
Diabetes mellitus is a disease characterized by high 
blood glucose levels. When the disease is associated 
with severe loss of insulin secretion, it is referred to as 
insulin dependent, as affected individuals need insulin 
therapy to survive. Conversely, if the disease is caused 
by less severe insulin deficiency, affected patients are 
not dependent on insulin. Disease forms in which cer-
tain immune signatures are present, such as peripheral 
blood islet- specific autoantibodies, are classified as 
autoimmune diabetes, that is, type 1 diabetes mellitus 
(T1DM) or, more accurately, type 1A diabetes to dis-
tinguish it from idiopathic type 1B diabetes1. In broad 
terms, individuals who present in childhood usually 
have insulin- dependent T1DM, but may also be affected 
by monogenic diabetes, known as maturity- onset 
diabetes of youth (MODY), or even type 2 diabetes 
(T2DM). Conversely, those who present in adulthood 
usually have non- insulin- dependent T2DM, but cases 
of adult- onset autoimmune (AOA) diabetes are also 
frequent. Adult- onset diabetes has been suggested to 
encompass five different phenotypic groups in which 
those phenotypes that present with islet- specific autoan-
tibodies are classified together as severe autoimmune 
diabetes (SAID)2. The distinction between severe insulin 
deficiency, requiring insulin treatment, and more mod-
est insulin deficiency, treatable by other means, is not 
always clear, especially in adult- onset diabetes3.

Many of the issues surrounding adult- onset diabe-
tes relate to the relationship between T1DM and T2DM 
in the context of age at onset, blood glucose levels and 

insulin deficiency, with lack of clear boundaries that 
define these major types of diabetes (Fig. 1). For exam-
ple, although most cases of childhood- onset diabetes are 
autoimmune diabetes, most cases of autoimmune dia-
betes, in actual numbers, develop in adulthood. AOA 
diabetes is much more heterogeneous than young- onset 
autoimmune diabetes, as the rate of β- cell destruction 
is highly variable, probably owing to the differential 
presence of genetic factors and differing severity of the 
individual autoimmune process4,5.

Epidemiological studies have highlighted that most 
patients with AOA diabetes do not require insulin treat-
ment at diagnosis6,7, and these patients are commonly 
defined as having latent autoimmune diabetes in adults 
(LADA). In 2022, LADA has been included under the 
category of T1DM in the diabetes classification pro-
posed by the American Diabetes Association (ADA), 
although the term retains its own identity, being defined 
as common and acceptable in everyday clinical practice, 
raising awareness of individuals at risk of progressing 
towards requiring insulin therapy1. As most studies in 
AOA diabetes referred to ‘people with LADA’, we retain 
the term LADA in this Primer when appropriate. The 
inherent conundrum has implications for this interface 
between the two major types of diabetes, that is T1DM 
and T2DM, and how they should be treated in clinical 
practice.

In this Primer, we discuss the epidemiology, patho-
genesis, clinical presentation, diagnosis and management  
of AOA diabetes, providing a perspective on our current 
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understanding and suggestions for future priorities of 
AOA diabetes, which is too often misdiagnosed.

Epidemiology
Prevalence and incidence
The prevalence of T1DM and T2DM has been increas-
ing, with the International Diabetes Federation (IDF) 
counting more than 500 million people worldwide living 
with diabetes in 2021 (reF.8). The global prevalence of 
T1DM is ~0.1%8, likely a marked underestimate given 
that only classic insulin- dependent T1DM cases were 
considered and that adults with autoimmune diabetes 
not requiring insulin at diagnosis, that is, those with 
LADA, can be initially misclassified as having T2DM. 
In contrast to the epidemiology of well- characterized 
childhood- onset T1DM, incidence and prevalence data 
for AOA diabetes are sparse. Furthermore, only few of 
the available data derive from population- level studies 
and they are often limited by small sample sizes and 
biased by a high risk of misclassification between T1DM 
and T2DM9. Nonetheless, current projections show that 
most new cases of autoimmune diabetes are diagnosed 
during adulthood6,10. A study in China estimated that 
adults aged >20 years at diagnosis comprise 65% of all 
new T1DM cases and there are probably more than  
6 million such cases in China11. Overall, the incidence of  

adulthood- onset T1DM is higher in Europe, especially 
in Nordic countries, than in Asia or Africa, and T1DM 
is more prevalent in men than in women10. These dif-
ferences are likely, in part, genetic, given the increased 
frequency of high- risk disease variants in northern 
Europe. However, heterogeneity of the distribution 
of T1DM within countries and data from migration 
studies indicate that non- genetic factors, including 
industrialization- associated factors such as pollution 
and overcrowding, might have a role12.

A study in a European adult- onset diabetes cohort 
suggests that non- insulin- requiring T1DM, that is 
LADA, can be up to threefold more prevalent than 
insulin- dependent T1DM: 9.7% of these patients had 
autoimmune diabetes and most of these (odds ratio 3.3) 
were initially non- insulin dependent6. Epidemiological 
studies have shown that the autoimmune diabetes 
markers islet- specific autoantibodies can be found in 
the peripheral blood of people with an initial diagnosis 
of T2DM2,6,7. These individuals, reclassified as having 
LADA, account for 2–11% of the whole population with 
T2DM, with frequency varying by region (Fig. 2).

Two factors constrain the epidemiological data availa-
ble. First, the error of assuming that those presenting with 
diabetic ketoacidosis (Box 1) have T1DM might be as high 
as 50% and can especially occur in adult- onset cases13,14.  
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Fig. 1 | The adult-onset diabetes spectrum. In people with adult- onset autoimmune (AOA) diabetes, clinical and 
pathogenic features of classic insulin- dependent type 1 diabetes mellitus (T1DM) and of type 2 diabetes mellitus (T2DM) 
frequently overlap, making it difficult to distinguish between these two types of diabetes. In this regard, most people with 
AOA diabetes do not require insulin at diagnosis and are commonly defined as having latent autoimmune diabetes in 
adults (LADA). Several features of LADA are in between those for classic T1DM and T2DM, for example, age at onset, 
genetic predisposition for T1DM, level of β- cell function, diabetic ketoacidosis risk, risk of progression towards an insulin- 
dependent state, severity of insulin resistance and prevalence of associated comorbidities (such as obesity, dyslipidaemia 
and hypertension). Furthermore, LADA is clinically and pathogenically heterogeneous; people presenting with high 
glutamic acid decarboxylase serum autoantibody (GADA) concentrations and/or multiple islet autoantibodies (AAbs) are 
similar to those with classic T1DM, whereas those with low GADA concentrations and/or single islet AAbs are similar to 
those with T2DM. It should be noted that maturity- onset diabetes of youth (MODY), which may also be diagnosed during 
adulthood, was not included in the figure because it most frequently occurs during the first decades of life and is itself a 
heterogeneous group of diabetes subtypes with monogenic causes, differing in clinical features.
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Second, immune markers of T1DM lack specificity. For 
example, using glutamic acid decarboxylase (GAD) 
serum autoantibody (GADA) detection assays with 99% 
specificity in a cohort with adult- onset diabetes in whom 
the likelihood of T1DM is ~10%, would have a certain 
rate of false positivity15. The more specific the assay, the 
lower the false positive rate, and various approaches have 
sought to reduce that false positive rate by modifying 
the antigen, for example, GAD N- terminal truncation, 
or using high- affinity assays, for example, electrochem-
iluminescence and bridging- type enzyme- linked immu-
nosorbent assay (ELISA)16–18. Clinicians should be aware 
of these issues, and additional biomarkers are needed 
to classify cases (see also section Classification and 
diagnosis). In this regard, the presence of other organ 
autoimmune disease might help in identifying people 
with diabetes with higher probability of presenting with 
pancreatic autoimmunity. In particular, organ- specific 
endocrine autoimmunity (such as thyroid or adrenal 
autoimmunity) and other autoimmune disorders (such 
as coeliac disease or autoimmune gastritis) develop more 
frequently in T1DM than in T2DM19, which has also 
been confirmed in LADA20,21.

Risk factors for LADA
About half of inheritable childhood- onset T1DM is 
attributed to variation in HLA alleles but, in adult- onset 
cases, that heritability is much lower with lower twin 
concordance rates, lower high- risk HLA class II geno-
types, lower HLA class I risk and higher frequency of 
protective HLA alleles5,22. As a result, although genetic 
risk scores have been developed to aid the discrimination 
between T1DM and T2DM23, the altered and reduced 

genetic risk in adult- onset T1DM has not been shown to 
be predictive24. Thus, genetic risk scores are not widely 
used in clinical practice in this setting. Genetic suscep-
tibility remains relatively constant in stable populations 
over a couple of generations, yet the incidence of T1DM 
and T2DM have increased substantially. By implication, 
non- genetic factors may be common to both forms of 
diabetes25,26. A Norwegian study indicated a strong effect 
of a family history of diabetes as a risk factor for LADA25. 
The presentation of LADA was associated with increased 
body weight, physical inactivity, smoking and low birth 
weight followed by adult overweight, similar to the risk 
factors for T2DM development. Of note, the risk of over-
weight was most prominent in individuals with a family 
history of diabetes27,28. Metabolic syndrome, a proxy for 
insulin insensitivity and overweight, can be identified 
in ~85% of individuals with T2DM and in ~40% of 
those with adult- onset T1DM29. Potential links between 
childhood adiposity and diabetes risk likely reflect 
stress on insulin secretory networks that maintain glu-
cose homeostasis and glucose disposition and could be,  
in part, genetic, even for T1DM, given that childhood 
adiposity genetic variants were positively and causally 
associated with T1DM risk30.

A potential beneficial effect on the autoimmune 
process by consumption of fatty fish and by moderate 
alcohol consumption was also seen27,28, and processed 
red meat was associated with increased risk of LADA, 
whereas no association was found for unprocessed red 
meat25,28,31–33.

In addition, in one study, a healthy lifestyle (BMI 
<25 kg/m², moderate- to- high physical activity, a healthy 
diet, no smoking and moderate alcohol consumption) 

Nigeria: 10–14%a

Ghana: 13%a

Italy: 4–5%

USA: 4.2%

UK: 12%

Iceland: 10%

India: 5–6%Yemen: 4.4%

Australia: 5%

Japan: 3.8%

UAE: 2.6%

China: 6–9%

South Korea: 5%a

Singapore: 6.8%

Finland: 9.3% Europe: 9.7%Norway: 10%

Fig. 2 | Frequency of islet-specific autoantibodies in adults with a clinical diagnosis of type 2 diabetes mellitus. 
Cross- sectional studies have suggested geographical differences in the proportion of adults with a clinical diagnosis of type 2 
diabetes mellitus testing positive for islet- specific autoantibodies, mainly glutamic acid decarboxylase serum autoantibody. 
Of note, these findings might be due to methodological differences between studies, such as disease duration at the time  
of autoantibody testing or the assays used for autoantibody measurement. Data from reFs.6,7,49,75,82–85,95,182–192. aFrequencies 
reported in small studies with a sample size of <500 participants.
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was found to have a possibly positive effect on the risk 
of LADA development as well as on T2DM presentation; 
BMI <25 kg/m² conferred the largest risk reduction for 
both LADA and T2DM28. These important observa-
tions may potentially provide guidance for preventive 
measures in future interventional trials.

Mechanisms/pathophysiology
The pancreas comprises an exocrine portion that con-
sists of acinar cells, which secrete digestive enzymes 
(amylase, which digests starch, trypsinogen and chy-
motrypsinogen). Together with ducts they make up 
98–99% of the pancreatic tissue. Hormone- secreting 
endocrine cells found in the islets of Langerhans 
make up the remaining 1–2% of the pancreas34. These 
islands of endocrine cells comprise 70% β- cells, which 
secrete insulin and amylin, glucagon- secreting α- cells, 
somatostatin- secreting δ- cells, ghrelin- secreting ε- cells 
and PP cells, which secrete pancreatic polypeptide.

In addition to active insulin, β- cells secrete C- peptide, 
a peptide that is cleaved from the larger molecule pro-
insulin and used to measure endogenous production 
of insulin. In autoimmune diabetes, β- cells are the cell 
type predominantly affected, undergoing damage by the 
immune system, although other endocrine and exocrine 
cells may also be affected35.

Development of autoimmune diabetes
Autoimmune diabetes develops over a period of 
months and years before the onset of symptomatic 
disease. Accordingly, a suggested staging model for 
T1DM may apply to both those who have LADA and 
those who have a slower onset of symptomatic diabetes 
in adulthood36. This model (Fig. 3) suggests that there 
are long pre- symptomatic, normoglycaemic periods in 
which detectable immune changes occur, which include 
the generation of anti- islet autoantibodies and autore-
active T lymphocytes. These immune changes occur in 
individuals who have a genetic predisposition, which 

interacts with environmental factors, but the precise 
contribution of the components of this interaction and 
the nature of this interaction are not fully understood. 
This period is followed by dysglycaemia and finally 
symptomatic diabetes, when β- cell function is insuffi-
cient to maintain glucose metabolism, leading to symp-
toms of diabetes. In this model, relating to staging of 
autoimmune diabetes36, it is conceivable that the pres-
ence of fewer predisposing genetic variants for T1DM 
and more predisposing genetic variants for T2DM may 
lead to a flattening of the curve in stage 1 and stage 2 of 
the autoimmune diabetes model, for example, in those 
who have phenotypic manifestations of diabetes later in 
life. The possibility then arises not only that immuno-
logical changes manifest later but also that the condition 
progresses more slowly. This heterogeneity would then 
be explained by different risk factors leading to a con-
tinuum of risk, instead of a precise cut- off that would be 
designated T1DM.

Islet pathology
In individuals with either T1DM or T2DM, pancreatic 
mass is reduced37. As the cells that produce insulin and 
glucagon account for a very small proportion of the total 
pancreatic mass, it is surprising that the total organ mass 
has been found to be reduced. In a meta- analysis37, the 
I2 measure of heterogeneity among studies assessing 
pancreatic volume by ultrasonography, CT and MRI is 
large, and quantification of the reduction varies among 
studies, as it depends on the parameter measured and 
the method of analysis. A Chinese study in individuals 
aged 30–75 years revealed by CT that pancreatic volume 
was reduced in those with LADA (55.5 + 2.5 cm3), com-
pared with control individuals (69.6 + 2.2 cm3). However, 
this reduction was less than in individuals with classic 
adult- onset T1DM (47.7 + 2.7 cm3)38. A post- mortem 
study of pancreas pathology in individuals diagnosed 
with T2DM found reduced β- cell mass in those posi-
tive for islet autoantibodies or HLA alleles HLADR3 or 
HLADR4 (high risk for autoimmune diabetes) com-
pared with those negative for autoantibodies39. These 
observations suggest loss of both exocrine and endo-
crine tissue in those with pancreatic autoimmunity.  
A feature of autoimmune diabetes, not generally seen 
in T2DM, is the presence of insulitis. Insulitis is defined 
as lesions with ≥15 CD45+ cells, indicating the presence 
of haematopoietic cells and inflammation, immediately 
adjacent to islet endocrine cells in a minimum of three 
islets40. Insulitis is uncommon in people presenting with 
AOA diabetes and was reported in only 29% of those 
aged 15–40 years, studied within a month of diabetes 
onset34. Even in younger individuals presenting with 
T1DM, the pathological manifestation of insulitis is 
heterogeneous, and there is a distinct difference in both 
frequency and type of CD45+ immune cells found in 
the islets of individuals <7 years of age presenting with 
T1DM compared with older individuals. The CD45+ 
immune cells in those with T1DM are CD8+ cytotoxic 
T cells and CD20+ B cells, although other immune cell 
types, such as macrophages, dendritic cells and CD4+ 
T cells, have also been observed. CD8+ T cell cytotox-
icity can take several forms, including direct damage of 

Box 1 | Diabetic ketoacidosis

Diabetic ketoacidosis (DKA) is a preventable, acute and 
life- threatening complication of diabetes that occurs  
in cases of absolute or relative insulin deficiency193.  
The heterogeneous rate of β- cell loss in people with 
adult- onset autoimmune (AOA) diabetes translates into 
various risks of DKA, between adults presenting with a 
classic type 1 diabetes mellitus onset (high DKA risk) and 
those affected by latent autoimmune diabetes in adults 
(LADA)194,195, who are in part protected from DKA by the 
retention of a certain amount of endogenous insulin 
secretion. Nonetheless, both patients and physicians 
should be aware of the higher risk of DKA occurrence  
in AOA diabetes than in type 2 diabetes mellitus, and 
should be ready to recognize and address DKA risk 
factors. Although less studied in adults than in young 
people, the risk factors include: barriers to health care, 
low socioeconomic status, female sex, ethnicity, poor 
metabolic control, low self- management skills, omission 
of insulin therapy, psychiatric disorders, infections, and 
alcohol and drug abuse111,194. In general, however, the risk 
of DKA decreases with older age at onset196.
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insulin- producing cells and indirect damage due to the 
production of inflammatory cytokines, which include 
interferon- γ (IFNγ), tumour necrosis factor (TNF), 
IFNα and IL-1β, and induction of apoptosis; however, 
it is not clear in humans which mode of death is most 
prominent. The role of the CD20+ B cells is even less 
clear, as antibodies produced by B cells are not thought 
to be directly pathogenic. However, B cells also produce 
cytokines, can present antigens to T cells and seem to be 
an important part of the immune pathogenesis of T1DM. 
There are also greater numbers of insulin- deficient 
islets41 in those presenting at <7 years of age compared 
with those >13 years of age, who generally have more 
insulin- containing islets and less insulitis. However, even 
for those who have had T1DM for many years, some 
islets may not be affected. This heterogeneity, whereby 
there may be greater numbers of insulin- containing 
islets and also fewer islets that display insulitis, is more 
pronounced in older individuals. The presence of insu-
litis and greater loss of insulin within the islets suggests 
immune destruction of the β- cells and seems to be part 

of the spectrum of autoimmune diabetes that has a more 
aggressive immune pathogenesis in the islets in the 
young. High- resolution analysis, using single- cell RNA 
sequencing, has provided new insights into immune 
cell types involved in insulitis35 and demonstrates not 
only that β- cells show activation of genes that are asso-
ciated with stress and autophagy but also that ductal cells 
upregulate genes involved in apoptotic, metabolic and 
immune responses, indicating the involvement of ductal 
cells in the immune pathogenesis.

Pancreatic scintigraphy using IL-2 radiolabelled with 
technetium-99m (99mTc) confirmed that activated T cells 
infiltrate the pancreas in those with LADA, indicating 
the presence of insulitis in both T1DM and LADA42. In 
addition, heterogeneous islet infiltration with predom-
inantly CD8+ T cells and macrophages was observed in 
pancreas samples from individuals with LADA, sim-
ilar to individuals with older- age- onset T1DM43. Of 
note, a T cell response may also occur in the absence 
of the classic islet autoantibody markers of pancreatic 
autoimmunity44. This condition, termed T- LADA, seems 
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environmental factors to trigger pancreatic autoimmunity. This pancreatic autoimmunity causes a progressive loss of  
β- cell function, which occurs during a pre- symptomatic period characterized by detectable immune changes and 
normoglycaemia (stage 1). When the percentage of residual functional β- cell mass is too low to maintain blood glucose 
values within normal ranges, a period of asymptomatic dysglycaemia (stage 2) starts. As the loss of β- cell capacity 
continues, exogenous insulin becomes necessary for survival. This insulin- dependent state (stage 3), if not adequately 
treated, may be characterized by symptoms of insulin deficiency, such as weight loss, presence of urinary and blood 
ketones or diabetic ketoacidosis. In adult- onset autoimmune diabetes, the rate of β- cell loss differs between individuals.  
In people with classic type 1 diabetes mellitus (T1DM), the progression from the pre- symptomatic stages (1 and 2) to stage 3  
is so rapid that in most cases the asymptomatic dysglycaemia is undiagnosed, whereas latent autoimmune diabetes in 
adults (LADA) is characterized by longer pre- symptomatic stages, which enable diagnosis of dysglycaemia in a non- 
insulin- dependent state. Nonetheless, among people with LADA, some individuals will progress to an insulin- dependent 
state earlier (LADA early insulin dependent), or later (LADA late insulin dependent), although some people will retain 
sufficient β- cell function and will not need insulin treatment (LADA non- insulin dependent). Stages 1, 2 and 3 in the figure 
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to be characterized by a more rapid β- cell functional 
decline than T2DM, despite the absence of known islet 
autoantibodies45. Indeed, although LADA is routinely 
diagnosed by detecting islet autoantibodies, these are 
markers of immune activity only and not the effectors 
of β- cell destruction, which is mainly caused by islet 
antigen- specific CD4+ and CD8+ T cells.

In addition, pancreatic tissue from individuals with 
T1DM shows evidence of enteroviral infection46,47, as 
well as increased expression of MDA5, a viral sensor 
in α- cells and β- cells of the pancreas48. Given the lag 
between initiation of autoimmunity and the diagnosis 
of T1DM, it is not currently possible to prove a causative 
role. These findings have not been specifically observed 
in people who had a diagnosis of LADA.

Autoantibodies
Islet cell autoantibodies (ICAs) act as immune activity 
markers and their detection can help to distinguish an 
autoimmune from a non- autoimmune type of diabetes. 
ICAs detected with standardized assays include GADA, 
tyrosine phosphatase IA2 antibody (IA2- Ab), zinc trans-
porter isoform 8 autoantibody (Znt8A) and insulin 
autoantibody (IAA)1. Individuals with higher levels of 
GADA show a greater loss of insulin secretory capac-
ity and present with clinical features similar to those of 
childhood T1DM, such as a higher prevalence of other 
autoimmune disorders49–51. In addition to GADA levels, 
the specific GAD epitope recognized by autoantibodies 
may differ between patients and is related to different 
clinical features. In studies measuring GADA recogniz-
ing middle and C- terminal GAD epitopes, people who 
have LADA were found to be younger, have lower serum 
C- peptide levels (indicating lower endogenous insulin 
production), increased risk of thyroid autoimmunity, 
higher GADA levels, and are more likely to be insulin 
treated compared with those with only N- terminal reac-
tive GADA52. Similarly, immunoreactivities against dif-
ferent IA2 protein domains characterize distinct LADA 
phenotypes: IA2- Ab directed against the intracellular 
epitopes is associated with lower waist circumference, 
healthier lipid profile (higher HDL- cholesterol and 
lower triglycerides), lower prevalence of hypertension 
and higher prevalence of other autoimmune disorders53.

T lymphocytes
In addition to autoantibodies, other immune manifesta-
tions of LADA include the identification of autoreactive 
T cells, which are reactive to pancreatic autoantigens. 
Autoreactive CD8+ cytotoxic cells are a major subset of 
T cells that can damage islet β- cells, recognizing several 
target antigens within the islet β- cells that include pro-
insulin and GAD (Fig. 4). Autoreactive T cells are deleted 
in the thymus via central tolerance processes, as they 
recognize self- antigens that are strongly presented in 
the thymus, which trigger T cell apoptosis54. However, if 
T cells recognize the self- antigens poorly, they may not 
be deleted but may be released to the periphery. Many 
autoreactive T cells are weakly reactive to self- antigens, 
and are not deleted, but when encountering their target 
antigens, presented by major histocompatibility complex 
(MHC) molecules, they can become activated and cause  

damage54. Furthermore, autoreactive T cells may respond 
to post- translationally modified self- antigens, represent-
ing neoantigens that are not presented in the thymus. 
T cells may recognize these neoantigens as foreign and 
become activated, possibly causing autoimmunity. These 
post- translational modifications are potentially linked to 
β- cell stress55. This has been shown for forms of T1DM 
with a rapid onset and might also occur in a slower- onset 
autoimmune process. However, in addition to CD8+ 
cytotoxic cells, regulatory T (Treg) cells also have a role 
in the regulation of pathogenic cells, and the balance 
between pathogenic and regulatory cells contributes 
to the development of autoimmunity. In T1DM, the 
heterogeneous group of Treg cells have been intensively 
studied, as many T1DM susceptibility loci, including 
IL2, CTLA4, IL10, PTPN2 and IL2RA, could influence 
effector T cells as well as Treg cells56–58. In one subset of 
CD25hiCD4+ Treg cells that originate in the thymus, the 
transcription factor FOXP3 is used as a marker of CD4+ 
Treg cells. Using multiparameter flow cytometric analysis 
to define Treg cells, there is no clear evidence that Treg cell 
frequency is changed in T1DM59. Instead, the evidence 
suggests that Treg cell function is reduced59, and that 
effector T cells are also less suppressible60. Fewer studies 
have been carried out in individuals classified as having 
LADA. In a Swedish study, people with LADA treated 
with diet and oral hypoglycaemic agents had increased 
peripheral blood CD4+ T cells expressing various lev-
els of CD25 and the activation marker CD69, together 
with FOXP3 (reF.61). This finding contrasts with an ear-
lier small study indicating downregulation of FOXP3, 
shown by quantitative PCR62. However, function of these 
cells has not been tested, and caution should be applied 
to conclusions drawn when studying individuals treated 
with metformin and dipeptidyl- peptidase 4 (DPP4; also 
known as CD26) inhibitors (DPP4i), as these may affect 
T cells. This was shown in a study using sitagliptin in 
individuals with LADA who demonstrated a reduction 
in T- bet (T helper 1 (TH1)) and RORC (TH17), both 
transcription factors in inflammatory cells63. Alterations 
in Treg cell function have not been tested to under-
stand whether this is different in individuals who have 
slower- onset autoimmunity compared with individuals 
who have T1DM.

Gut microbiota
Various studies have examined the gut microbiota in 
different types of diabetes, revealing differences in gut 
microbiota species in different geographical areas64. 
Focusing on the functions of bacteria rather than their 
identity might, therefore, provide more useful insights. 
Analysis of the gut microbiota in Chinese individuals 
diagnosed as having LADA, as distinct from those with 
T1DM or T2DM, revealed differences in the structure 
and composition of the gut microbiota65. Specifically, 
metagenomic analysis, the study of the structure and 
function of the genetic material of bacteria, indicated 
several enterobacterial co- abundance groups in the 
gut microbiota that differ between diabetes types.  
The investigators also studied sequences of the bacte-
ria. They demonstrated that these groups of the micro-
biota differ in abundance, and also that there were 
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differences in the biochemical and metabolic pathways 
used. These included downregulation of amino acid 
(valine, leucine and isoleucine) degradation, as well as 
downregulated fatty acid biosynthesis in individuals 
with LADA, compared with healthy control individu-
als. Furthermore, other metabolic pathways for amino 
acid, cofactors and vitamins were downregulated in 
LADA compared with T2DM. However, the presence 
or absence of GADA and varying medication regimens 
were also associated with the microbial differences. 
A decrease in bacteria that produce short chain fatty 
acids (SCFAs) was noted in individuals with LADA, 
even more than that found in people with T1DM or 
T2DM65. These SCFAs reduce chronic inflammation, 

pancreatic autoimmunity, strengthen gut barriers and 
alter intestinal hormones; notably, they also improve 
glucose metabolism and insulin sensitivity66. Although 
these data show correlative rather than causative asso-
ciations, these observations confirm findings from 
studies focused on the development of T1DM that have 
mainly been performed in children, in which it has been 
possible to identify individuals at high genetic risk and 
follow birth cohorts67. Much additional information has 
been obtained from The Environmental Determinants 
of Diabetes in the Young (TEDDY) samples, in which 
high- risk individuals from six geographical regions were 
followed from 3 months of age, collecting monthly stool 
samples together with information on diet, medications, 
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Fig. 4 | Model for pathogenesis of autoimmune diabetes. (1) Genetic fac-
tors can lead to defective central and peripheral tolerance. Defective central 
tolerance allows naive islet- reactive CD4+ and CD8+ T cells to leave the thy-
mus and migrate to pancreatic lymph nodes. Defective peripheral tolerance 
alters the function of regulatory T cells, which balance and control poten-
tially pathogenic autoreactive T cells. (2) Environmental factors (such as viral 
infections or altered commensal bacteria) could activate (3) local T cells and 
B cells. Activation of T cells and B cells may also occur in the gut. This activa-
tion enables their trafficking to pancreatic lymph nodes, or, in the case of 
activated B cells, trafficking directly to the islets of Langerhans. (4) In the 
pancreas, several possible mechanisms could lead to the death of β- cells, 
including a natural process of tissue remodelling, viral infection and endo-
plasmic reticulum stress owing to high metabolic demand for insulin. 
Moreover, cytokines produced by infiltrating cells that include macrophages 
(IL-1β and tumour necrosis factor (TNF)) can contribute to apoptosis. 
Furthermore, damage of β- cells may occur related to β- cell production of 

interferon- α (IFNα) priming them further for immune cell destruction. These 
events can lead to apoptosis of β- cells, which releases β- cell antigens.  
(5) Antigens released from apoptotic β- cells are taken up by dendritic cells, 
which migrate to the pancreatic lymph node. (6) Dendritic cells present β- cell 
antigens to naive CD4+ T cells in the pancreatic lymph node, leading to acti-
vation of several possible T helper (TH) cell subsets including TH1, TH2, TH17 
and Treg cells. Dendritic cells also cross- present antigens to CD8+ T cells in the 
pancreatic lymph node. (7) CD4+ cells can help B cell production of autoan-
tibodies that target β- cell proteins. CD4+ cells may also assist in activation of 
CD8+ T cells. (8) Activated T and B cells traffic to the islets of Langerhans.  
(9) CD8+ cytotoxic T cell infiltration can induce lysis of β- cells presenting 
self- antigen, via secretion of perforin, the apoptotic FAS–FASL pathway and 
inflammatory cytokines. (10) CD4+ TH1 cells secrete pro- inflammatory 
cytokines IFNγ and TNF, which could induce β- cell death and stimulate 
macro phages to produce reactive oxygen species, TNF and IL-1β. These  
may augment β- cell death. GWAS, genome- wide association study.
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childhood illnesses and other aspects of life experi-
ence, to document environmental, genetic microbial, 
immuno logical contributors to T1DM development67. 
Weak associations were observed for some bacteria. 
However, more important was the loss of functionally 
protective properties, also relating to fermentation and 
synthesis of SCFAs in the commensal gut flora, which 
were lost in those at risk of T1DM who seroconverted 
to anti- islet autoantibodies. In Chinese individuals with 
T2DM, a wide range of functional characteristics of the 
gut microbiome included increased markers of mem-
brane transport of sugars and branched chain amino 
acids among others, but a decrease in bacterial chem-
otaxis, biosynthesis of the SCFA butyrate and metabo-
lism of cofactors and vitamins68. A study of European 
women who had T2DM, impaired or normal glucose 
tolerance, indicated broadly similar results of microbial 
functions and included enrichment for bacteria involved 
in glycerolipid metabolism and synthesis of fatty acids69. 
Thus, despite the noted differences, reduction or loss of 
SCFA- synthesizing bacteria was common in all groups, 
which may be a key environmental feature influencing 
both metabolism and immunity.

Immunotherapy- related autoimmune diabetes
Considerable improvement in clinical outcomes in 
patients with cancer has been observed with immune 
checkpoint inhibitors, which include programmed cell 
death protein 1 (PD1) inhibitors (such as nivolumab 
or pembrolizumab), programmed cell death 1 ligand 1 
(PDL1) inhibitors (such as atezolizumab, avelumab or 
durvalumab) and cytotoxic T cell- associated protein 4  
(CTLA4) inhibitors (such as ipilimumab). However, 
an increase in immune- mediated adverse events has 
occurred, including diabetes associated with PD1 or PDL1 
inhibitor use70. The presentation of diabetes includes 
fulminant T1DM and diabetic ketoacidosis, occurring 
with life- threatening illness and deaths71. Of note, the 
fact that these phenomena have been observed in older 
individuals might be due to these medications being 
used for cancers in older patients72. It is not clear why 
these immune- related adverse events only occur in some 
patients but underlying genetic susceptibility to autoim-
mune disease and the composition of the host micro-
biota may be contributory73. Although some instances of 
diabetes development have occurred in individuals with 
pre- existing islet autoantibodies, in others, autoantibodies 
developed only after treatment or autoantibodies have not 
been found at all73. Rather than a new type of diabetes, 
these instances may represent an extreme alteration of the 
regulatory immune cell balance in individuals who have a 
predisposition to autoimmunity.

Diagnosis, screening and prevention
Clinical features
The clinical presentation of AOA diabetes varies depend-
ing on insulin dependence at clinical onset of disease 
and β- cell loss rate over time (rapid versus slowly pro-
gressive autoimmune diabetes). Anthropometric indices 
reported in individuals with LADA vary among ethnic 
groups and specific clinical features, such as overweight 
and obesity, reveal time trends in view of the unabated 

obesity epidemic74. In most studies, people with LADA 
have a prevalence of metabolic syndrome components 
(overweight or obesity, high waist- to- hip ratio, hyper-
tension and dyslipidaemia) that is lower than that of 
people with classic T2DM, but higher than in patients 
with T1DM6,7,75,76. The level of β- cell dysfunction in 
LADA is in between T1DM and T2DM76–79 (Fig. 1). This 
intermediate clinical status was evident in European 
cohorts and was confirmed in a large study from the 
United Arab Emirates6,7,77,80,81. However, differences 
between adults with diabetes testing positive or negative 
for GADA were less pronounced in other studies includ-
ing different cohorts, such as drug- naive individuals or 
Asian populations82,83. In this regard, the LADA China 
study indicated that clinical features varied less between 
islet cell antibody- negative and antibody- positive indi-
viduals compared with what was observed in non- Asian 
studies83. Similarly, a study from Singapore that included 
a transethnic comparator from Germany showed that, in 
contrast to Asian individuals, Europeans with diabetes, 
testing GADA+ and/or IA2- Ab+, had a lower mean BMI 
compared with antibody‐negative participants84. Mixed 
phenotypic features have also been reported in a study 
from Nigeria, West Africa85. Population- based studies 
reporting incident diabetes cases have better defined 
the phenotypic spectrum of people with AOA diabetes, 
confirming that GADA+ individuals with incident diabe-
tes have a higher frequency of acute symptoms, a lower 
BMI, a lower waist circumference and are younger at the 
time of diagnosis than GADA– patients86,87. C- peptide 
reserve was more compromised in people with LADA 
compared with those with T2DM, but people with 
LADA showed less insulin resistance87. Studies from 
Scandinavia emphasized diabetogenic lifestyle factors, 
such as higher BMI, smoking and lower level of phys-
ical activity, in association with LADA2,26,33,88. In addi-
tion, in a cross- sectional study from Germany, people 
with LADA had higher insulin sensitivity indices than 
matched patients with T2DM and presented with better 
β- cell functional parameters than patients with T1DM, 
independently of BMI78.

An enhanced rate of functional decline of β- cells is 
indeed a common clinical feature of LADA compared 
with T2DM, even though the high variability of the 
β- cell destruction in longitudinal studies was seen in 
conjunction with insulin resistance25,77,81,89,90. In a large, 
long- term, observational, population- based study 
(Genetics of Diabetes Audit and Research in Tayside 
Study (GoDARTS)), similar to the UK Prospective 
Diabetes Study (UKPDS), the rate of metabolic deterio-
ration was found to progress twice as quickly in GADA+ 
as in GADA– individuals with T2DM81,91. In addition, 
poorer glycaemic control with higher glycated haemo-
globin (HbA1c) level was found in LADA compared 
with T2DM in the same cohort77,92,93. In the interven-
tional Action to Control Cardiovascular Risk in Diabetes 
(ACCORD) study, aiming for intensive glycaemic con-
trol to lower cardiovascular disease risk, lower levels of 
C- peptide and islet autoantibody positivity predicted the 
risk of severe hypoglycaemia during intensification of 
diabetes treatment, indicating glucose instability as an 
additional clinical feature of LADA94.
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Overall, individuals with LADA have a clinical 
pheno type that differs from that observed in people with 
classic T2DM and young- onset as well as adult- onset 
T1DM and MODY (TaBle 1). However, the reported dif-
ferences need to be carefully considered, as there may 
be potential bias in study designs, namely selection of 
more severe clinical cases in centre- based surveys ver-
sus individuals identified in population- based studies. In 
addition, these studies are often limited by small sample 
sizes. Consequently, generalizability of diabetes- variant 
specific anthropometric indices may not be helpful for 
clinical decision making81,92. Furthermore, time trends 
of specific features such as the obesity epidemic and the 
continuous change in lifestyle risk factors need to be 
taken into consideration6,74.

Interplay of immunological and clinical features. 
Clinical heterogeneity due to ICA levels is also found 
in LADA. The NIRAD study and others highlighted 
a bimodal distribution of GADA levels that identified 
two subpopulations, those with high and those with low 
GADA levels20,49,83,95. In comparison with individuals 
with LADA who had low GADA levels, those with high 
levels had more prominent traits of insulin deficiency 
and a profile of more severe autoimmunity, higher levels 
of HbA1c, lower BMI and a lower prevalence of meta-
bolic syndrome. Differences in clinical and biochemical 
features were substantiated by genetic studies showing 
that the frequencies of HLA genotypes, in particular, the 
DR3- DQ2 haplotype but not DR4- DQ8, decreased line-
arly from high to low GADA concentrations49. Similarly, 
the PTPN22 risk genotype was also associated with 
high GADA concentrations in patients with LADA96. 
Conversely, the transcription factor 7 like 2 (TCF7L2) 
risk allele for T2DM was associated with low, rather than 
high, GADA levels90,97.

Similarly, differences in clinical features associated 
with IA2- Ab recognized epitopes were observed. IA2- Ab 
directed to the construct IA2(256–760)98–100 is more fre-
quently found in people with LADA who test negative for 
GADA and who show a phenotype that resembles classic 
T2DM, with higher BMI and waist circumference, and 
lower rates of progression towards an insulin- dependent 
state. Of note, simultaneous positivity to two or more 
autoantibodies (for example, both GADA and IA2- Ab) is 
associated with more rapid progression towards insulin 
therapy and a clinical phenotype more similar to that of 
younger- onset T1DM, that is, low BMI and low preva-
lence of other cardiometabolic conditions, such as hyper-
tension or dyslipidaemia7. ZnT8As were more common 
and more persistent in patients with LADA compared 
with those with adult- onset T1DM, but their presence 
was not associated with specific clinical characteristics101. 
In addition, patients with adult- onset diabetes who were 
positive for both GADA and IA2- Ab had lower waist cir-
cumference and higher fasting glucose levels than those 
positive for both GADA and ZnT8A102.

Classification and diagnosis
Misclassification of the diagnosis of classic adult- onset 
T1DM is rare as it always requires insulin ab initio and fre-
quently presents with metabolic acidosis, but the diagnosis 

and classification of non- insulin- requiring autoimmune 
diabetes remains a matter of debate. To increase aware-
ness and to harmonize diagnostic procedures, in 2005, 
the Immunology of Diabetes Society (IDS) established 
three main criteria of LADA, including adult age of onset 
(>30 years); presence of any ICA; and absence of insulin 
requirement for at least 6 months after diagnosis103.

Other scientific societies have proposed different 
nomenclature and diagnostic criteria. For example, the 
Japan Diabetes Society considers “slowly progressive 
insulin- dependent (type 1) diabetes mellitus (SPIDDM)” 
for the condition in which the main diagnostic criteria 
are the presence of GADA and/or ICA at some time dur-
ing the disease course, absence of ketosis at onset of DM 
and no need for insulin treatment to correct hypergly-
caemia in the first 3 months after diagnosis. Of note, age 
of disease onset is not used as a criterion104,105.

In the WHO classification of diabetes from 2019, 
LADA has been described as a hybrid form of diabetes 
characterized as a “slowly evolving immune- mediated 
diabetes of adults” often with features of metabolic syn-
drome, presence of GADA as a single autoantibody and 
greater retained β- cell function106. However, the 2019 
WHO classification did not provide conclusive criteria, 
owing to the controversies around classification of LADA 
as a separate diabetes entity or as a subtype of T1DM.

In 2020, a consensus statement from an interna-
tional expert panel confirmed the chief IDS criteria for 
LADA92. The panel selected additional measures, such 
as reduced frequency of metabolic syndrome features 
in LADA, in addition to lack of disease- specific car-
diovascular outcomes compared with classic T2DM. 
The panel highlighted the quantification of C- peptide 
serum or plasma levels at baseline and repeated meas-
urements at 6- monthly intervals to reflect the functional 
β- cell reserve. According to the panel’s view, therapeutic 
response can be predicted by measuring autoantibody 
levels to various islet cell autoantigens (GADA as the 
most sensitive marker; other ICA, IA2- Ab, ZnT8A and 
tetraspanin 7 autoantibodies less frequently) and by 
evaluating β- cell function92.

The most recent 2022 ADA recommendations for 
classification and diagnosis of diabetes include LADA 
in T1DM, owing to the autoimmune nature of β- cell 
destruction1. The ADA statement pinpoints a key role 
for C- peptide testing and its potential role in treatment 
choices. Overall, the definition of LADA remains a 
matter of debate.

Differential diagnosis of adult- onset diabetes
One of the complexities in the diagnostic process is the 
inherent uncertainty in diagnosing the various diabe-
tes entities. This problem is not confined to LADA, 
but is also true for other diabetes subtypes that present 
in adulthood107. Usually, diabetes onset in adulthood 
is classified as T2DM, unless an overt insulinopenic 
phenotype is present, leading almost immediately to 
the diagnosis of T1DM. However, this diagnostic bias 
in people who present with adult- onset diabetes leads 
to a quite remarkable number of misdiagnoses92,107,108. 
Consequently, LADA and MODY are likewise misdi-
agnosed as different T2DM subtypes109,110. To stratify 
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Table 1 | Broad clinical features of diabetes subtypes

Features LADA Classic or true 
T2DM

Classic 
young- onset T1DM

Classic 
adult- onset T1DM

Carriers of 
monogenic variants

Age at diagnosis (years) >30a Adulthood <20 >20 Before age 25 or 
adulthood

Symptoms of manifest 
hyperglycaemia

Absent or subclinical Absent or subclinical Common Common Absent or subclinical

Risk of acute complications 
at diagnosis

Absent or low Absent or low Increased Increased Absent or low

Presence of ketone bodies at 
diagnosis

Absent Absent Present Present Absent

Ketoacidosis Absent at diagnosis, 
risk in severely 
insulinopenic 
subjects during 
follow- up

Absent at diagnosis, 
develops rarely in 
severely insulinopenic 
subjects during 
follow- up

Rapid development 
unless patients 
receive insulin 
treatment

Rapid development 
in subjects with no 
C- peptide reserve

Absent

Family history of T1DM Negative or positive Absent Negative or positive Negative or positive Negative

Family history of T2DM Negative or positive Common Negative or positive Negative or positive Positive

BMI Normal, overweight, 
rarely obese

Overweight or obese Underweight or 
normal

Normal or 
overweight

Normal

Insulin resistance at diagnosis Increased, not as 
pronounced as in 
T2DM

Increased Absent Absent or increased Absent or increased

HDL- cholesterol level Normal Low Normal Normal Normal

Islet cell antibodies Positivea Negative Positive Positive Negative

GADA Positive Negative Positive Positive Negative

Presence of multiple islet cell 
autoantibodiesb

Rarer than in T1DM Negative Common Common Negative

Insulin requirement at 
disease onset

Nonea None Yes Yes None

Partial remission phasec No studies available Absent Common Common Absent

Insulin requirement during 
follow- up

Around twice as 
much as T2DM

Lower rate than LADA Yes Yes Rared

C- peptide at diagnosis Decreasede but 
detectable

Positive or highly 
positive

Low or negativef Low or negativef Positive

Non- fasting C- peptide 
(pmol/l)

≤300 or 300–600, 
needs follow- up 
quantification

≥600 ≤300 ≤300 300–600

C- peptide decline at 
follow- up

Quicker than T2DM, 
slower than T1DM

Slow Rapid Slower than 
young- onset T1DM

Slow

Thyroid autoimmunity Increased Rate of background 
population

Increased Increased Rate of background 
population

Type A gastritis and  
vitamin B12 deficiency

Increased Rate of background 
population

Increased Increased Rate of background 
population

Microvascular complications 
at diagnosis

Lower rate than for 
T2DM

Can be already 
present

Absent Absent Absent

Risk of microvascular 
complications during 
follow- up

Increased compared 
with T2DM

Increased Increased Increased Variable, dependent 
on gene variant

CVD risk at diagnosis Increased Increased Rate of background 
population

Rate of background 
population

Rate of background 
population

CVD risk at follow- up Identical to T2DM Increased Increased Increased Variable, dependent 
on gene variant

CVD, cardiovascular disease; GADA, glutamic acid decarboxylase serum autoantibody. aPredefined main Immunology of Diabetes Society (IDS) criterion/
predefined component of latent autoimmune diabetes in adults (LADA); clinical criteria presented are not categorical. BMI: wide- ranging level of indices can be 
seen in almost all diabetes mellitus subtypes, including LADA, type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). bMultiple islet cell- specific 
antibodies include tyrosine phosphatase IA2 antibody (IA2- Ab), zinc transporter isoform 8 autoantibody (ZnT8A), tetraspanin 7 autoantibodies and insulin 
autoantibodies (IAA), in particular, in young- onset T1DM. cPartial remission (PR), a period experienced by patients with autoimmune diabetes soon after diagnosis, 
characterized by transient recovery of islet β- cell function resulting in low insulin requirements (<0.5 units/kg of body weight per day) and improved glycaemic 
control (glycated haemoglobin (HbA1c) between 7% (53 mmol/mol) and 6% (42 mmol/mol))180,181. dIn cases with HNF1A and HNF4A variants, progressive pancreatic 
β- cell dysfunction. eCompared with typical cases of T2DM. fUsing standard C- peptide assays.
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individuals with adult- onset diabetes, the following clin-
ical parameters have been shown to be highly relevant: 
age at diabetes onset, presence of ketone bodies, HbA1c 
and glucose levels at onset, BMI, C- peptide measure-
ments to quantify β- cell reserve at diabetes onset as well 
as during follow- up, and the presence or absence of the 
various ICAs.

Management
The overall aim of autoimmune diabetes care is to pre-
vent acute and chronic complications, in particular, 
ketoacidosis (Box 1), microangiopathy and macroangiop-
athy (Box 2), and to improve life expectancy and quality 
of life (QoL) of people living with the disease. Clinical 
guidance for managing AOA diabetes has been provided 
by recent international consensus statements92,111, which 
detail the clinical recommendations for the complex, 
multidisciplinary and individualized approach needed 
for the successful treatment of the condition. This Primer 
provides an overview of the available data on the efficacy 
and safety of pharmacological and non- pharmacological 
strategies tested for the treatment of hyperglycaemia and 
of β- cell dysfunction in people with AOA diabetes.

Dietary and lifestyle modifications
The cornerstones of any diabetes therapy are following 
a healthy diet in terms of variety and amount of nutri-
ents, which can be personalized on the basis of individ-
ual preferences, and safely engaging in a combination 
of aerobic and resistance exercise, considering both 
acute and long- term beneficial effects on blood glucose 
levels111. Both personalized medical nutrition therapy 
and physical activity programmes improve oxidative 
stress, glucose and lipid metabolism, and cardiac fit-
ness, as well as act with many other pleiotropic effects 
on organs that are negatively affected by diabetes112–114. 
Exercise in particular is associated with improvements 
in insulin sensitivity, which may lead to reduced insulin 
requirement, better lipid profile and better endothe-
lial function, decreased inflammatory cytokines and 
improved cardiovascular health115–117. This translates, 
clinically, into improvements in blood glucose control, 
weight loss in individuals with overweight or obesity, 
reduction in cardiovascular risk factors, and decreased 
morbidity and mortality118,119. Nonetheless, the literature 
on the effects of lifestyle modifications in AOA diabetes 
is limited. However, it can be reasonably hypothesized 
that avoiding risk factors such as physical inactivity, 
overweight, sweetened (with caloric sweeteners) bever-
ages, or low consumption of fatty fish, may help in the 
management of the disease111. Thus, it is recommended 
that all people with autoimmune diabetes should engage 
in physical exercise on most days and they should be 
referred for individualized medical nutrition therapy 
provided by nutritionists with proven skills in providing 
diabetes- specific nutritional advice111.

Insulin therapy
Insulin therapy is the most straightforward therapeutic 
choice in patients with AOA diabetes, as it augments 
the low levels of endogenous insulin caused by the auto-
immune destruction of pancreatic islets, with proven 

efficacy for controlling hyperglycaemia, preventing dia-
betic ketoacidosis and preserving β- cells111. However, 
the correct timing for starting insulin therapy may vary 
considerably depending on the natural course of the 
disease, as some people experience an absolute insulin 
deficiency from the clinical onset of the disease, whereas 
others maintain adequate β- cell function for decades77,120 
(Fig. 3). In the latter cases, some clinical features (GADA 
levels, presence of multiple pancreatic autoantibodies, 
age at onset and BMI) may help to predict the progres-
sion towards an insulin- dependent state7,50. However, 
there is a lack of data from randomized, controlled tri-
als with sufficient length of follow- up to draw conclu-
sions about the optimal time to start insulin therapy. In 
this regard, measurement of C- peptide concentration, 
which reflects endogenous insulin secretion capacity, 
may aid in the decision to start insulin in people with 
AOA diabetes121 (Fig. 5). In the LADA expert consensus 
report, three broad categories of C- peptide level were 
introduced by the panel to determine treatment recom-
mendations: C- peptide levels <0.3 nmol/l, which should 
recommend a multiple- insulin regimen as for T1DM; 
C- peptide levels in the ‘grey area’ of ≥0.3 and ≤0.7 nmol/l,  
in which a modified ADA–EASD algorithm for T2DM 
is recommended considering insulin in combination 
with other therapies to modulate β- cell failure and limit 
diabetic complications; C- peptide values >0.7 nmol/l, 
which may enable the use of a modified ADA–EASD 
algorithm as for T2DM but considering the potentially 
progressive nature of LADA by monitoring C- peptide 
to adjust treatment92. Importantly, a systematic review 
showed that insulin therapy provides better metabolic 
control than treatment with sulfonylureas, a class of oral 
anti- diabetes drugs that stimulate insulin release from 
the pancreas by binding to and closing ATP- sensitive K+ 
channels on the cell membrane of β- cells (mean HbA1c 
difference −1.3% (95% CI −2.4 to −0.1; P = 0.03))122. 
In addition, insulin was found to maintain pancreatic 
β- cell function better than sulfonylureas in most studies 
included in the systematic review122. Data from a post 
hoc analysis of the UKPDS suggest that early intensive 
insulin therapy may be associated with early protection 
from cardiovascular death in LADA123, but these find-
ings need to be confirmed in interventional randomized 
controlled trials. Overall, insulin, alone or in combi-
nation, currently remains the main pharmacological 
intervention for most people with LADA, with multi-
ple daily injections (basal- bolus schemes) required for 
people with severe insulin deficiency (C- peptide levels 
<0.3 nmol/l)92. To date, no study has specifically inves-
tigated whether insulin dosing should differ between 
LADA and T2DM; thus, insulin titration strategies 
might follow those suggested in the ADA–EASD algo-
rithm for T2DM, especially in people with C- peptide 
levels of ≥0.3 nmol/l (reF.92).

The main adverse effects associated with insulin ther-
apy are hypoglycaemia, body weight gain and skin reac-
tions, such as local inflammation and lipodystrophies. 
Hypoglycaemia is the most worrisome adverse event 
of insulin therapy, associated with increased morbidity 
and mortality124. The risk of hypoglycaemic events is 
particularly high in people with T1DM because α- cell 
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dysfunction often associates with β- cell dysfunction, 
ultimately resulting in an impaired glucagon response 
to low blood glucose levels125. Thus, education of patients 
on managing insulin doses, correct insulin administra-
tion technique, strict self- monitoring of blood glucose 
values and efficacious correction of hypoglycaemic 
events is a crucial component of insulin therapy. In this 
regard, adults with T1DM on insulin therapy may ben-
efit from the implementation of carbohydrate counting, 
which may help to achieve better HbA1c values126,127.

Non- insulin pharmacological therapies
Pharmacological therapy other than insulin may be 
used in people with LADA, either alone or in addition 
to insulin therapy, depending on the β- cell reserve of 
the patient92. Although there is agreement about the 
importance of avoiding sulfonylureas in people with 
LADA owing to an increased risk of hypoglycaemia128 
and worse metabolic control and acceleration of β- cell 
loss122, other agents may be considered, such as insu-
lin sensitizers, drugs that act on the incretin system, 
amylin analogues and gliflozins. Of note, formal regu-
latory approval for non- insulin therapy in autoim-
mune diabetes is lacking for many compounds and 
varies depending on country. Thus, the prescription of 
anti- hyperglycaemic therapy other than insulin in peo-
ple with LADA should be considered individually and 
will often be off- label prescriptions.

Insulin sensitizers. As the prevalence of overweight 
and obesity in people with autoimmune diabetes is 
increasing129, insulin resistance is also rapidly becoming 

an important issue. Insulin resistance has always been 
considered a key pathological finding among adults 
with LADA77,81. Metformin is the most commonly 
prescribed insulin sensitizer worldwide and has been 
shown to improve insulin sensitivity also in youth with 
T1DM130. Although the mechanism of action of met-
formin has not been completely elucidated, it seems 
to address insulin resistance mainly by inhibiting the 
mitochondrial respiratory chain in the liver and leading 
to activation of 5′- adenosine monophosphate- activated 
protein kinase (AMPK)131. No trial has been conducted 
specifically in people with AOA diabetes, nor has met-
formin been approved by regulatory agencies for use in 
autoimmune diabetes. The good safety profile and low 
cost of metformin, as well as the need to address insulin 
resistance in an increasing proportion of patients, have 
led to increasing off- label use of this drug as adjunctive 
therapy in adults with autoimmune diabetes.

Thiazolidinediones, such as rosiglitazone and piogl-
itazone, are insulin sensitizers that work as peroxisome 
proliferator- activated receptor- γ (PPARγ) agonists132. 
Two studies tested rosiglitazone in people with slowly 
progressive autoimmune diabetes, suggesting a poten-
tial benefit of thiazolidinediones in preserving β- cell 
function133,134. However, this observation is limited by the 
small sample size of the available studies and should be 
balanced with potential risks of bone fractures, macular 
oedema and weight gain, and with the known limited 
efficacy of thiazolidinediones in lean patients135. Another 
small study in ten patients with LADA showed faster dis-
ease progression in those treated with pioglitazone alone 
compared with those treated with metformin alone136.

Glucagon- like peptide 1 receptor agonists. Glucagon- like 
peptide 1 receptor agonists (GLP1- RAs) are pharmaco-
logical analogues of the incretin hormone GLP1 used for 
the treatment of T2DM. The relevance of this drug class  
in the therapeutic algorithm of T2DM has increased 
because of the strong evidence of its metabolic and cardio-
vascular benefits137. As incretin hormones were shown to 
reduce apoptosis of human β- cells in vitro138, GLP1- RAs 
were hypothesized to ameliorate or preserve endogenous 
insulin secretion in people with autoimmune diabetes.  
In a phase II trial in adults with new onset autoimmune 
diabetes and residual β- cell function, liraglutide slowed 
β- cell decline when used in combination with anti- IL-21, 
but no benefits were found with liraglutide alone139.  
In a randomized 52- week phase II trial using albiglu-
tide in newly diagnosed AOA diabetes, no appreciable 
preservation of β- cell function was observed140.

Nonetheless, GLP1- RAs might still improve meta-
bolic control in people with LADA, as suggested by a 
pooled post hoc analysis of the AWARDS-2, AWARDS-4 
and AWARDS-5 trials, which showed that dulaglutide 
was as effective in reducing HbA1c values in participants 
with adult- onset diabetes testing positive for GADA as in 
those testing negative141. Of note, insulin- treated patients 
were excluded from AWARDS-2 and AWARDS-5, and 
patients on more than three daily insulin injections 
were excluded from AWARDS-4, suggesting that results 
of this post hoc analysis are restricted to people with 
limited insulin deficiency. Indeed, a reduced glycaemic 

Box 2 | Chronic complications

Chronic complications that may affect people with adult- onset autoimmune (AOA) 
diabetes resemble those seen with type 2 diabetes mellitus (T2DM), even though the 
rates and timing of presentation may differ.

Macrovascular complications
Up to 2017, no difference in the prevalence of cardiovascular disease between people 
with latent autoimmune diabetes in adults (LADA) and those with T2DM was found in a 
systematic analysis77. A more recent study showed that a slightly better cardiometabolic 
profile observed in LADA compared with T2DM translates into a lower incidence of 
cardiovascular events123. This suggests that modifiable cardiovascular risk factors 
should be addressed in LADA as vigorously as in T2DM.

Microvascular complications
Data about the prevalence of microvascular complications, such as diabetic retinopathy 
and nephropathy, in LADA compared with T2DM2,77,170 suggest that these complications 
are rarer in autoimmune diabetes close to diabetes diagnosis, whereas an opposite pattern 
is seen later in the disease history. This is mainly explained by the usually worse metabolic 
control obtained during the first years after diabetes onset compared with T2DM170, which 
stresses the importance of promptly recognizing and treating the disease to intensively 
control blood glucose values as soon as possible. Of note, in the UK Prospective Diabetes 
Study, the largest longitudinal study with the longest follow- up comparing microvascular 
complications between LADA and T2DM, only a few microvascular events were kidney 
events170. Thus, no solid conclusions about the rate of nephropathy can be drawn.

Very few data about diabetic neuropathies in AOA diabetes exist. Available data 
confirm that the risk of developing neuropathy varies according to metabolic control 
and disease duration197,198. The prevalence of cardiac autonomic neuropathy, a frequent, 
life- threatening and often overlooked complication of diabetes, is similar between 
people with young- onset diabetes and AOA diabetes, but lower than in those with 
T2DM199,200. No solid data comparing prevalence and features of diabetic foot between 
LADA and T2DM have been published so far.
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response to liraglutide and exenatide was shown in 
a small sample of people with AOA diabetes (n = 20), 
mostly with low C- peptide levels and on insulin treat-
ment, compared with T2DM142. In summary, GLP1- RAs 
may be an attractive opportunity to aid the treatment 
of people affected by LADA, especially for those with a 
certain amount of residual β- cell function.

CD26/dipeptidyl- peptidase 4 inhibitors. DPP4i (also 
known as gliptins) are oral compounds currently 
approved for the treatment of T2DM. DPP4i act on the 

incretin system by reducing the activity of DPP4, the 
enzyme responsible for the degradation of GLP1 and 
GIP143. Owing to the potential effects of incretin hor-
mones on β- cell survival, gliptins have been tested in 
LADA with the aims of both preserving β- cells and ame-
liorating glycaemic control. Sitagliptin, saxagliptin and 
linagliptin are the three most studied DPP4i in people 
with LADA. Overall, studies conducted so far show that 
gliptins are generally well tolerated and, in some cases, 
effective in lowering blood glucose levels144–146. Data 
about a potential role for DPP4i in preserving β- cell 
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Avoid SU Insulin
(basal ± bolus)

Reassess 
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every 6 
months

GLP1-RA or DPP4i 
± SGLT2i (only if BMI
>27 kg/m2) ± TZD

Insulin
(basal ± bolus)

≥0.3–≤0.7 nmol/l    

First therapeutic decision

Second therapeutic 
decision (add-on)
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(if HbA1c above target)

Apply 
T2DM
guidelines

<0.3 nmol/l    >0.7 nmol/l   

Basal insulin if
HbA1c >9%

Metformin ±

SGLT2i (only if 
BMI >27 kg/m2)

GLP1-RA or DPP4i ± 
SGLT2i (only if BMI  
>27 kg/m2) ± TZD

±

GLP1-RA
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Suspicion of AOA diabetes

a
b

ASCVD/CKD evaluation

Fig. 5 | Diagnostic and therapeutic algorithm for LADA92. After diabetes diagnosis, islet autoantibodies (AAbs) may  
be measured in adults with clinical features suspicious of autoimmune diabetes. Measurement of random C- peptide con-
centration may then aid in the decision to start insulin in people with adult- onset autoimmune (AOA) diabetes. Insulin  
therapy is essential in all patients with C- peptide levels <0.3 nmol/l, who often require multiple daily insulin injections. 
Conversely, the decision to start insulin therapy may be delayed in people with C- peptide levels >0.3 nmol/l, who should be 
periodically reassessed to reconsider insulin requirement. Specifically, in people with AOA diabetes and C- peptide levels 
>0.7 nmol/l therapeutic strategies may be chosen according to the proposed algorithms for the treatment of type 2 diabetes 
mellitus (T2DM), while a slightly different algorithm may be used in people with C- peptide levels ≥0.3 to ≤0.7 nmol/l, who 
might benefit from early introduction of basal insulin, especially if glycated haemoglobin (HbA1c) is >9%. In these patients, 
glucagon- like peptide 1 receptor agonists (GLP1- RAs) or sodium–glucose cotransporter 2 inhibitors (SGLT2i) may be sug-
gested in a second therapeutic step, especially in the presence of established atherosclerotic cardiovascular disease 
(ASCVD) or chronic kidney disease (CKD). DPP4i, dipeptidyl- peptidase 4 inhibitors; SU, sulfonylurea; TZD, thiazolidinedi-
one. aIn this regard, the use of SGLT2i should be considered with caution in people with AOA because of the increased risk of 
diabetic ketoacidosis found in studies of type 1 diabetes mellitus (T1DM). Of note, formal regulatory approval for non- insulin 
therapy in AOA is lacking for many treatments and varies depending on country. Several regimens of insulin therapy can be 
used when needed. Basal insulin is administered to control hepatic glucose output and ketone production when fasting, 
whereas insulin bolus doses may be necessary to cover meals and to correct hyperglycaemic episodes. bIn alphabetical 
order; preference for one drug instead of another should be based on clinical judgement.
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viability and function are conflicting. Small clinical trials 
from China suggest that sitagliptin may maintain β- cell 
function over time147,148, altering the predominant pheno-
type and the balance of various T cell subsets63. Similarly, 
saxagliptin was associated with improvements in mark-
ers of β- cell function alone or in combination with 
vitamin D3 (reFs.145,149). By contrast, sitagliptin did not 
result in better endogenous insulin secretion compared 
with insulin treatment in a Scandinavian 21- month  
randomized trial in adults with recent- onset LADA 
without clinical need for insulin treatment150.

Sodium–glucose cotransporter 2 inhibitors. Sodium–
glucose cotransporter 2 inhibitors (SGLT2i; also known 
as gliflozins) improve blood glucose concentrations by 
inhibiting the reabsorption of glucose in the renal prox-
imal tubule, which leads to increased glucose excretion 
in the urine. Although approved for the treatment of 
T2DM, the insulin- independent mechanism of action 
has led to a hypothesis that these drugs might also help 
in ameliorating metabolic control in people with auto-
immune diabetes. As the DEPICT and the InTandem 
clinical trials programme showed improvements in gly-
caemic control associated with the use of dapagliflozin 
and sotagliflozin, respectively, in adjunction with insulin 
in adults with T1DM151–153, both drugs were approved 
by the EMA as adjunctive therapy in addition to insu-
lin for the treatment of people with T1DM and a BMI 
of ≥27 kg/m2 and uncontrolled blood glucose. The 
Pharmaceutical and Medical Devices Agency (PMDA) 
in Japan also approved dapagliflozin and ipragliflozin154 
for the treatment of people with T1DM in adjunction 
with insulin. However, market authorization of SGLT2i 
for the treatment of autoimmune diabetes was rejected 
by the FDA because of an increased risk of diabetic 
ketoacidosis. In 2021, the EMA- approved indication 
of dapagliflozin in T1DM was also withdrawn by the 
pharmaceutical company AstraZeneca because post- 
approval product information changes for dapagliflozin 
specific to T1DM were thought to cause confusion 
among physicians treating patients for other approved 
indications (T2DM, heart failure and chronic kidney 
disease), despite there being no new safety or efficacy 
concerns155. The risk–benefit ratio associated with the 
use of SGLT2i in people with T1DM can be improved 
by careful patient selection and education, use of lower 
SGLT2i drug doses, avoidance of drastic reduction of 
insulin doses and use in the subgroup of patients with 
BMI ≥27 kg/m2 (reFs.156,157). Thus, although no clinical 
trials have been specifically conducted in LADA, glifloz-
ins might be an attractive therapeutic option for people 
with this form of autoimmune diabetes, who often retain 
a certain number of functioning β- cells and are more 
often affected by concomitant overweight or obesity.

Pramlintide. The amylin analogue pramlintide suppresses 
glucagon secretion and delays gastric emptying, result-
ing in benefits in glycaemic control and body weight158. 
The drug is FDA approved for patients with T1DM 
and T2DM who receive insulin therapy. As its efficacy 
has not been separately reported in LADA, no specific 
recommendations for this group of patients can be made.

Immunomodulatory drugs
Several immunomodulatory drugs, including non-  
antigen- specific immunomodulators (such as CTLA4 
immunoglobulin, IL-1 and IL-6 receptor antagonist, 
anti- TNF, anti- CD20 and anti- CD3 monoclonal anti-
bodies, tyrosine kinase inhibitors) and antigen- specific 
immunotherapies (such as the alum- formulated 
recombinant GAD, GAD–alum) alone or in combi-
nation with other agents, have been tested to improve 
immune dysregulation and to induce immune tolerance 
in T1DM159,160. Most results from immune intervention 
trials did not show long- term efficacy in T1DM and, to 
date, no immunotherapy is available to cure autoimmune 
diabetes.

The milder rate of β- cell loss and the higher prev-
alence of residual endogenous insulin production 
often seen in people with adult- onset, compared with 
young- onset, autoimmune diabetes could make AOA 
diabetes an attractive setting for immunomodulatory 
drugs. In a small phase II placebo- controlled immune 
intervention trial conducted in individuals with LADA, 
GAD–alum was used to induce immunotolerance in 
GADA+ non- insulin- requiring patients, showing a 
good safety profile with evidence of a beneficial effect on 
β- cell function161. Another phase II trial suggests that the 
tyrosine kinase inhibitor imatinib could help in preserv-
ing β- cell function in adults with recent- onset T1DM, 
although questions related to the ideal dose, duration of 
therapy and safety remain to be resolved162.

Quality of life
Health- related QoL assessment attempts to capture 
subjective perception and assessment of the individ-
ual’s health and well- being. To date, QoL assessments 
in AOA diabetes have been limited. Fortunately, QoL 
instruments are increasingly being included in new 
trials evaluating diabetes interventions as they may 
be used in health- care policy and coverage decisions. 
Tools that have been applied to the adult- onset popula-
tion include the Audit of Diabetes- Dependent Quality 
of Life (ADDQoL-19) questionnaire and the Diabetes 
Treatment Satisfaction Questionnaire (DTSQ)163,164. QoL 
in all forms of diabetes may depend on many sociode-
mographic and clinical factors. Complications related to 
the disease, treatment modalities — in particular insulin 
use — and the co- occurrence of obesity may considera-
bly lower the QoL in patients with diabetes165,166. Multiple 
studies in broad T1DM populations, including paediat-
ric T1DM, have observed that QoL and treatment satis-
faction are lower with increasing age, female sex, lower 
education level, insulin treatment and obesity, presence 
of diabetic comorbidities, poorer glycaemic control and 
lower socioeconomic status165–167.

Important in understanding QoL is treatment satis-
faction, a subjective measure that assesses one’s experi-
ence of treatment including ease of use, adverse effects 
and efficacy. Treatment satisfaction is also influenced 
by demographic characteristics such as age, educational 
level and income168. In those characterized as having 
LADA, hypertension, longer disease duration and a 
larger waist circumference have been associated with 
lower diabetes- specific treatment satisfaction QoL168. 
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Individuals with insulin- treated LADA have a worse 
average weighted impact score compared with corre-
sponding non- insulin- treated patients with T2DM. To 
determine the average weighted impact score, the impact 
of diabetes on each domain is weighted according to the 
importance of the domain to the patient’s QoL. The pres-
ence of diabetic retinopathy, longer disease duration, 
lower education level (less than primary education) and 
former smoking also had a negative effect on the average 
weighted impact score168.

People with LADA, diabetic retinopathy and insu-
lin treatment had a lower QoL than any other combi-
nation of diabetes type, retinopathy status and insulin 
treatment. Furthermore, insulin- treated LADA patients 
who did not have diabetic retinopathy had a lower 
QoL than non- insulin- treated patients with T2DM168. 
Perception of increased hyperglycaemia frequency was 
found to be higher in the LADA group (87.5%) than in 
the T2DM group (53.9%) and also, surprisingly, than  
in the T1DM group (71%; P < 0.001 and P = 0.039, 
respectively). Comparing insulin- treated subgroups, 
people with LADA treated with insulin had a higher 
perception of hyperglycaemia frequency than those who 
had T1DM (P = 0.04) and those who had insulin- treated 
T2DM (P = 0.05)168. The higher blood glucose values 
often translate to an increased risk of complications, 
especially microvascular169,170, which in turn may have 
QoL implications (Box 2).

Outlook
AOA diabetes likely encompasses different endotypes 
with phenotypes ranging from classic rapidly progress-
ing T1DM with onset in adult life to LADA. There 
are many gaps in our understanding of AOA diabetes  
and the selection of optimal treatment approaches 
(Fig. 6). The absence of unambiguous, standardized defi-
nitions of subtypes such as LADA is one of the most 
vexing problems. Although the ADA does not formally 
recognize LADA as a specific type of diabetes, but 
instead includes all forms of diabetes mediated by auto-
immune β- cell destruction under the category T1DM, 
other societies propose different definitions to reflect 
the slower disease progression often observed in AOA 
diabetes106,171. In fact, the 2020 International Consensus 
on LADA found it challenging to define categorical  

immunogenetic and phenotypic features of LADA92. 
With different definitions used in the literature, defin-
ing potentially different subgroups makes it difficult to 
compare the results of various studies of adult- onset 
diabetes owing to the differences in inclusion crite-
ria and the heterogeneity of the phenotypes of those 
enrolled.

The measurement of only one autoantibody, using 
assays with low specificity in populations with low prev-
alence of autoimmune diabetes, can lead to patients with 
T2DM who test false positive for the autoantibody being 
grouped with those who have true autoimmune diabetes. 
This could result in misleading findings of an intermedi-
ate phenotype by combining two populations with very 
different phenotypes rather than the existence of a true 
intermediate phenotype15. Findings for such a hypothesis 
include a study that reported a more T1DM- like pheno-
type in a German population with multiple autoanti-
bodies and an inverse correlation between number 
of antibodies and markers of metabolic syndrome172.  
A similar finding was made in a population in China, in 
which those with high levels of GADA had poorer β- cell 
function and fewer diabetic complications than those 
with low GADA levels, who were similar to patients with  
T2DM, except that they were prone to develop ketosis 
more frequently173. In a Japanese population, an inverse 
correlation of metabolic syndrome with increasing 
GADA quartile was observed174. Standardization of 
definitions, implementation of a diagnostic decision 
tree and other improvements in the diagnostic approach 
to subtypes of AOA diabetes should greatly improve 
classification among adult- onset subtypes of diabetes. 
Classification could be aided by using both autoantibod-
ies and C- peptide92. Autoantibodies with standardized 
assays include GADA, IA2- Ab, IAA and ZnT8A, with 
GADA being the most prevalent autoantibody among 
adults, even in China where GADA is less dominant175. 
High levels or the presence of more than one autoanti-
body increase the likelihood of autoimmunity15. These 
autoantibodies have all been well characterized for dis-
ease prediction in young- onset T1DM, but the relative 
role in diagnosis and prognostic value of ZnT8A and 
insulin autoantibody in AOA diabetes has not yet been 
thoroughly studied.

In addition, different GADA and IA2- Ab assays may 
skew towards different epitope reactivities, which has 
implications in identifying affected individuals. False 
positive results with autoantibody assays can occur and 
are reduced by using higher- specificity assays, such 
as N- terminally truncated GADA, using higher titre 
thresholds or only testing in higher prevalence popula-
tions by restricting testing to those with clinical features 
suggestive of T1DM15. It remains unclear how best to 
screen for autoimmunity in adults diagnosed with dia-
betes, and the clinical implications of identifying such 
individuals have not yet been elucidated either.

A prediction model for diabetes classification that 
combines clinical features, islet autoantibody test results 
(GADA and IA2- Ab), and genetic risk score is under 
development176. However, it is currently only applicable 
to patients aged 18–50 years at diagnosis and of white 
European origin.
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Fig. 6 | Priorities to address gaps in understanding of adult-onset autoimmune dia-
betes. Adult- onset autoimmune (AOA) diabetes is a heterogeneous disease. This hetero-
geneity is likely a result of different pathological mechanisms, which have implications for 
treatment. Several gaps remain in accurate diagnosis and treatments for AOA diabetes, 
and knowledge of the natural history and underlying pathophysiology of this disease.
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Most commonly, autoimmunity is identified in dia-
betes using autoantibodies, but T cell assays may pro-
vide information to further define individuals with 
adult- onset diabetes177,178. In patients diagnosed as hav-
ing T2DM, measurable T cell responses are associated 
with lower stimulated177 and fasting178 C- peptide levels. 
However, T cell reactivity in autoantibody- negative indi-
viduals is unexpectedly high177,178, indicating that further 
work is required to elucidate the underlying mechanisms 
of these associations.

By comparison with paediatric studies of T1DM, few 
large studies of AOA diabetes have been conducted. Most 
AOA diabetes studies have focused on North America, 
Europe and China. Thus, racial and ethnic diversity 
in the study of AOA diabetes needs to be increased. 
Large, well- defined cohorts are needed to better under-
stand the subtypes, natural history, disease burden and  
complications of this disease.

Finally, specific studies of disease- modifying thera-
pies in AOA diabetes are required. As disease progression 

tends to be more rapid in young individuals with 
T1DM179, it is believed to be easier to show response to 
immune interventions in young individuals, as the effect 
of the change should be large compared with placebo, 
over a relatively short period of time. This has dimin-
ished interest in studying interventions in AOA diabetes, 
and this population is often used to show safety before 
initiating paediatric diabetes studies, instead of perform-
ing the large and long studies in the adult population that 
would be required to clearly demonstrate benefit. Even 
in these studies, inclusion is often restricted to the subset 
of individuals treated with exogenous insulin. Similarly, 
non- insulin diabetes therapies have mostly been studied 
in the larger, more readily recruited, T2DM populations. 
Although autoantibody- positive subgroup analysis has 
occasionally been reported from these large T2DM tri-
als, more randomized controlled comparative trials of 
therapeutic agents in AOA diabetes are still required.
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