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Abstract. There is a lack of professional rehabilitation therapists and facilities in 

low-resource settings such as Bangladesh. In particular, the restrictively high 

costs of rehabilitative therapy have prompted a search for alternatives to tradi-

tional in-patient/out-patient hospital rehabilitation moving therapy outside 

healthcare settings. Considering the potential for home-based rehabilitation, we 

implemented a low-cost wearable system for 5 basic exercises namely, hand 

raised, wrist flexion, wrist extension, wrist pronation, and wrist supination, of 

upper limb (UL) rehabilitation through the incorporation of physiotherapists’ per-

spectives. As a proof of concept, we collected data through our system from 10 

Bangladeshi participants: 9 researchers and 1 undergoing physical therapy. Lev-

eraging the system’s sensed data, we developed a diverse set of machine learning 

models. and selected important features through three feature selection ap-

proaches: filter, wrapper, and embedded. We find that the Multilayer Perceptron 

classification model, which was developed by the embedded method Random 

Forest selected features, can identify the five exercises with a ROC-AUC score 

of 98.2% and sensitivity of 98%. Our system has the potential for providing real-

time insights regarding the precision of the exercises which can facilitate home-

based UL rehabilitation in resource-constrained settings. 

Keywords: Upper limb rehabilitation, Low-resource, Wearable, Machine learn-

ing, Exercises, Physiotherapy, Bangladesh, Digital health, Low-cost wearable. 

1 Introduction 

Upper limb impairment, a reduction or loss of limb function, is one of the most common 

consequences of acquired brain injury (ABI) [3]. In Bangladesh, ABI due to stroke and 

trauma is the leading cause of death and disability, representing an immense economic 

cost to the nation [20]. Over 97% of people with an ABI are diagnosed with some form 
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of limb weakness that affects their ability to independently perform daily activities [3, 

20]. In addition, there are very few care facilities and professionals [16, 20] limiting 

access to rehabilitation services, which increases the risk of long-term disability [20]. 

The high costs associated with hospital-based therapy continue to be a major barrier 

[20]. For example, in 2016, the typical Bangladeshi household income per month was 

15,988 BDT ($189.76) [2] while the monthly cost for hospital-based rehabilitation in 

2017 was 27,852 BDT ($328) [20]. High costs force one to choose between poverty 

and lifelong disability. 

These challenges have created an opportunity for the use of technology to support 

home-based rehabilitation, especially in remote areas of Bangladesh. Technology-

based rehabilitation in the home offers greater accessibility and convenience in relation 

to the time spent attending face-to-face appointments, thus reducing the overall costs 

of rehabilitation [17, 19]. Several technologies have been deployed for use in upper 

limb (UL) rehabilitation, including rehabilitation robots which actively assist patients 

to perform rehabilitation exercises [7], electrical stimulation which uses an electrical 

current to stimulate muscles in the affected limb [24], and wearable sensor devices 

which capture the patient’s movements during rehabilitation exercises [17]. However, 

the robots are often large and expensive [19], and the electrical stimulation hardware 

requires expert knowledge and dexterous manipulation to set up [24]. Though there are 

several low-cost rehabilitation systems, there is a lack of computational models (e.g., 

[1, 11]) that could enable the systems to automatically identify the exercises and pro-

vide feedback to the patients and caregivers in real-time. 

Therefore, we present a low-cost wearable system that incorporates machine learn-

ing models to support UL rehabilitation. Our contribution is twofold:  

● We present a low-cost (around $16) system for recording and monitoring ex-

ercises to support UL rehabilitation. 

● We develop machine learning (ML) models based on 14 algorithms and three 

feature selection (FS) approaches and show that the Multilayer Perceptron 

(MLP) model performed best with a ROC-AUC and precision score of 98.2%.  

Overall, our system can facilitate home-based UL rehabilitation and real-time monitor-

ing of the patients in low-resource settings. 

2 Related Work 

2.1 Approaches to Upper Limb Rehabilitation 

Conventional rehabilitation is typically conducted in a controlled hospital environment. 

The methods for UL rehabilitation include mental imagery and action observation [12], 

constraint-induced movement therapy [14], and task-specific training [10]. Hospital-

based task-specific training can lead to improved rehabilitation outcomes when admin-

istered frequently over an extended period [4, 10]. However, trained competencies ac-

quired in the hospital environment, such as grasping and reaching, often fail to transfer 

to home and work environments, since trained movements may not correspond to ac-

tivities in daily life [9]. 

Compared to hospital-based rehabilitation, home-based rehabilitation focused on 

everyday actions has been shown to achieve significantly better outcomes with regard 

to training transfer. This is because the training exercises are carried out within the 

relevant context where they would occur daily [21]. In addition, since home-based 
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rehabilitation reduces the need for frequent hospital visits, and does not require expen-

sive facilities, the cost of rehabilitation can be greatly lowered. 

2.2 Technologies to Support Upper Limb Rehabilitation 

In response to the demand for technological interventions for rehabilitation, several 

technologies have been deployed to support UL rehabilitation. These technologies in-

clude rehabilitation robots [7], electrical stimulation [24], and wearable sensor devices 

[17]. Rehabilitation robots, such as exoskeletons and soft wearable robots [7, 19], allow 

for precise movement control while providing assistance to weakened or paralyzed 

limbs during rehabilitation. But they are very expensive, not easily portable, and hard 

to wear and undress. Also, they often pose a safety risk when there is a misalignment 

between the robot and the human anatomy [19]. Consequently, rehabilitation robots are 

deployed in controlled hospital environments where the expertise is available to support 

clinical and rehabilitation practices. Thus, these technologies are often unsuitable for 

home-based rehabilitation. 

Electrical stimulation (ES) for rehabilitation is focused on producing motor re-

sponses in muscles that are weakened or paralyzed due to an upper motor neuron injury, 

as is the case in people with ABI [24]. Its major setback in rehabilitation is the possi-

bility of fatigue due to neurotransmitter depletion or propagation failure. When such 

fatigue sets in, the muscle fibers are not sufficiently stimulated and hence do not gain 

strength [24]. Therefore, expert knowledge is required to control the parameters of the 

stimulation provided. The need for expert monitoring and expensive specialized equip-

ment restricts the deployment of ES in home-based rehabilitation settings.  

Wearable devices are a widely explored system for UL rehabilitation [25]. They are 

lightweight, easy to put on and take off, cost-effective, and easy to operate [1, 17]. In 

addition, it is feasible to deploy them in the home as an alternative and/or complement 

to hospital-based rehabilitation [5]. Due to their low cost, they are also suitable for low-

income settings. As such, researchers developed systems for the Global South focusing 

on exercises such as flexion, extension, abduction, horizontal abduction [1], supine 

[11], etc. However, they rely on visualization techniques which may not be precise 

enough to account for subtle differences to accurately identify UL exercises. 

3 System Development 

3.1 Understanding Physiotherapists’ Perspectives 

The developed system was informed by interviews with four Bangladeshi (3 men, 1 

woman) physiotherapists, who helped us to identify basic exercises that were important 

for UL rehabilitation. To provide context, we summarize the key points that informed 

the design of our system; detailed interview results are reported elsewhere. 

In Bangladesh, physiotherapy focuses on basic movements aiming to strengthen the 

muscles. However, the limited access to treatment was further worsened during the 

pandemic, as many centers closed down and physiotherapy sessions were discontinued: 

“All patients' treatments do not complete at-home services. Sometimes there are re-

quired machines. So, that is not possible at home rather than in centers. In Bangla-

desh, good physio centers do not have many branches, so that people can't get sup-

port during COVID-19.”- Physiotherapist 1 
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This situation highlights the need for home-based physiotherapy. However, physio-

therapists mentioned issues with the accuracy of movements when practicing at home, 

which can have a negative impact on patients: 

“For hand movements, patients sometimes lift the wrong shoulder. Here movement 

is done but wrong. Detecting accurate movement is necessary” - Physiotherapist 4 

Maintaining accuracy at home requires a system that can monitor the patients’ exer-

cises. They have suggested key 5 exercises necessary for UL progress: 

● Hand raised: It is an exercise where the hands are kept up 90 degrees and 

the shoulders are kept straight. 

● Wrist flexion: It is the bending of the hand down at the wrist where the palm 

faces toward the arm. 

● Wrist extension: It is the opposite of flexion where the movement of the 

hand is backward, towards the forearm's posterior side. 

● Wrist pronation: In pronation, the forearm or palm faces down. 

● Wrist supination: In this exercise, the forearm or palm faces up. 

3.2 System Design 

To develop a low-cost system that can facilitate the identification of the aforementioned 

exercises unobtrusively, we used Arduino Nano (price ~$7) and inertial measurement 

unit (IMU) sensor MPU-9250 9-DOF (price ~$9) where the IMU consists of an accel-

erometer, gyroscope, and magnetometer. Firstly, a basic prototype (Fig. 1(a)) was de-

veloped to ensure the component level accuracy, which was followed by a working 

prototype (Fig. 1(b)) on a glove that had a flex sensor placed on each finger. However, 

the sensors’ placement added extra noise which was finally modified (Fig. 1(c)) by 

keeping the sensors further from the finger. 

 
(a) Basic prototype (b) Working prototype  (c) Final design  

Fig. 1. Development of the system. 

Data recording application: A data recorder was developed to prompt the user to 

record the data of each exercise. The user could control the beginning of the recording 

of each exercise. In the data recorder, the delay between each movement of the same 

exercise can be modified as the users may have different preferences. 

  
(a) Uncalibrated data (b) Calibrated data 

Fig. 2. (a) Uncalibrated and (b) calibrated data of the accelerometer. 
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Initialization and stabilization: The sampling rate of the system was 90 Hz. The raw 

data of the accelerometer, as an example, portrayed in Fig. 2(a), is taken before any 

hand gesture takes place to get a sense of the IMU sensor’s data. As seen in Fig. 2(a), 

the starting amplitude without any hand gestures is non-zero. The uncalibrated values 

are due to gravity, the earth’s magnetic flux coupled with the sensor’s offset values 

which implies that the sensors’ starting value will be different in different starting po-

sitions of the sensor. To ensure amplitude values are stabilized, a calibration routine 

was implemented where during the initialization of the wearable at a flat surface, 3000 

readings are taken and averaged. This averaged value is subtracted from all subsequent 

sensor data to remove the offset. The data after the calibration is illustrated in Fig. 2(b). 

Due to the calibration routine, the amplitude of all 3 axes of data points is always set to 

zero at the initiation of the device for rest position. 

Precision adjustment: Initially, there was low precision as the data recorder regis-

tered integer values to reduce processing time. Due to the absence of decimal points, 

the data plots were not continuous (Fig. 3). To get the decimal points, we multiplied 

the sensor data by 100,000 and divided the integer data by that value, thereby incorpo-

rating the lost decimal values and increasing the precision. E.g., for the low precision 

gyroscope data, there is a staircase effect, but for the high precision data, the plot line 

is continuous as decimal points are incorporated (Fig. 3). 

 
Fig. 3. Improved data precision of the gyroscope. 

3.3 Validation of the Developed System 

For validation, our system’s retrieved data was compared with a Samsung Galaxy S6 

smartphone (Table 1) which has been found as a promising device to sense data [18]. 

To get the sensors’ data from Galaxy S6, we used the Physics Toolbox Sensor Suite Pro 

app which is available in the Play Store. We recruited 2 participants and each partici-

pant performed each exercise through our system and also through Galaxy S6. During 

validation, both the prototype and the smartphone were connected to the user at the 

same time and the data was captured in both devices simultaneously. Therefore, both 

sets of data captured the same exercise movement data. 

Table 1. Comparison of our system’s retrieved data with the Galaxy S6. 

Axis 

Accelerometer Gyroscope Magnetometer 

 

Peak diff. 

Noise variance  

Peak diff. 

Noise variance  

Peak diff. 

Noise variance 

Our system Galaxy S6 Our system Galaxy S6 Our system Galaxy S6 

X 8.98% 5.7*10-7 0.0942 1.14% 4.58*10-5 9.42*10-5 1.14% 4.58*10-5 9.42*10-5 

Y 5.98% 3.76*10-7 2.07*10-4 0.58% 6.11*10-8 1.05*10-4 0.58% 6.12*10-8 1.05*10-4 

Z 1.22% 8.12*10-5 8.19*10-4 16.17% 2.47*10-7 1.24*10-5 16.17% 2.47*10-7 1.24*10-5 

For comparison, we calculated the noise variance using the MATLAB function evar 

[8] which estimates the variance of additive noise. Peak difference was calculated using 

the formula 𝑝𝑒𝑎𝑘_𝑑𝑖𝑓 = 
|(𝑝𝑒𝑎𝑘_𝑣𝑎𝑙𝑢𝑒𝑜𝑢𝑟_𝑠𝑦𝑒𝑡𝑚 − 𝑝𝑒𝑎𝑘_𝑣𝑎𝑙𝑢𝑒𝑆6)| 

𝑝𝑒𝑎𝑘_𝑣𝑎𝑙𝑢𝑒𝑆6
. In the Z-axis of the accel-

erometer and the X-axis of the gyroscope and magnetometer, the peak difference 
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between our system and S6 retrieved data was less than 1.5% (Table 1). Though in 

some cases the peak difference was around 16%, our system had much lower noise 

variance. Thus, our system’s data was comparable to the S6 phone with better noise 

performance. 

4 Methodology  

4.1 Participants and Research Ethics  

As a proof of concept, we conducted a study in Bangladesh with 10 participants, nine 

researchers, and one undergoing physiotherapy. On average, each participant provided 

data on 10.8 different days (SD=7.20, Minimum=3, Maximum=30, Median=10), and 

on each day, each participant did each exercise 5 times. While collecting data, we la-

beled the 5 exercises (e.g., wrist flexion) so that the ML models' prediction could be 

evaluated. 

The study was approved by the North South University IRB/ERC committee 

(2020/OR-NSU/IRB-No.0501). We received the participants’ signed consent forms. 

4.2 ML Model Development 

4.2.1 Feature extraction and selection 

For each participant, we calculated 6 types of data, namely, mean, standard deviation 

(SD), interquartile range (IQR), skewness, kurtosis, and entropy over the time periods 

based on the accelerometer, magnetometer, and gyroscope sensed data from each of the 

3 axes (X, Y, Z) separately. In total, we extracted 54 features (6 types of data * 3 sensors 

* 3 axes) from each participant. But 36 (67%) of the features’ data were not normally 

distributed, and thus, we normalized the data instead of standardization. 

In general, feature selection (FS) methods can be grouped into 3 categories [15]: 

wrapper, filter, and embedded method. As a wrapper method, we used the Boruta algo-

rithm which is an all-relevant FS approach [23]. We tuned the maximum depth of Bo-

ruta’s base estimator Random Forest (RF) algorithm and the range was 3 to 7 which is 

suggested to use [6]. We used the Information Gain (IG) and RF algorithms as the filter 

and embedded methods respectively. IG and RF algorithms work by a minimal-optimal 

method whereas, unlike the all-relevant FS approach, it does not inform a fixed set of 

features to be used. Therefore, for the IG and RF methods, we used the maximum length 

of the Boruta selected features set as the upper boundary and 1 as the lower boundary 

of the number of features to be selected. 

4.2.2 Model development and validation 

Based on the “No Free Lunch” theorem, there is no algorithm that can perform best for 

all problems. Hence, we developed models (Fig. 4) by exploring a diverse set of ML 

algorithms: Logistic Regression (Logit), K-Nearest Neighbor (KNN), Support Vector 

Classifier (SVC), Gaussian Naïve Bayes (GNB), Decision Trees, Random Forest (RF), 

Gradient Boosting (GB), Light GBM, AdaBoost, Extra Tree, CatBoost, Extreme Gra-

dient Boosting, and Multilayer Perceptron (MLP). In addition, a Dummy classifier was 

used as the baseline which predicts regardless of the input features. Inspired by Vabalas 

et al. [22], we used the nested cross-validation approach which shows generalizable 

performance. In the outer loop, there was Leave One Out Cross Validation (LOOCV) 

where we divided the dataset into 𝑛 equal portions where each portion presenting a 

participant’s data. Then, we used 𝑛 − 1 participants’ data to select the best set of 
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features, and in the inner loop, to tune the hyper-parameters, we used a 5-fold CV max-

imizing the macro-F1 score. For tuning, we used the Bayesian search technique. After 

finding the best estimator, we predicted the class of the left participant’s exercises who 

was not involved in FS and hyper-parameter tuning stages. We repeated this process to 

predict the exercise class of each of the 10 participants. 

 
Fig. 4. ML pipeline to identify each exercise. 

We evaluated the models’ performance by comparing the labeled class with the mod-

els’ predicted exercise and calculated the precision, sensitivity, F1, and ROC-AUC 

(Area Under the Receiver Operating Characteristic Curve). Each evaluation metric’s 

score was macro-averaged by calculating the simple arithmetic mean of all the 5 class 

scores of the evaluation metric (e.g., precision). It should be noted that in our study, 

each participant performed each of the 5 exercises, which means there is no class im-

balance. In addition, to make the models unbiased, none of the 5 exercise data of the 

test participants were used in the training phase. 

5 Results 

5.1 Predicting the Exercises 

 
Maximum depth of the base estimator Maximum depth of the base estimator 

(a) Number of selected features (b) Best models’ performance 

Fig. 5. (a) Number of selected features and (b) performance of the best model while selecting the 

features by tuning the maximum depth of the base estimator of Boruta. 

To identify each exercise from the sensor retrieved data, we tuned the maximum 

depth of the base estimator Random Forest (RF) in the all-relevant FS approach Boruta. 

The number of selected features was lower with the increase in the maximum depth 

(Fig. 5(a)). It is apparent that at maximum depths 4, 5, and 6, the best performing model 

SVC has almost identical performance (Precision=94.4%, F1=94.1%, 
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Sensitivity=94%) where SVC can identify 94% of exercises accurately (Fig. 5(b)). 

However, the mean number of selected features in each iteration of LOOCV is 24.1 

(SD=1.0) at depth 4 whereas it is 23.1 at depths 5 and 6 (Fig. 5(a)). As the ROC-AUC 

score is 97.6% and 97.8% at depths 5 and 6 respectively, we consider SVC at depth 6 

as the best model due to having relatively higher predictability. 

In the Boruta FS approach, on average, the maximum number of selected features 

was 25.1 which is at depth 3 (Fig. 5(a)). Therefore, as discussed in Section 4.2.1, we 

set 25 as the upper boundary of the number of features to be selected in the filter and 

embedded FS methods. In the filter method Information Gain (IG), when there is only 

1 feature selected, the Logit model performed best with an F1 score of around 80% 

(Fig. 6(a)). However, the MLP model based on 9 important features in each iteration of 

LOOCV had a maximum F1 of 96% and a ROC-AUC score of 98%. Though at features 

9, 20, 21, 22, and 25 the performance of the best model is almost similar, the model 

based on 9 features were selected as best due to having lower features. 
 

  
Number of selected features Number of selected features 

(a) IG (b) RF 

Fig. 6. Best models’ performance when a number of important features are selected through the 

(a) filter method IG and (b) embedded method RF algorithm. 

In the embedded method RF selected 9 important features, the best model SVC had 

a precision of 94.7%, an F1 score of 94%, and a ROC-AUC score of 96% (Fig. 6(b)) 

which was lower than the performance of the best model based on IG selected 9 fea-

tures. However, the MLP model based on the RF selected 16 features in each iteration 

of LOOCV has a ROC-AUC score of 98.2%, precision of 98.2%, and F1 score of 98%. 

This MLP model had higher performance than any other models based on the Boruta 

(Fig. 5) and IG selected features (Fig. 6(a)). 

Table 2. Performance of the top-5 classifiers and baseline Dummy classifier, based on the best 

(in terms of ML models’ performance) set of features of each FS method. “# of features” present 

the number of features used in each iteration of LOPOCV. E: Extra. 

Filter method IG (# of features=9) 
Wrapper method Boruta (average # 

of features=23.1 (SD: 1.8)) 

Embedded method RF (# of fea-

tures=16) 

Model 

Name 

Preci-

sion 

Sensi-

tivity 
F1 

ROC 

AUC 

Model 

Name 

Preci-

sion 

Sensi-

tivity 
F1 

ROC 

AUC  

Model 

Name 

Preci-

sion 

Sensi-

tivity 
F1  

ROC 

AUC 

MLP 96.2 96 96 98 SVC 94.4 94 94.1 97.8 MLP 98.2 98 98 98.2 

SVC 93.2 92 92 96.8 GNB 92.8 92 92.2 97.8 GNB 94.4 94 94.1 97.8 

Logit 90 90 90 96 MLP 91 90 90.1 95.9 SVC 94 94 93.9 98 

E. Tree 90 90 90 95.9 E. Tree 90.4 90 90.1 98.3 KNN 92.3 90 89.7 93.8 

GNB 90.1 90 90 96.8 Logit 89.9 90 89.9 97.1 RF 88.6 88 88 95.6 

Dummy 0 0 0 50 Dummy 0 0 0 0 Dummy 0 0 0 50 
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Though we developed models based on 14 algorithms, we found conventional ML 

models’ (e.g., SVC, GN) superior performance. In the Boruta selected features, the best 

model in each depth was either SVC or the GNB (Fig. 5(b)). Also, in IG (Fig. 6 (a)) 

and RF (Fig. 6(b)) selected feature-based models, the best performing model in most 

cases was KNN and SVC. Apart from these, though there was a single tree-based model 

among the top-5 models in the case of each FS method’s best set of features, we found 

3 conventional algorithm-based models (Table 2) which shows their robustness to iden-

tify the exercises. We also found in each FS method, the models had higher scores 

compared to the baseline dummy classifier (Table 2). 

While exploring more the performance of the best classifier regardless of FS method, 

we found that the MLP model identified hand raised, wrist pronation, and supination 

100% accurately (Table 3). However, in wrist flexion, though the predicted class was 

100% accurate, it correctly identified 90% of exercises among 10 flexion exercises of 

10 participants (precision=100%, sensitivity=90%, support=10). 

Table 3. Best model’s (MLP based on 16 features selected by RF) prediction for each exercise. 
Exercise Precision Sensitivity F1 Support Exercise Precision Sensitivity F1 Support 

Hand raised 100 100 100 10 Wrist pronation 100 100 100 10 

Wrist flexion 100 90 95 10 Wrist supina-

tion 
100 100 100 10 

Wrist extension 91 100 95 10 

5.2 Feature Importance 

We found 29 features (Fig. 7) that were used in the top-5 classifiers on the basis of the 

best set of features of each FS method (Table 2). Among them, 14 features (48.28%) 

were based on the gyroscope sensed data, which reflects that this sensor’s features are 

more important for identifying the exercises (Fig. 7). 

In the Boruta and RF FS methods, we found the stability of 6 features such as the 

mean and skewness of the gyroscope sensed data in the Z-axis, which appeared in all 

iterations of the LOOCV (Fig. 7). This may explain the fact of having relatively iden-

tical performance in RF and Boruta selected feature-based ML models. For example, 

the best model based on the RF selected features from 11 to 14 and also from 20 to 25, 

had identical performance (Fig. 6(b)). Also, at depths 4, 5, and 6 of the base estimator 

of Boruta FS, the performance was almost identical (Fig. 5(b)). 

 
Fig. 7. Features used to develop the top-5 classifiers. Here, each value presents each feature’s 

percentage of appearance in all 10 iterations of LOOCV. A: Accelerometer, M: Magnetometer, 

G: Gyroscope. X, Y, and Z denote the axes. 

6 Discussion 

We presented a low-cost system (~$16) to support UL rehabilitation in resource-con-

strained settings. Based on our system's sensed data, we developed ML models which 
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can identify the 5 exercises with a ROC-AUC score of over 95%. This extends the 

existing systems, particularly the low-cost systems focusing on a few other exercises 

[1] where there is no automated process for accurate identification of exercises [1, 11]. 

Therefore, our system could identify and inform patients and caregivers whether the 

particular exercise is conducted precisely. This could facilitate home-based rehabilita-

tion and support physiotherapists in remote monitoring, especially when there are in-

adequate rehabilitation facilities [16]. 

We found MLP as the best-performing model where its predicted exercise was ac-

curate in 98.2% of cases. A plausible reason for the higher performance of MLP can be 

due to the neural networks’ ability to capture complex patterns. But recent systematic 

reviews in medical informatics found researchers’ preference for tree-based ML algo-

rithms [13]. Though we developed models based on 8 tree-based algorithms, in the top-

5 classifiers of each FS method, we found a single tree-based model. However, there 

were 3 models based on conventional ML algorithms such as the SVC and Logit where 

evaluation metrics’ scores were over 90%. Conventional ML algorithms have fewer 

parameters that do not get overfitted easily. Also, considering the smaller sample size, 

we used nested cross-validation to build the models, which are found to prevent over-

fitting and show unbiased performance [22]. Hence, our findings suggest incorporating 

conventional ML algorithms along with complex algorithms while developing models 

to identify exercises for UL rehabilitation. 

7 Limitations 

The main limitations of our study are the low number of participants, especially with 

impairments in the upper extremities or undergoing physical rehabilitation. As the aim 

of this study was to evaluate the feasibility of our proof of concept system, future work 

should focus on applying more robust evaluation methods.  

8 Conclusion 

We presented an affordable system that was designed by integrating physiotherapists’ 

perspectives. We presented the applicability of our system in accurately identifying 5 

exercises with 10 participants to show its feasibility. Our system can play a role in 

home-based UL rehabilitation in low-resource settings such as Bangladesh. 
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