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Biomechanics beyond the lab:
Remote technology for
osteoarthritis patient data—A
scoping review
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1Musculoskeletal Biomechanics Research Facility, School of Engineering, Cardiff University, Cardiff,
United Kingdom, 2Osteoarthritis Technology NetworkPlus (OATech+), EPSRC UK-Wide Research
Network+, United Kingdom

The objective of this project is to produce a review of available and validated
technologies suitable for gathering biomechanical and functional research
data in patients with osteoarthritis (OA), outside of a traditionally fixed
laboratory setting. A scoping review was conducted using defined search
terms across three databases (Scopus, Ovid MEDLINE, and PEDro), and
additional sources of information from grey literature were added. One
author carried out an initial title and abstract review, and two authors
independently completed full-text screenings. Out of the total 5,164 articles
screened, 75 were included based on inclusion criteria covering a range of
technologies in articles published from 2015. These were subsequently
categorised by technology type, parameters measured, level of remoteness,
and a separate table of commercially available systems. The results
concluded that from the growing number of available and emerging
technologies, there is a well-established range in use and further in
development. Of particular note are the wide-ranging available inertial
measurement unit systems and the breadth of technology available to record
basic gait spatiotemporal measures with highly beneficial and informative
functional outputs. With the majority of technologies categorised as suitable
for part-remote use, the number of technologies that are usable and fully
remote is rare and they usually employ smartphone software to enable this.
With many systems being developed for camera-based technology, such
technology is likely to increase in usability and availability as computational
models are being developed with increased sensitivities to recognise patterns
of movement, enabling data collection in the wider environment and
reducing costs and creating a better understanding of OA patient
biomechanical and functional movement data.
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Introduction

Research objective

Osteoarthritis (OA) is a highly prevalent global disease.

With no cure, and no proven interventions able to stop its

progression (1), it is a major cause of disability worldwide

with exponentially increasing prevalence, alongside an

increase in the older population (2). The consequences of OA

impact significantly on the quality of life, ability to maintain

sustainable work, and therefore, both individuals and wider

economic strain (3), highlighting the urgent need for

increased investment in large-scale scientific and clinical

research (4).

For research purposes, several common minimally invasive

movement-based measures are used to assess OA disease

progression and outcomes following interventions (e.g., total

knee arthroplasty). These are commonly extracted from

human gait and include basic movement parameters with

related ground reaction forces (GRFs), joint angles/moments,

and range of motion (ROM) (1). The recommended

performance measures to evaluate hip and knee OA (30 s

chair stand, 40 m fast-paced walk, stair climb, Timed Up and

Go, 6-minute walk) can be challenging for clinicians and

researchers in standard fixed-assessment environments and

lack real-life representation (5).

The incentive for larger-scale biomechanics research

outputs within OA conditions is supported by the increasing

availability of newly developing technologies (6). The OATech

Network+ (7) is a collaborative UK-based research network

developing technology solutions for OA, and identified novel

and emerging technologies and technological advances should

play a key role in directing OA research diagnosis, treatment,

and monitoring (8).

Although the path towards remote data collection was laid

before the Covid-19 pandemic, it has provided strong impetus

for researchers to seek methods that enable OA research to be

performed at a distance, increasing accessibility whilst

minimising risks. In addition, there is strong evidence that the

Covid-19 pandemic has increased acceptance of technology in

healthcare from the perspective of both the patient and the

clinician (9). Although a large body of work exists for

biomechanical and wearable technology, there remains a lack

of evidence that reviews and identifies its availability

(commercial or experimental) and a lack of validation of such

technology across the gold standard technology familiar to

OA researchers. To date, no papers have been identified that

focus on available biomechanical technologies developed

specifically for use outside the laboratory or for remote use by

OA researchers. Due to the evidence for increasing acceptance

of the use of healthcare technology for patient disease

progression and treatment monitoring, reduction in overall
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costs, and increase in data collection opportunities, the

suitability for healthcare technology formally reviewed results

is fitting (8). The potential healthcare economic savings, if

appropriate technology is identified and utilised for patients,

clinicians, and researchers, provide a compelling rationale to

review and summarise technologies with suitable capabilities

for the end user. Therefore, in this scoping review, the

objective is to summarise the available technology that has

been validated against the recognised gold standard

technology to confirm its ability to deliver data that are

comparable with established systems and technology found in

traditional research laboratory settings.
Technology background for remote
biomechanics

The increased desire amongst biomechanical researchers to

identify and adopt technology that can be used remotely is

driven by a combination of factors including introducing

easier testing environments (10). Studies that require

quantified and objective human gait characteristics have

highlighted the benefits associated with gathering real-world

measurements; defined as being outside the laboratory, or

“non-scripted” walking, due to the inability of clinical

laboratories to reliably reflect daily-living measures (11).

Significant increases in gait speed and acceleration are

revealed from laboratory-based data when compared with free

living data collection whilst using the same accelerometry

collection methods (12–15), suggesting that laboratory-based

performances can often differ from natural gait measures.

This emphasises the need for better representation when

collecting gait functional outputs with accurate reflections on

real-life walking speed and ability. In parallel to these studies,

the technological landscape has transformed in recent years,

profoundly influencing healthcare, suggesting new possibilities

for biomedical research (16).

Technologies that are currently in widespread use for

collecting kinetic, kinematic, and spatiotemporal (SPT)

measures can be classified broadly into two different

approaches (17). These are based on data that can be gathered

in either a controlled fixed environment or utilising wearable

sensors (WS) that can be used freely. Fixed research facilities

often employ established motion capture (MoCap) technology

involving three-dimensional (3D) optical retroreflective

marker-based systems with multiple video cameras (e.g.,

Qualisys, Vicon, Optitrack) and strain gauge instrumented

force plates (e.g., Bertec, Kistler) measuring GRFs and/or

pressure sensor force-resistive values (e.g., Tekscan,

GAITRite). These can compute accurate 3D joint

biomechanical measures using inverse dynamic mathematical

models but are dependent on human accuracy of marker

placement and laboratory calibration to reduce technical
frontiersin.org
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errors. These are considered the gold standard and regarded as

the most accurate approach to collect human clinical

biomechanical measures such as clinical gait analysis (18–20).

Often used within human movement laboratories, inertial

measurement units (IMUs) and mobile technologies present

researchers with potential access to objective measures of gait

in unconstrained environments (21). WS incorporating IMUs

have been found with similar sensitivity to detect gait

kinematic changes (22) and strong agreements for accuracy

and consistency for gait SPTs when compared with optical

motion capture (23). They are growing in popularity as a

valid alternative to the more expensive and fixed systems with

more environment flexibility and range of measures (24, 25).

Body-worn WS systems generally include the use of an

accelerometer and have been recently reviewed as the most

common technology for monitoring knee OA patients (26).

IMU systems in regular use (e.g., XSens, Wearnotch), collate

information gathered from three-axes accelerometers,

gyroscopes, and magnetometers within each sensor. These

provide raw data that are computed into kinematic outputs

(joint angles, segment velocity, segment acceleration, etc.)

based on the subject calibrated model and subsequently into

meaningful gait SPT parameters (25). Each type of WS system

has individual capabilities, and although considered to provide

a lower level of reliability compared with optical motion

tracking, measurements have still been accepted as clinically

valid (24). The use of more portable equipment with clinically

accepted accuracy levels allows a better integration of gait

analysis into clinical routines (27). With IMU research

growing at an exceptional rate, the growth of available

parameters to analyse OA patients has, therefore, expanded

based on computed individual IMU features (28). The

evaluation of different global commercially available IMUs

suggests that selection should be dependent on the

requirements of the research question, due to the potential

array of parameters and collection methods, resulting in

limitations within standardised IMU protocol methods (29).

There are increasingly available supplies of lightweight,

portable, and accurate tools for remote measurements and

monitoring due to the evolution of technology methods for

data integration and hardware sensing techniques (30).

Examples are stick-on skin gauges (31) and self-functioning

textiles for gloves, garments, and socks that can record

contact forces and physiological signals (32). Force-resistive

technology is used often within laboratory environments for

OA movement biomechanical analysis; however, as a remote

technology, it is mainly used for physical activity and sports

monitoring (33, 34).

The evolution of more powerful algorithms to convert data

gathered by sensors that are clinically meaningful has also

accelerated the use of mobile technologies in clinical research

(35). Their level of acceptance within patient and health-

related contexts has increased with their usage (32). Also, the
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increased opportunities for researchers, and advances

including wireless connectivity, real-time information, and

advanced visualisation, have led to this technology penetrating

the consumer market (36), with individualised measurement

now made possible (37). Importantly, current evidence

suggests that technology is creating a positive impact on OA

treatment (38), allowing patients to manage their own

condition and record their own outcome measures, whilst

motivating and informing users in real time.

The development of Red Green Blue-Depth (RGB-D)

sensing camera technology, in particular the launch of the

Microsoft (Microsoft Corporation, United States) X-Box

Kinect camera in 2010 and other commercially available

products, including Asus Xtion Pro (ASUSTeK Computer Inc.

United States), Intel RealSense (Intel Corporation, United

States), and Orbbec (Orbbec 3D Technology International

Inc., United States), is perhaps one of the most significant

developments in the field of biomechanics and clinical

research, offering a cost-effective markerless solution to

overcome the limitations of marker-based motion capture. A

review of the use of RGB-D sensors for musculoskeletal

health monitoring has revealed a lack of validity assessment

along with limitations (such as limited camera depth

information), although models for 3D joint parameters are

found to be acceptable (6). Despite these limitations (39),

advances in markerless motion capture will likely change the

future of data collection in biomechanics (40). These systems

offer the potential to deliver an alternative approach with

practical benefits for both fixed and WS due to the ability to

capture data in any environment where cameras can be set up

(41, 42).

Due to the growing prevalence of technological

development, use, and acceptability within clinical research,

the need for a formal review of the validated tools available to

researchers is evident. By reviewing these recent technological

developments, an indication of the future direction of remote

OA research can be established with informed evidence for

the appropriate tools available.
Methods

A scoping review format was selected to synthesise research

and technological developments in this field. This approach

would review and summarise available evidence as a

preliminary and structured assessment, whilst allowing an

overview on the extensive topic. The approach was based on

the Preferred Reporting Items for Systematic Reviews Scoping

Review Protocol (PRISMA-Scr) (43), which was revised by the

research team and members of the OATech+ Network

Operations Group.

The review was conducted following a five-step process:

definition of the research question, creation of a research
frontiersin.org
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strategy to identify relevant studies for inclusion, study

selection, collation and charting of results, and analysis and

reporting of results.
Definition of the research question

To address the research objective, the primary research

question of this review asked the following:

1. What technologies are available for gathering biomechanical

and functional data for OA research purposes outside of a

laboratory setting?

The review also asked additional secondary research questions:

2. Is the identified technology validated against an existing

gold standard technology?

3. Is this technology suitable for use in a remote context, and if

so, is it portable, partly remote, or fully remote (see

Table 2)?

4. Which of the technologies can be identified as commercially

available and therefore available for the researcher to

acquire?

Papers were included only if the technology itself was the

subject of the research and there was evidence of validation

through human testing. This review aimed to identify

available technologies used within different settings to address

the above questions and provide a narrative overview.
Search strategy

The search strategy was designed by the core research team

with the support of a subject librarian and a specialist

researcher. A broad literature search was undertaken in three

main databases, Scopus, Ovid MEDLINE, and PEDro, using

an individual search strategy for each. Grey literature searches

and reference list scanning were undertaken manually. All

search criteria and search dates are listed in the

supplementary material.

All articles were uploaded to EndNote software

(V20.1.0.15341) where duplicate titles were removed. Title and

abstract screening were completed by author (JW) and full-

text screening carried out by two authors independently (JW

and RIH), with any conflicting views being discussed and

agreed upon.
Study selection

Of the 5,165 papers originally identified, 376 papers were

eligible for a full-text review after duplications, and first-
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screen abstracts were removed (Figure 1). The papers were

selected only if they met the following inclusion criteria:

(a) The focus of the study included an identified technology

capable of measuring relevant biomechanical or

functional parameters recognised as characteristic for OA,

for example SPTs, gait, force, or pressure. Parameters

that were not considered relevant for OA research, for

example vertical drop jump, were excluded.

(b) The study described the results of validation of the

technology against gold standard laboratory grade

equipment (defined in Table 1).

(c) The study was an original article in a peer-reviewed journal

and published between the period 2015 and 2021. This date

range was selected due to the rapid pace of technological

development.

(d) The study was written in the English language. As the

OATech+ Network is an English-speaking network

operated in the United Kingdom, only papers published

in English were included.

(e) The study gathered data on live human participants. No

conditions were excluded, and the determining factor was

the parameter determined in (a).

(f) The study demonstrated the capability of the technology to

collect data outside of a fixed laboratory setting. The study

description of the technology’s capability of adoption

remotely/portably was considered sufficient. A traditional

fixed laboratory setting was considered where there was

fixed equipment, for example, multi-camera systems/

embedded floor force plates.

Papers were excluded if their study focus was based on

algorithm models under development without an analysis of

the hardware technology and its data-collecting abilities.

Papers were excluded if the technological development was

not available as a complete system or did not contain an

available component ready for data collection use. Papers

were also excluded if the technology under review was already

considered gold standard and the paper was demonstrating its

existing use or a new application.
Collation of results

Data from each article were collated (Table 3), including

author, title, technology in use, parameters gathered,

availability, for example, commercially available, or

experimental only, and the degree to which the technology

was intended for remote use (Table 2). The technologies were

then identified by type into four main categories. Technology

was also reviewed by using recorded parameters, by the

degree to which it can be used remotely, a separate table of

commercially available technology as a subset of the results is

also presented.
frontiersin.org
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FIGURE 1

PRISMA flow diagram (2020) for new systematic reviews included searches from listed databases, registers, and other sources.

Hamilton et al. 10.3389/fresc.2022.1005000
Results

Study selection

Figure 1 illustrates the literature search and exclusion

criteria with further exclusion details in supplementary

material (Table 2). Following the search strategy within three

databases (Methods Section “Search strategy”), 376 full articles

were assessed for eligibility, from which 75 were identified for

inclusion within the final screen (Figure 1).
Technology themes

The remaining articles were assessed and recorded

categorically depending on the broad technology type,
Frontiers in Rehabilitation Sciences 05
location of use, metrics measured, and their commercial

availability (Table 3).

Based on the range of results, the technologies were

categorised into four main technology types, with some

meeting classification criteria for more than one category. A

large percentage of technologies were identified as wearable

devices and were divided into those consisting of “IMUs” and

“other wearables.” The remaining two categories were

“cameras” and “insoles/platforms” using force-resisting sensor

technology. Figures 2–4 demonstrate the division as well as

the overlap of the technology type, metrics recorded, and

location. “IMU wearables” (Figure 2) are the most prominent

technology type, “kinematics with SPTs” (Figure 3) is the

most prominent metric recorded, and “part-remote”

(Figure 4) is the most used application of the technology

screened.
frontiersin.org
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TABLE 1 Definition of gold standard for the purposes of the current
study included commercially available products in widespread use.

Motion capture, video, and optical
tracking equipment

Vicon (Vicon Motion Systems Ltd.),
Qualisys (Qualisys AB, Sweden),
Optitrack (Naturalpoint Inc., United
States), Optotrack Certus (Northern
Digital, Canada), NDI Polaris Vega
(Northern Digital, Canada), SmartDX
(BTS Bioengineering Corp., United
States), Cortex (Motion Analysis Corp.,
United States)

Instrumented force plates,
treadmills, and walkways

Zeno (Protokinetics LLC, United States),
Gaitrite (CIR Systems Inc., United States),
NeuroCom SMART Balance Master
(NeuroCom International Inc. United
States), Bertec (Bertec Corp, United
States), AMTI (Advanced Mechanic
Technology Inc., United States), Zebris
(zebris Medical GmbH, Germany)

Previously validated human
movement IMU systems including
insoles

Xsens (Xsens Technologies BV,
Netherlands), Medilogic (T&T Medilogic
Medizintechnik GmbH, Germany),
InertiaCube (Intersense Inc., United
States), Wearnotch (Notch Interfaces Inc.,
United States), APDM Opal (APDM
Wearable Technologies Inc., United
States), Parotec (Paromed gmbh & Co.,
Germany)

Standard clinical tools Manual goniometer, electro-goniometer,
radiography

EMG systems Delsys EMG (Delsys Inc., United States)

IMU, inertial measurement unit.

TABLE 2 Definition terms for degree of technology remoteness.

Portable Requires a static research-suitable
environment that could be a clinic
or community setting where data
are gathered at a defined location.

Requires specialist trained users
to operate whilst data are
gathered, cannot solely be
participant operated

Part
remote

Able to operate in most
environments but has some
environmental requirements, e.g.,
range, connectivity, wired, etc.

Requires specialist trained users
to support set-up/harvest data,
but data can be gathered
without any specialist.

Fully
remote

Able to operate in any
environment or setting, e.g.,
home, clinic, and outdoors.
Participant is unrestricted and
unobserved during data
gathering.

Capable of being used and
managed by a non-specialist
individual (or participant) with
minimal support/training
during data gathering.

Hamilton et al. 10.3389/fresc.2022.1005000
The description of the metrics used was also divided into

four main categories described below (Table 3), with the

metrics being divided based on kinetic and kinematics as well

as further divided into use of joint angle/ROM, SPT, and

Electromyography (EMG) data collection. The application of

the technology was divided into three main categories based

on the definitions described in the Methods Section “Collation

of results” (Table 2), and the commercially available status of

the technology was based on the information available in the

article, with further details on these provided in Table 4.
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Camera and pose estimation developments were demonstrated

in a vast array of the results and particularly, 14 studies used either

Azure Kinect or Kinect V2. As Kinect V2 is now retired, the Azure

Kinect version is likely to be found in future studies for measuring

SPTs and joint angle calculations based on these validation studies.

With two studies comparing Azure Kinect with the Kinect V2

predecessor (55, 56), the Azure Kinect is described as revealing

promising results for full-body spatial parameters with accuracy,

although with a note of caution on depth camera angles. Given

the strong Azure Kinect and V2 comparison results (Pearson

correlation coefficient, r = 0.8–0.98) and its usability in home

environments, it is expected to be in future studies for patient

and at-home exercise monitoring for several at risk groups. As

field-of-view limitations and depth camera complexities were

discussed in more than 10 of the camera-based studies, many

studies still revealed good to excellent correlations and accuracy

values for SPT and joint angle-based parameters, but also

advised caution (57, 58).

IMU was the single most prominent technology type found

within the studies (25 technologies, Figure 2). The growth in

this technology is phenomenal with miniaturised devices that

can be embedded into other hardware and attached to the

body for data collection. This is evident from the examples of

several IMU technology types such as skin adherents (44),

body attachments on the hip and wrist (59–61), embedding

with smartphone-based applications (62), as well as

waterproof technology (63). Alongside good reliability

and accuracy results (60, 64, 65), its main advantage lies

in the ease of data collection, as demonstrated by the

number of people using it, and as testified by the results of

the studies.

Other wearables were demonstrated in good numbers in the

results when embedded with smartphone applications already

in use, and therefore, capitalising on an already established

platform, both for the researcher/clinician and for the user.

These, therefore, have good usability rates within the study

results (66, 67) based on the knowledge already acquired and

demonstrated as six of the determined fully remote

technologies identified within this technology type category.

There are also some identified needs for making

improvements in specific movements such as faster walking

(68) or for specific patient population groups (69).
Commercially available technology

Within the 75 articles, 57 different technologies were

identified, and a majority of these were experimental or made

use of a commercially available component, for example,

IMU, smartphone, activity monitor, RGB cameras, virtual

reality (VR) headsets, optical tracking devices, or video game

hardware components. Whilst some of these components are

commercially available, only technologies that are
frontiersin.org
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TABLE 3 Master table of technology results divided by type, metric, application, and commercially available status.

Author and
date

Tech type Tech description Metric Application Commercially
available

Albert et al 2020 Cameras Azure Kinect and Kinect V2, 3D depth-sensing camera A Part remote No

Alford et al 2020 Wearables—Other iPhone smartphone application used as a level C Remote No

Amitrano et al 2020 Insoles-Platform
Wearables—Other

SWEET Sock, e-textile sensor sock connected to a phone
application

A B Part remote No

Amman et al 2020 Wearables—IMU BioStamp, adhesive patch with accelerometer and gyroscope
(IMUs)

A Part remote Yes

Anwary (a) et al
2018

Wearables—IMU MetaWearCPro, IMUs with a smartphone application A Part remote No

Anwary (b) et al
2021

Wearables—IMU MetaWearCPro, IMUs with a phone application A Part remote No

Aqueveque et al
2020

Wearables—IMU IMU with a phone application A Part remote No

Arne de
Brabbandere et al
2020

Wearables—IMU Samsung Galaxy J5 phone with IMU input and ML model
pipeline

A Part remote No

Asadi et al 2020 Cameras Kinect V2 for markerless MoCap A Part remote No

Ashar et al 2017 Wearables—Other Ultrasonic sensor network A Part remote No

Bai et al 2020 Wearables—Other
Wearables—IMU

Sony Move motion controller, Nintendo Wii console, Samsung
Galaxy SII smartphone, and IMUs

A Part remote No

Barreira et al 2020 Cameras Kinect V2 for markerless MoCap A Part remote No

Bell et al 2019 Wearables—IMU IMUs with interACTION smartphone application and web-based
portal

A Part remote No

Bethoux et al 2018 Cameras Kinect V2 with Echo5D custom-made software A Part remote Yes

Bolanos et al 2020 Insoles—Platform Shoe insole using force sensitive resistors and a time-of-flight
camera

B Portable No

Bonnet et al 2015 Cameras Insole—
Platform

Kinect sensor (with marker-based tracking system) and Wii
balance board

B C Part remote No

Chen at al 2016 Insoles—Platform
Wearables—Other

SmartShoe with an insole sensor A B Part remote No

Cui et al 2016 Insoles-Platform
Wearables—Other

Wearable Gait Lab using an underfoot force sensing unit, a joint
angular and EMG sensing unit, and an Android smartphone
application

A B D Portable No

Donath et al 2016 Wearables—IMU
Wearable—Other

RehaGait, IMU set with the use of Rehawatch software A Part remote No

Guess et al 2017 Cameras Kinect V2, 3D depth-sensing camera A Portable No

Haque et al 2021 Wearables—IMU
Insoles—Platform

Invensense IMUs, exoskeleton with IMU system A B Portable No

He et al 2019 Insoles—Platform OpenGO (wireless shoe insole) with a Moticon smartphone
application

B Portable Yes

Hsieh et al 2019 Wearables—Other Smartphone with an accelerometer A Part remote No

Islam et al 2020 Wearables—IMU MoJoXlab software with generic IMUs C Portable No

Jagos et al 2017 Insoles—Platform Eshoes using a shoe insole A Part remote No

Jarchi et al 2016 Wearables—IMU e-AR, ear-worn IMU with associated algorithms A Part remote No

Kanko et al 2021 Cameras Theia3D Markerless system A C Portable Yes

Kayaalp et al 2019 Wearables—IMU Bosch Sensortec, IMUs C Portable No

Khoo et al 2017 Insoles—Platform Walk Even, shoe insole A Part remote No

Kim et al 2017 Cameras SmartGait, smartphone camera, and application A Part remote No

Koiler et al 2021 Wearables—Other Mtrigger, an adapted EMG sensor D Portable No

Lanzola et al 2020 Insoles—Platform SensFloor, carpet device B Part remote Yes

Leal-Junior et al
2019

Insoles—Platform 3D-printed insole B Portable No

(continued)
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TABLE 3 Continued

Author and
date

Tech type Tech description Metric Application Commercially
available

Lee (b) et al 2020 Wearables—IMU Skin-mounted IMU sticker C Part remote No

Lefeber 2019 Wearables—IMU Physilog IMU and GaitUp platform (software) A Part remote Yes

Li et al 2020 Wearables—IMU IMU with an Android smartphone application C Part remote No

Littrell et al 2018 Insoles—Platform
Camera

Wii balance board, video, and Kinovea motion tracking software A B Portable No

Liu (a) et al 2017 Wearables—Other Gazelle, IMU accelerometers, and algorithm with an online
application

A Remote No

Liu (b) et al 2018 Wearables—IMU Inertia Link, IMU A Part remote No

Liu (c) et al 2019 Wearables—Other Mini accelerometers A Part remote No

Lubetzky et al 2019 Wearables—Other Oculus Rift HTC Vive, virtual head-mounted display A Part remote No

Manor et al 2018 Wearables—Other Smartphone application A Remote No

Moon et al 2017 Wearables—IMU BioStamp, IMU skin-mounted plaster A Part remote Yes

Moore et al 2017 Wearables—Other AX3 Axivity, wearable accelerometer A Portable No

Moreno et al 2017 Cameras PrimeSense RGB-D camera A Portable Yes

Niechwiej-Szwedo
et al 2018

Cameras Leap Motion Controller, optimal tracking device A Part remote Yes

Ohberg et al 2019 Wearables—IMU MoLab POSE, IMUs A Portable No

Ong et al 2018 Wearables—IMU Invensense IMU, experimental hardware and software A Portable No

Ostaszewski et al
2020

Insoles—Platform Shoe insole B Part remote No

Otte et al 2016 Cameras Kinect V2, 3D depth-sensing camera A Part remote No

Oubre et al 2020 Wearables—IMU Shimmer IMU with a retractable string sensor experimental
device

C Portable No

Parks et al 2019 Cameras MO2CA iPhone 7, smartphone application A Portable No

Renner et al 2021 Insoles—Platform Loadsol placed within a commercially available running shoe B Part remote Yes

Silsuspadol (a) et al
2017

Wearables—Other Vivo X5 plus smartphone with application, worn on the hip A Remote No

Silsuspadol (b) et al
2020

Wearables—Other Samsung or Asus Android smartphone with application, worn on
the hip

A Remote No

Smith et al 2018 Wearables—IMU IMUs A Remote No

Solanki et al 2018 Insoles—Platform ShoeFSR, smart shoe B Part remote No

Tchelet et al 2019 Wearables—Other Encephalog, smartphone used as a wearable A Remote Yes

Van Helvoort et al
2021

Wearables—IMU’s Gaitsmart IMUs A Part remote Yes

Vilas-Boas (a) et al
2019

Cameras Kinect V2, 3D depth-sensing camera A Part remote No

Vilas-Boas (b) et al
2019

Cameras Kinect V1, Kinect V2, depth cameras A Part remote No

Werner et al 2020 Wearables—IMUs Dynaport Movetest IMUs A Portable Yes

Wu et al 2021 Wearables—IMU Nushu, IMUs A Part remote No

Xia et al 2017 Wearables—Other SmartShoe C Part remote No

Xu (a) et al 2015 Cameras Kinect 2, 3D depth-sensing camera A Part remote No

Xu (b) et al 2017 Cameras Kinect 2, depth-sensing camera C Part remote No

Yagi et al 2020 Cameras 3D depth-sensing camera with a OpenPose model A Portable No

Yang et al 2019 Insoles—Platform SITUG, shoe insole with a smartphone application A B Part remote No

Ye et al 2016 Cameras Kinect V2, 3D depth-sensing camera A Part remote No

Yeh et al 2016 Wearables—Other Wii remote sensor, handheld motion sensor A Part remote No

Yeung et al 2021 Cameras Azure Kinect, Kinect V2 and Orbbec Astra, and 3D depth-
sensing cameras

C Part remote Yes

(continued)
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TABLE 3 Continued

Author and
date

Tech type Tech description Metric Application Commercially
available

Zhang (b) et al 2017 Insoles—Platform Sportsole, shoe insole A B Part remote No

Zhang (c) et al 2021 Wearables—Other Sensor using two smartphone applications and data acquisition
module (motion sensor, microcontroller unit, power supply, and
Bluetooth)

C Part remote No

Zhu et al 2021 Cameras Azure Kinect, 3D depth-sensing camera C Part remote Yes

Zugner et al 2019 Wearables—IMU Gaitsmart, IMUs A Part remote Yes

A, kinematics and SPTs; B, kinetics and SPTs; C, joint angles/ROM; D, electromyography; IMU, inertial measurement unit.

Hamilton et al. 10.3389/fresc.2022.1005000
commercially available as a complete system (both gathering

and displaying results for their described use) appear in the

results in Table 4. A total of 12 papers referred to the use of

the Microsoft Kinect V2 camera, now retired and therefore

does not feature in Table 4. One paper referred to a

previously commercially available product Hasomed

RehaGait (HASOMED GmbH, Germany), retired as of

December 2021, and therefore excluded from Table 4. The

current or future availability of each of these technologies

has not been verified.
Discussion

With a considerable number of results and experimental

technology under development, there is growing interest
FIGURE 2

Technology results described by type category within a Venn diagram demon
(10.7%). IMU wearables were used the most in 25 technologies (30.1%), weara
were used in 21 technologies (25.4%), and insoles or platforms were used in
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and feasibility for research in this field from numerous

groups. Almost 75% of the technology have been identified

as participant wearable technology—body fixed or shoe

worn, giving rise to both individual needs of data collection

methods and types and their range of potential in different

uses. The remaining 25% focused on camera technology

with the growing prevalence of markerless MoCap (54) in

use. Although this is predominantly still within laboratory

settings, it comes with a degree of portability. A total of

75% of the technology identified is focused on the lower

limb due to the prevalence of gait and SPT measures used

within the data collection and reflects the majority of OA

research focus on the lower limb. Gait SPTs are the most

common and is, therefore, expected to be the most

valuable; less valuable were the two studies using EMG

technology.
strating several technologies measuring more than one category type
bles of other varieties were used in 20 technologies (24.1%), cameras
17 technologies (20.5%).

frontiersin.org

https://doi.org/10.3389/fresc.2022.1005000
https://www.frontiersin.org/journals/rehabilitation-sciences
https://www.frontiersin.org/


FIGURE 3

Technology results described by metrics measured within a Venn diagram demonstrating several technologies measuring more than one metric
category (12%). Kinematics and SPT measures were used the most in 54 technologies (64.3%), kinetics and SPT measures were used in 16
technologies (19%), kinematics measuring joint angles and ROM were used in 13 technologies (15.5%), and electromyography measures were
used in 2 technologies (2.4%).

FIGURE 4

Technology results divided by application categories based on the criteria described in Table 2. Most technologies were categorised as part remote
(65%), whilst 19 technologies were categorised as portable (25%), and 7 technologies were identified as fully remote (9%).
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TABLE 4 Identified commercially available technology with related
corresponding information and study reference in which it was
evaluated.

Description Metric Location Study
Reference

BioStamp
https://www.
mc10inc.com/

Skin adherent
sensor patch
with an
accelerometer
and a gyroscope
(IMUs)

Tri-axial
linear/
angular
motion,
ROM, joint
angles, and
gait SPTs

Part
remote

(44, 45)

Echo5d from
Atlas5D
https://atlas5d.
com/our-
technology/

Ambient
measurement
system—non-
wearable
activity
monitoring

Gait SPTs
—ADLs

Part
remote

(46)

Encephalog
from Mon4t
https://mon4t.
com/
movement/

Smartphone
app (integrated
tri-axial
accelerometers
and
gyroscopes)

Gait SPTs
—

specifically
in relation
to TUG
parameters

Remote (47)

GaitSmart
https://www.
gaitsmart.com/

IMUs with
proprietary
software

Gait SPTs,
ROM,
kinematic
parameters

Part
remote

(48, 49)

Loadsol
https://www.
novelusa.com/
loadsol

In shoe worn
insole device

Plantar
peak force

Part
remote

(50)

McRoberts
Dynaport
MoveTest
https://www.
mcroberts.nl/
products/
movetest/

Single IMU belt
worn device

Gait SPTs Portable (25)

OpenGo by
Moticon
https://moticon.
com/opengo

OpenGO
(wireless shoe
insole) with a
Moticon
smartphone
application

Kinetic
parameters
(KAM), gait
SPTs

Portable (51)

Physilog
GaitUP
https://research.
gaitup.com/
physilog/

Two Physilog
IMUs and
proprietary
Gaitup software
system

Gait SPTs Part
remote

(52)

SensFloor
https://future-
shape.com/en/
gait-recording/

Capacitive
sensor
embedded
flooring with
recording
outputs

Gait SPTs Part
remote

(53)

Theia3D
Markerless
https://www.
theiamarkerless.
ca/
In conjunction
with Qualisys

Markerless
motion capture
software for
processing of
camera-
generated video
to produce 3D

Kinematic
SPTs,
segments,
and angles

Portable (54)

(continued)

TABLE 4 Continued

Description Metric Location Study
Reference

(Qualisys AB,
Sweden) Miqus
cameras

kinematic data
(segments and
rotation
matrices) that
are ready for
analysis

IMU, inertial measurement unit; ROM, range of motion; SPT, spatiotemporal.
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Technology types

Wearables—IMU
The range of methods, protocols, population groups, and

overarching contexts used within the IMU studies indicate the

extent of their potential as well as supporting previous

observations stating their considerable commercial availability.

Most studies using IMUs were interested in SPT outcome

measures, in agreement with previous OA research (70), as a

highly useful clinical evaluation tool. Mainstream use of IMU

technology was found to be prevalent for studies collecting

kinematic parameters in clinical research and rehabilitation

settings (71), with a small number of IMU studies focussed

on predicting joint angles and ROM measures (72), which

were mainly developmental in nature. Oubre et al. was the

exception, using a Shimmer IMU alongside a bendable and

stretchable string sensor to measure the change in string

length between two anchor points (72), although not

commercially available together as a system. This indicates a

field of research that is cumulatively gaining interest.

However, it involves increased complexities of computational

predictive modelling to produce joint angle data due to the

information required from three-axes data and related

biomechanical models when compared with optical motion

camera-based measures.

Most IMUs were demonstrated as belt or strap-worn

devices. However, what emerged in two studies was a

commercially available skin adherent IMU, namely Biostamp

(BiostampRC, M10 Inc. United States), found to be well

suited to a variety of uses, including potential granular

monitoring of gait both inside and outside the clinic (45). A

variety of experimental systems were found reporting on IMU

data collection alongside a mobile application (62, 73) and

visual user feedback (74) with good accuracy and platform

outputs for joint angle measurements, demonstrating strong

potential for reliable home-based rehabilitation data collection.

The usability of smaller devices growing within the IMU

commercial sector enables small and adaptable sensors that

can be easily attached in comparison with sensors with larger

hardware and more uncomfortable for the user. This is

particularly observed with the BioStamp IMU used in
frontiersin.org
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Ammann et al. (44) and Moon et al, which is a stretchable and

waterproof skin adherent and is expected to be very cost-

efficient at under $10 per sensor. With the promise of reliable

and accurate results for gait monitoring, this IMU, along with

other skin and textile-based sensors, is likely to be highly used

due to the feasibility of comfortable data collection, visual

user feedback (74) with good accuracy, and platform outputs

for joint angle measurements, demonstrating strong potential

for reliable home-based rehabilitation data collection. The

usability of smaller devices growing within the IMU

commercial sector enables small and adaptable sensors that

can be easily attached in comparison with sensors with larger

hardware and visual user feedback (74) and platform outputs

for joint angle measurements, demonstrating strong potential

for reliable home-based rehabilitation data collection.

Several studies revealed positive patient acceptance and

usability for IMU wearables (74–76). However, all IMUs

identified in this review were considered suitable for part-

remote use only, requiring expert support due to specific

requirements around their placement or connectivity.

Therefore, despite the evidence that they provide solutions for

remote data collection protocols, the level of support required

for their set-up and data acquisition means that they are

unlikely to be suitable or utilised for long term at-home data

collection.

The variability of IMU data collection methods and a lack of

consensus with regard to the standardised measures to be

adopted and IMU positioning offer researchers flexibility for

application; however, it decreases the ability to compare and

utilise shared data and results (62). Although

recommendations have been made for standardising IMU

data collection methods for SPT parameters (62, 77), further

pragmatic guidelines using validated methods are required to

aid future remote gait assessment where environmental

unknowns will complicate data interpretation.

Wearables—other
This technology group is dominated by small consumer-

grade devices, for example activity monitors, VR headsets or

consumer smartphones containing accelerometers, gyroscopes,

and cameras. The value of these technologies lies in their level

of remoteness, because many of them comprise smartphone

technology, and already there are common consumer devices

with simple user interfaces. Six out of the seven fully remote

technologies are in this category and use smartphone

application software. Therefore, this is likely to be a successful

route for determining the true remoteness of the data

collection methods. Although growing in popularity, the

current ageing population is prevalent within the OA

population and affects the levels of usability and feasibility of

the technology (60). This is supported by mixed results for

SPT measures in the studies of this category. Although good

validity was found for SPT outputs from a smartphone
Frontiers in Rehabilitation Sciences 12
application with camera tools (78), many unreliable results

were found for smartphone 3-axes accelerometers (68) and

IMU SPT data acquisition (59). This suggests that camera-

integrated systems utilise better developed technology for end

result reliability. Although consumer-grade technology is

widely available, only EncephaLog was commercially available

as a complete solution for researchers gathering the metrics of

interest (47). This highlights the fact that many of these fully

remote and smartphone-based tools must see more

development.

Interestingly, studies that used more than one system at a

time (79, 80) revealed a focus for technology fusion applied to

future research data collection as the technology improves.

Both studies demonstrated the value of using smartphone

application software for data filtering, processing, and outputs,

providing a successful, user-friendly tool for reduced use of

laboratory-based equipment. Cui et al. used portable EMG in

conjunction with wearable technology to collect kinematic and

kinetic data parameters. The main data used for functional

parameters, however, were force sensing and IMU units. A

lack of EMG sensor data collection in the study results also

implies that this parameter is generally considered alongside

other biomechanical parameters and less valuable information.

Insoles platform
Most technologies in this category measured kinetic and

SPT outcomes and took the form of an insole or device

placed within a standard or customised shoe in common with

widely available commercial products familiar to researchers.

Generally, via force or pressure resistive sensors, when force is

applied through the plantar surface of the foot (e.g., during

the stance phase of a gait cycle), a change in resistance allows

the phases of gait and pressure distribution on the plantar

surface of the foot within a shoe/sock/insole to be calculated.

These data are then used to determine SPT outputs and can

be used in conjunction with kinematic-based sensors and

outputs (65, 79, 82, 83) or a camera-based technology (83,

84). These kinetic data, along with kinematic joint angle data,

could be paired with smartphone software, similar to other

wearable/remote technologies reported (85).

Of specific note is an experimental textile sock for analysis

of gait and posture (82) that could overcome issues associated

with insoles because they create an additional layer that can

change the distribution of foot plantar loading (86). This

would be more representative of laboratory-based activities

that are usually undertaken barefoot. Also of note is

SensFloor (SensFloor Gait, Future Shape GmbH, Germany)

(53), a carpet product capable of recording basic SPT

measures through the identification of gait phases via the

floor sensors, which has shown good validity when compared

with reference values. The carpet was identified as cost-

efficient and with good potential for patient rehabilitation

monitoring, although limited to a defined environment.
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The commercially available technologies in this category

reported were Loadsol (50) and OpenGo (Moticon Rego AG,

Germany) (alongside a smartphone application) (51). Both are

demonstrated as popular insole devices for gait data collection

within the general market, showing good usability features.

Loadsol (Novel Electronics Inc., United States) insoles

demonstrated high correlation values for vertical GRFs when

compared with a gold standard instrumented treadmill. When

used to detect gait impulse and loading rate, they could

successfully identify various comparators such as age groups

and degree of walking incline, thus providing an approachable

technology for monitoring force and load information for

patients’ gait. OpenGo demonstrated effective data acquisition

and possible use as a rehabilitative tool with auditory cues and

knee adduction moment calculations, a well-known measure

for OA disease progression (51, 87). Auditory feedback was

administered via the smartphone application and

demonstrated promising use for both rehabilitation training

and patient monitoring within a home-based environment. It

also showed great potential to integrate the technology with

other wearable/remote tools for rehabilitation and data

collection, strengthening the argument for developing fusion

techniques with or without smartphone application.

Cameras
RGB-Depth cameras were found in a quarter of the results,

many using the Microsoft Kinect skeletal tracker camera

solution launched in 2010, with an upgraded version 2

launched in 2014. These cameras have the advantage of

operating as a single-camera system where multi-camera

systems are not feasible (55), for example, in clinics, field test

conditions, and fitness centres, and they do not require body

fixed components. Whilst widely used in research, Kinect has

had mixed results in comparison with gold standard systems,

showing limitations for determining SPT parameters and in

terms of 3D kinematic accuracy (88–91). However, it showed

high accuracy for simple kinematic measures such as 3D

ROM and movement velocity (92). If combined with other

systems, accuracy may be improved (84).

Markerless motion capture software is seeing growth in

both research and industry settings, and “Theia 3D Marker-

less” was found in this review as a prominent commercially

available system. By using the optical motion camera set-up,

and thus limiting the remoteness of its use, the deep learning

algorithm-based system removes the need for marker-based

set-ups and increases the portability of its use. Although

further testing is stated as required to enable better

sensitivities to environmental factors and subject

characteristics, the promising and comparably accurate results

of marker-based motion capture demonstrate its potential for

improving the feasibility and sample size of OA patient data

collection. Although it is one of the most promising

developments within portable camera-based motion capture
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technology, the cost of the system set-up within or outside

laboratory environments is likely to be more than $20,000,

and a knowledge of and training in the system set-up is

required, regardless of whether the motion caption camera

systems are already in place. Therefore, a high degree of

expertise to handle the set-up and potentially good equipment

are still required. However, the cost is still less than that of

standard 3D marker-based motion capture technology, and it

has great potential for patient-based data collection without

the need for marker placement.

Other commercially available camera and optical tracker

components were found to give reliable results only for

functional test outputs (Multi-Directional Reach Test, Timed

Up and Go) (93) and had limitations based on errors when

compared with optical tracking systems (94). Only one

technology incorporating a depth camera was found to be

commercially available. The Echo5D is described by the

manufacturer Atlas5D (Lincoln, MA, United States) as an

ambient measurement system comprising a single depth

camera and bespoke software for use at home. Although it

was suitable for use in a defined environment, validated use

was for a single parameter—walking speed—specifically in an

multiple sclerosis (MS) population (46); therefore, the use for

an OA or for other musculoskeletal (MSK) clinical

populations may be limited. Although all individual depth

camera devices found in the results are commercially available,

none, other than the Echo5D, were identified as being available

as a standalone system specifically for human movement

measures. However, they offer adaptive potential for research

and data extraction purposes, offering significant and growing

potential for the OA researcher.

Both the Kinect and the Nintendo Wii systems were

developed primarily as gaming technologies for the

entertainment market and were subsequently recognised by

researchers for their potential. The original Kinect system (V1

and V2) has now been retired, and therefore, products

incorporating it are not commercially available. Kinect V1

and V2 were superseded by the launch of the next-generation

AI Microsoft Azure Kinect sensor released in 2020. Azure

Kinect has a suite of applications including the Body Tracking

SDK pose estimation model of human movement focused on

non-gaming industries including healthcare, MSK diagnosis,

and exercise evaluation (6). The Azure Kinect has been

reported as demonstrating improved results for spatial

measures compared with the original Kinect. Good

comparison validity measures were found for finger and

thumb joint angles when compared with optical systems (55,

95) as well as full-body tracking for joint angles during

treadmill walking (56). However, caution is required with

camera viewing angles when using a range of depth sensors

for kinematic gait measurements. Considering the limitations,

depth cameras are useful as a portable motion capture tool

but may still require a small defined environment.
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Location/application of technology use

Freedom to use the technologies in any environment/

location and their ability to be applied for a variety of uses

without specialist knowledge or support, are fundamental to

classifying the technologies as suitable for fully remote use.

Many of the technologies in the review results lacked a

method or reference for real-life, real-time assessment of

remote or non-laboratory use. Therefore, most were only

described as hypothetically suitable for remote use, and in

some cases, no method for remote use was suggested. Equally,

many studies lacked detail on how data would be recovered

and analysed, for example, in real time or via additional

processing. Additional factors such as battery life, range of

use, method of data recovery, and analysis would also impact

usability and availability of the data.

Very few (9%) technologies could be determined as fully

remote, with two-thirds (68%) classified as part remote and

the remainder (23%) portable only (Figure 4). “Portable”

technology offers OA researchers additional tools to use in

community, clinic, or other settings outside of the traditional

laboratory and may still offer new and more cost-effective

ways of gathering kinetic and kinematic metrics than those

currently available. Therefore, we can conclude that the use of

technology outside of the laboratory for OA research is both

feasible and possible.

Most technologies that are commercially available (Table 4)

were identified as “part remote” and measuring SPT parameters.

This highlights the fact that trained users (patients/researchers)

have an increasing number of opportunities to collect real-world

data in a variety of settings and these opportunities are likely to

continue growing and developing. Although small, the

identification of fully remote technologies could offer

researchers the potential to gain new insights into the lives of

those with OA through the ability to collect data in an

unrestricted and unobserved way. This increases the potential

for collecting data over a longer period, enabling patterns within

data to be analysed, as opposed to one-off laboratory visits.
Experimental technologies

The results demonstrated a wide range of technologies

under experimental investigation for the gathering of useful

OA research data. Whilst some of these (commercially

available products) were similar to the IMU or insole

platforms, others suggested alternative remote approaches, for

example, a reliable self-measurement hand ROM tool using

the Apple iPhone (96) as well as a proposed ultrasonic sensor

network system for convenient at-home gait assessment (97).

These systems are complemented by findings in other work

advocating the use of non-contact, low-impact sensing such as
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smartphone applications for the measurement of ankle ROM

(98) and pulsed Doppler radar (impulse radio ultrawide band)

to understand human walking patterns (99).

It is likely that further rapid development of smart wearable

technologies, AI, and other technologies will gain greater focus

for gait research, resulting in a paradigm shift to acquire

complex data employing predictive analytics (100). It is also

highly likely that further advances in gaming technology (such

as VR) will be better deployed for biomedical use (101),

leading to further advances in markerless data capture.
Limitations of the study

A narrative overview of identified technologies was the

primary objective of the research; however, it would be

beneficial to conduct an in-depth comparative analysis within

the measured technology type/parameters. Other technologies

that did not meet the inclusion criteria, due to their size or

operating requirements, may still be suitable for remote or

community use. Most studies did not include an OA

population, an aging population, or a population mixed across

the socio-economic divide. Translation to an OA population

may be essential for evaluation depending on the research

requirements. Most studies did not evaluate intra-operator

reliability, which contributes to the feasibility of translation of

remote technology for use with OA patients. This also affects

technology usability, a critical element for successful use of

remote technology in research (102).

Quality scoring of technology could have considered the

advantages and disadvantages based on economic factors,

research skills and usability, environmental feasibility

technical specifications, or cost (and thus practical elements

that may impact usability such as weight, size, battery life,

operation range, and user interface complexity). Equally, no

consideration was given to the nature of the data recorded

and how such data could be accessed or harvested from the

device, or to the ease of analysis or interpretation of such data.
Further research

Given the range of technology scoped, OA researchers

would benefit from studying the available evidence of

technology for the specific parameters and environment

necessary or from conducting a pilot feasibility study. This

could be incorporated into a larger-quality scoring assessment

and include inter- and intra-operator reliability scoring.

Increasing developments in portable-based technology will

give rise to new opportunities for in situ OA patient data

collection and broaden the field for new approaches. Because

most results were reported to be of hypothetical use, outside

the laboratory, or with other patient groups, there is still a
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need for ensuring real-life data collection accuracy and

feasibility of these technologies in OA patients. The validity of

the technology for the proposed purpose and the impact on

both researchers and participants can then be better

understood, managed, and mitigated.
Conclusion

A wide range of potential technologies are available for the

OA researcher to use outside of a traditional laboratory-based

environment, including various technologies that are

commercially available. Currently, they are mostly limited to

the provision of gait SPT measures collected within a part-

remote scenario. With IMUs as the most prominent

technology used, standardised data collection methods will

improve their usability for OA patient groups. The emergence

of fully remote devices is likely to capitalise on the use of

smartphone application technology and data fusion techniques

to advance this development. Evidence suggests that new

emerging technologies under development will increase the

choice and availability of technology solutions for OA

researchers in the future. Markerless motion capture is

gaining traction in both research and industry settings (e.g.,

gaming technology) and vision-based approaches, with

growing computational sensitivities likely to expand the

feasibility of OA patient data collection. Embracing the

emergence of innovative technologies offers the potential to

simplify methods, influence the targeted patient group and

outputs, reduce the cost of and skills necessary for data

collection, and widen the locations and environments in

which data can be collected. Technology that can operate

remotely will facilitate the gathering of objective data and a

better understanding of real-world OA and its impact on the

patient.

This research has identified several technologies that can

support the OA researcher currently and can provide data of

differing types and quality, with IMUs identified as the most

prevalent technology type in use and most likely used for the

collection of SPT measures. Technology selection is only a

consideration for the OA researcher, and further research to

understand the impact on both researchers and participants

and the feasibility of operating research projects with remote

technology is required.
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