan 𝜃 − 𝑦1] (
𝑥2

2 − 𝑥1
2

2
) − tan𝜃 (

𝑥2
3 − 𝑥1

3

3
)} 

𝐶𝑥3
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒
3𝑏𝑒

{[−𝑥1 tan 𝜃 + 𝑦1] (
𝑥2

2 − 𝑥1
2

2
) + tan𝜃 (

𝑥2
3 − 𝑥1

3

3
)} 

𝐶𝑥4
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒
3𝑏𝑒

{[𝑥1 tan 𝜃 + (𝑏𝑒 − 𝑦1)] (
𝑥2

2 − 𝑥1
2

2
) − tan𝜃 (

𝑥2
3 − 𝑥1

3

3
)} 

𝐶𝑦1
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒𝑏𝑒
3 {[𝑏𝑒(𝑎𝑒 − 𝑥1) + 𝑏𝑒𝑦1 cot 𝜃](𝑦2 − 𝑦1)

− [(𝑎𝑒 − 𝑥1) + (𝑏𝑒 + 𝑦1) cot 𝜃] (
𝑦2

2 − 𝑦1
2

2
)

+ cot 𝜃 (
𝑦2

3 − 𝑦1
3

3
)} 

𝐶𝑦2
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒𝑏𝑒
3 {[(𝑎𝑒 − 𝑥1) + 𝑦1 cot 𝜃] (

𝑦2
2 − 𝑦1

2

2
) − cot 𝜃 (

𝑦2
3 − 𝑦1

3

3
)} 

𝐶𝑦3
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒𝑏𝑒
3 {[𝑥1 − 𝑦1 cot 𝜃] (

𝑦2
2 − 𝑦1

2

2
) + cot 𝜃 (

𝑦2
3 − 𝑦1

3

3
)} 

𝐶𝑦4
∗ =

ℎ 𝐶(𝑑 ℎ⁄ ) 

𝐷 𝑎𝑒𝑏𝑒
3 {[𝑏𝑒𝑥1 − 𝑏𝑒𝑦1 cot 𝜃](𝑦2 − 𝑦1)

+ [−𝑥1 + (𝑏𝑒 + 𝑦1) cot 𝜃] (
𝑦2

2 − 𝑦1
2

2
) − cot 𝜃 (

𝑦2
3 − 𝑦1

3

3
)} 

The 27 × 27 global static stiffness matrix for the four elements shown in Fig. 2(a) is assembled 

as 

𝐊 = 𝐤 + 𝐤∗ (18)  

where 𝐤 is formed in the usual way, temporarily ignoring the effects of the crack, i.e. 

𝐤 =

[
 
 
 
 
 
 
 
 
 
 
𝐤𝟏𝟏

I 𝐤𝟏𝟐
I 𝟎 𝐤𝟏𝟒

I 𝐤𝟏𝟑
I 𝟎 𝟎 𝟎 𝟎

𝐤𝟐𝟏
I 𝐤𝟐𝟐

I + 𝐤𝟏𝟏
II 𝐤𝟏𝟐

II 𝐤𝟐𝟒
I 𝐤𝟐𝟑

I + 𝐤𝟏𝟒
II 𝐤𝟏𝟑

II 𝟎 𝟎 𝟎

𝟎 𝐤𝟐𝟏
II 𝐤𝟐𝟐

II 𝟎 𝐤𝟐𝟒
II 𝐤𝟐𝟑

II 𝟎 𝟎 𝟎

𝐤𝟒𝟏
I 𝐤𝟒𝟐

I 𝟎 𝐤𝟒𝟒
I + 𝐤𝟏𝟏

III 𝐤𝟒𝟑
I + 𝐤𝟏𝟐

III 𝟎 𝐤𝟏𝟒
III 𝐤𝟏𝟑

III 𝟎

𝐤𝟑𝟏
I 𝐤𝟑𝟐

I + 𝐤𝟒𝟏
II 𝐤𝟒𝟐

II 𝐤𝟑𝟒
I + 𝐤𝟐𝟏

III 𝐤𝟑𝟑
I + 𝐤𝟒𝟒

II + 𝐤𝟐𝟐
III + 𝐤𝟏𝟏

IV 𝐤𝟒𝟑
II + 𝐤𝟏𝟐

IV 𝐤𝟐𝟒
III 𝐤𝟐𝟑

III + 𝐤𝟏𝟒
IV 𝐤𝟏𝟑

IV

𝟎 𝐤𝟑𝟏
II 𝐤𝟑𝟐

II 𝟎 𝐤𝟑𝟒
II + 𝐤𝟐𝟏

IV 𝐤𝟑𝟑
II + 𝐤𝟐𝟐

IV 𝟎 𝐤𝟐𝟒
IV 𝐤𝟐𝟑

IV

𝟎 𝟎 𝟎 𝐤𝟒𝟏
III 𝐤𝟒𝟐

III 𝟎 𝐤𝟒𝟒
III 𝐤𝟒𝟑

III 𝟎

𝟎 𝟎 𝟎 𝐤𝟑𝟏
III 𝐤𝟑𝟐

III + 𝐤𝟒𝟏
IV 𝐤𝟒𝟐

IV 𝐤𝟑𝟒
III 𝐤𝟑𝟑

III + 𝐤𝟒𝟒
IV 𝐤𝟒𝟑

IV

𝟎 𝟎 𝟎 𝟎 𝐤𝟑𝟏
IV 𝐤𝟑𝟐

IV 𝟎 𝐤𝟑𝟒
IV 𝐤𝟑𝟑

IV ]
 
 
 
 
 
 
 
 
 
 

 (19)  
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In Eq. (19) each 𝐤𝒊𝒋
𝑒  is a 3 × 3 portion of the stiffness matrix for element 𝑒 relating the forces 

at node 𝑖 to the displacements at node 𝑗, as numbered in Fig. 2(c). 𝐤∗ is a matrix containing the 

rotational spring stiffness to be added at all nodes belonging to elements which contain a crack, 

i.e. in all nodes except node 7. These nodes are given additional degrees of freedom, and the 

rotational freedoms are connected by rotational spring stiffnesses generated from the nodal 

compliances due to the presence of the crack in elements I , II, and IV. For example, each of 

these elements provides rotational springs which connect the degrees of freedom 

(𝑤5, 𝜃𝑥5L, 𝜃𝑥5U, 𝜃𝑦5L, 𝜃𝑦5U) at node 5 by 

𝐤5
∗ =

[
 
 
 
 
 
 
 
0 0

1
𝐶𝑥5

∗⁄ −1
𝐶𝑥5

∗⁄

−1
𝐶𝑥5

∗⁄ 1
𝐶𝑥5

∗⁄

1
𝐶𝑦5

∗⁄ −1
𝐶𝑦5

∗⁄

−1
𝐶𝑦5

∗⁄ 1
𝐶𝑦5

∗⁄ ]
 
 
 
 
 
 
 

 (20)  

The total contribution of rotational springs to the 9 nodes is given by 

𝐤∗ =

[
 
 
 
 
 
 
 
 
 
 
𝐤𝟏

∗I 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝐤𝟐
∗I + 𝐤𝟐

∗II 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝐤𝟑
∗II 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝐤𝟒
∗I 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝐤𝟓
∗I + 𝐤𝟓

∗II + 𝐤𝟓
∗IV 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐤𝟔
∗II + 𝐤𝟔

∗IV 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐤𝟖

∗IV 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝐤𝟗
∗IV]

 
 
 
 
 
 
 
 
 
 

 (21)  

The equivalent dynamic stiffness matrix for the FE part is given by Eq. (3). Note that the mass 

matrix is assembled in the same way as 𝐤 in Eq. (19), the crack having no effect on it because 

it is assumed to cause no reduction in the mass of the plate. 

 

4. Hybrid VFM model 

As mentioned earlier, the hybrid VFM model for modelling arbitrarily located and aligned 

cracks has been developed from a method proposed by Suliman et al. [35] to model the effect 

of delamination in composite plates. The rectangular plate is divided into two parts, as shown 
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in Fig. 1, the cracked part being modelled by FE coupled with ESM for the intact part. The 

displacements and rotations at the boundaries are constrained to be equal by Lagrangian 

multipliers. The natural frequencies are determined by the Wittrick-Williams algorithm [33], 

while mode shapes are obtained by a random force vector method proposed by Hopper and 

Williams [42]. The hybrid dynamic stiffness matrix is assembled as 

 

𝐊VFM  =  

[
 
 
 
  𝐊 GV    𝟎       𝐂1

H

𝟎        𝐊 FE        𝐂2
T

𝐂 1    𝐂 2    𝟎

  

]
 
 
 
 

 (22)  

in which 𝐊 GV is the portion of the global ESM stiffness matrix in Eq. (1) including uncoupled 

VIPASA stiffness matrices associated with sinusoidal modes with different half-wavelengths 

 

𝐊 GV  =  

[
 
 
 
 
 
 
𝑙𝐊1 𝟎 𝟎 ⋯ 𝟎

𝟎 𝑙𝐊2 𝟎 ⋯ 𝟎

𝟎 𝟎 𝑙𝐊3 ⋯ 𝟎

⋮ ⋮ ⋮ ⋱ ⋮

𝟎 𝟎 𝟎 𝟎 𝑙𝐊𝑗]
 
 
 
 
 
 

 (23)  

𝐊 FE is the hybrid FE dynamic stiffness matrix of Eq. (3) after application of the crack through 

the analysis of Section 3, while 𝐂 1 and 𝐂 2  are constraint matrices that enforce equal 

displacement and rotations at the boundaries between the intact and damaged parts of the plate. 

𝐂 1 also contains any point support conditions of the intact part. From Eq. (1), 

 𝐂 1  =  [𝐄1 𝐄2 𝐄3 ⋯ 𝐄𝑗] (24)  

T denotes the transpose of a matrix and H denotes the Hermitian transpose.  

 

4.1 Banded Gauss elimination in Wittrick-Williams algorithm 

Computational efficiency is an important consideration in damage detection and the related 

forward problem due to the large number of simulations which need to be performed. ESM can 

significantly enhance the efficiency of modelling the effect of damage on the vibration 

characteristics of a structure by avoiding discretisation into elements, with the Wittrick-

Williams algorithm providing exact solutions for the resulting transcendental eigenvalue 

problem. However, it can only be applied directly to prismatic structures, and the presence of 

an arbitrary crack is handled by the hybrid VFM method introduced in this paper. Here the 
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computational time significantly increases, even when using a powerful computer, and is 

dominated by the Gauss elimination operations required by the Wittrick-Williams algorithm. 

From Eqs. (22)-(24), the matrix to be triangulated has the form [39] 

 

𝐊VFM =

[
 
 
 
 
 
 
 
 
 
 
𝑙𝐊1 𝟎 𝟎 ⋯ 𝟎 𝟎 𝐄1

H

𝟎 𝑙𝐊2 𝟎 ⋯ 𝟎 𝟎 𝐄2
H

𝟎 𝟎 𝑙𝐊3 ⋯ 𝟎 𝟎 𝐄3
H

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝟎 𝟎 𝟎 𝟎 𝑙𝐊𝑗 𝟎 𝐄𝑗
H

𝟎 𝟎 𝟎 𝟎 𝟎 𝐊FE 𝐂2
T

𝐄1 𝐄2 𝐄3 ⋯ 𝐄𝑗 𝐂2 𝐑 ]
 
 
 
 
 
 
 
 
 
 

 (25)  

where 𝐊1, 𝐊2, … , 𝐊𝑗 are small, banded, Hermitian matrices; 𝐊FE is a larger, banded, symmetric 

matrix; and 𝐑 is a square matrix which is initially null but is modified to become a dense 

Hermitian matrix during the Gauss elimination. 

For an example where the exact strip region has 6 nodes, each of 𝐊1, 𝐊2, … , 𝐊𝑗  has order 

12 × 12, so that if 𝑗 = 12 the matrix 𝐊 GV in Eq. (23) has order 144 × 144. For a 20 × 20 FE 

mesh, the FE region has 441 nodes and 𝐊FE has order 1323 × 1323. The constraints required 

to enforce the end conditions and to equate the degrees of freedom at the boundaries between 

the regions give 𝐑 an order of 82 × 82, so that 𝐊VFM has order 1549 × 1549. This is little 

more than the order of 𝐊FE, so if the damaged region is small the matrix to be triangulated is 

considerably smaller than that required for a finite element analysis of the whole plate. 

Predictions from [35] indicate that analysis by VFM is typically around 4 times faster than a 

full finite element analysis. 

Computational efficiency can therefore be greatly increased by storing and processing the 

different components of 𝐊VFM separately as in [39]. Only terms on and above the leading 

diagonal need to be stored and processed. The Gauss elimination procedure can be regarded as a 

matrix transformation without row interchanges. First, triangulating 𝑙𝐊1, each pivotal element of 

𝑙𝐊1 is used to modify other elements in 𝑙𝐊1; the pivotal element and related elements of 𝑙𝐊1 

and 𝐄1
T  are used to modify 𝐄1

T ; elements of 𝐄1
T  are then used to modify 𝐑 . During the 

transformation of 𝑙𝐊1  and 𝐄1
T , there are no changes to the other stiffness matrices and 
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constraint matrices. The same procedure is repeated for 𝑙𝐊2, … , 𝑙𝐊𝑗  and 𝐄2
T, … , 𝐄𝑗

T, and then 

for 𝐊FE and 𝐂2
T. Finally, the pivotal elements of 𝐑 are used to modify other elements in 𝐑. 

 

5. Numerical results  

The hybrid method VFM, initially proposed by Suliman et al. [35] for delamination in 

composite plate, is extended in this paper to model an arbitrary cracked plate. The method can 

be applied to plates with arbitrary boundary conditions, provided the longitudinal ends 𝑥 = 0 

and 𝑥 = 𝑙 are supported identically for consistency with the infinitely long EFM model of [39].  

Table 1. List of cases considered. 

Figure Crack 

type 

Crack location 

(x, y) 

 

Method FE region 

(y) 

Mesh 

size 

(x, y) 

Reference 

4(a) ATLC 

PTDC 

Start (0,0.05) 

End (0.1,0.05) 

VIPASA - 2 strips - 

VFM 0.035 to 0.065 2010 

4(b) ATLC 

PTDC 

Start (0,0.075) 

End (0.1,0.075) 

VIPASA - 2 strips - 

VFM 0.025 to 0.075 2010 

7, 8 PTLC 

PTDC 

 

Centre (0.05,0.05) 

y direction 

AT 0 to 0.1 2020 [8], [9], [10] 

ATCS 0 to 0.1 2020 

VFM 0.035 to 0.065 2010 

AFE 0.035 to 0.065 Varies 

9 PTLC 

ATDC 

Start (0.05,0.1) 

y direction 

AT 0 to 0.1 2020 [11] 

ATCS 0 to 0.1 2020 

VFM 0.035 to 0.065 2010 

10 PTLC 

ATDC 

Start (0.075,0.1) 

y direction 

AT 0 to 0.1 2020 [11] 

ATCS 0 to 0.1 2020 

VFM 0.025 to 0.075 2010 

13 ADC 

ATDC 

Start (0.1,0.075) 

Various directions 

VFM 0.025 to 0.075 2010 - 



16 

 

 

 

Fig. 3. Geometry and dimensions of a simply supported square plate with a crack at 

different locations (m). (a) ATLC located at the centre; (b) ATLC located 75% of the way 

along edge b; (c) PTLC located at the centre; (d) PTLC starting from the centre of edge a; 

(e) PTLC starting 75% of the way along edge a; (f) ADC at an angle θ starting 75% of the 

way along edge b. 

 

For validation purposes, an isotropic simply supported plate is assumed and results obtained 

from VFM are compared with different modelling approaches: the ESM software VIPASA, 

the FE software ABAQUS [43] and various results from the literature. The dimensions and 

properties of the plate studied (Fig. 1) are defined as: Young’s modulus E = 110 × 109Nm−2; 

density 𝜌 = 4480kgm−3;  Poisson’s ratio 𝜈 = 0.3;  plate length 𝑎 = 0.1m;  plate width 𝑏 =

0.1m; plate thickness ℎ = 10−3m and crack depth d. Different types of crack are discussed, as 

listed in Table 1 and Fig. 3, including: an all through-the-length crack (ATLC); a parallel part 

through-the-length crack (PTLC) and an arbitrary direction crack (ADC). The effects of 

structural damping and the loss of mass around the crack are ignored. Nondimensional 

frequency parameters are used for convenience 

 �̅�𝑗 = 2𝜋𝜔𝑗 ∗ 𝑏2 ∗ √𝜌ℎ/𝐷 (26) 
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where 𝜔𝑗  is the jth natural frequency (Hz). The mode shapes will be identified in terms of 

(𝑚, 𝑛), the number of half-waves in the 𝑥 and 𝑦 directions for the intact plate. The relative 

change in natural frequency (RCNF) is expressed as  

 𝛿𝑗 = (𝜔0𝑗̅̅ ̅̅ ̅ − �̅�𝑗) ⁄ 𝜔0𝑗̅̅ ̅̅ ̅ (27) 

where 𝜔0𝑗̅̅ ̅̅ ̅ is the jth natural frequency of the intact plate. 

 

5.1 All through-the-length crack (ATLC) 

In the first crack problem shown in Fig. 3(a) and (b) the crack runs along the entire length of 

the plate. The damaged plate therefore retains its prismatic status in the longitudinal direction 

and can therefore be modelled using VIPASA for comparison with the hybrid VFM model for 

ATLCs at different locations and with varying crack depth. In the VIPASA model the plate is 

divided into two strips connected by a rotational spring to represent the crack. In the VFM 

model, the FE part is divided into 20 × 10 equally sized elements coupled with the two strips 

of the ESM at its edges by Lagrangian multipliers. Each of the ESM sections is 0.035m wide 

when the crack is in the centre and 0.025m when the crack is 75% of the way along the edge. 

Two point supports are added on each strip to model the simply supported ends. 

Fig. 4 compares the results for isotropic plates having all through-the-length cracks located 

either at the centre or three quarters of the way along the edge of the plate. The same rotational 

spring model is used in both VIPASA and VFM. The mode shape for mode (1,2) is 

antisymmetric about the crack direction, so the curvature is zero if the crack is located along 

the centre line of the plate. Hence, the RCNF remains zero as shown in Fig. 4(c) for a crack 

location of 𝑦 = 0.05m. Figs. 4 (a) to (c) show a good match between VICON and VFM when 

the crack occurs at different locations with varying depth ratios (d/h), the maximum difference 

being 1.02% when the depth ratio is 1. The main reason for the difference is the increasing 

element size used in the finite element portion of the VFM model. For the VFM model, the 

additional rotational spring stiffness are discretised to the nodes in the cracked elements, 

whereas in VIPASA they are continuous. A coarser mesh will then cause a more significant 

difference with the actual data when the severity of the crack increases.  
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Fig. 4. Relative changes in the first three natural frequencies �̅�𝑗 of an isotropic plate against 

depth ratio d/h of an ATLC using VIPASA and VFM with different locations. (a)  mode 

(1,1); (b) mode (1,2); (c) mode (2,1). 
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(a) 

 

(b) 

 

 Fig. 5. ABAQUS models used in PTLC case. (a) AT; (b) ATCS. 

   

   

Fig. 6. Mode shape comparison between AT and ATCS for centrally located PTLC with 

length ratio 0.6. 

 

AT mode (1,1) 

Tie constraint 

Tie constraint 

Coupling constraint with  

rotational springs 

AT mode (1,2) AT mode (2,1) 

ATCS mode (1,1) ATCS mode (1,2) ATCS mode (2,1) 
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5.2 Partial through-the-length crack (PTLC) 

For partial through-the-depth and arbitrarily located cracks, relevant studies are largely absent 

from the literature. For partial through-the-length cracks (PTLC), cases that can be compared 

with the literature are all through-the-depth cracks starting from different locations with 

varying length ratios (lc/b). Fig. 3 (c), (d) and (e) show the start point of each crack case. 

Because PTLC makes the plate non-prismatic, VIPASA cannot be used for the analysis. Hence, 

the PTLC case is validated against previous studies [8, 9, 11]. 

In order to verify the VFM model in more complicated cases, two ABAQUS models are 

introduced for further verification. These models use 4-node doubly thin curved shell S4R 

elements with six degrees of freedom at each node. Because only the first few natural 

frequencies are studied, only out-of-plane behaviour is considered, and the in-plane degrees of 

freedom are suppressed in the ABAQUS models. Hence, the model can be regarded as 

equivalent to VFM. A mesh of 400 equally sized square elements is used. The crack is 

simulated using two separate plates whose boundaries lie along the line of the crack (Fig. 5). 

Tie constraints are then used to constrain all six degrees of freedom in the non-cracked regions 

to ensure the two plates deform together. Two types of crack are simulated: all through the 

depth (ATD) and partial through the depth (PTD). The AT model (ABAQUS tie constraint 

only model) shown in Fig. 5(a) is used to match previous ATD studies. In the intact parts along 

the virtual crack line, relative movements are constrained at the boundary using tie constraints, 

but in the cracked region the two portions are able to move freely with respect to each other. 

For PTD studies, the ATCS model (ABAQUS with tie, coupling and rotational spring 

constraints) shown in Fig. 5(b) incorporates an additional rotational spring to simulate the crack 

in the damaged region. Tie constraints are still used in the intact parts. But in the cracked region, 

coupling constraints restrain all displacements and rotations, except for rotation about the crack 

direction. A rotational spring is then added [26, 32] to simulate the degraded stiffness of the 

damaged plate. Mode shapes from the two ABAQUS models are compared in Fig. 6. 

Fig. 7 shows the relative changes in natural frequency for a centrally located ATD PTLC with 

varying length ratios. Comparison is made between results from VFM, ABAQUS and previous 

studies. Figs. 7 (a) and (b) show a small reduction in natural frequencies with increasing crack 

severity for symmetric modes in which the rotations dominate the vibration response behaviour 

in the damaged region and the out-of-plane displacement has a smaller effect. This reduction 
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is reflected in the mode plots in Fig. 6. Even when the crack penetrates through the length and 

depth of the plate, the maximum decrease for symmetric modes is only 20%. When the length 

ratio of an ATD crack is smaller than 0.4, the average reduction in natural frequencies is no 

more than 10%. A good agreement is seen in the plots of RCNF for all modes, with maximum 

differences of 2.48% and 0.71% for a length ratio of 0.4 for the first two natural frequencies, 

respectively. When an ATD crack penetrates the whole length of the plate, the difference in the 

values of RCNF is noticeable when comparing VFM with other studies because the out-of-

plane displacement in the damaged part will dominate the behaviour of the vibration response 

when the ATDC is severe enough. If the displacement degrees of freedom are considered 

(which they are not in the VFM model), changes in natural frequencies are more significant, 

particularly for modes that are antisymmetric about the crack direction (e.g. the AT mode (2,1) 

in Fig. 6). However, when only the rotational degrees of freedom are considered, the natural 

frequencies of antisymmetric modes remain constant (e.g. the ATCS mode (2,1) in Fig. 6 and 

the PTLC mode (2,1) in Fig. 7) with increasing length of crack as in the ATLC cases. 

Another reason for the discrepancy between results is caused by the increasing size of the 

simulated damaged region of the finite element part of the VFM model [35]. Since the current 

VFM model uses a fixed number of finite elements, the mesh becomes coarser with increasing 

width of the FE portion of the model, hence causing a loss of modelling accuracy. To 

investigate the influence of the number of elements used in the FE portion, a pure FE cracked 

plated model (AFE) was extracted from the VFM damaged region to compare with Liew et 

al.’s model [9] of the whole plate structure. As expected, Fig. 8 shows a better match with AFE 

and [9] when more finite elements are used to model the plate. For AFE 20 × 20 , the mesh 

comprises 400 elements equally distributed in the two directions. For AFE 40 × 40 , a finer 

mesh is used containing 1600 elements. Compared with the results presented in [9], differences 

in RCNF are 1.87% and 0.96% for AFE 20 × 20 and AFE 40 × 40, respectively. The accuracy 

of the results obtained from the finer mesh increase by just 0.91% while the computational time 

is 50 times that for 20 × 20. Balancing the computational efficiency and the accuracy of the 

results, AFE 20 × 10 is therefore chosen in the FE portion of the VFM model, which has the 

same effect on accuracy as when AFE 20 × 20 is used to model the whole plate. 
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Fig. 7. First three RCNF vs length ratio for a centrally located PTLC using VFM, ABAQUS 

and previous methods [8-10]. (a) mode (1,1); (b) mode (1,2); (c) mode (2,1). 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝛿
(1

,1
)

length ratio

Liew et al

Stahl & Keer

Bose & Mohanty

AT

ATCS

VFM

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝛿
(1

,2
)

length ratio

Liew et al

Stahl & Keer

Bose & Mohanty

AT

ATCS

VFM

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

𝛿
(2

,1
)

length ratio

Liew et al

Stahl & Keer

Bose & Mohanty

AT

ATCS

VFM

(a) 

(b) 

(c) 



23 

 

 

Fig. 8. Fundamental RCNF for centrally located ATD PTLC, using AFE model with 

various mesh sizes compared with Liew et al. [9]. 
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crack direction, the ATCS model shows an entirely satisfactory agreement with the VFM 

model proving the equivalence of these two models. Hence, the ATCS model can now be used 

to analyse and compare more complicated cracked cases with the VFM model because there is 

an absence of previous PTD crack studies. Since the aim of damage identification is to detect 

a crack in its early stages, being able to model PTD cracks is essential.  

Figs. 9 and 10 show a comparison of different results for PTLC starting from different edge 

points: namely the mid-point and the 75% point of edge a, see Figs. 3 (d) and (e). The crack 

runs parallel to the y axis and the first three lowest natural frequencies are considered. Fig. 9 

shows similar degradation of the RCNF with the crack starting from the mid-point. Any 

difference is believed to be due to the increasing size of the simulated damaged region 

corresponding to the FE part of the VFM model. Care must be taken when interpreting the 

results of Huang and Leissa [11]. When the crack length ratio reaches 0.4, modes (1,2) and 

(2,1) are interchanged in their results because the authors recorded the sequence of the different 

modes based on the magnitude of their natural frequencies. With increasing crack severity, 

there is a sharp reduction in the differences in the natural frequencies of some modes while for 

others this change only occurs gradually. When an ATD crack starts from the middle of the 

plate, the results obtained in [9] show that the natural frequency of mode (2,1) reduces much 

faster than that of mode (1,2). This interchange has also been made in Fig. 11. 

Fig. 10 illustrates the RCNF of a crack starting from the 75% point of edge a. Good agreement 

is shown between AT and [11], but there is an obvious difference between the results obtained 

from the VFM model in comparison to them. Again, this is caused by their different crack 

modelling assumptions and the increasing size of the cracked element in the FE portion of 

VFM model.  

From Fig. 10, it is evident that the results obtained from the AT model match well with Huang 

and Leissa [11] while results from the ATCS model agree well with VFM. The main reason 

for this is again based on the modelling assumptions. Only mode (1,2) shows a good match for 

all four models across the full range of crack lengths. However, all the RCNF data matches 

well when the crack length ratio is smaller than 0.3. This difference in behaviour is also 

reflected in the mode shapes. 
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Fig. 9. First three RCNF vs. length ratio for PTLC starting from the centre of edge a, using 

VFM, ABAQUS and Huang and Leissa [11]. (a) mode (1,1); (b) mode (1,2); (c) mode (2,1).
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Fig. 10. First three RCNF vs. length ratio for PTLC starting 75% of the way along edge a, using 

VFM, ABAQUS and Huang and Leissa [11]. (a) mode (1,1); (b) mode (2,1); (c) mode (1,2). 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.1 0.2 0.3 0.4 0.5 0.6

𝛿
(1

,1
)

length ratio

Huang & Leissa, x=0.075m AT, x=0.075m

ATCS, x=0.075m VFM, x=0.075m

(a)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6

𝛿
(2

,1
)

length ratio

Huang & Leissa, x=0.075m AT, x=0.075m

ATCS, x=0.075m VFM, x=0.075m

(b)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 0.1 0.2 0.3 0.4 0.5 0.6

𝛿
(1

,2
)

length ratio

Huang & Leissa, x=0.075m AT, x=0.075m

ATCS, x=0.075m VFM, x=0.075m

(c)



27 

 

Length 

ratio 
Mode (1,2) Mode (2,1) 

0.2 

 

   

0.5 

    

 
(a) Huang and 

Leissa [11] 
(b) VFM 

(c) Huang and 

Leissa [11] 
(d) VFM 

Fig. 11. Mode shape comparison between VFM and Huang and Leissa [11] for PTLC 

starting from the centre of edge a.  
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Fig. 12. Mode shape comparison between Huang and Leissa [11] and VFM, for PTLC 

starting 75% of the way along edge a. 
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As shown in Fig. 12, mode shapes reproduced from [11] show similar trends to the mode shapes 

plotted by VFM for a short crack. With increasing crack length ratio, the mode shapes from 

different models become more dissimilar. Even after accounting for mode interchanges (as in 

Fig. 11), a reason for this discrepancy is due to the crack simulation method causing a 

difference in mode shapes: VFM adopts only a rotational spring to simulate the crack while 

other approaches consider discontinuities in the out of plane displacement across the damaged 

region. For small cracks this effect is not significant, so the use of rotational springs is shown 

to be valid for simulation and can be extended to the PTD crack and ADC cases. 

 

5.3 Arbitrary direction crack (ADC) 

In the previous sections ATLC and PTLC have been analysed using VFM and the results 

compared with other approaches, for verification. However, in reality most cracks are not 

parallel to the edges of the plate and randomly located cracks with various shapes, directions 

and lengths will occur in plate structures. Few methods possess the ability to analyse such 

arbitrary cracks with random direction, length, location and depth. VFM provides an attractive 

method to simulate an arbitrary direction crack (ADC), by retaining a rectangular mesh in the 

FE region and simply adding rotational degrees of freedom to the existing nodes. In this paper 

the particular case of cracks starting from 75% of the way along the edge of a simply supported 

square isotropic plate as shown in Fig. 3(f) are studied. A number of cases, all with the same 

start point but with 0°, 15°, 30°, 45° crack angles, length ratios in the region (0.1, 0.6) and a 

depth ratio of 0.9999 are studied and the RCNFs from the first three modes are plotted in Fig. 

13. Because the crack is not symmetrically located, the behaviour is unsymmetrical even for a 

square plate. The frequencies are all affected by the crack direction, larger changes occurring 

as the crack reaches regions of high curvature in the mode shape. Thus the changes do not vary 

monotonically with 𝜃. For example, for the first two natural frequencies in Figs. 13 (a) and (b), 

more significant changes occur when 𝜃 ≠ 0°. However, because of the methods of crack 

simulation and assignment of the additional spring stiffness mentioned above, when an ATD 

crack cannot start and finish at the element edge, the changes in natural frequencies are higher 

than expected. The mesh of the element also affects the RCNF resulting in a perturbation curve 

similar to that in Fig. 8. 
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Fig. 13. First three RCNF vs. length ratio for ADC starting 75% of the way along edge b with 

different crack angles, using VFM. (a) mode (1,1); (b) mode (2,1); (c) mode (1,2). 
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6. Conclusions 

This paper presents a novel method for the simulation of cracks with arbitrary location, depth, 

length and orientation in plate-type structures. A cracked plate model was developed based on 

the equivalent dynamic stiffness matrix of the FE model programmed in MATLAB with 

additional degrees of freedom added to represent the crack. The method allowed the crack to 

pass through any part of an element by simulating it as a rotational spring resolved about the 

longitudinal and transverse axes using shape functions, before assigning these rotational spring 

stiffnesses to the corresponding nodes of the element to generate the global stiffness matrix of 

the cracked plate structure. A hybrid model was then assembled by coupling an exact strip 

model for the undamaged parts of the plate with this FE model for the damaged part using 

Lagrangian multipliers to equate the deflections and rotations at the boundaries. The Wittrick-

Williams algorithm was applied to obtain the natural frequencies to any required accuracy 

whilst avoiding missing any values. For the simply supported isotropic square plate used in this 

study, only the out-of-plane behaviour is considered and the first three natural frequencies are 

discussed for comparison. Hence, a modified Wittrick-Williams algorithm was utilised without 

the need to consider the effect of fixed-end natural frequencies. A banded Gauss elimination 

method was used to achieve a significant saving of computational cost whilst maintaining an 

acceptable calculation accuracy. Furthermore, by using the newly proposed crack simulation 

method, remeshing was avoided by introducing additional degrees of freedom at the nodes of 

the cracked elements.  

The proposed hybrid model has been validated against previous studies and corresponding 

ABAQUS models. Different types of crack were modelled and their effects on the vibration 

response of the plate were compared. Due to the limitations created by utilising classical plate 

theory for the FE portion [35] and using only rotational springs to simulate the crack, changes 

in natural frequencies were selected as the variable to be compared. An acceptable difference 

(smaller than 3%) was shown in the results between the predictions of changes in natural 

frequencies and those found in the literature. This showed a good match for the hybrid model 

even when the crack was severe. Due to the crack simulation and symmetry of the structure, 

lines of zero curvature exist for some modes, for example when the crack occurs at the centre 

of plate. If the crack runs along one of these lines, it has no effect on the local stiffness of the 

plate and the change in natural frequencies is zero. When the crack runs off-centre of the plate, 

it breaks this symmetry causing more significant effects such as changes in mode order. The 
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changes in natural frequencies were found to match well with previous studies when the length 

ratio was less than 0.4, but not when the crack became more severe. Therefore, when using the 

hybrid model with only a rotational spring based on fracture mechanics to simulate a crack, 

accuracy will be lost at high natural frequencies or when the crack severity is high, as noted in 

[44]. 

The hybrid approach combines the computational efficiency of the exact strip method with the 

versatility of finite element analysis. The proposed method can fill gaps in the literature for 

cracks with arbitrary length, depth, location and orientation. The hybrid cracked model is a 

useful extension of the delamination hybrid model proposed by Suliman et al. [35] and also a 

supplement for the exact strip method which could previously only be used for prismatic 

structures. Although only a simply supported square isotropic plate was considered in this study, 

the present verified methodology can be applied to rectangular plates with other aspect ratios 

and boundary conditions. Additional types of spring could also be introduced to simulate cracks 

in more general cases (e.g. incorporating out-of-plane displacement). The methodology could 

also be extended to analyse more complicated plate-type structures like stiffened panels and 

composites.  
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