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Factor sensitivity and correlation analysis for the post-earthquake 10 

recovery simulation of densely populated urban residential 11 

communities in China 12 

Abstract: Earthquake disasters in recent decades have caused huge socioeconomic losses in 13 

China, while post earthquake recovery simulation is crucial for resilient community planning, 14 

different interconnected aspects and numerous factors are required to be considered and 15 

analyzed holistically, and that makes the process is highly complex especially cascading with 16 

the long time recovery duration. To identify the key infrastructural characteristics that affect 17 

the post-earthquake recovery of densely populated urban residential communities (URCs) in 18 

China, a comprehensive framework of resilience assessment and analysis is established on a 19 

systematic integration of multiple analysis tools (e.g., population-based functionality 20 

indicators, post-earthquake recovery simulations, infrastructural dependence analyses, and 21 

seismic damage analyses). The framework can consider the dependence among residential 22 

buildings, supporting buildings, and utility networks, as well as the relationships between 23 

their functionalities and resident outmigration; it also includes infrastructural repair sequences 24 

at different levels to allow flexible repair plans to be simulated. A case study was used to 25 

conduct factor sensitivity and correlation analysis to clarify the effects of three important 26 

infrastructural characteristics. Results show that improvements on the seismic performance of 27 

residential buildings facilitate community recovery more significantly than utility networks, 28 

and the use of redundant utility pipelines can hardly impact the recovery of URCs. However 29 

in long term recovery cases, utility networks play more important role due to the cascading 30 

effects arising from the extension of the repair durations. The proposed methodology and 31 

framework can  promote significantly the understanding of community recovery, and the 32 

results demonstrate the effectiveness of identifying key influential factors. Such a framework 33 

can be further expanded for post earthquake recovery holistic decision making. 34 

Keywords: Earthquakes; Infrastructure; Buildings, residential; Resilience; Simulation. 35 

 36 
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Severe earthquake disasters in recent decades have caused huge socioeconomic 38 

losses in China. Nowadays, some megacities in China are still attacked by 39 

earthquakes occasionally. Researching and promoting the strategy of community 40 

resilience is critical to reducing the risk of seismic loss of these cities and their 41 

densely populated communities. Many models, methodologies, and computational 42 

tools have been proposed to perform the design and assessment of the resilience of 43 

urban residential communities (URCs) (Shadabfar et al. 2022). Related studies (Miles et 44 

al. 2019; Koliou et al. 2020) typically assess seismic resilience in three steps: 45 

indicating the performance of a targeted system, drawing a curve of the performance 46 

recovery, and quantifying resilience with a value mapped from the curve. The 47 

definition of performance indicators, the description of repair sequences, and the 48 

selection of resilience metrics are critical to these three steps. 49 

In resilience assessments, the selection of performance indicators should be 50 

considered carefully, since their inappropriate usage can yield incorrect assessment 51 

result (Poulin and Kane 2021). Some representative indicators have been established: 52 

patient waiting time (Cimellaro et al. 2010), average number of pathways (Zhang et al. 53 

2017), etc. Because these indicators are highly correlated to their targeted systems, 54 

they are difficult to apply to complex systems, such as a URC with multiple 55 

infrastructures. Some studies described the functional dependence between different 56 

infrastructures, e.g., the dependence between an electricity power network and a water 57 

network (Dueñas-Osorio et al. 2007). However, the gas and telecom networks which 58 

are common in URCs of China were not considered, which may affect the functional 59 
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quantification of buildings. Furthermore, the damages of these lifelines may lead to 60 

secondary disasters, which need more attention and better understanding (Freddi et al. 61 

2021). 62 

Because the human factors (e.g., risk awareness and scenario training) receives 63 

growing attention in the field of infrastructure resilience currently (Cantelmi et al. 64 

2021), some studies (Burton et al. 2016; Feng et al. 2017) preferred to indicate 65 

community performance using non-engineering factors (e.g., population). However, 66 

these studies did not distinct the effects of functional losses of different buildings and 67 

the caused different kinds of resident outmigration. Burton et al. (2019) used an 68 

empirical utility-based decision model to analyze the impacts of residence time, 69 

physical damage, household income, and several other factors on household decision-70 

making, but they did not consider the potential effects of different stakeholders. Some 71 

studies (Nejat and Ghosh 2016; Masoomi et al. 2018) attempted to analyze multiple 72 

factors influencing household decision-making and post-disaster outmigration. 73 

However, their focus was on meteorological hazards rather than earthquakes. Methods 74 

that can synthetically characterize the resilience of social and technical systems are a 75 

promising research stream (Cantelmi et al. 2021). One important relevant area is 76 

inviting stakeholders in the resilience assessment (Poulin and Kane 2021). Some 77 

resilience assessments integrated with multiple stakeholder-related factors were 78 

proposed by sociology-based studies (Cai et al. 2018), but their description of 79 

physical infrastructures is relatively insufficient. 80 



5 

 

With respect to describing repair sequences, the impacts of this factor have been 81 

studied for water-supply networks (Chang et al. 2002), power-supply networks 82 

(Ouyang and Dueñas-Osorio 2014), etc. FEMA P-58 (FEMA 2012) and REDi 83 

(Almufti and Willford 2013) integrated some practical factors related to repair 84 

sequences of buildings into their analysis methodology. However, these studies just 85 

focus on different types of utility networks or single buildings. The study of repair 86 

sequences specifically for a URC is still lacking. Based on the recovery curves 87 

calculated from the repair sequences, retrofitting techniques can be introduced 88 

effectively according to the resilience assessment results (Yin et al. 2022). Besides, 89 

resilience assessment frameworks should have the ability to mathematically unify 90 

downtime predictions for both physical and non-physical factors, so that the post-91 

earthquake recovery can be quantified more accurately (Freddi et al. 2021).  92 

In order to improve the effectiveness of resilience assessments, the resilience of a 93 

community is considered and measured in multidisciplinary and multicriteria 94 

methodologies (Yin et al. 2022). Existing studies have proposed various metrics with 95 

different characteristics, such as the classical seismic resilience metric (Bruneau et al. 96 

2003), the metric reflecting the performance before and after earthquakes (Cimellaro 97 

et al. 2010), and the threshold metric established on dynamics (Tao and He 2020a). 98 

Because these metrics are only values compressed from the information carried by 99 

recovery curves, the assessment results obtained from such single values may be too 100 

one-sided. 101 
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More importantly, the key factors of the recovery of a URC are still unclarified. 102 

The coexistence of different kinds of factors (e.g., network topology, seismic fragility 103 

of buildings) and their interactions haven’t gotten enough attention, although they are 104 

very common in real URCs. This issue brings great challenges to the subsequent 105 

resilience-oriented design and optimization in term of selecting design variables and 106 

making calculation plans (Shadabfar et al. 2022). Currently, there is still a lack of a 107 

resilience assessment methodology that can integrate these factors from the 108 

perspective of URCs, as well as a comprehensive understanding of their impacts by a 109 

unified standard. 110 

In order to facilitate a more in-depth understanding of community recovery and 111 

provide a theoretical basis for resilience-based design and optimization, this paper 112 

aims to propose an innovative methodology for resilience assessment and analysis 113 

that is expected to clarify the key factors of the recovery of URCs. The methodology 114 

is built on the systematical integration of several specialized analysis tools 115 

constructed in this paper (i.e., the infrastructural dependence model, the population-116 

based functionality indicator, and the repair sequence function) and some existing 117 

well-established models (e.g., seismic damage models, resilience metrics). On this 118 

basis, a case study is conducted with a typical Chinese densely populated URC. Since 119 

the assessment needs performing dozens of times in the analysis, a small-scale URC is 120 

chosen as the case to reduce the analysis costs. Although its scale is limited, this URC 121 

has a complete infrastructural system which can fully satisfy the requirement of the 122 

analysis. With these efforts, it is found that the recovery of a URC can be promoted 123 
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more significantly by improving the seismic performance of residential buildings than 124 

by improving it of other infrastructures. The impacts of network redundancy and 125 

internetwork cascading are unobvious, but they need more attention if the repairs of 126 

utility networks are time-consuming. 127 

 128 

Conceptual model of URCs 129 

Community function and structure 130 

To meet the daily needs of residents, various sectors that provide different 131 

services (e.g., housing, police, and retail) operate in URCs. In this study, four sectors, 132 

whose continuous functioning is very helpful to stabilize a community (Cutter et al. 133 

2010) are considered: housing, education, commercial retail, and medical care. To 134 

support these services, buildings and utility networks are built in URCs. In order to 135 

distinct different kinds of outmigration hereinafter, buildings are divided into 136 

residential buildings and supporting buildings. Specifically, supporting buildings are a 137 

general term for educational buildings, commercial buildings, and medical buildings. 138 

Four typical utility networks that are essential for URCs are considered: the networks 139 

of electricity, telecommunication, tap water, and natural gas. The telecom network 140 

particularly refers to a wired network composed of optical cables. Transportation 141 

networks are not considered since their high complexity can significantly increase the 142 

difficulty of the following recovery simulation and resilience analysis. This 143 

simplification may make the analysis results more optimistic than the actual situations, 144 

because the seismic damage of a transportation system can hinder the repairs of 145 
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buildings and utility networks. However, the difference decreases as the scale of the 146 

transportation system reduces. Because the scale of transportation networks of 147 

Chinese densely populated URCs which usually consist of several high-rise buildings 148 

is commonly small, this simplification is acceptable for such communities. As the 149 

users of a URC, residents are another indispensable part. Fig. 1 summarizes the 150 

relationships between residents and infrastructures, as well as the infrastructural 151 

composition defined in this study. 152 

 153 

 154 

Fig. 1. Conceptual illustration of URC model 155 

 156 

Sectors and infrastructures 157 

 In a densely populated URC, the number of residential buildings is typically 158 

much more than the number of supporting buildings. Therefore, the housing sector is 159 

described in detail by multiple buildings, while the other three sectors are  each 160 

represented by a single building. This simplification is only applicable to small-scale 161 
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URCs whose supporting facilities are relatively few. For large-scale URCs, it is still 162 

recommended to employ multiple buildings to describe the related sectors. To reduce 163 

calculation costs, the seismic damages and recoveries of buildings are depicted at the 164 

building level. 165 

 166 

 167 

Fig. 2. Infrastructural components and their functional dependence; (a) Utility 168 

dependence; (b) Topology and functional logic of utility networks 169 

 170 

The utilities on which each building depends are described in Fig. 2(a). 171 

Dependence also exists between utility networks. For example, electricity is required 172 

by telecommunication routers and water pumps [see Fig. 2(b)]. For densely populated 173 

URCs where high-rise residential buildings are intensively built, routers and pumps 174 

are typically installed in a dispersed manner in the equipment rooms of each building. 175 

Utility networks are commonly described by topology models or flow models. 176 
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Topology models can reflect the adjacent relationship of the components of a network 177 

(Boccaletti et al. 2006). Based on the adjacent relationship, the failure risk of utility 178 

networks can be assessed using damage probabilities of their components. Flow 179 

models further consider the motion states of material flows. Thus, both their accuracy 180 

and computational costs are higher than those of topology models. Because the 181 

community performance is primarily associated with the functionalities of buildings 182 

in this study, topology models are basically sufficient to meet the analysis needs. The 183 

fragility data of utility networks needed in analysis can be found in relevant 184 

references (Isoyama et al. 2000; Loganathan et al. 2002; FEMA 2013). 185 

Resident population and outmigration 186 

The population served by a URC can be regarded as a performance indicator. 187 

After earthquakes, infrastructural damages which always bring inconvenience to 188 

residents will degrade the dependent attitudes of residents on their communities, 189 

ultimately resulting in outmigration. Due to the complex demographic structure of 190 

densely populated URCs, the reasons for post-earthquake outmigration are diverse. 191 

Unlike existing studies that consider outmigration as a whole, herein, the outmigration 192 

is divided into two categories in accordance with the functional types of the related 193 

buildings. This change is conducive to a clearer quantification of resident population. 194 

Primary outmigration (POM) is caused by the dysfunction of residential buildings. 195 

Because the residents have to move out when a residential building becomes unsafe, 196 

POM is typically mandatory. POM can be quantified by the loss of occupiability 197 

(Burton et al. 2016; Tao and He 2020b). Secondary outmigration (SOM) is caused by 198 
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the dysfunction of supporting buildings. SOM has a smaller impact on residents than 199 

POM, because supporting buildings are functionally replaceable due to their public 200 

nature. 201 

Because SOM depends significantly on the dependent attitudes of residents on the 202 

community, two sociological methodologies [i.e., the residential satisfaction model 203 

(Gifford 2007) and disability weightings (Murray 1994)] which receive little attention 204 

in resilience-related studies are employed herein to quantify SOM. The residential 205 

satisfaction model quantifies the importance of supporting buildings to the dependent 206 

attitudes of residents (Gifford 2007). The weights of its membership function can be 207 

used to calculate the SOM caused by a single supporting building. Disability 208 

weightings (Murray 1994) are a tool used in calculating the effects of different types 209 

of disabilities. If the impacts of dysfunction of supporting buildings on residents are 210 

equivalent to the restrictions of disabilities on human life, the ratio of disability 211 

weightings can be used to estimate the couplings in the SOM caused by multiple 212 

supporting buildings. 213 

 214 

Post-earthquake recovery simulation of community 215 

Probabilistic seismic performance model 216 

Based on the conceptual model, the infrastructures are abstracted into entities of 217 

three levels: facility groups (FGs), sectors (STs), and basic components (BCs). The 218 

seismic performance model can be established on these entities (see Fig. 3). The 219 
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rugged components (i.e., valves and switches) and specialized equipment systems (i.e., 220 

substation and regulating station) shown in Fig. 2 are not considered. 221 

For a utility network, because its source node (SR) and sink node (SN) will be 222 

connected if any of their pathways are passable, their connection probability can be 223 

calculated by: 224 

 ( ) ( ) ( )& , & , ,1
1 1

PW

d

N

SR SN C SR SN DC PW IPd
P t P t P t

=
= − = −                           (1) 225 

where NPW is the number of pathways; PSR&SN,C(t) and PSR&SN,DC(t) are the connection 226 

and disconnection probability respectively; PPWd,IP(t) is the probability that the dth 227 

pathway is impassable; and t is the time variable. Specifically, the recovery efforts 228 

start at the time t=0. Because the components of a pathway are connected in series, 229 

the passable probability [i.e., PPW,P(t)] is equal to the product of the functioning 230 

probabilities of all related components. Thus, PPW,IP(t) and PPW,P(t) can be calculated 231 

by: 232 

( ) ( ) ( ), , ,1
1 1

UC

e

N

PW IP PW P UC Fe
P t P t P t

=
= − = −                                       (2) 233 

where, NUC is the number of UCs (i.e., utility components) on the pathway; the 234 

subscript, UCe, represents the eth utility component; and PUCe,F(t) is the probability 235 

that UCe is functioning well. 236 

 237 
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 238 

Fig. 3. Infrastructural hierarchy and concerned entities 239 

 240 

Pipelines and cables that are utility-independent (UID) can function effectively as 241 

long as they are operable. Pumps and routers which are utility-dependent (UD) cannot 242 

operate without electricity. Thus, the functioning probability of these two types of 243 

components can be calculated by: 244 

( )
( )
( ) ( )( )

' '

,

,

, & ,' 1
1UN UC

a a

UC O

NUC F

UC O UC SR SR UC DCa

P t UC UID
P t

P t P t UC UD
=

 =   −    
                (3) 245 

where, NUN(UC) is the number of utility networks on which the UC depends; the 246 

subscript, SRa’, represents the source node of the a’th utility network on which the UC 247 

depends; and PSRa’&UC,DC(t), the probability that the UC and SRa’ are disconnected, can 248 

be calculated using Eqn. (1). In a single-source network, PSRa’&UC,DC(t) is equivalent to 249 

the probability that the UC loses the supply of the utility. Unlike other existing 250 

probabilistic performance models of interdependent networks, an additional 251 

coefficient αUC/SRa’, whose value is between 0 and 1, is used in this study to describe 252 
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the strength of the dependence of the UC on SRa’. The larger αUC/SRa’ is, the stronger 253 

the dependence is. The probability that the UC is operable [i.e., PUC,O(t)], is 254 

determined by the probability distribution of damage states of the UC and the 255 

corresponding parameters of repair. Its calculation will be given in Eqn. (5). Because 256 

this study primarily focuses on resilience assessments, the seismic performance model 257 

proposed herein only describes the connectivity of networks without considering their 258 

supply qualities. If more accurate analysis results are required, other specialized 259 

analysis methods for utility networks need incorporating further. 260 

Because the normal functioning of a building requires an occupiable structure 261 

and available utilities [see Fig. 2(a)], the probability that a building (BD) is functional 262 

or dysfunctional [i.e., PBD,F(t) or PBD,DF(t)] can be calculated by: 263 

( ) ( ) ( )( )

' & ,' 1

UN BD

a

N

BD,F BD,O SR BD Ca
P t P t P t

=
=                                   (4a) 264 

( ) ( )1
BD,DF BD,F

P t P t= −                                                (4b) 265 

where, NUN(BD) is the number of utility networks on which the building depends; 266 

PSRa’&BD,C(t), the probability that the building and SRa’ are connected, is calculated by 267 

Eqn. (1). In a single-source network, PSRa’&BD,C(t) is equivalent to the probability that 268 

the building can obtain the ath utility. PBD,O(t) is the probability that the building is 269 

occupiable. Its calculation method is similar to PUC,O(t) [see Eqn. (5)]. According to 270 

Eqn. (4), three functional states of buildings are defined: unoccupiable, occupiable, 271 

and fully functional. The first two states are collectively called the dysfunctional state 272 

herein. The definitions of these states can be found in existing research (Burton et al. 273 

2016). 274 



15 

 

If utility components and buildings are collectively identified as BCs, PUC,O(t) in 275 

Eqn. (3) and PBD,O(t) in Eqn. (4) can be rewritten as PBC,O(t) together. BC represents 276 

the basic component. If a BC is respectively in the inoperable (or unoccupiable) state 277 

and operable (or occupiable) state before and after the repair, PBC,O(t) can be 278 

calculated by the sum of probabilities of the damage states whose repairs haven been 279 

finished before time t  (Burton et al. 2016; Miles et al. 2019) [see Fig. 4(b)]: 280 

( ) ( )( )
, , ,1

HDS BC

n n

N

BC O BC DS BC DSn
P t t P

=
=                                      (5) 281 

where, NDS(BC) is the number of damage states; the subscript, DSn, represents the nth 282 

damage state; and HBC,DSn(t) is the step function that depicts the operability jump 283 

occurred when the BC is repaired. More details about HBC,DSn(t) will be specifically 284 

introduced in the next section. PBC,DSn, the probability that the BC is in DSn, is 285 

estimated using fragility functions [see Fig. 4(a)]. 286 

 287 
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 288 

Fig. 4. Method to depict expected recovery path of BCs; (a) Calculation of 289 

probabilities of damage states; (b) Drawing of expected recovery path 290 

 291 

 Fragility curves are commonly depicted by the lognormal cumulative distribution 292 

function (CDF) [i.e., Ψ (·)].  Although this function may be inadequate to model the 293 

failure probability of some vulnerable components, it can still accurately describe the 294 

seismic fragility of most infrastructures. Some widely-used technical manuals and 295 

guides (FEMA 2012; FEMA 2013; Pitilakis et al. 2014) still consider it as the primary 296 

method to describe infrastructural seismic fragilities. Correspondingly, the probability 297 

that a BC is in a certain DS (i.e., PBC,DS) can be calculated by Ψ (·): 298 
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( ), , ,ln
BC DS BC T T BC DS BC DS

P P DS IM IM   =   =                          (6) 299 

where, IMT is the targeted intensity of ground motions; μBC,DS and βBC,DS respectively 300 

represent the median and log-standard deviation of the intensity of ground motions. 301 

They can be assigned with the data provided in existing references (FEMA 2013). 302 

Functions of infrastructural repair sequences 303 

If Eqn. (5) is calculated in each time step, the trend of PBC,O(t) will be shown as a 304 

time-varying curve which is called the functional recovery path. This path can be 305 

characterized with step functions (Burton et al. 2016; Tao and He 2020b), since the 306 

operability of a basic component generally jumps from 0 to 100% when its repair ends: 307 

( ) ( ) , ,

, , ,

, ,

0
H H

1

BC DS RC

BC DS BC DS RC

BC DS RC

t t
t t t

t t


= − =  

                             (7) 308 

where, tBC,DS,RC is the repair completion (RC) time of a BC in a certain . It consists of 309 

two parts: 310 

, , , , ,BC DS RC BC RS BC DS RD
t t t= +                                               (8) 311 

where, tBC,DS,RD is the repair duration (RD) of the BC in the DS. It can be assigned 312 

with the data provided in existing references (FEMA 2013; MOHURD 2016). tBC,RS, 313 

the repair start (RS) time of the BC, is a reflection of the infrastructural repair 314 

sequences. 315 

 316 
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 317 

Fig. 5. Temporal structure of infrastructural repair process and calculation method of 318 

its parameters; (a) Repair start time of BCi,j,k; (b) Accumulative repair durations of 319 

preorder entities; (c) Repair duration of FGi and STi,j; (d) Illustration of repair 320 

sequence of arbitrary entity X 321 

 322 

In order to calculate tBC,RS, it is necessary to clarify the position of the BC in the 323 

whole infrastructural system. Herein, the kth basic component of the jth sector (STi,j) in 324 

the ith facility group (FGi) is noted as BCi,j,k. With regard to BCi,j,k, the FGs repaired 325 

before FGi, the STs repaired before STi,j, and the BCs repaired before BCi,j,k are called 326 

the preorder FGs, the preorder STs, and the preorder BCs respectively. According to 327 

the calculation method shown in Fig. 5(a), tBCi,j,k,RS is equal to the sum of the 328 

accumulative repair durations of these preorder entities (i.e., ARDPs): 329 

, , , , ,, , , ,i j k i i j i j kBC RS FG ARDP ST ARDP BC ARDP
t t t t= + +                                  (9) 330 
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where, tFGi,ARDP, tSTi,j,ARDP, and tBCi,j,k,ARDP represent the ARDPs of BCi,j,k at the FG 331 

level, ST level, and BC level respectively. Since these ARDPs are determined by the 332 

repair durations of the corresponding entities [see Fig. 5(b)], ARDPs can be expressed 333 

as functions of them: 334 

 ( ) ( )
1 2 1, , , , , , ,,1 1 , ,  ... ,

i p iFG ARDP RS FG FG RD RS FG FG RD FG RD FG RDt G t p N p i G t t t
−+=    − =  335 

(10a) 336 

 ( ) ( )
, , ,1 ,2 , 1, , , , , , ,,1 1 , ,  ... ,

i j i q i i i jST ARDP RS ST ST RD RS ST ST RD ST RD ST RDt G t q N q j G t t t
−+=    − =337 

 (10b) 338 

 ( ) ( )
, , , , , ,1 , ,2 , , 1, , , , , , ,,1 1 , ,  ... ,

i j k i j r i j i j i j kBC ARDP RS BC BC RD RS BC BC RD BC RD BC RDt G t r N r k G t t t
−+=    − =  339 

(10c) 340 

where, the subscripts, p, q, and r, describe the IDs of preorder entities at different 341 

levels; GRS,FG(t), GRS,ST(t), and GRS,BC(t) are the functions of repair sequences 342 

describing the repair processes of FGs, STs, and BCs respectively. The expression of 343 

these functions is introduced in detail in Eqn. (13). tFGp,RD, tSTi,q,RD, and tBCi,j,r,RD 344 

represent the repair durations of FGp, STi,q and BCi,j,r. 345 

Because tFGp,RD and tSTi,q,RD are determined by the repair durations of their sub-346 

entities [see Fig. 5(c)], they can be described using GRS,ST(t) and GRS,BC(t) respectively: 347 

 ( ) ( )
, ,1 ,2 ,, , , , , , ,,1 , ,  ... ,

i i q i i i NSF
FG RD RS ST ST RD ST RS ST ST RD ST RD ST RDt G t q N q N G t t t+=    =  348 

(11a) 349 

 ( ) ( )
, , , , ,1 , ,2 , ,, , , , , , ,,1 , ,  ... ,

i j i j r i j i j i j NBC
ST RD RS BC BC RD BC RS BC BC RD BC RD BC RDt G t r N r N G t t t+=    =350 

 (11b) 351 
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where, NST and NBC represent the number of STs in FGi and the number of BCs in STi,j 352 

respectively. According to Eqn. (11), tBCi,j,r,RD is the basis for calculating tFGi,RD and 353 

tSTi,j,RD. Because the repair duration of a BC is related to the probability distribution of 354 

its damage states, tBC,RD can be estimated by the expected repair duration of a BC in 355 

its different damage states: 356 

( )
, , , ,1

DS BC

n n

N

BC RD BC DS BC DS RDn
t P t

=
=                                       (12) 357 

where, NDS(BC) is the number of damage states; PBC,DSn is the probability that the BC is 358 

in the nth damage state (DSn); and tBC,DSn,RD is the repair duration of the BC. These 359 

variables have been introduced in Eqns. (5)~(8). Herein, tBC,DSn,RD and its related time 360 

parameters are regarded as deterministic variables in order to simplify the description 361 

of the temporal randomness caused by the variability of real repair process. This 362 

randomness is difficult to be clarified without exclusively-collected related statistical 363 

data. Nevertheless, if related data are sufficient, it is still recommended to assess the 364 

impact of variability of repair process using a sensitivity analysis.  365 

Because the repair of an entity can be regarded as a combination of multiple 366 

parallel construction processes (PCs) and sequential construction processes (SCs) of 367 

its sub-entities [see Fig. 5(d)], the repair sequences of different levels [see Eqns. 368 

(10)~(11)] can be described collectively: 369 

( ) ( ) ( )  ( ) ( ) 1 2, 1 1
, ,  ... , max

SC PC

n p i q j

N N

RS X X X X X i X jp i q ji j
G t t t t X SC t X PC

= =
   =  +           370 

(13) 371 

where, GRS,X(t) is the function of the repair sequence of the X-level entities. Its 372 

independent variables, tX1, tX2, and tXn, represent the repair durations of the 373 
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corresponding entities. SCi represents the ith collection of entities that are repaired 374 

sequentially. Xp(i) is the pth entity in SCi. PCj represents the jth collection of entities that 375 

are repaired in parallel. Xq(j) is the qth entity in PCj. NSC and NPC represent the numbers 376 

of these two kinds of collections. tXp(i) and tXq(j) are the repair durations of Xp(i) and Xq(j) 377 

respectively. In Eqn. (13), the RDs of sequentially repaired entities are joined using 378 

summation, while the RDs of simultaneously repaired entities are joined using 379 

maximum. Because the repair process is a combination of SCs and PCs, the total RD 380 

is calculated by the sum of these summations and maxima. It should be noted that 381 

flow repetitive construction operation is not considered in the proposed repair 382 

sequence function, which may make the simulation results deviate from actual 383 

recovery situations. 384 

Infrastructural characteristics 385 

In this section, three concerned infrastructural characteristics are introduced. First, 386 

the seismic fragility reflects the possibility that an infrastructural entity is in a certain 387 

damage state when it suffers earthquakes of a certain intensity. Its changes are 388 

reflected in the probabilities of damage states of basic components [see Eqn. (6)]. 389 

Based on the infrastructural dependence [see Eqns. (1)~(5)], the influences of the 390 

changes gradually spread to different sectors, resulting in affecting the entire 391 

community. In factor analysis, this influence can be modeled by changing the median 392 

(i.e., μBC,DS) of fragility functions. 393 

Topology describes the adjacent relationships between buildings and pipelines. In 394 

densely populated URCs, utility networks are typically designed as simple acyclic 395 
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dendritic topologies to minimize engineering costs. In some upscale communities 396 

with higher seismic design levels, a few of redundant pipelines may be installed to 397 

improve the reliability of utility networks. These redundant pipelines may affect the 398 

probabilities that buildings obtain utilities, resulting in changing their functional states. 399 

In factor analysis, the impact of topological redundancy (i.e., γUN) is characterized by 400 

the numbers of pathways between the source nodes and sink nodes [see Eqn. (1)]. 401 

Internetwork cascading effects are a response of networks to their dependence or 402 

interdependence. For utility networks, internetwork cascading effects commonly 403 

come from the dependence of utility-dependent equipment on utilities. In URCs, the 404 

dependence of routers and pumps on electricity are two typical examples. In factor 405 

analysis, the strength of these two types of cascading effects is taken as the variable of 406 

analysis, which is described using the dependence strength coefficient (i.e., αUC/SRa’). 407 

 408 

Multidimensional resilience assessment system 409 

Community performance indicator 410 

To develop a more comprehensive indicator, the performance of URCs is shown 411 

from three perspectives herein: functionality, efficiency, and toughness. Existing 412 

studies often use the outputs of physical systems to define functionality. Herein, the 413 

relationship between the functioning of physical systems and the behavior of their 414 

users (e.g., communities and their residents) is further considered. On this basis, 415 

functionality is defined with the of behavioral feedback of residents. This new 416 

definition of functionality does not contradict the existing definitions since it is just an 417 
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extension of the existing ones. Furthermore, this new definition expands the 418 

connotation of functionality from a single dimension (i.e., physical) to two 419 

dimensions (i.e., physical and social). 420 

Specifically, functionality is defined as the capability of a URC to meet the daily 421 

needs of residents. The better functionality a URC has, the more residents will settle. 422 

Accordingly, a post-earthquake staying population (i.e., IS) is adopted as the indicator 423 

of functionality. It is assumed that the residents who move out due to seismic damage 424 

will return and reoccupy with the recovery of the community. Thus, IS is a variable 425 

about the time [i.e., IS(t)]. IS(t) can be calculated by the POM population and the 426 

percentage of the population that participate in the SOM: 427 

( ) ( ) ( )1
S T POM SOM

I t I I t i t= − −                                           (14) 428 

where, IT represents the initial total population of a community; iSOM(t), the population 429 

percentage of SOM, can be calculated by Eqn. (17); and IPOM(t), the POM population 430 

of the community, can be calculated by the sum of the POM population of each 431 

residential building: 432 

( ) ( ) ( ), , ,1 1

RB RB

g g g

N N

POM RB POM RB T RB Sg g
I t I t I I t

= =
 = = −                         (15) 433 

where, NRB is the number of residential buildings; the subscript, RBg, represents the gth 434 

residential building; IRBg,POM(t), the POM population of RBg, is equal to the difference 435 

between the total population of RBg (i.e., IRBg,T) and its post-earthquake staying 436 

population [i.e., IRBg,S(t)]. Because the residents moved out due to seismic damages of 437 

residential buildings will return with the recovery, IRBg,S(t) and IRBg,POM(t) will change 438 

with t. 439 
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Because residents are allowed to occupy a building only when it is occupiable or 440 

fully functional, IRB,S(t) can be calculated by the expected value of the staying 441 

population of these two functional states: 442 

( ) ( ) ( ), , ,RB S RB,O RB O RB,F RB F
I t P t I P t I= +                                 (16) 443 

where, PRB,F(t) and PRB,O(t) are the probabilities of the occupiable state and fully 444 

functional state respectively. They can be calculated by Eqns. (4)~(5). IRB,O and IRB,F 445 

represent the numbers of people living in the building when it is occupiable and fully 446 

functional respectively. The values of IRB,O and IRB,F mainly depend on the risk 447 

appetite of residents and their requirements for the quality of life. 448 

If the dependent attitudes of residents are not sensitive to the negative influences 449 

caused by neighborhood damages, it can be assumed that the outmigration will be 450 

barely affected by neighborhood damages. Based on this assumption, few residents 451 

will choose to move out when a residential building is fully functional. Thus, IRB,F is 452 

approximately equal to IRB,T in this case. However, the effects of neighborhood 453 

damages on outmigration should be further considered if residents are sensitive to this 454 

factor. Otherwise, there will be a risk of underestimating the outmigration. If a more 455 

accurate outmigration quantification is required, the EPUB decision model presented 456 

by Burton et al. (2019) will be recommended to assess the influences caused by 457 

neighborhood damages. When a residential building is in the occupiable state, 458 

whether its residents move out or not primarily depends on their dependent attitudes. 459 

For the convenience of calculation, the outmigration probability was assumed to be 0% 460 

(Burton et al. 2016). This implies that all residents will continue to live in a building 461 
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that is occupiable but dysfunctional. However, this assumption is not applicable to 462 

densely populated URCs whose residents have diverse attitudes. To describe the 463 

outmigration more credibly, IRB,O is assumed to be 50% of IRB,T in this study. This 464 

means that half of the residents will choose to continue living when their residential 465 

buildings are just occupiable. 466 

Similarly, iSOM(t) of Eqn. (14) can be calculated using the expected SOM 467 

population percentage of different combinations of functional states of supporting 468 

buildings: 469 

( ) ( ) ( ),

''
, , , ,1

SBF SBDF

p p h hh p h p

N

SOM SBF SBDF SOM SB F SB DFp SB SBF SB SBDF
i t i P t P t

=  
 =         (17) 470 

where, NSBF,SBDF is the number of combinations of functional states of supporting 471 

buildings. The subscripts, SBFp and SBDFp, respectively denote the collections of 472 

functional and dysfunctional supporting buildings in the pth combination. 473 

iSBFp,SBDFp,SOM, the SOM population percentage of the pth combination, can be 474 

calculated by data obtained from residential satisfaction surveys. SBh and SBh’ are the 475 

hth and h’th supporting buildings in SBFp and SBDFp respectively. The functioning 476 

probability of SBh [i.e., PSBh,F(t)] and the dysfunctional probability of SBh’ [i.e., 477 

PSBh’,DF(t)] can be calculated by Eqn. (4). Eqn. (17) can be specifically written as Eqn. 478 

(18) for the supporting buildings concerned in this study: 479 

( ) ( ) ( ) ( )   ( ) ( ) ( )    

( ) ( ) ( )     ( ) ( ) ( )    

( ) ( ) ( )     ( ) ( ) ( )  
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i t P t P t P t i P t P t P t i

P t P t P t i P t P t P t i

P t P t P t i P t P t P t i
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+ +
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B ,SOM
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P t P t P t i P t P t P t i

+

+

480 

(18) 481 
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where, the subscripts, EB, CB, and MB, represent the buildings used for education, 482 

commercial retail, and medical care respectively. In addition, if all of the supporting 483 

buildings function normally, the SOM population percentage will be 0 (i.e., 484 

i{EB,CB,MB},Ø,SOM=0). 485 

The concept of toughness is similar to the concept of robustness. In the research 486 

field of resilience, robustness is commonly understood as the ability of elements and 487 

systems to withstand a given level of stress without suffering degradation or loss of 488 

function (Bruneau et al. 2003). Robustness is a static indicator that only describes the 489 

state of a system at a certain moment, while the performance indicators employed 490 

herein need to be dynamic indicators that can reflect the time-varying property of 491 

community recovery. In order to emphasize the dynamic characteristics, the concept 492 

of toughness is proposed to distinguish it from robustness. Specifically, toughness is a 493 

dynamic indicator that describes the ability of a system to dynamically maintain its 494 

original functionality after perturbation. In order to consider the topological 495 

characteristics of infrastructural networks concerned in this study, toughness is 496 

indicated using a node connectivity function with time as its independent variable. 497 

Node connectivity (Boccaletti et al. 2006), a classic indicator describing the ability of 498 

nodes in a network to maintain their connections under perturbations, is typically 499 

defined as the average of the degrees of all nodes in a network. 500 

Although the utilities transported by the networks are different, all of these 501 

networks can be regarded of as source-sink networks mathematically. The concept of 502 

source-sink has already been widely used in investigating different types of utility 503 
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networks (Kowalski et al. 2019). Specifically, the source nodes represent the sources 504 

of the utilities (e.g., the upper-level utility networks), while the sink nodes represent 505 

the destinations of the utilities (e.g., the households). Because the functional states of 506 

utility networks primarily depend on the probability of source-sink connection, their 507 

toughness should be indicated by the probabilistic source-sink connectivity [i.e., 508 

KUN(t)] instead of the general node connectivity. KUN(t) is defined as the average of 509 

the expected numbers of source-sink pathways owned by each sink node: 510 

( ) ( )&1 1

SN SR

b c

N N

UN SR SN SNc b
K t PW t N

= =
 =                                 (19) 511 

where, NSR and NSN are the number of source nodes and sink nodes respectively; 512 

PWSRb&SNc(t) is the expected number of pathways connecting SNc and SRb. It can be 513 

calculated by: 514 

( ) ( ) ( )& ,1

PW

b c d d

N

SR SN PW P PWd
PW t P t A t

=
 =                                 (20) 515 

where, NPW is the number of pathways; PWd stands for the dth pathway; PPWd,P(t), the 516 

probability that PWd is passable, can be calculated by Eqn. (2); and APWd(t) is the 517 

adjacency variable of PWd. When PWd is passable, the value of APWd(t) is 1, otherwise 518 

it is 0. 519 

The concept of efficiency can be understood as an expression of how efficiently 520 

information or utilities are exchanged over the network (Latora and Marchiori 2001).   521 

The efficiency of a general network is usually described by the characteristic path 522 

length, graphics efficiency, and other topological indicators. Particularly, because 523 

graphics efficiency can avoid the divergence caused by disconnected components, this 524 

indicator has been widely used in studies about complex networks (Boccaletti et al. 525 
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2006). In order to highlight the influence of the fragilities of pipelines on the 526 

efficiency, the efficiency of a utility network (UN) [i.e., UUN(t)] is defined as Eqn. (21) 527 

with reference to the concept of graphics efficiency: 528 

( ) ( )=1
UN T

U t PL t                                                           (21) 529 

where, PLT(t), the total probabilistic length of the UN, is defined as the sum of the 530 

probabilistic lengths of all related pipe sections: 531 

( ) ( ) ( ), ,1 1

PS PS

e e e

N N

T PS PS P PS Fe e
PL t PL t L P t

= =
 = =                               (22) 532 

where, NPS is the number of sections of the pipe; PSe represents the eth section; and 533 

PLPSe(t), the probabilistic length of PSe, is calculated by the physical length of PSe 534 

(i.e., LPSe,P) and its functioning probability [i.e., PPSe,F(t)]. PPSe,F(t) can be calculated 535 

by Eqn. (3). To reflect the influence of seismic fragility on efficiency, probabilistic 536 

length instead of physical length is used herein. 537 

If the importance of the four utility networks is assumed to be the same, the 538 

efficiency and toughness of the entire system of utility networks can be described 539 

using unweighted averages: 540 

( ) ( )
1

=
UN

a

N

UN UNa
U t U t N

=                                        (23a) 541 

( ) ( )
1

=
UN

a

N

UN UNa
K t K t N

=                                        (23b) 542 

where, NUN is the number of utility networks; and U(t) and K(t) represent the 543 

efficiency and toughness of the entire system of utility networks respectively. To 544 

highlight the relative development trends of the three types of performance, they are 545 

normalized by initial values: 546 

( ) ( ) ( ) ( )0
S S S S T
i t I t I I t I= =                                    (24a) 547 
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( ) ( ) ( )0u t U t U=                                              (24b) 548 

( ) ( ) ( )0k t K t K=                                              (24c) 549 

where, is(t), u(t), and k(t), which are the normalized values of Is(t), U(t), and K(t) 550 

respectively, are taken as the performance indicators. U(0) and K(0) can be calculated 551 

by Eqn. (23) with t=0. 552 

Seismic resilience metric 553 

To comprehensively assess the recovery capacity of a URC, three types of 554 

metrics (i.e., loss-related metric, time-related metric, effectiveness-related metric) are 555 

used to quantify resilience from different perspectives. Loss-related metrics measure 556 

resilience using seismic losses (Rose 2007). In particular, cumulative loss is a classic 557 

loss-related metric (Bruneau et al. 2003) that can be calculated by the integral of a 558 

recovery curve: 559 

( )
0

1
TRDt

LR C t dt= −                                                (25) 560 

where, RL is the cumulative loss; C(t), the generalized performance at time t, is a 561 

general term for is(t), u(t), and k(t); tTRD, the total recovery duration of the community, 562 

is numerically equal to the repair completion time of the basic component repaired at 563 

the last. Time-related metrics use temporal quantities to measure resilience from the 564 

perspective of rapidity (Cimellaro et al. 2010). The recovery period (i.e., RT) is a time-565 

related metric that describes the total time consumed by the repair process. Its value is 566 

equal to tTRD: 567 

= T TRDR t                                                         (26) 568 
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Effectiveness-related metrics use the effect of recovery measures to characterize 569 

resilience. Herein, this effect is described by the resilience threshold (Tao and He 570 

2020a): 571 

( )1 2 0 3 ,8E TRD normR p p X p t m= + +                                    (27) 572 

where, RE is the resilience threshold; X0, the so-called initial inoperability, is equal to 573 

1–Q(0); tTRD,norm, the normalized recovery duration, can be calculated by the 574 

corresponding normalization approach (Tao and He 2020a); p1, p2, p3, and m are the 575 

constant coefficients whose recommended values have been obtained by conducting a 576 

nonlinear fitting of 400 virtual community recovery cases (Tao and He 2020a). 577 

According to the original definition of Eqn. (27) (Tao and He 2020a), it is derived 578 

from a dynamics model describing community recovery. This dynamics model is a 579 

limit cycle which mathematically describes the maximum loss that a community can 580 

withstand when it adopts a resilience strategy with a certain cost. And, Eqn. (27) is an 581 

expression for this maximum loss. That is, when the seismic damage exceeds RE, the 582 

community is unrecoverable (or, it is uneconomical to recover). Therefore, RE is 583 

regarded as a metric of the resilience threshold of a community (Tao and He 2020a). 584 

The resilience threshold metric is selected because it can prevent the inadequacy of 585 

some existing metrics using dynamics methodology which can effectively capture the 586 

fundamental mechanism of community recovery. 587 

These metrics and the above-mentioned performance indicators constitute a 588 

multidimensional resilience assessment framework (see Fig. 6).  When this framework 589 

is used, it is unnecessary to use all of the indicators and metrics it contains. Instead, it 590 
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is recommended to allocate these indicators and metrics flexibly in accordance with 591 

specific analysis needs. For example, if functionality degradation is the focus of 592 

research, community resilience is recommended to be assessed with the 7 th 593 

combination (i.e., the cumulative loss of functionality). This framework provides a 594 

modular assessment system rather than an integrated assessment method. Because the 595 

metrics and indicators adopted herein can be applied to different kinds of disasters, 596 

this assessment framework is not only applicable to earthquake-induced damage 597 

scenarios but also other disasters. 598 

 599 

 600 

Fig. 6. Multidimensional resilience assessment framework 601 

 602 
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 603 

Fig. 7. Flowchart of resilience assessment and factor analysis 604 

 605 

The impacts of infrastructural characteristics can be analyzed according to the 606 

process shown in Fig. 7. The process smoothly integrates infrastructural dependence 607 

analysis (see Figs. 2 and 3), seismic damage analysis (see Fig. 4), repair sequence 608 

description (see Fig. 5), and the multidimensional assessment framework (see Fig. 6) 609 

into a complete methodology for resilience assessment and factor analysis.  This 610 

methodology provides a solution for comparing the impacts of different types of 611 
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infrastructural characteristics on community recovery, which can lead to a more 612 

comprehensive and in-depth understanding of community resilience, resulting in 613 

helping community leaders and stakeholders formulate more efficient and reliable 614 

resilience improvement programs. Because the damage analysis (i.e., the 4th and 5th 615 

steps) is specialized to earthquake disasters, the probabilistic performance models 616 

built on it and even the whole methodology are only applicable to earthquake 617 

disasters, even though the proposed assessment framework can be applied to different 618 

disasters. 619 

 620 

Case study 621 

Basic information 622 

The case-study community is a small-scale URC with 12 buildings. Although the 623 

scale of this community is small, it has more than 10,000 residents and multiple utility 624 

networks and buildings. Such small-scale URCs with high plot ratios are common in 625 

densely populated Chinese cities. To house more residents, some high-rise apartments 626 

have been built in this community as residential buildings. The master plan of the 627 

community and its infrastructural information are shown in Fig. 8(a)~(b). Actually, 628 

the case-study community is a simplified model abstracted from a real URC in China. 629 

This model preserves the topology and fragility information of buildings and utility 630 

networks of the original community. By capturing the primary characteristics of the 631 

infrastructural system, the reliability of the resilience assessment based on this model 632 

can be ensured. The establishment of more complex and realistic community 633 
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scenarios may require other specialized analysis methods (e.g., detailed flow models 634 

for utility networks, collapse and collision simulations for buildings) which are 635 

beyond the main scope of this study (i.e., resilience assessment and analysis). For this 636 

reason, more complex community modeling is not considered herein. 637 

 638 

 639 

Fig. 8. Illustration of basic information of case community; (a) Community master 640 

plan; (b) Basic engineering information; (c) Default repair sequence 641 

 642 

The seismic fragilities and recovery paths of the infrastructures are described by 643 

the aforementioned lognormal CDF [see Eqn. (6)] and step function [see Eqn. (7)] 644 

respectively. Based on the information shown in Fig. 8, the default values of the 645 
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parameters can be obtained from the literature (see Table 1 and Table 2). The repair 646 

durations of utility networks are deliberately shortened in accordance with the fact 647 

that governments usually organize powerful construction forces to accelerate the 648 

repair of utility networks to provide conditions for other relief works. Because the 649 

recovery simulation method established above focuses on describing the randomness 650 

of infrastructural damages, time-related parameters are simply regarded as 651 

deterministic variables. Since the case-study community is small, the intensities of 652 

ground motions barely changes with the locations of different infrastructures. Thus, 653 

the targeted intensity is assumed to be 1000 gal for each infrastructure. In the default 654 

case, internetwork cascading effects are not considered (i.e., αTR/EN=0 and αWP/EN=0). 655 

The default infrastructural repair sequence is shown in Fig. 8(c). 656 

If a residential building is assumed to provide 420 houses, and each house is 657 

occupied by a couple and a child, a single residential building and the entire 658 

community will accommodate 1,260 and 11,340 residents respectively.  According to 659 

the above assumptions about IRBg,F and IRBg,O, the proportion of residents who choose 660 

to continue to live is 100% and 50% respectively for fully functional residential 661 

buildings and occupiable residential buildings [see Eqn.(16)]. In this case, IRBg,F and 662 

IRBg,O are 1260 and 630 respectively. To describe the dependent attitudes of Chinese 663 

residents, the SOM population percentages are calculated using the residential 664 

satisfaction data of some Chinese URCs (see Table 3).  The couplings in the SOM 665 

population percentages are estimated with the above-mentioned disability weightings 666 
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(see Table 4), wherein the ratios of the disability weightings are ω2/ω1=1.82 and 667 

ω3/ω1=2.72 (Murray 1994). 668 

 669 

Table 1. Values of parameters of fragility functions of basic components 670 

Item 
μ of PGA (g) β of PGA (g) 

Data source Reference 
DS1 DS2 DS3 DS4 DS1 DS2 DS3 DS4 

RBs 0.12 0.23 0.57 1.07 0.64 Model C2H (FEMA 2013) 

EB 0.23 0.33 0.63 1.22 0.64 Model PC2H 
CB 0.16 0.28 0.60 1.27 0.64 Model S1L 
MB 0.15 0.25 0.60 1.30 0.64 Model C1M 

EC 0.24 0.33 0.58 0.89 0.25 0.20 0.15 0.15 Model EDC2 
OC 0.24 0.33 0.58 0.89 0.20 0.20 0.07 0.07 Model EDC2 
WP 0.56 0.75 0.90 1.02 0.15 0.15 0.08 0.07 Calculation (Isoyama et al. 2000; 

Loganathan et al. 2002) GP 0.95 1.26 1.50 1.69 0.15 0.15 0.08 0.08 Calculation 

Note: Underlined values come directly from references; Values in italic type are calculated from data 671 

provided by references; CB = Commercial Building; DS = Damage State; EB = Educational Building;  672 

EC = Electrical Circu it; GP = Gas Pipeline; MB = Medical Building; OC = Opt ical C ircuit; PGA = 673 

Peak Ground Acceleration; RBs = Residential Buildings; WP = Water Pipeline; μ = Median of fragility 674 

function; β = Log-standard deviation of fragility function. 675 

 676 

Table 2. Repair durations of basic components 677 

Item 
Repair duration (day) 

Data source Reference 
DS0 DS1 DS2 DS3 DS4 

RBs 0 10.0 30.0 120.0 360.0 Assumption (Tao and He 2020b; MOHURD 2016) 
EB 0 5.0 20.0 90.0 180.0 Model EFS1 (FEMA 2013)  
CB 0 5.0 20.0 90.0 180.0 Model EDFLT 

MB 0 5.0 20.0 90.0 180.0 Model EFHS 
EC 0 0.4 1.7 7.5 15.0 Assumption (MOHURD 1993) 
OC 0 0.4 1.7 7.5 15.0 Assumption 

WP 0 0.3 1.1 5.0 10.0 Assumption 
GP 0 0.5 2.2 9.9 19.8 Assumption 

Note: Underlined values come directly from references; Values in italic type are assumed based on data 678 

provided by references. 679 

 680 

The factor analysis consists of four parts (see Table 5): The first part is used in 681 

illustrating the importance of modeling repair sequences of different repair plans (i.e., 682 

RPs) (see Table 6). Specifically, the 1st repair plan (RP1) has the highest efficiency 683 

but requires more resources. The efficiency of the 2nd and 3rd repair plans (RP2 and 684 

RP3) are lower than it of RP1 but require fewer resources. Although the resources 685 
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required by the 4th and 5th repair plans (RP4 and RP5) are similar to those of RP2 or 686 

RP3, they are rarely adopted in reality because their repair sequences are 687 

unreasonable. However, in order to compare different repair sequences, RP4 and RP5 688 

are still considered herein. The latter three parts of the factor analysis are used to 689 

capture the effects of the three infrastructural characteristics. Changes in network 690 

topology are shown in Fig. 9. 691 

 692 

Table 3. Secondary outmigration caused by a dysfunctional supporting building 693 

No. Item 
Population percentage of secondary outmigration 

CQ WH1 WH2 QHD DJY YX BC1 BC2 Avg. 

I0 i{EB,CB,MB},Ø,SOM N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 0 

I1 i{CB,MB},{EB},SOM 30.3% 25.2% 15.8% 27.7% 14.8% 16.5% 15.9% 18.9% 20.6% 

I2 i{EB,MB},{CB},SOM 12.5% 19.3% 33.2% 33.0% 12.1% 13.6% 13.1% 12.6% 18.7% 

I3 i{EB,CB},{MB},SOM 21.0% 28.7% 23.4% 26.9% 18.1% 16.6% 16.0% 18.9% 21.2% 

Note: Avg. = Average; BC = Beichuan (Qiao 2013); CQ = Chongqing (Chen 2007); DJY = Dujiangyan 694 

(Qiao 2013); QHD = Qinghuangdao (Meng 2012); WH = Wuhan (Ma 2008; He and Yang 2011); YX = 695 

Yingxiu (Qiao 2013). 696 

 697 

Table 4. Secondary outmigration caused by two or three dysfunctional supporting buildings 698 

No. Item Formula  Population percentage 

A1 Avg. of I1, I2 (I1+ I2)/2 19.7% 
A2 Avg. of I1, I3 (I1+ I3)/2 20.9% 
A3 Avg. of I2, I3 (I2+ I3)/2 20.0% 

A4 Avg. of I1, I2, I3 (I1+ I2+ I3)/3 20.2% 
I4 i{MB},{EB, CB},SOM A1×ω2/ω1 35.7% 

I5 i{CB},{EB,MB},SOM A2×ω2/ω1 38.0% 

I6 i{EB},{CB,MB},SOM A3×ω2/ω1 36.3% 

I7 iØ,{ EB,CB,MB},SOM A4×ω3/ω1 55.1% 

 699 

Table 5. Variable information in factor analysis 700 

Factor Variable 
Change in method or parameter value 

Default Modified 

1. Repair sequence tBCi,j,k,RS Calculating 

according to RP1 

Calculating according to RP2, 

RP3, RP4, RP5 (see Table 6) 
2. Seismic fragility (see Table.1) μUNs,DSs μUNs,DSs ×1.0 μUNs,DSs ×1.1, 1.2, 1.3, 1.4, 1.5  

μRBs,DSs μRBs,DSs ×1.0 μRBs,DSs ×1.1, 1.2, 1.3, 1.4, 1.5 

3. Topological redundancy γU γU = 2 γU = 0, 1, 3, 4, 5, 6 (see Fig. 10) 
4. Internetwork cascading strength αTR/EN αTR/EN = 0 αTR/EN = 0.2, 0.4, 0.6, 0.8, 1.0 

αWP/EN αWP/EN = 0 αWP/EN = 0.2, 0.4, 0.6, 0.8, 1.0 

Note: RP = Repair Plan; tBCi,j,k,RS = Repair start time of BCi,j,k; αTR/EN, αWP/EN = Dependence strength 701 

coefficients of telecommunication routers and water pumps on electricity network ; γU = Topological 702 

redundancy; μUNs,DSs, μRBs,DSs = Medians of fragility functions of utility networks and residential 703 

buildings. 704 

 705 
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 706 

Fig. 9. Changes in topology of utility networks 707 

 708 

Table 6. Changes in repair sequence of facility groups in factor analysis 709 

Repair Plan (RP) First Second Third 

1 UNs RBs & SBs / 
2 UNs RBs SBs 

3 UNs SBs RBs 
4 RBs UNs SBs 
5 RBs SBs UNs 

Note: UNs = Utility networks; RBs = Residential buildings; SBs = Supporting buildings. 710 

 711 

Analysis results and discussion 712 

Changes in repair sequences can significantly affect the recovery of functionality 713 

[see Fig. 10(a)]. Specifically, RP1 has the highest efficiency since the two types of 714 

buildings are repaired  simultaneously. Both RP2 and RP3 show steadily rising 715 

recovery curves with similar recovery periods. The cumulative loss of RP2 is less than 716 

that of RP3, because RP2 prioritizes the repair of residential buildings so that the 717 

residents that can accept the dysfunction of supporting buildings can reoccupy earlier. 718 

Because the delay of repairs of utility networks affects the functioning of buildings, 719 

the recovery curves of RP4 and RP5 rise slowly. 720 
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 721 

 722 

 723 

Fig. 10. Development trends of performance indicators under different repair plans; (a) 724 

Functionality; (b) Toughness; (c) Efficiency 725 

 726 

Changes in the repair sequence of buildings (i.e., RP1~RP3) do not affect the 727 

recovery of toughness and efficiency [see Fig. 10(b)~(c)], because these two 728 

indicators which primarily depend on infrastructural topology are unrelated to the 729 

functionality of buildings. In addition, the delay of repairs of utility networks shifts 730 

the recovery curves of toughness and efficiency to the right without changing their 731 

shapes. According to Fig. 10, it is sensible to repair utility networks first, because this 732 

sequence can markedly reduce the recovery period and cumulative losses of the three 733 

indicators. 734 

The functionality recovery curve shifts to the left as the seismic performance of 735 

utility networks improves [see Fig. 11(a)], because the reduction of their seismic 736 
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damages advances the recovery process of the community. Correspondingly, this 737 

change raises the resilience threshold [see Fig. 11(e)], and reduces the cumulative loss 738 

and recovery period [see Fig. 11(c)~(d)]. However, changes in the metrics gradually 739 

slow down with the increase of μUNs,DSs. It can be inferred that the metrics will stop 740 

changing when μUNs,DSs increases to a certain value. The effect of improving the 741 

seismic performance of utility networks on promoting functionality recovery is thus 742 

limited. 743 

 744 

 745 

 746 

 747 
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 748 

Fig. 11. Impacts of seismic fragility of utility networks and residential buildings on 749 

functionality; (a) Recovery curves (changing μUNs,DSs); (b) Recovery curves (changing 750 

μRBs,DSs); (c) Cumulative loss (changing μUNs,DSs); (d) Recovery period (changing 751 

μUNs,DSs); (e) Resilience threshold (changing μUNs,DSs); (f) Cumulative loss (changing 752 

μRBs,DSs); (g) Recovery period (changing μRBs,DSs); (h) Resilience threshold (changing 753 

μRBs,DSs) 754 

 755 

The rising section of the functionality recovery curve rotates anticlockwise 756 

around its starting point as the seismic performance of residential buildings improves 757 

[see Fig. 11(b)], because the reduction of their seismic damages significantly 758 

accelerates the recovery process of the community. Thus, the resilience threshold 759 

increases [see Fig. 11(g)], while the cumulative loss and recovery period decrease [see 760 

Fig. 11(f)~(g)]. The metrics change linearly with the increase in μUNs,DSs. By 761 

comparison, it is found that the functionality recovery is better promoted by 762 

improving the seismic performance of residential buildings than utility networks. This 763 

phenomenon may be caused by the fact that the residential space provided by 764 

residential buildings is more important to the occupancy of residents than the utilities 765 

provided by utility networks. Because residential space is commonly more 766 

fundamental than utilities for the living of residents, the explanation obtained for the 767 

case-study community can be extended to most typical urban residential communities. 768 
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Besides, the changes in toughness and efficiency whose definitions are only related to 769 

infrastructural topology are no longer shown in Fig. 11.  770 

 771 

 772 

 773 

Fig. 12. Impacts of topological redundancy of utility networks on the recovery of 774 

functionality and toughness; (a) Functionality recovery curve; (b) Toughness recovery 775 

curve; (c) Functionality recovery curve (the 33th~37th days); (d) Toughness recovery 776 

curve (the 33th~37th days) 777 

 778 

Changes in topological redundancy appear to be ineffective in promoting the 779 

recovery of functionality and toughness [see Fig. 12(a)~(b)]. However, after 780 

narrowing the scope of the time axis, small increases are shown [see Fig. 12(c)~(d)]. 781 

Obviously, changes in γU do affect the recoveries of functionality and toughness, but 782 

its effect and duration are limited. This result is caused by two factors: (1) a few 783 

redundant pipelines can hardly change the recovery of the case-study community; (2) 784 

the repair duration of utility networks is much shorter than that of the entire 785 
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community. Besides, the curve of efficiency is not shown in Fig. 12 because it does 786 

not change with topological redundancy. Although topological redundancy has little 787 

effect on the recovery of the case-study community, this factor should not be ignored 788 

since it may cause a stronger impact in some URCs whose repair processes take 789 

longer time. 790 

 791 

 792 

 793 

Fig. 13. Impacts of internetwork cascading effects of utility networks on toughness 794 

recovery; (a) Toughness recovery curve (αTR/EN, normal); (b) Toughness recovery 795 

curve (αWP/EN, normal); (c) Toughness recovery curve (αTR/EN, decelerated); (d) 796 

Toughness recovery curve (αWP/EN, decelerated) 797 

 798 

For routers with independent direct current supply, the additional electricity 799 

power provided by the electricity network can reduce their dysfunctional risks caused 800 

by power outages. Therefore, the increase in the dependence of telecom routers on 801 

electricity networks promotes the recovery of toughness [see Fig. 13(a)]. In contrast, 802 
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if water pumps are additionally installed, the recovery curve of toughness will 803 

decrease as the dependence of pumps on electricity increases [see Fig. 13(b)], because 804 

this dependence may increase the risk of water shortage due to the possible seismic 805 

damage of the electricity network. Obviously, the influences of internetwork 806 

cascading effects can be positive or negative; thus, it should not be simply assumed 807 

that community resilience can be improved by increasing or decreasing internetwork 808 

cascading effects before investigating the dependence mode of devices on utilities. 809 

Moreover, if the recovery is decelerated, the duration of the cascading effects 810 

will be prolonged [see Fig. 13(c)~(d)]. The duration of cascading effects is thus 811 

closely related to the duration of repairing utility networks. According to Fig. 13, it 812 

can be seen that the proposed simulation method provides a direct way to characterize 813 

the internetwork cascading effects that exist in URCs. The curves of functionality and 814 

efficiency are not shown in Fig. 13 because their recoveries are barely affected by 815 

internetwork cascading effects. Although the scale of the case-study community is 816 

limited, various infrastructure-related and resident-related factors are exhaustively 817 

considered in this case study. Therefore, the results obtained from this small case-818 

study community can also provide valuable references for subsequent studies on other 819 

larger communities. 820 

 821 

Conclusions 822 

(1) The key innovative contribution of this study is to systematically incorporate 823 

a series of analysis tools (e.g., seismic damage analysis, post-earthquake recovery 824 
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simulation, infrastructural dependence analysis, and population-based functionality 825 

indicator) into a comprehensive methodology for resilience assessment and analysis.  826 

Unlike existing studies that focus on the independent analyses of individual factors, 827 

the proposed methodology prefers to simultaneously investigate and compare the 828 

impacts of different types of factors using a unified standard from the perspective of 829 

URCs. This methodology can help the leaders and stakeholders of a URC understand 830 

the community resilience more comprehensively, resulting in developing more 831 

efficient and reliable resilience improvement programs. 832 

(2) Based on the functionality indicators which can capture the infrastructural 833 

dependence in detail, as well as the model of densely populated URCs consisting of 834 

multiple supporting buildings, utility networks, and residential buildings, this study 835 

quantifies the capability of a densely populated residential community to serve its 836 

residents after earthquakes in a more detailed way than existing studies. In addition, a 837 

specialized description method of infrastructural repair sequences is also proposed for 838 

urban residential communities. This method provides the possibility to flexibly depict 839 

various possible repair plans in community recovery simulation. 840 

(3) Improvements in the seismic performance of utility networks and residential 841 

buildings can facilitate community recovery. As seismic performance improves, the 842 

impact of the former one will gradually diminish, while the impact of the latter one 843 

will remain basically unchanged. This difference implies that the residential space 844 

provided by residential buildings has a stronger impact on resident occupancy than the 845 

utilities provided by the utility networks. This phenomenon is likely to occur in most 846 
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typical URCs where residential space is treated as the most foundational element of 847 

resident living. As a better choice to facilitate the recovery of such communities, the 848 

improvement of the seismic performance of residential buildings needs to be given 849 

sufficient attention. 850 

(4) The results of the case study show that the impacts of internetwork cascading 851 

effects may be positive or negative. Therefore, it should not be simply assumed that 852 

community resilience can be improved by increasing or decreasing the internetwork 853 

cascading effects. On the other hand, the addition or removal of a few redundant 854 

pipelines shows little impact on the recovery of the case-study community because the 855 

repair durations of the utility networks are short. However, in some practical 856 

situations where the repairs of utility networks are time-consuming, more attention 857 

should be given to these two factors, because their impacts will expand with the 858 

extension of those repair durations. 859 

(5) Although the proposed recovery simulation method can describe the 860 

randomness of the seismic damages of infrastructures, it does not consider the 861 

randomness of repair durations. A systematic investigation of the statistical 862 

characteristics of repair durations is still urgently needed. The lack of consideration of 863 

transportation networks may make the simulation results more optimistic than actual 864 

situation. Although this difference is unobvious for the concerned URCs, 865 

transportation networks should still be incorporated in the future to obtain more 866 

realistic simulation results. Damage analysis methods for different kinds of disasters 867 

should also be incorporated into the proposed methodology to further expand the 868 
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scope of its application. In addition, the repair sequence function needs improving in 869 

the future to consider other types of repair processes, such as the flow repetitive 870 

construction operation which is common in actual construction projects. 871 
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NOMENCLATURE 995 

α Dependence strength coefficient 
β Log-standard deviation of the intensity of ground motions 
γ Topological redundancy 

μ Median of the intensity of ground motions 
Ψ Lognormal cumulative distribution function 
ARDP Accumulative repair durations of preorder entities 
BC Basic component 
BD Building 

DS Damage state 
EN Electricity network 
FG Facility group 
PC Parallel construction 
POM Primary outmigration 
PS Pipeline section 
PW Pathway 
RB Residential building 
RC Repair completion 
RD Repair duration 
RP Repair plan 
RS Repair start 
SB Supporting building 
SBF Collections of functional supporting buildings 
SBDF Collections of dysfunctional supporting buildings 
SC Sequential construction 
SN Sink node 
SOM Secondary outmigration 
SR Source node 
ST Sector 
TR Telecom router 
UC Utility component 
UN Utility network 
WP Water pump 
APWd(t) Adjacency variable of the dth pathway 
C(t) Generalized performance function 
GRS(t) Repair sequence function 
HBC,DS(t) Step function of a basic component in a certain damage state 
is(t) Normalized post-earthquake staying population of a community 
iSOM(t) Population percentage of the secondary outmigration 

IPOM(t) Population of the primary outmigration 
IRB,F Numbers of people living in a fully functional residential building 
IRB,O Numbers of people living in an occupiable residential building 
IRBg,POM(t) Primary outmigration population of the gth residential building 
IRB,S(t) Post-earthquake staying population of a residential building 
IRB,T Total population of a residential building 
IS(t) Post-earthquake staying population of a community 
IT Initial total population of a community 
IMT Targeted intensity of ground motions 
k(t) Normalized toughness of utility networks 



54 

 

K(t) Toughness of utility networks 
KUN(t) Probabilistic source-sink connectivity of a utility network 
LPSe,P Physical length of the eth pipeline section 
PRB,F(t) Probability of the fully functional state of a residential building 
PRB,O(t) Probability of the occupiable state of a residential building 
PBC,DS Probability that a basic component is in a certain damage state 
PBC,O(t) Probability that a basic component is operable (or occupiable) 
PBD,DF(t) Probability that a building is dysfunctional 
PBD,F(t) Probability that a building is functional 
PBD,O(t) Probability that a building is occupiable 
PPW,IP(t) Probability that a pathway is impassable 
PPW,P(t) Probability that a pathway is passable 
PSBh’,DF(t) Probability that the h’th supporting building is dysfunctional 
PSBh,F(t) Probability that the hth supporting building is functional 

PSR&SN,C(t) Probability that a source node and a sink node is connected  
PSR&SN,DC(t) Probability that a source node and a sink node is disconnected 
PUC,O(t) Probability that a utility component is operable 
PPSe,F(t) Probability that the eth pipeline section is functioning 
PLT(t) Total probabilistic length of a utility network 
PLPSe(t) Probabilistic length of the eth pipeline section 
RE Resilience threshold 
RL Cumulative loss 
RT Recovery period 
t Time variable 
tBC,DS,RC Repair completion time of a basic component in a certain damage state 
tBC,DS,RD Repair duration of a basic component in a certain damage state 
tBC,RD Repair duration of a basic component 
tBC,RS Repair start time of a basic component 
tTRD Total recovery duration of a community 
tTRD,norm Normalized total recovery duration of a community 
u(t) Normalized efficiency of utility networks 
U(t) Efficiency of utility networks 
UUN(t) Efficiency of a utility network 
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