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a b s t r a c t 

Industrial Cyber-Physical Systems (ICPS) are highly dependent on Supervisory Control and Data Acquisi- 

tion (SCADA) for process monitoring and control. Such SCADA systems are known to communicate using 

various insecure protocols such as Modbus, DNP3, and Open Platform Communication (OPC) Data Access 

standards (providing access to real-time automation data), which are vulnerable to a range of attacks. This 

leads to increased cyber risks faced in critical infrastructures, especially in the Oil and Gas sector. One 

of the most popular and critical attacks deployed against such infrastructure is Denial of Service (DoS), 

as it can have severe consequences that range from financial loss to loss of life. Such attacks can disrupt 

the ability of an operator to control hazardous operations leading to potentially unsafe scenarios. A novel 

Field Flooding attack is described which takes advantage of the packet memory structure of the Modbus 

protocol to perform a DoS attack. This attack can cause overflowing of the memory bank allocated in 

the Programmable Logic Controller (PLC) for Modbus operations. The attack is deployed and evaluated 

on a real industrial testbed and its impact against the Mitre ATT&CK framework is assessed, in order to 

identify which tactics an adversary could use to compromise the system. A novel mechanism that utilises 

supervised machine learning to detect this attack in industrial control system networks is also described. 

Experimental results show that the proposed mechanism, using the XGBoost algorithm, can identify this 

attack with 99% accuracy. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The Modbus protocol and its variants are the most widely used 

ommunications protocols in the oil and gas (OG) industry espe- 

ially for pipeline operations ( Huitsing et al., 2008 ) and for mon- 

toring remote offshore operations. The protocol was extended to 

llow control messages to be transported over TCP ( He et al., 2019 ),

reating the ModbusTCP variant. This hastened the wide adoption 

y the OG industry as communication could be integrated seam- 

essly within existing systems. Similar to other industrial proto- 

ols like DNP3 and OPC DA, the ModbusTCP protocol is insecure, 

acking authentication or encryption, which makes it susceptible 

o cyber attacks (e.g. Man-in-the-Middle, Denial of Service, com- 

and injection, etc). The nature of OG operations, especially off- 

hore production, requires remote monitoring of the production 

f highly volatile hydrocarbons from subsea to surface. This re- 

uirement, together with the ease of deployment of ModbusTCP 
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o transmit sensor readings and actuator states has increased the 

idespread use of the protocol in the OG industry, and as a result 

ncreased the attack surface of the Operational Technology (OT) be- 

ng deployed. 

Consequently, there has been an increase in the number of cy- 

er attacks carried out on critical infrastructure using Supervisory 

ontrol and Data Acquisition (SCADA) systems in general, and even 

ore so in the OG industry. The Colonial pipeline cyber attack in 

ay 2021 and the more recent incident in February 2022 where 

hree European oil transport and storage companies, namely Oil- 

anking in Germany, SEA-Invest in Belgium and Evos in Nether- 

ands ( Tidy, 2022 ), were targeted. Recent studies have also shown 

hat theft of operational information and Denial of Service (DoS) 

re the most frequent impacts of documented cybersecurity inci- 

ents in the OG industry ( Mohammed et al., 2022 ). 

These incidents have led to a corresponding increase in secu- 

ity research focused on OT and critical infrastructure communica- 

ions. However, due to the high cost of OT equipment, most re- 

earch is carried out in simulated environments which may not 

epresent exact OT system behaviour during cyber attacks. Con- 

equently, not much is known about attack impact across differ- 
nt industrial environments. Would the same attack behave differ- 
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Table 1 

Modbus addressing format for data storage. 

I/O Range Description 

00,001–10,000 Read/Write discrete output or coils 

10,001–20,000 Read discrete inputs 

30,001–40,000 Read input registers (16-bit registers for analog inputs) 

40,001–50,000 Read/Write holding registers (16-bit storage) 

Table 2 

Most used public Modbus function codes. 

Function Code Hex Type Size (Bits) 

Read Discrete Inputs 2 0x02 Read Only 1 

Read Coils 1 0x01 Read/Write 1 

Write Single Coil 5 0x05 Read/Write 1 

Write Multiple Coils 15 0x0F Read/Write 1 

Read Input Registers 4 0x04 Read Only 16 

Write Single Register 6 0x06 Read/Write 16 

Read Holding Registers 3 0x03 Read/Write 16 

Write Multiple Registers 16 0x10 Read/Write 16 
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ntly in a different industrial environment? These factors have mo- 

ivated the study presented in this paper with a focus on (1) the 

odbusTCP protocol, (2) Denial of Service attacks, and (3) imple- 

entation of attacks on different real industrial systems to analyse 

ehaviour/response to attacks. 

More specifically, we present a novel Field Flooding attack 

hich alters the structure of the ModbusTCP packet with addi- 

ional malicious fields to target the PLC controlling critical pro- 

esses. The attack involves sniffing network packets (Man-in-the- 

iddle) for ModbusTCP communications and injecting the mali- 

ious packets to the PLC to cause a denial of service. The Field 

looding attack is unique from most Man-in-the-Middle (MitM) 

nd DoS attacks studied in the literature in the following ways: 

• Does not require ARP poisoning as an initial step so would not 

be mitigated with standard measures capable of detecting ARP 

poisoning - a typical defence against MitM attacks. 

• Does not increase the rate of packet transmission to the PLC 

(e.g. SYN Flood - a popular type of DoS attack widely studied). 

Rather, with much fewer, carefully crafted packets, can over- 

whelm the PLC which could prevent response to requests. This 

results in a behaviour that requires a different approach for 

detection/mitigation besides known measures (e.g. packet rate 

limiting). 

Our main contributions are: 

1. The identification of a novel “Field Flooding” attack on the 

ModbusTCP protocol which can lead to a severe Denial of Ser- 

vice (DoS) attack; 

2. A novel Intrusion Detection System to effectively detect the 

Field Flooding attack on industrial control networks using a su- 

pervised machine learning approach; and 

3. A labelled dataset collected from three industrial testbeds con- 

taining benign and malicious activity that can further support 

security research surrounding attack detection on ICS systems. 

The remainder of this paper is structured as follows: 

ection 2 discusses the background and related work in this re- 

earch area. Section 3 describes the attack methodology, attacker 

odel, and tools used including the testbeds utilised in the study. 

n Section 4 the results of the experiments are provided, while 

ection 5 analyses these results in more detail. In Section 6 , super- 

ised machine learning techniques are applied to detect the Field 

looding attack, and the performance of these techniques is evalu- 

ted. Key lessons learnt and a summary is included in Section 7 . 

. Background and related work 

In this section both the context of the proposed work and re- 

ated literature are described. An overview of the ModbusTCP pro- 

ocol is provided, followed by vulnerabilities in this protocol. 

.1. Structure of the ModbusTCP protocol 

The ModbusTCP protocol communicates using a simple re- 

uest/ reply mechanism between a control centre and field de- 

ices ( Huitsing et al., 2008 ). The control centre(s) are the clients 

formerly called ‘Master’), while the field devices are the servers 

formerly called ‘Slaves’). This variant of the Modbus protocol uses 

CP/IP as a transport mechanism for Modbus messages. There are 

our data storage modes in Modbus servers to store analog and 

igital input/output (I/O) which are highlighted in Table 1 . 

A function code (FC) included in a Modbus message describes 

he purpose of the message ( Gonzalez and Papa, 2007 ). Table 2 

escribes the most used public FCs by vendors while Fig. 1 shows 

he basic structure and size allocated to each header. The Modbus 

pplication Data Unit (ADU) has a total size of 260 bytes. This is 
2 
hared by the Modbus Application (MBAP) header and the Protocol 

ata Unit (PDU) in the order of 7 bytes and 253 bytes respectively. 

he fields in the MBAP header are explained as follows: 

• Transaction ID: This is a number that matches the Modbus 

server [Programmable Logic Controller (PLC)] response to its 

corresponding query from the Modbus client [Human Machine 

Interface (HMI)] and is incremented by one for consecutive 

queries. 

• Protocol ID: This is usually set to “0” to indicate ModbusTCP 

protocol. 

• Length: The length field indicates the size of the data (in bytes) 

in the rest of the packet (i.e. size of Unit ID, Function Code, and 

Data fields) so the receiving party knows what to expect from 

the packet. 

• Unit ID: This is set to the Unit ID of the Modbus server the 

client wishes to communicate with. For the ModbusTCP proto- 

col, the Unit ID is not relevant as the IP address of the server 

dictates the destination of the packet. 

• Function Code: The function code identifies the action the 

Modbus server should take. 

• Data: The Data field contains the data to write/ read and the 

address of the data store on the Modbus server. 

The client-server query-response cycle Queries from Modbus 

lients (e.g. HMI) and the corresponding response from Modbus 

ervers (e.g PLCs) are sent in loops that are milliseconds apart. The 

uery from the client contains the FC that tells the server what 

ction to perform ( RS, 2002 ). The “Data” field contains the address 

nformation that should be read or written to and specifies how 

any addresses to consider. 

The corresponding response from the Modbus server (e.g. PLC) 

s usually an echo of the FC in the query ( RS, 2002 ), unless an error

ccurs. The data returned by the server indicates process status (in 

he case of a read request) or confirmation of data written (in the 

ase of a write request). The packet structure of read and write 

ueries/responses is shown in Fig. 2 . 

.2. Related work 

Vulnerabilities in the Modbus protocol have been widely con- 

idered, primarily due to lack of authentication and ease of de- 

loyment of this protocol. This section focuses on presenting rele- 

ant work that focuses on: (a) vulnerabilities reported in the Mod- 

usTCP protocol – these studies have been carried out mostly on 

imulated testbeds, and (b) studies focusing on Intrusion Detection 

ystems (IDS) for the ModbusTCP protocol. 
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Fig. 1. ModbusTCP packet structure. 

Fig. 2. ModbusTCP message structure for memory access operations. 
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ModbusTCP vulnerabilities Chattha et al. (2021) presented an im- 

lementation of cyber-physical systems with ModbusTCP commu- 

ication for real-time security testing. Their study used two simu- 

ated case studies (i.e. Automatic Voltage Regulation and DC motor 

osition control) using MATLAB Simulink, OpenPLC, and ScadaBR 

o understand the effects of attacks launched on the system. The 

uthors of Luswata et al. (2018) used a penetration testing ap- 

roach to identify attacks on SCADA systems specifically focus- 

ng on the ModbusTCP protocol. Their study combined three sim- 

lation tools (i.e. Qmod master, Modbuspal and, Conpot server) 

hat were utilised for attacking the ModbusTCP protocol and de- 

eloping countermeasures. Similarly, Parian et al. (2020) carried 

ut two attacks on the ModbusTCP protocol comprising of a MitM 

nd malware attacks where the latter involved modifying requests 

ade by the Modbus client, ensuring that the response from the 

erver is reversed. They utilised Scapy (tool discussed further in 

ection 3.1 ) to manipulate the Modbus server response by chang- 

ng the value of the requested coil. Our attack approach in this 

tudy however utilises Scapy differently to alter the ModbusTCP 

acket structure rather than change the value of the Modbus com- 

and/response. Their experimental setup was based on virtuali- 

ation technology, with the client, server, and attacker machines 

ll hosted within Virtual Machines. However, a key limitation of 

he aforementioned studies is that they are all based on sim- 

lated environments which do not fully reflect real system us- 

ge ( Satyanarayana et al., 2021 ). These studies, therefore, did not 

onsider attacks that alter the ModbusTCP packet structure and 

id not evaluate the impact of the attacks on a physical industrial 

estbed. 

Furthermore, Bashendy et al. (2020) presented a formal attack 

ree for representative explored attacks against the ModbusTCP 

rotocol that models the attack steps in detail with different at- 

ributes. They categorised the attacks using the CIA triad (Confi- 

entiality, Integrity, and Availability) where various modifications 

f the packets are made. Modifications included changing the FC 

o an unsupported one, injecting a replayed payload, or changing 

 specific value in the payload ( Bashendy et al., 2020 ). Similarly, 
3 
n Stranahan et al. (2019) , the authors also highlight the vulnera- 

ility of the ModbusTCP protocol to malicious attacks using stan- 

ard attack tools utilised in penetration testing. The attacks car- 

ied out in their study which impacted the system were limited 

o data manipulation (writing coils), MitM, and DoS. These stud- 

es, however, did not consider attack vectors dealing with pro- 

ocol mutation by altering the ModbusTCP packet structure. Fi- 

ally, Alcaraz et al. (2019) explored security issues related to covert 

hannels applied to ModbusTCP in industrial networks using a 

estbed comprising of various equipment including a Raspberry Pi 

 board simulating the logic of a PLC. They presented two ap- 

roaches based on (1) timing - where insignificant delays are in- 

ected in the TCP/IP channels, and (2) storage - by the inclusion of 

idden data in specific fields of the ModbusTCP packets. While the 

ttacks presented in these studies leverage on manipulating the 

alues in various fields (e.g. Unit ID, FC, Data) being transmitted or 

tored in some way using the ModbusTCP protocol, they all work 

ithin the existing structure of the ModbusTCP packet. In our Field 

looding attack, the ModbusTCP packet structure itself is manipu- 

ated, compromising the controller (PLC/RTU), resulting in adverse 

ehaviour outside the intended response as designed. 

Intrusion detection systems (IDS) for modbusTCP Radoglou Gram- 

atikis et al. (2020b) developed a novel anomaly-based IDS called 

RIES which adopted a set of machine learning (ML) methods, con- 

isting of three detection layers: (a) network flow-based detection, 

b) packet-based detection, and (c) operational data-based detec- 

ion. Particularly, the second layer of their model inspects Mod- 

usTCP packets and their attributes to detect anomalies such as 

nauthorised ModbusTCP commands and function code enumera- 

ion attacks. Specifically, they used real datasets originating from a 

ower plant in Greece containing operational data which was used 

o detect anomalies. Their proposed method is suitable for a spe- 

ific domain (i.e. power plant) and not for general industrial use- 

ase. Satyanarayana et al. (2021) also examined the vulnerability of 

odbusTCP to false command injection, false access injection, and 

eplay attacks. Their proposed IDS involved using a frame filtering 

odule that will send only authorized commands and Modbus re- 
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Table 3 

Summary of related work. FF = Field Flooding , Hybrid testbed = f . 

Author / Reference Simulation Physical industrial 

testbed 

Multiple vendor 

hardware 

Alter ModbusTCP 

packet structure 

Can detect FF 

attack 

Chattha et al. (2021) ●
Luswata et al. (2018) ●
Parian et al. (2020) ●
Bashendy et al. (2020) ●
Stranahan et al. (2019) ●
Alcaraz et al. (2019) f 

Radoglou Grammatikis et al. (2020b) ●
Satyanarayana et al. (2021) ●
Saharkhizan et al. (2020) f 

Katuli ́c et al. (2022) ●
Morris et al. (2013) ●
This study ● ● ● ●
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uests to the PLC by checking the IP address and port of the Mod- 

us client, allowed function codes, and allowed register addresses. 

urthermore, Saharkhizan et al. (2020) designed an IDS using Deep 

earning (DL) long short-term memory (LSTM) modules into an en- 

emble of detectors which was trained and evaluated on a simu- 

ated Modbus network traffic dataset. The dataset was categorised 

nto MitM attacks, ping DDoS (Distributed Denial of Service) flood 

ttacks, Modbus query flood attacks, and TCP SYN DDoS flood at- 

acks which are mostly “high-rate” attacks. These attacks typically 

ork by sending a series of packets to a target device at a hyper-

ncreased rate, exhausting the capacity for a timely response, if 

ny. The authors focused on detecting mostly “high-rate” attacks, 

hich can be easier to detect based on the high packet flow. How- 

ver, they have not evaluated their system against attacks that may 

e more sophisticated and disguised like the one presented herein 

i.e. Field Flooding attack). Therefore, there is no evidence that the 

roposed IDS could be utilised for detecting such attacks. Also, the 

ttacks used in Saharkhizan et al. (2020) did not alter the Mod- 

usTCP packet structure. 

Finally, the authors in Morris et al. (2013) and Katuli ́c 

t al. (2022) describe a comprehensive set of rules that could 

e combined with popular signature-based IDS (e.g. Snort, Suri- 

ata) to prevent exploitation of the Modbus protocol. In Katuli ́c 

t al. (2022) , the authors carried out DoS (SYN Flood), MitM 

spoofing), and reconnaissance attacks on a cyber-physical system 

ia ModbusTCP and created custom rules focusing on the Modbus 

ata field, which is plant-specific. A limitation of their work is that 

hese rules would not apply to any other industrial network and 

s therefore not an adaptable solution. The advantage of an ML- 

ased IDS over this system is its adaptability (ability to learn fea- 

ures of multiple industrial environments) and that it could detect 

 wider variety of attacks. Both studies - Morris et al. (2013) and 

atuli ́c et al. (2022) - examined rules that preserve the integrity 

f the Modbus packet, but did not consider manipulation attacks 

here malicious fields are appended to the packet while the pa- 

ameters within each field remain valid. Also, deploying these rules 

o adequately protect OT networks requires an in-depth knowl- 

dge of various thresholds and set points. Since each OT network 

as its own unique parameters, thresholds that adequately protect 

ne network may not work as efficiently on another. This solution 

s not scalable or adaptable across several industrial networks. To 

ummarise, these studies did not consider attacks that abuse the 

emory allocation of the PLC while preserving the integrity of the 

odbus frame. Subsequently, the field flooding attack described 

n this paper demonstrates the ability to bypass these preventive 

echniques by ensuring that the malicious packet is coming from 

n authorised IP address/port and probing using legitimate func- 

ion codes and allowed register addresses. Table 3 summarises the 

tudies discussed in this sub-section. 
h

4 
. Attacking the ModbusTCP protocol 

.1. Attacker model and capabilities 

The attacks presented in this paper consider the following ba- 

ic assumptions to form the attacker model. OT networks can often 

nclude remote access for vendors to maintain their systems re- 

otely. An attacker could perform a phishing attack against a sup- 

lier or an integrator/ vendor’s remote access link to the OT net- 

ork ( Assante and Lee, 2015 ). In order to effectively troubleshoot, 

pgrade or modify system parameters (e.g. PLC logic, proprietary 

oftware, hardware configuration files, firmware updates, etc.) dur- 

ng scheduled or emergency maintenance activities, vendors would 

equire administrative privileges on the remote workstations they 

onnect into. This is usually the case, especially in oil and gas off- 

hore platforms located thousands of miles away from shore. It is 

ssumed that our attacker has gained access to the OT network 

nd has the following capabilities: (i) network sniffing; (ii) com- 

and injection through scripting; (iii) modification of operational 

arameters. These capabilities will be further mapped out using 

he Mitre ATT&CK framework in Section 5 . The attacker’s objec- 

ives/ motivation are: 

• To compromise an operator’s ability to control processes on the 

remote system (i.e. impair process control). 

• Collect information about operational processes including sen- 

sor readings and process state. 

• Disrupt a process to damage equipment (potentially leading to 

loss of life and damage to the environment). 

The tools used in these attacks are: 

1. Smod : Smod is the most widely known pen-testing tool related 

to ModbusTCP ( Radoglou-Grammatikis et al., 2020a ). It aggre- 

gates a set of diagnostic and offensive f eatures that can be used 

in pen-testing the ModbusTCP protocol. 

2. Scapy: Scapy is an interactive packet manipulation program 

written in Python. It is capable of forging or decoding pack- 

ets for a wide number of protocols, sending them on the wire, 

capturing them, matching requests and replies, and much more. 

Rohith et al. (2018) . 

3. Wireshark: Wireshark is a widely-used network protocol an- 

alyzer ( Combs, 2022 ). 

4. Tshark: Tshark is the terminal version of Wireshark 
5. Nmap: A widely used network discovery tool. 

.2. Description of attacks 

As discussed in 3.1 , the attack scenario assumes the attacker 

as gained entry into the OT network by gaining user credentials 
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Fig. 3. Attacker’s target points within the OT network; 1 = Field Flooding step 1, 2 

= Field Flooding step 2. 
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Table 4 

Common industry use-cases for the 3 PLCs used in our experiments. 

PLC Common industry use-case 

PLC 1 Oil and gas industry 

PLC 2 Manufacturing, smart buildings, general automation 

PLC 3 Smart grid, manufacturing 
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h

i

d

f

s

d  

c
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p

f a third-party vendor from spear phishing activities, then using 

he stolen credentials to access a dedicated workstation with priv- 

leges to carry out maintenance activities. The workstation is run- 

ing an HMI that constantly polls the PLC for process state and 

isplays the status for the operator in real-time. The attacker’s tar- 

ets are highlighted in Fig. 3 

In the initial phase of the attack, the attacker used Nmap and 

mod tools to carry out reconnaissance of the network. Nmap was 

sed to discover devices with port 502 (default port used by Mod- 

usTCP protocol) open, while Smod was used to scan the PLC for 

llowed function codes. Due to recent attacks, most vendors no 

onger allow diagnostic function codes to be sent to PLCs as they 

an easily be used to discover details about the system, shut it 

own, or force it into a limited service mode (e.g. Force listen-only 

ode). The Smod enumeration on Modbus function codes con- 

rmed that diagnostic function codes are disabled by the vendor 

n the PLCs. However, all the public FCs shown in Table 2 were 

ccessible for exploitation. 

The next phase of the attack involved using Scapy to sniff net- 

ork traffic between the HMI and PLC which was analysed with 

ireshark . ModbusTCP communication between HMI and PLC is 

sually in a continuous loop. The communication loops in the case 

f the experimental setups used in this study are described as fol- 

ows (testbeds are described in detail in 3.3 ): 

• Testbed 1: one query (to read 2 holding register addresses), its 

corresponding response (from Modbus server - PLC 1), and fi- 

nally an acknowledgement (ACK) from HMI - 3 packets. 

• Testbed 2: two queries (HMI polling PLC for data/status) and 

two responses (PLC sending requested data/status to HMI). Each 

query (from HMI) is followed by a corresponding response 

(from PLC) and an acknowledgement of receipt of data by the 

PLC - 6 packets. 

• Testbed 3: one query (to read 1 coil address), its corresponding 

response (from Modbus server - PLC 3), and an acknowledge- 

ment (ACK) from HMI - 3 packets. 

In all experiments, the critical metric was the communication 

ime, which was approximately 7 ms (milliseconds) between a 
5 
uery-response-ack loop, and 100 ms between loops. This gave an 

nitial indication of when malicious packets can be injected into 

he stream as shown in Fig. 4 . The longer the communication time, 

he easier it is for Scapy to craft a packet and inject. From the 

ireshark analysis, the time window most favourable for a suc- 

essful packet injection was the 100 ms between PLC acknowl- 

dgement for receiving holding register data and HMI requesting 

nput register data in the case of testbed 2. For both testbeds 1 

nd 3, the packet injection window was after the ACK of the loop, 

ut before the next query from the HMI which also was approxi- 

ately 100 ms. To craft a packet that will be accepted by the PLC, 

t needs to: 

• conform with the ModbusTCP standard format (contain func- 

tion code, transaction and protocol identifiers, unit ID, length 

and register starting address); 

• utilise sequence (SEQ) and ACK numbers in the previous packet 

(ACK packet transmitted from HMI) to use as its own SEQ and 

ACK numbers. 

Secondly, in order to generate a malicious packet targeting the 

LC with a Field Flooding attack, the following techniques were 

sed: (i) alteration of the length field in the MBAP header; (ii) al- 

eration of the number of fields in the PDU header. Recall that the 

aximum memory allocated for ModbusTCP ADU header is 260 

ytes. By altering the length field in the MBAP header and increas- 

ng the number of fields in the PDU layer, this limit is exceeded 

hich can potentially disrupt the communication between the HMI 

nd PLC. The following experiments were carried out with varying 

arameters: 

• Create ModbusTCP read packet (FC 01/03/04) similar to com- 

munication loop packets and inject (packet replay attack). 

• Modify ModbusTCP write packet (FC 05/15/06/16) with in- 

creased length field in MBAP header and inject (altered length 

attack). 

• Modify ModbusTCP write packet (FC 05/15/06/16) with 1 ad- 

ditional field (2bytes) in PDU layer and inject (Field Flooding 

attack). 

• Modify ModbusTCP write packet (FC 05/15/06/16) with 2 ad- 

ditional fields (4bytes) in PDU layer and inject (Field Flooding 

attack). 

A summary of the Field Flooding attack sequence steps and cor- 

esponding stages on the cyber kill chain is shown in Fig. 5 . 

.3. Experimental setup 

To carry out these experiments, three testbeds with relevant 

ardware from real industrial network communications in critical 

nfrastructure were used. Three different testbeds were used in or- 

er to evaluate and investigate the impact of the attack on dif- 

erent industrial environments. The main features of the testbeds, 

uch as the PLCs (acting as Modbus servers) and their common in- 

ustry use cases are listed in Table 4 . The PLC brands have been

oncealed for security reasons. 

Testbed 1 (oil and gas) This testbed emulates a gas wellhead pro- 

uction monitoring system using compressed air flowing through 

he pipes. The PLC (PLC 1) is commonly deployed in oil and gas 

latforms because of its numerous control functions and ability 
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Fig. 4. PLC-HMI Communication loop showing timings in milli-seconds. 

Fig. 5. Field Flooding attack sequence and phases on the cyber kill chain. FC = Function Code. 
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o withstand operations in harsh environments like offshore plat- 

orms. An air compressor is connected to the pipe inlet ( Fig. 6 (a))

hich pumps compressed air through the system. Monitoring 

quipment (shown in Fig. 6 (b)) includes pressure and tempera- 

ure sensors and a shutdown valve. The values of the sensor read- 

ngs are stored in the PLC holding register addresses 40,099 and 

0,199. To control the testbed and monitor sensor values, an HMI 

oftware, AdvancedHMI (2022) provides a Graphical User Interface 

GUI) which accesses the stored values in the PLC holding registers 

nd displays the sensor readings (i.e. pressure and temperature). 

he HMI was programmed to periodically poll the PLC for data rep- 

esenting sensor readings stored in the holding registers using the 

unction code 0x03 (read holding registers). All communication is 

ia ModbusTCP. There is also a shutdown valve to provide the op- 

rator ability to shut off airflow emulating an emergency shutdown 

cenario. This can be controlled via the HMI “on/off” buttons using 

C 0x06 (write holding register). 

Testbed 2 (manufacturing) This testbed represents a simple setup 

hat monitors the temperature and humidity readings of an assem- 

ly line to ensure the quality of production. The setup was pro- 

ided by the National Digital Exploitation Centre (NDEC) and in- 

luded an encrypted VPN (Virtual Private Network) tunnel to ac- 
6 
ess the testbed remotely. This was to emulate a remote worksta- 

ion monitoring system process. The hardware comprises a PLC, a 

emperature sensor, and a humidity sensor. The sensors are hard- 

ired to the PLC, which communicates the values in real-time to 

he HMI ( Fig. 7 (a)) using ModbusTCP. For demonstration purposes, 

oth sensors are only reading the temperature and humidity of the 

oom where the testbed is located. These sensor readings are con- 

tantly polled and displayed in real-time on the HMI – a feature 

hat allows the operator to keep track of production quality. The 

emperature value is stored in a holding register while the humid- 

ty value is stored in an input register. The HMI periodically polls 

he PLC for the temperature and humidity values using the Modbus 

unction codes 0x03 (read holding registers) and 0x04 (read input 

egisters) respectively. The testbed setup is shown in Fig. 7 (b). 

Testbed 3 (smart city) This is a SCADA testbed consisting of two 

ritical infrastructure systems (a) smart city buildings and (b) a 

rain system looping around the city. These two systems are con- 

rolled separately by two different PLCs. Our study focused on the 

LC controlling the smart city buildings. Within the building mod- 

ls (shown in Fig. 8 ), there are LED (Light Emitting Diode) lights 

ired to connect each building to a power source, provided by 

he PLC. When energised, all the buildings are powered up and 
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Fig. 6. Setup of testbed 1 showing sensors, valves and setup arrangement. 

Fig. 7. Setup of testbed 2 showing remote operator access and HMI used (security details obfuscated). 

Fig. 8. Complete setup of Testbed 3. 
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lluminated. This is controlled by binary coil values stored in the 

LC indicating status as “on” or “off” – indicating when lights in 

he building can be turned on/off. Auxiliary power lines are in- 

luded on the surface of the testbed as an aesthetic feature. The 

MI tracks the power status of the smart city buildings by access- 
7

ng the values stored at coil address 0 0 01 using FC 0x01 (read coil)

nd gives the operator the ability to turn on the power, or power 

own (using FC 0x05 - write single coil) for maintenance activities. 

In the next section, the results of these attacks on all three 

estbeds are described. 
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Fig. 9. Disruption of ModbusTCP communication from field flooding attack on Testbed 1. 
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. Results 

Malicious packets were successfully injected into the Mod- 

usTCP communication for all the testbeds with each packet al- 

ered according to the experiments listed in 3.2 . In each testbed, 

niffing network traffic and injecting the exact same ModbusTCP 

ead packets in the communication loop resulted in the corrup- 

ion of the TCP session, however, the TCP protocol session manage- 

ent was able to self-correct with minimal disruption - approxi- 

ately 1 s (i.e. spurious retransmissions were discovered and the 

CP three-way handshake was re-initiated to re-establish commu- 

ications). 

The next type of malicious packets that were injected was the 

ltered length field in the MBAP header. Again, for all three PLCs in 

he various testbeds, the results were similar. The injected packet 

ith an increased length field corrupted the TCP session and the 

ession management self-corrected the communication. However, 

n this case, the communication loop was restored after a RST 

CK packet which triggered the re-initiation of the TCP three-way 

andshake. This also took approximately 1 s to correct and all 3 

LCs handled this error adequately. It’s also worthy to note that 

ule No. 3 in Morris et al. (2013) will effectively block this attack. 

he aim of this experiment was to establish a baseline for the PLCs’ 

rror handling capabilities. 

Finally, malicious packets with additional fields (field flooding 

ttack) to the PDU header were injected and all three PLCs behaved 

ifferently in handling this attack. Each malicious Field Flooding 

acket injected (disguised as a Modbus client query) triggered an 

nitial response to the sent query from all three PLCs, which con- 

rmed a successful packet injection and enabled a continuation of 

he attack (maximum of 4 packets injected) until the PLC is unable 

o respond to further legitimate requests for varying periods. The 

mpact on each testbed is further described as follows: 

Field Flood Attack on Testbed 1: Two types of malicious Mod- 

usTCP packets with additional fields in the PDU header were in- 

ected to cause a field flood attack on PLC 1. The first packet was

njected with only 1 additional field (2 bytes) while the second 

acket had 2 additional fields (4 bytes). The first packet (additional 

 bytes) caused a denial of service for up to 5 min where the PLC

modbus server) did not respond to queries from the HMI (modbus 

lient). The second field flood attack (2 additional fields - 4 bytes) 

ad a more damaging impact on the modbus server as the PLC 

as continuously responding to queries from HMI with RST ACK 

ackets in an attempt to reset the TCP session. The field flooding 

ttack effectively forced the PLC into a listen-only mode for ap- 

roximately 59 min leading to a denial of service. This is shown in 

ig. 9 . 
8 
Field Flood Attack on Testbed 2: The field flooding attack also 

howed adverse behaviour on PLC 2. Although the injected packet 

ith only 1 additional field in the PDU header resulted in a cor- 

uption of the TCP session for 9 s, when repeated with a malicious 

eld flooding packet containing 2 additional fields, it resulted in 

 denial of service. The additional 4 bytes appended to the PDU 

eader made the PLC non-responsive to HMI queries by sending 

ST ACK packets for approximately 7 min ( Fig. 10 ). 

Field Flood Attack on Testbed 3: For PLC 3 (smart city testbed), 

he field flooding attack was also carried out by injecting malicious 

odbusTCP packets with 1 additional field and 2 additional fields. 

he field flood attack with 1 additional field to the PDU header 

orrupted the TCP session for about 20 s, while that of 2 additional 

elds forced the PLC to restart as shown in Fig. 11 . This also caused

 denial of service scenario as, during the period of the restart, the 

LC would no longer be responsive to commands or report process 

tate. 

The summary of all the attacks carried out on the testbeds and 

heir corresponding impact on the behaviour of the PLCs is shown 

n Table 5 . 

. Analysis of field flooding attack impact 

From the results shown in Section 4 , it can be deduced that 

ifferent PLCs behave uniquely to the field flooding attack. This 

s another advantage that real systems have over simulated envi- 

onments as this difference in PLC behaviour cannot be accounted 

or in simulated experiments. Our experiments show that PLC 1, 

hich is predominantly used in the oil and gas industry, is the 

ost vulnerable to the field flooding attack in comparison to PLCs 

 and 3. This could potentially have serious implications on pro- 

ess safety in such a volatile, critical industry. For example, in oil 

nd gas production platforms, where SCADA is used to control the 

eating and separation of volatile hydrocarbons, operators monitor 

nd ensure safe operations via HMI equipped with override func- 

ions for emergency shutdowns. This attack has the potential to 

mpair process control leading to pipeline explosions, loss of lives 

nd damage to the environment. 

One of the dangers of the field flooding attack is that a low- 

killed adversary can execute this attack and cause huge damage. 

ts relative ease of execution can be demonstrated by mapping the 

ttack pattern on the Mitre ATT&CK for ICS framework. This frame- 

ork is a curated knowledge base for cyber adversary behavior in 

he ICS technology domain ( Alexander et al., 2020 ). It comprises a 

axonomy that describes adversarial tactics and techniques. 

Using the Mitre ATT&CK for ICS framework the field flooding 

ttack was mapped to show the tactics and techniques utilised by 
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Fig. 10. Disruption of ModbusTCP communication from field flooding attack on Testbed 2. 

Fig. 11. Disruption of ModbusTCP communication from field flooding attack on Testbed 3. 

Table 5 

Summary of impact of attacks carried out on all three testbeds. 

Attack impact 

Testbed PLC/RTU Altered length attack Field flooding attack (1 field) Field flooding attack (2 fields) 

1 PLC 1 Spurious retransmissions (1 s) Denial of service (5 min) Denial of service (59 min) 

2 PLC 2 Spurious retransmissions (1 s) TCP session corruption (9 s) Denial of service (7 min) 

3 PLC 3 Spurious retransmissions (1 s) TCP session corruption (20 s) PLC forced restart 
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Table 6 

Summary of Mitre ATT&CK tactics and techniques used in field flooding attack. 

Tactic Technique Technique ID 

Initial Access Internet accessible device T0883 

Execution Command-line interface, scripting T0807, T0853 

Discovery Network Sniffing T0842 

Inhibit Response 

Function 

Block reporting message, denial of 

service 

T0804, T0814 

Impair Process 

Control 

Modify parameter, unauthorised 

command message 

T0836, T0855 

Impact Denial of control, denial of view T0813, T0815 

s

w

q

he attacker. Out of 12 available tactics, only 6 were required to 

chieve the attacker’s goal of Denial of Control (T0813) and Denial 

f View (T0815). The fewer tactics used to reach the desired im- 

act goal, the easier it is to carry out an attack on live production

ystems. This is summarised in Table 6 . 

. Detection of field flooding attack: supervised machine 

earning 

.1. Dataset 

The dataset was created by collecting a combined 4 h worth 

f network pcap traffic from all three testbeds using Wireshark . 
uring the capture, the PLCs had malicious packets injected into 

he stream as described in 3.2 and the data was saved into three 
9 
eparate pcap files (i.e. one from each testbed). These pcap files 

ere converted into a csv file format using Tshark , and subse- 

uently combined into a single file to make a total of 127,758 
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Table 7 

Summary of dataset. 

Total data points 127,758 

Benign data points 114,700 

Attack data points 13,058 

Total capture duration 3.8 h 

Table 8 

Summary of attacks in dataset (AL = Altered length, FF = Field Flooding). 

Attack type Packets injected Attack duration (s) 

Packet replay 3 4.6 

AL Injection 3 6.7 

FF + 1 Field 6 13.1 

FF + 2 Fields 12 35.7 

Total 24 60.1 
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Table 9 

Information gain ranking filter for features. 

Rank Rank score Attribute 

1 0.42723 tcp.seq_raw 

2 0.391132 tcp.ack_raw 

3 0.322357 tcp.time_delta 

4 0.317954 tcp.analysis.initial_rtt 

5 0.305935 frame.time_delta 

6 0.27151 tcp.srcport 

7 0.243965 tcp.window_size_value 

8 0.1808 tcp.flags 

9 0.169913 tcp.dstport 

10 0.166015 frame.len 

11 0.097374 ip.len 

12 0.069722 modbus.func_code 

13 0.067809 tcp.pdu.size 

14 0.066313 tcp.len 

15 0.062963 mbtcp.len 

16 0.046628 modbus.byte_cnt 

17 0.040866 mbtcp.unit_id 

18 0.029992 tcp.checksum 

19 0.019521 tcp.analysis 

20 0.014819 ip.ttl 

21 0.006837 ip.proto 

22 0.003641 modbus.word_cnt 

23 0.000474 modbus.reference_num 

24 0.00042 ip.flags 

Table 10 

Classification metrics results. 

Classifier Precision Recall F1-score 

Logistic Regression 0.953 0.99 0.971 

Random Forest 0.998 0.998 0.998 

Na ̇ove Bayes 0.993 0.406 0.577 

Decision Tree 0.998 0.998 0.998 

XGBoost 0.999 0.999 0.999 

K-NN 0.997 0.996 0.997 

Kernel SVM 0.995 0.993 0.994 

SVM 0.975 0.973 0.974 
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ata points containing 29 features (114,700 = benign and 13,058 

 malicious) – comparable in size to datasets used in other similar 

tudies (e.g. Anthi et al., 2021b; Injadat et al., 2018 ). To label the

ataset, it was ensured that every malicious packet injected suc- 

essfully had the same transaction ID (e.g. 80 0 0). By filtering the 

eld mbtcp.trans_id == 80 0 0, the start of each field flooding 

ttack was identified and labelled along with its impact. Combin- 

ng the datasets from the 3 testbeds enabled the development of a 

ore robust model that would generalise better when using data 

rom similar ICS networks. The total attack duration of the exper- 

ments carried out was approximately 60 s and a summary of the 

ataset description is shown in Tables 7 and 8 . 

.2. Feature selection 

To train a supervised machine learning model effectively, it 

s important to identify features that best describe the dataset 

 Anthi et al., 2021a ). As the focus of our study is the ModbusTCP

rotocol, features from the TCP/IP layers and the Modbus layer 

embedded within the TCP layer) form the key selected features for 

ur model training. Features from the ethernet layer (e.g. mac ad- 

resses, src and dst addresses) were not considered because they 

nclude properties which may lead to overfitting of the machine 

earning model. At the same time, temporal features from the 

rame header (e.g. frame.time_delta ) to capture packet inter- 

rrival times were also selected. This created an initial dataset with 

0 features with the labelled target variable inclusive. 

To further reduce the risk of overfitting, features that repre- 

ent identifying properties (e.g. IP/mac addresses) were also re- 

oved from the feature set ( Anthi et al., 2021a ). In this case, the

btcp.trans_id feature was also removed as all the attacks 

ad the same transaction ID. Furthermore, features that had only 

ne unique value within the dataset were not considered as these 

ould have no effect on the target variable and would increase 

omputational overhead. This resulted in pruning the number of 

elected features to 24. 

Additionally, to understand the worth of each feature for the 

arget variable, a selection filter – InfoGainAttributeEval – using 

eka ( Hall et al., 2009 ) was applied to the remaining 24 features.

he InfoGainAttributeEval evaluates the worth of an attribute by 

easuring information gain with respect to the class ( Anthi et al., 

021a; Mahfouz et al., 2020 ). This identifies features more signifi- 

ant for detecting an attack. 

The result of the filter, shown in Table 9 indicates that the raw 

EQ, ACK, and delta time attributes are ranked as the most im- 

ortant. This could be attributed to the way the field flooding at- 

ack is executed as it measures SEQ and ACK numbers and uses 

hem as the seed to generate a malicious packet. Also, the delta 

ime attribute indicates the time difference between consecutive 
10 
ackets in a capture. This would make sense as the Field Flood- 

ng attack exploited the gap of 100ms between loops in the Mod- 

usTCP transmission to inject the malicious payload, which would 

nvariably lead to distortion of the regular benign delta time packet 

ransmission. 

.3. Model training and analysis 

All machine learning experiments were carried out on a Win- 

ows 10 PC with Intel(R) Core(TM) i7-8665U CPU at 1.90 GHz pro- 

essor and 16 gb RAM. The final dataset with 24 features selected 

s discussed in Section 6.2 went through data pre-processing (i.e. 

ata normalisation and label encoding) before model training. The 

ataset was randomly split into 60% for training and 40% for test- 

ng and evaluation on unseen data. The choice of an appropri- 

te algorithm is based on model performance for a particular 

roblem and the properties of data that characterise the problem 

 Anthi et al., 2021a ). Eight classifiers were considered based on 

ther relevant work ( Leevy et al., 2021; Luan and Dong, 2018 ); 

nd based on how they operate. In more detail, the models in- 

luded algorithms that function based on conditional dependencies 

n the dataset or assume conditional independence (e.g., Bayesian 

etwork and naive Bayes), discriminative models that aim to max- 

mize information gain without modeling any underlying probabil- 

ty or structure of the data (e.g., J48 decision tree and support vec- 

or machine), and ensemble models that utilise multiple ML algo- 

ithms to produce higher predictive performance than could be ob- 

ained from a single ML classifier ( Mahfouz et al., 2020; Ryu et al., 

010 ) (e.g. Random Forest, XGBoost). 
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Table 11 

Confusion matrices for XGBoost and random forest classifiers. 

Predicted Predicted 

Malicious Benign Malicious Benign 

(a) XGBoost (b) Random Forest 

Actual Malicious 5189 65 Actual Malicious 5181 73 

Benign 49 45,801 Benign 75 45,775 
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Before discussing the metrics to be used in evaluating the clas- 

ifiers, the following terms shall be explained: 

• True Positives (TP): Number of actual positives correctly pre- 

dicted. 

• True Negative (TN): Number of actual negatives correctly pre- 

dicted. 

• False Positive (FP): Number of actual negatives predicted incor- 

rectly as positive. 

• False Negative (FN): Number of actual positives predicted incor- 

rectly as negative. 

In evaluating the performance of our classifiers, it is recom- 

ended to use precision, recall, and F1-scores ( Tim ̌cenko and 

ajin, 2018 ) defined as: 

 recision = 

T P 

T P + F P 

Recall = 

T P 

T P + F N 

F 1 = 

2 

∗P recision 

∗Recall 

P recision + Recall 
= 

2 

∗T P 

2 

∗T P + F P + F N 

The best performing classifier was XGBoost with an F1-score of 

9.9% while the second best performing classifier was the Random 

orest with an F1-score of 99.8%. Both XGBoost and Random For- 

st are ensemble algorithms that use decision trees as their meta- 

lassifier and generally perform well on non-linear problems as in 

ur case. Table 10 shows the precision, recall, and F1-scores of 

ll evaluated classifiers. The confusion matrices of both XGBoost 

nd Random Forest reveal that the XGBoost classifier predicted 

arginally less FN/FP than the Random Forest classifier as shown 

n Table 11 . 

. Conclusions 

With the increase in cyber attacks on Industrial Control Systems 

nd the frequency of those attacks leading to DoS scenarios, this 

tudy identifies a pathway to attacking these systems to deny legit- 

mate service using the ModbusTCP protocol. Previous work has fo- 

used on protecting ModbusTCP packets by ensuring the size allo- 

ated to a particular field in the MBAP and PDU headers are within 

et limits. In this study, a novel field flooding attack capable of by- 

assing these protection mechanisms was demonstrated, keeping 

he fields within their data size (in bytes) limit, but increasing the 

umber of fields by 2, resulting in an additional 4 bytes of fields 

o the PDU header. 

The impact of the field flooding attack was evaluated on three 

hysical industrial testbeds with different configurations. The re- 

ults show that the PLC usually deployed in the oil and gas (OG) 

ndustry was the most vulnerable to this attack as one malicious 

acket resulted in a denial of service of approximately 59 min. In 

G operations this could have significant implications as it could 

otentially lead to unsafe conditions which could damage the en- 

ironment due to the hazardous nature of hydrocarbons. Although 

his attack has been shown to be capable of disrupting OG opera- 

ions, it could also potentially disrupt critical ICS communications 

n other sectors. This work also shows that PLCs may behave dif- 

erently to the same cyber attack, which highlights a clear advan- 

age of using real industrial testbeds for security research and the 
11 
imitations of simulated cyber-physical testbeds – as these simu- 

ated experiments are unable to account for the difference in PLC 

ehaviour in a real system. 

To effectively detect the Field Flooding attack, our initial ma- 

hine learning experiments demonstrated that the best performing 

lassifier was XGBoost – an ensemble algorithm based on a De- 

ision Tree meta-classifier. This paper presents the initial experi- 

ents for automatically detecting attacks using machine learning 

lgorithms by utilising signatures from pcap files. Given the pre- 

iminary stage of this investigation, this analysis has been con- 

ucted offline in order to examine its feasibility. Following the pos- 

tive findings of this initial study, the next step is to implement 

his system in real-time, so that it can be deployed in a real and 

arger environment. This will allow the system to be further eval- 

ated on more complex and more sophisticated attacks to study 

urther the IDS response times and overall system impact. 

A key limitation of this work, and a basis for our future work, 

s the lack of access to larger-scale testbeds with multiple indus- 

rial protocols. This study does not include scenarios that demon- 

trate how field flooding attacks could propagate within an indus- 

rial network with multiple brands of PLCs and protocols. 
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