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Abstract

Resonances determine the optical properties of an object, such as its transmittance, scattering

cross-section, or local field enhancement. Resonant states (RSs) provide a physically intuitive

way to describe these features and a range of related physical phenomena. In this thesis I

study both the resonances of dielectric optical systems and the method called resonant-state

expansion (RSE). The RSE is a perturbative approach to calculate RSs, capable of treating

perturbations of arbitrary arbitrary strength. It expresses the RSs of the perturbed system

in the basis of the RSs of a known, unperturbed system, transforming the problem of solving

Maxwell’s equation to find the resonances into a linear matrix eigenvalue problem.

I study the completeness of the eigenmodes, the convergence rate of the Mittag-Leffler

(ML) expansion of the Green’s function (GF), as well as the convergence of sum rules that

the eigenmodes satisfy, establishing limits of validity. I investigate the modes of spherically

symmetric, radially inhomogeneous resonators, and find that by appropriately engineering

the permittivity gradient one can achieve quasi-degeneracy of the transverse-electric and

transverse-magnetic whispering gallery modes. I derive, based on the RSE, a first-order

perturbation theory that can treat material and shape changes of arbitrary resonators with

the same formalism, and discover a remarkable phenomenon when all orders of the standard

perturbation series can contribute linearly in the change of a small parameter. I apply the

RSE to non-spherical systems, and reveal additional divergent terms in the ML expansion of

the GF affecting the RSE convergence, which were previously unaccounted for. Finally, I also

apply a RSE based approach, which links the GF to the scattering matrix, for calculation of

the cross-section of cylindrical dielectric resonators. This method can potentially supersede

the computational efficiency of many other existing methods, as it does not require to solve

Maxwell’s equation across all space, and it also does not require overlap volume integrals

between the mode fields and the excitation wave, which are used in other methods.
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1

Introduction

Optical cavities are important objects in physics and engineering, and their optical properties,

such as scattering cross-section or local field enhancement, can be determined based on the

resonance phenomenon. In this thesis we consider the resonances of open optical systems

which are described by linear, second-order, partial differential equations. In this chapter we

first look at the basic concept of resonances, starting from the well known example of the

classical harmonic oscillator describing a point like object, then moving onto extend system,

that is, cavities, and finally we review the applications and the mathematical formulation of

optical eigenmodes in the literature.

1.1 Resonances

Resonances appear in many areas of nature where wave-like phenomenon, or more generally,

oscillations are present. Taking for example a particle on a spring, that is, a classical harmonic

oscillator in mechanics, a resonance, or free vibration with the real natural frequency, is

the oscillation in the time domain without a driving or damping force present, and the

displacement x(t) it is described by the second-order ordinary differential equation [1]

d2x

dt2
+ ω2

0x = 0, (1.1)

with the real natural frequency given by ω0 = K/m, where K is the stiffness constant of the

spring and m is the mass of the particle, and the well known solution is in the form e−iω0t.

When the system is damped, the equation is modified to

d2x

dt2
+ 2κ

dx

dt
+ ω2

0x = 0, (1.2)

where κ = R/(2m), and R is the resistance constant determining the damping. Using the

ansatz e−iωt results in the complex resonance frequency −iω = −κ ±
√
κ2 − ω2

0. When the

1
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Fig. 1.1.1: Left axis (lines): amplitude with respect to the driving frequency; right axis (crosses): position

of the resonance frequency in the complex plane. Mass m = 1kg, driving force magnitude F = 1N,

stiffness constant K = 1N/m, resistance constant R is indicated by the colour.

system is driven by an external force, the strongest response occurs at the natural frequency,

which without damping of the system results in an oscillation with infinite amplitude, but it

is kept finite if the system has damping [2]. This is illustrated on Fig. 1.1.1. The undamped

system (black) shows an infinite response at the natural frequency. We can see that for a

small damping parameter (red) the real part of the complex resonance is approximately at

the same position as the natural frequency. As we increase the damping (blue) the imaginary

part of the complex frequency grows, and the maximum of the response decreases, as well as

the position of the peak shows a redshift along with the real part of the complex frequency.

Note that when the system is not a point like particle, the equation of motion will be a partial

differential equation, with the displacement depending not only on time but on the spatial

coordinate as well.

The resonance determines the behaviour of the system. For example, when a damping

is present, an underdamped oscillation occurs if the damping parameter κ is less than the

natural frequency ω0, critical damping occurs when they are equal, while overdamping occurs

when the damping parameter is higher than the natural frequency [3]. The the resonance

frequency of an undamped system is real, and for a damped system is complex, the real

part representing the rate of oscillation, while the negative imaginary part representing the

damping and the decay of the amplitude with time, assuming a e−iωt time dependence of

the oscillation. The harmonic oscillator has two resonance frequencies in the complex plane,

such that ω1 = −ω∗
2, where the star ∗ denotes the complex conjugate.

In acoustics, resonance phenomena correspond to the increase of the pressure when a

2



1.1. RESONANCES

pressure wave is reflected from a surface of a cavity and a constructive interference occurs.

This effect is used for enhancement of sound in instruments or loudspeakers [1]. In quantum

mechanics, resonance is usually associated with a local extremum in the transmission or

scattering cross-section spectra. For example, a barrier or well have quantised energy levels,

and if the energy of a plane wave incident on the barrier is close to an energy level of the

system a resonance occurs, manifesting in, for example, a peak in the transmission spectra.

If the incoming wave is a propagating wave packet, which can be described by a collection

of plane waves with different momentum components, then a sharp peak in the plane wave

transmission spectra can lead to the distortion of the shape of the wave packet, as the various

momentum components are reflected differently [4]. In optics, which is the main focus of the

thesis, resonance phenomena have similar effects to quantum mechanics, manifesting in, for

example, peaks of the transmission spectra [5].

1.1.1 Cavity resonators

The harmonic oscillator describes the behaviour of a point like particle. Extended objects

are usually referred to as cavities or resonators. Resonance phenomena in cavities are con-

ceptually the same as in case of a harmonic oscillator. Specific oscillations, also called modes,

with certain frequencies, are supported when there is no source or driving; when the cavity is

excited close to these frequencies, a strong response occurs. Two distinct types of cavities, or

systems, can be distinguished: closed (Hermitian) and open (non-Hermitian) ones. A closed

system does not interact with the surroundings, while an open one does, which means energy

can leak out into the surrounding background. This can also be understood as the open

system having inherent damping, which manifests again in the complex eigenfrequency of the

modes. For example, a harmonic oscillator with damping in the form of air resistance would

be an open system. Cavities usually have an infinite number of resonances ωn, though there

is an exception. A single δ potential in quantum-mechanics only supports one bound state,

or resonance [6]. This can also be seen from the secular equation of two delta potentials [7]

and decreasing the distance between them to zero, resulting in all but one of the resonances

tending to infinity. Due to the vanishing extent of the cavity one could consider this system

an analogue of the classical harmonic oscillator, which also has a finite number of resonances.

In case of finite structures the resonances are countable infinite. We illustrate this on

Fig. 1.1.2 for two optical system. On Fig. 1.1.2a the resonance frequencies of a closed and an

open 1D Fabry-Pérot cavity (a dielectric slab) is shown, along with its transmittance. The

3
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Fig. 1.1.2: a) Transmittance and eigenmodes of Fabry-Pérot cavity in a form of a dielectric slab with

permittivity ε = 2 and width 2a, at normal incidence for q = 0. b) Scattering cross-section and TE

polarisation of a spherical dielectric resonator with radius R, ε = 2, for angular momentum l = 20. Note

the logarithmic scale and the axis break on the right. Eigenmodes of open systems are shown with +,

whereas for closed systems they are shown with ×. Both the open cavities are in vacuum background. c

is the speed of light.

system is governed by the equation

d2E(x)

dx2
+ k2ε(x)E(x) = 0, (1.3)

where ε is the permittivity, and now x is the spacial coordinate while E is the electric field.

On Fig. 1.1.2b the resonances of a dielectric sphere are shown for transverse-electric (TE)

polarisation with angular momentum number l = 20, along with its partial cross-section.

This system is described by the spherical Bessel differential equation

d2E(r)

dr2
− l(l + 1)

r2
E(r) + k2ε(r)E(r) = 0, (1.4)

where l = 1, 2, 3... is an integer, and r is the distance from the origin. For closed systems we

used the boundary condition that the field is zero at the cavity wall. In case of the Fabry-Pérot

cavity the real part of the resonance frequencies agree for the open and closed system. This is

due to that the condition for resonance, namely, that constructive interference should occur

between the waves reflected at the boundaries; this gives the same wavelength of the modes

in both cases due to the 1D nature of the structure. In case of a sphere the resonances of the

open and closed system do not line up due to the more complicated geometry (curvature of

the interface) resulting in slightly different resonance conditions for the open and the closed

case. The open spherical cavity has a more varied resonance spectrum compared to the closed

one, note the logarithmic scale on the right. 1D Fabry-Pérot cavities will be discussed in more

detail in Chap. 2, and spherical resonators will be the subject of Chap. 3.

4



1.1. RESONANCES

As we extended the system so it has infinite length along a dimension, for example an

infinite planar slab with non-normal incident field, the countable infinite resonances will form

a continuum. However for a good quantum number, i.e. the in plane momentum number

q, there is a countable number of resonances. In addition to these, there can also be cut in

the complex frequency plane, giving rise to a continuum of states, however this cut can be

discretised and represented by a countable number of states [8, 9].

More details on the treatment and properties of non-Hermitian systems with examples

from across the fields of physics can be found, for example, in Ref. [10].

1.1.2 Origin of resonances and their nomenclature

From a mathematical point of view, resonances are defined as the eigensolution to a second

order differential equation, the wave equation in electromagnetism or the equation of motion

in case of the classical harmonic oscillator, and the corresponding boundary conditions which

are governing the physical problem. For linear systems the wave equation can always be cast

to the Sturm-Liouville (SL) form. For a closed cavity the boundary conditions are usually

Neumann, Dirichlet, or mixed, giving the value of the eigenfunction or its derivative on the

surface of the cavity, and resulting in real eigenfrequencies for the SL equation [11]. For

open cavities the normally adopted outgoing boundary condition expresses that the energy

propagates away from the cavity to infinity, and this results in wavefunctions which outside

have exponentially growing amplitude with distance from the cavity [12]. The mathematical

formulation of the eigenmodes is further detailed in Sec. 1.2.1.

The eigensolutions of open systems are referred to as resonant-states (RSs) [13,14], quasi-

stationary states (QSSs) [12, 15], or quasi-normal modes (QNMs) [16, 17]. The concept of

RSs is rooted in quantum mechanics and the description of the α-decay [18]. Due to their

slowly decaying nature they were referred to as QSSs, while the QNM term was later adopted

to highlight the difficulties associated with the definition of inner product and normalisation

of the modes due to their exponentially growing amplitude outside of the system. Apart

from quantum mechanics [12, 15, 18, 19], the concept of RSs has later also been adapted to

gravitational waves (where they mainly referred to as QNMs [16,20]) and to electromagnetism

(where the terms RSs [14], QNMs [17], and occasionally morphology dependent resonances

(MDR) are used [21], the latter name emphasises the dependence of the resonance on the

shape of the cavity rather than the open character).

5



1.1. RESONANCES

1.1.3 Numerical methods for calculating the response of resonators

Naturally, already many well established methods exist to calculate physical observable of

systems, such as their transmission, scattering and absorption cross section, decay rate, or

field enhancement. Commonly used methods include, for example, finite-element method

(FEM), finite-difference time domain (FDTD), transfer matrix method (TMM), the Fourier

modal method (FMM), or discrete-dipole approximation (DDA) in optics. FEM is often

associated with a time independent problem, but in general, it simply means that the phys-

ical domain of interest where we want the governing differential equations solved, such as

Maxwell’s equations, is discretised to a mesh grid in space, and approximate solutions in

terms of polynomials are found at each grid point [22]. FDTD, as the name suggest, con-

siders time dependent problems. It discretises not only the spacial dimensions, but time as

well, solving the equations in each spacial and time grid point by replacing the derivatives

with differences [23]. TMM is generally used for layered structures. Considering a simple

layered planar structure, where each individual layer is homogeneous, the TMM gives the

exact solution of the wave equation by expressing the propagation of the incoming wave

through a layer in terms of a matrix comprised of backward and forward propagating waves,

and a matrix expressing the transmission and reflection effect of boundaries, with the process

repeated for each individual layer in the structure [24]. FMM is usually applied for periodic

gratings, and it is based on expressing the total field in terms of Floquet-Fourier series, the

periodic permittivity and permeability in Fourier series, and enforcing appropriate boundary

conditions at all the interfaces, repeated for each building block of the structure [25]. DDA

approximates the material response of a scatterer by a set of dipoles arranged in a grid,

mimicking the shape of the modelled object. The response of the system is found as the

collection of the responses from the coupled dipoles [26]. Other methods also exists, such

as the scattering-matrix method, which relates incoming channels of the system to the out-

going channels [27, 28], or the boundary element method, which solves an integral equation

formulation of the given problem [29].

1.1.4 Eigenmode methods for calculating observables

An alternative method emerged in optics in the recent years, where the physical observables

are expressed in terms of the eigenmodes of the system. This can clearly be done in case of

a closed system as the eigenmodes of a regular SL equation form a complete set [11]. This

property can also be shown for open quantum [30] and optical [31] systems, though in the

6
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latter the RSs need to be complemented by static modes [32] (detailed in Sec. 1.2.1), while

in case of gravitational waves completeness is not necessarily guaranteed [33].

An advantage of the eigenmode approach compared to the methods mentioned in Sec. 1.1.3

is that resonant phenomena usually directly correspond to the eigenmodes, therefore this

provides the most physically intuitive explanation of various phenomena. The real part

of the eigenmode wavenumber Re (kn) corresponds to the position of the resonance, the

imaginary part Im (kn) gives the half-width at half-maximum, and also half the decay rate,

and the quality factor of the mode is defined as Q = |Re (kn) /[2Im (kn)]|. In case of metallic

nanoparticles (NP), which support only a few relatively high-Q modes, the response of the

resonator in this spectral range can often be expressed accurately by the use of a very few

RSs. For example, the optical cross-section of a gold nanorod has been calculated with only a

single RS [17,34], and the transmission of a chiral gold nanodimer composed of two nanorods

has been calculated with two modes only [35]. For non-metallic (e.g. dielectric) particles, or

when the spectral range of interest is broad, or when a high accuracy is needed, many modes

contribute to the calculation [36–38]. Apart from the cross-section, RSs can also be used to

calculate the Purcell factor, that is, the change of the decay rate of a quantum emitter placed

in the vicinity of a resonator [39]. Examples can be found for emitters next to gold nanorods

with the use of a single RS [40, 41], or in the gap of a gold nanorod dimer with the use of

two RSs [40], as well as for more complex structures, such as an emitter in the gap of a gold

dimer on a photonic crystal with the use of two RSs [42], while for a broad spectral range,

or for dielectric resonators, once again many modes are needed in the calculation [43,44]. A

use of a single RS is often sufficient to express first-order changes to the resonance frequency

when either the surrounding medium is changed [45–48], which has important application in

sensing [49], or when the shape or material of the resonator is changed [50], which allows

computationally efficient design process of resonators [51]. The natural quantisation of the

optical modes allows the formalism to be combined with quantum mechanics, and has been

used to describe the dynamics of two spatially separated quantum emitters coupled via a gold

nanorod, which is described by a single RS [52], or a quantum dot placed between a gold dimer

on a photonic crystal [53] (extension of Ref. [42], here using the Jaynes-Cummings model for

the quantum dot), and the approach can be used to efficiently model and design single photon

sources [54]. The formalism of the RSs can be extended to treat non-linear permittivity and

effects such as second harmonics generation [55, 56], as well as non-local permittivity [57].

Further application of RSs can be found in the recent review articles [58–60].

Another benefit of RSs based approaches over other methods that rely on solving the wave
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1.1. RESONANCES

equation in all space, is that once the eigenmodes are know, usually it is fast to calculate the

response of the system over a range of frequencies [61], especially if only a limited number of

modes contribute to the calculation, because often this just involves a simple evaluation of the

RS field [38,41,62] or an an overlap integral of the mode field with an incoming wave [35–37].

While studies exist that attempt to compare the performance of various methods to calculate

RSs themselves [63–65], though definite conclusions are hard to draw as the calculations with

each method are often performed by different groups on different computers, detailed study

on the efficiency of calculating observables with RS methods versus others, such as FEM of

FDTD, to the best of our knowledge is missing.

The above examples that use one-two RSs in the calculation highlight why the modal

approach is such a powerful tool in nanophotonics. However, at the same time, these ex-

amples also highlight an outstanding issue, namely, that the use of one-two modes is an

approximation, and it cannot always be improved by taking into account more modes in the

calculation. This is due to the completeness of the RSs, which is usually limited to the volume

of the resonator [8, 31, 66, 67]. Completeness allows the expansion of other functions, such

as the Green’s function (GF) or the total electric field, into the basis of the RSs, and this

is the core principle in all the examples listed above. Taking the calculation of the Purcell

factor as an example, when there is only one dominant RSs describing the response of the

resonator, the field of that mode is a good approximation of the electric field outside and it

can be used to calculate the change of the decay rate of an emitter outside the resonator [40].

However the accuracy of this approximation depends on the distance of the emitter from the

resonator. Far away from the resonator one needs to use a regularised field, whereas close

to the surface of the resonator a single mode approximation is not enough due to the strong

contribution of quasi-static terms [41]. When two RSs were used in the Purcell enhancement

calculation [40, 42] the emitter was placed in the centre of the gap in the dimer. One could

argue that this is in fact inside the resonator, which is comprised of the two individual parts

of the dimer and the minimal convex volume surrounding them, hence in this spacial region

the RSs form a complete set [68]. When many modes were used in the calculation [43,44] the

emitter was placed inside the resonator. Completeness issues outside the resonator might be

circumvented by the use of artificial modes called the PML modes [58, 69]. These artificial

modes will be discussed in more detail in Sec. 1.2.1 of the Introduction, but they are otherwise

not used in the present work.
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1.1. RESONANCES

1.1.5 Calculating the eigenmodes

The eigenmodes of simple systems, such as slabs, infinite cylinders, or spheres can be calcu-

lated analytically, or semi-analytically via solving an appropriate secular equation approxi-

mately or numerically [70]. For more complicated geometries a secular equation determining

the mode frequencies usually can not be found, and instead fully numerical methods are

used, for example FEM, FDTD, or FMM [63–65]. Alternatively, perturbative methods can

also be used, which means starting from the eigenmodes of a know system, then introduc-

ing a change into the system parameters, such as a change of the system boundary or the

resonator material, and then finding the modes of the target system via a matrix equation

or a perturbation series. Such a perturbative method is the resonant-state expansion (RSE),

which solves Maxwell’s equation by transforming it into a matrix eigenvalue problem [14].

The matrix equation links the eigenmodes of a basis (unperturbed) system, to the target

(perturbed) system of interest (mathematical details of the RSE method will be presented in

Sec. 1.2.3). The core idea is the same as in closed quantum systems, where one can also write

a matrix equation for the perturbed states, from which the standard, well know perturbation

series can be derived [71]. Treatment of open systems is less straight forward however, as

the standard orthogonality and normalisation are no longer applicable to the eigenmodes.

Nevertheless attempts have been made before the RSE both in quantum mechanics [30, 72]

and in optics [70] to derive and use matrix equations to treat perturbations.

The use of RSs in optics started to become more popular with the development of a first-

order perturbation theory based on the scalar equations for spherical dielectric resonators

[21, 73], the establishment of the completness of the modes and the expansion of the scalar

GF into the eigenmodes inside the cavity region [31], treatment of absorptive materials [74],

second and third-order corrections [75,76], and reformulation of these results to the vectorial

wave equation with expansion of the transverse part of the Green’s dyadic (GD) in case of

dielectric spheres [66,77,78]. While these works laid down important foundations of the field,

there were still outstanding issues with the proper normalisation [43, 69, 79], an expansion

for the longitudinal part of the GD was not available, and only small perturbations were

treatable.

Later the issues with the normalisation of the modes have been addressed analytically,

leading to the development of the RSE, and showing on the example of a 1D slab and the TE

modes of a homogeneous sphere that perturbations of arbitrary strength can be efficiently

treated [14]. The RSE was later generalised to treat: 2D systems [8], waveguides [80,81], 3D

9
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Fig. 1.1.3: Perturbation of the eigenmode with the RSE. a) 1D slab with width 2a, basis permittivity

ε = 2, perturbed permittivity εp = 4, length 2a. b) spherical dielectric resonator with radius R, l = 20,

TE modes, ε = 2, εp = 4. Both cavities have vacuum as background. N = 100 RSs were used in the

basis.

spherical systems [63], as well as arbitrary geometries where the relevance of the static (zero-

frequency) modes was identified [32], arbitrary materials including dispersive [82, 83], chiral

and magnetic [68], as well as photonic crystals [9,84]. The representation of the longitudinal

part of the GD was also formulated [85]. On Fig. 1.1.3 we illustrate that the RSE can find

accurately the eigenmodes of a perturbed systems when the permittivity of the resonator is

changed from ε = 2 to εp = 4, which is a 100% perturbation strength. The RSE will be the

main method employed in this thesis, and it will be detailed further in the next section.

While RSs are the eigenmodes of the wave equation with the frequency or the wavenumber

chosen as the eigenvalue, it is also possible to define a different set of eigenmodes, for which the

permittivity constitutes as the eigenvalue [86, 87]. A perturbation method analogues to the

RSE has been developed recently based on eigenpermittivity modes [88]. There are important

differences compared to the RSE however. As the frequency is a real number now, the modes

do not diverge outside, and the normalisation can be reduced to a simple square integral of

the eigenmode over the cavity, analogous to the formalism in closed systems. Furthermore,

a benefit of the use of eigenpermittivity modes is that seemingly a GD expansion across all

space can be obtained in a simple manner, allowing to treat sources outside of the resonator

easily. A drawback is however, that if one desires to generate spectra, the eigenmodes need

to be calculated repeatedly for each frequency.

1.2 Eigenmodes, Green’s dyadic, and the RSE

Here, mainly based on Ref. [60, 68, 85], we summarise the formalism of the eigenmodes and

show how the RSE method, which is used throughout this thesis, is derived.

10
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1.2.1 Eigenmodes

Resonant states

We assume a harmonic time dependence of the field in the form e−iωt, where ω is the frequency

of the oscillation, and it is related to the wavenumber k in vacuum as ω = kc where c is the

speed of light. Assuming a harmonic time dependence allows us to separate the function

describing the spacial dependence of the field, and write the time independent Maxwell’s

equation for the electromagnetic field as

M̂(k, r)F(r) = 0, (1.5)

where F(r) is a six component vector field of the form

F(r) =

 E(r)

iH(r)

 , (1.6)

comprised of the electric field E and the magnetic field H, and M̂ is a 6× 6 operator defined

as

M̂(k, r) = kP̂(k, r)− D̂(r) . (1.7)

Here

P̂(k, r) =

εεε(k, r) ξξξ(k, r)

ζζζ(k, r) µµµ(k, r)

 , (1.8)

where εεε(k, r) (µµµ(k, r)) is the permittivity (permeability) tensor, ξξξ(k, r) and ζζζ(k, r) are bi-

anisotropy tensors, and

D̂ =

 0 ∇×

∇× 0

 . (1.9)

In this thesis we only deal with non-dispersive, isotropic, reciprocal material, so we can drop

the k dependence of P̂, set ξξξ(k, r) = ζζζ(k, r) = 0, and write the permittivity (permeability) as a

scalar function of spacial coordinates multiplied with the identity tensor, yielding εεε(r) = ε(r)I

(µµµ(r) = µ(r)I), and I is the identity tensor. We define the system as the finite volume V

where the material tensor Ps(r ⊂ V ) differs from the constant homogeneous background

material properties P(r ̸⊂ V ).

Open systems interact with the environment, and so they are considered leaky. This

manifest in the boundary condition which is that there are only outgoing waves from the
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system. The boundary condition was chosen so that it corresponds to the desired observables,

for example, the scattering cross-section, which is related to the scattered waves propagating

away as outgoing waves after the resonator has been excited. This condition defines the

eigenmodes, or RSs, of an open system, and we denote the discrete set of RSs Fn at kn with

label n, which satisfy the equation

M̂(kn, r)Fn(r) = 0 . (1.10)

The outgoing waves boundary condition means that the field can be written ∝ eikr/r in 3D

(or ∝ eikx in 1D) far away from the system. From the outgoing wave boundary condition,

and from the condition that the parallel component of the electric field and the normal

component of the displacement field at the surface are continuous across the interface, for

simple symmetric systems a secular equation can be found that determines the complex

eigenvalues kn. The secular equation (see for example Eq. (2.6) in Chap. 2 for a slab, or

Eq. (3.1) in Chap. 3 for a spherical system) usually needs to be solved numerically, for example

via Newton-Raphson method or Cauchy’s argument principle method. The advantage of the

latter is that all modes are guaranteed to be found in a certain spectral range [89]. It is

important to note that while a spherically symmetric system can be represented as an effective

1D system, and the corresponding field given by a scalar function u(r), the scalar eigenmode

fields of this effective 1D system do not satisfy the Sommerfeld radiation condition [90]

lim
r→∞

r

(
du

dr
− iku

)
= 0 , (1.11)

due to the complex k eigenvalues resulting in the exponential growth of the wavefunction far

away. Contrary to the claims of Ref. [41, 59,91,92], it was shown explicitly in Ref. [79], that

the eigenmodes do not satisfy the Silver-Müller radiation condition either, which is written

as [93]

lim
r→∞

(r̂rr×∇×En + iknEn) = 0 . (1.12)

The error in Ref. [41, 59, 91, 92] came from that the Silver-Müller radiation condition was

recast into a weaker form: the sum in Eq. (1.12) was written as A(r) − B(r), and it was

required that A → B for r → ∞, in the sense that A/B → 1 for r → ∞. This is clearly not

identical to the actual condition, which is written as limr→∞ [A(r)−B(r)] = 0. The simplest

example to show that these two conditions are not equal is taking A = r+1, and B = r, which

satisfies the weak formulation, but not the actual condition. Note that the eigenmodes of a

planar system at normal incidence is a special case which do satisfy Eq. (1.11) and Eq. (1.12).
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The mode fields are normalised as

1 =

∫
(En · εεεEn −Hn ·µµµHn) dV +

1

kn

∮
[En × (r · ∇)Hn +Hn × (r · ∇)En] · n̂nn dS .

(1.13)

The first integral is over an arbitrary volume V that includes at least all inhomogeneities,

and the second is an integral along the normal n̂nn of the surface S enclosing the volume V .

The normalisation can also be rewritten in terms of the electric field only as

1 = 2

∫
EnεεεEndV +

1

kn

∮ (
∂E′

n

∂s
·En − ∂En

∂s
·E′

n

)
dS . (1.14)

Here the prime denotes E′
n = (r ·∇)En/kn and ∂

∂s is the spacial derivative along the surface

normal.

Static modes

Alongside the RS solutions with kn ̸= 0 there are modes with kλ = 0, which are referred to

as static modes (SMs). They are irrotational fields satisfying the equation

∇×Eλ(r) = 0 , (1.15)

∇×Hλ(r) = 0 , (1.16)

therefore they can be defined as a gradient of an appropriate scalar potential. These modes

are important because they also contribute to the expansion of the GD, as described in the

next section. The above equations are not coupled, therefore we can define two distinct set

of SMs as

Eλ = −∇ψλ, Hλ = 0 , (electric) (1.17)

Eλ = 0, Hλ = −∇ψλ . (magnetic) (1.18)

There is an infinite number of different ways to define the scalar potential, which corresponds

to a charge density inside the system [32, 85]. As the SMs decay outside of the system, as

opposed to the RSs which diverge, they can be normalised as

1 =

∫
(Eλ · εεεEλ −Hλ ·µµµHλ) dV , (1.19)

with the integral over the whole space. The case of 1D planar systems is an exception,

where the SMs do not decay outside of the system, and their treatment is discussed further

in Chap. 2. We note that in case the material properties are dispersive the normalisation

condition for SMs is modified by replacing εεε with ∂k2εεε
/
∂k2 . If the permittivity has a pole
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at k = 0, then this results in vanishing field amplitude for modes with kλ = 0. However there

can also be irrotational fields, which are also known as longitudinal modes, for kλ ̸= 0 when

P(kλ, r) = 0 [88].

PML modes

For simple system, such as a slab or sphere [70], the eigenmodes can be calculated analytically.

For more complicated systems they can be found computationally, for example with the RSE,

or with other numerical techniques, such FEM which necessarily uses a perfectly matched

layer (PML) [36,51,58,94].

Using a PML is a method to enforce outgoing waves boundary condition in a simulation.

A PML layer is added outside the physical computational domain, and via applying a com-

plex coordinate transformation, in an ideal case the infinite PML absorbs all waves without

reflecting any. In practical use however, PMLs are finite and have a some reflection (i.e. in-

coming waves), effectively creating a spatially closed system. The consequence of a non-ideal

PML and the numerical discretisation is that, alongside the RSs and SMs, additional artificial

modes, called PML modes, appear in the spectrum. PML modes usually have a small field

amplitude inside resonator, and a large one inside the PML region. The PML modes are

usually strongly dependent on the PML settings, so varying these will change the modes and

they can be identified in the spectrum. The PML modes can be important for scattering cal-

culations [95], especially when the background is complex, such as when a resonator is placed

on a slab [36], and they can ensure completeness inside the entire simulated domain [69].

When a PML layer present, the normalisation (Eq. (1.13)) can be modified to be a simple

volume integral over the entire domain (including the PML) due to the decaying nature of

the modes inside the PML [40]. A unique benefit of this method of normalisation is that it

is also applicable to the case when a resonator is placed on a substrate [36, 69]. While the

RSE does not use a PML, we will show that for certain perturbations it can produce modes

that are similar to PML modes both in behaviour inside the cavity and in functionality.

1.2.2 Green’s dyadic

In case of the vectorial wave equation the GF is a tensor and will be referred to as GD. The

GD of the operator M̂ satisfies the equation

M̂(k, r)G(r, r′; k) = Îδ(r− r′) , (1.20)
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and the same (outgoing) boundary conditions as the eigenmodes. The GD G can be written

as 6× 6 tensor, made up of four 3× 3 dyadic components G

G =

GEE GEH

GHE GHH

 , (1.21)

where the component GFF′
can be physically interpreted as a response field F (electric E or

magnetic H) due to source field F′ (electric E or magnetic H). Using the GD (or the GF for

the scalar equation) it is straight forward to find the solution to a differential equation with

any source term, and this approach can be used to find the observables of a system, such

as the scattering matrix and cross-section [38], or the Purcell factor [82]. It is not always

possible to find a simple closed analytic form of the GD, however it can always be written

in terms of the eigenmodes of the system, as described in the next section. Therefore, if the

eigenmodes are known, then the GD is also know, and hence all the observables are know as

well. This highlights the importance of developing efficient eigenmode solvers, such as the

RSE.

Mittag-Leffler expansion

The exact analytic form of the GD contains poles in the complex wavenumber plane. Inside

the system GD is a meromorphic function. A meromorphic function f(z) of the complex

variable z is single valued and can only have finite order, isolated poles, thus can only tend to

infinity as polynomial, and it can not have essential singularities [96]. Such functions can be

expressed as a series called Mittag-Leffler (ML) expansion [97]. In the special case that the

function f(z) only has simple poles the terms in the sum will be proportional to bn/(z− an),

where an is the position of the pole, and bn is the residue, and depending on the behaviour

of f(z) around z = 0 or z → ∞ the series can also contain an additional term which does not

have a pole [98]. For example, in 1D planar systems for k → ∞ the electric field does not

vanish but it is bounded at a finite value and its ML expansion contain additional terms [99].

Inside the system volume (r, r′ ⊂ V ) the GD vanishes for large k, so limk→∞G = 0 (for

the GF in 1D this is shown in Appendix A.1), which means that it can be we written as a

simple ML expansion, which is also referred to as spectral representation, which has the form

G(r, r′) =
∑
ν

Fν(r)⊗ Fν(r
′)

k − kν
=
∑
n

Fn(r)⊗ Fn(r
′)

k − kn
+
∑
λ

Fλ(r)⊗ Fλ(r
′)

k
. (1.22)

where kν is a pole of the GD and Fν(r) ⊗ Fν(r
′) is the corresponding residue, n labels the

RSs (kν = kn ̸= 0) , and λ labels the static modes (kν = kλ = 0) which are used to represent
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the static pole of the GD. Outside the cavity (when r ̸⊂ V and-or r′ ̸⊂ V ) however the GD

tends to infinity exponentially, therefore it can not be expressed as a ML series. From an

alternative point of view, the RSs do not form a complete set outside of the cavity, therefore

they are not suitable as a basis for expansion. Note that the property of completeness in

Ref. [31] is also derived based on where the GF vanishes. To find the closure relation for the

modes we can insert Eq. (1.22) into Eq. (1.20), compare the coefficients of terms with k, and

obtain

P(r)
∑
ν

Fν(r)⊗ Fν(r
′) = δ(r− r′) . (1.23)

We note that if the normalisation is chosen differently from Eq. (1.13), then an additional

weight factor can appear in the denominator of the GD, for example a factor of 2 in Ref. [14,

63]. There are other forms of the GD available in literature. For example, one can reformulate

the coupled first order differential equation for E and H (Eq. (1.5)) and obtain a second

order differential equation containing only one of them; or one can also use sum rules that

the eigenmodes satisfy to reformulate the GD. The link between various commonly used

equation forms and corresponding GDs are considered in the next subsection.

Link between the different Green’s dyadic forms

We can write Eq. (1.5) as a set of simultaneous, or coupled, first-order differential equations

kεεε(r)E(r) = ∇× iH(r) , (1.24)

kµµµ(r)iH(r) = ∇×E(r) , (1.25)

which are linear in k. Inserting Eq. (1.25) into Eq. (1.24) leads to a single, or decoupled,

second-order differential equation, which contains either E or H. We keep E here, and write

the wave equation as

k2εεε(r)E(r)−∇×µµµ−1(r)∇×E(r) = 0 , (1.26)

which is now a second-order differential equation, quadratic in k. The corresponding GD

satisfies

k2εεε(r)Gd(r, r
′)−∇×µµµ−1(r)∇×Gd(r, r

′) = δ(r− r′)I . (1.27)

We chose subscript ‘d’ to denote that the GD corresponds to the decoupled differential equa-

tion. We could also write GEE′
d instead of Gd as here the GD is the electric field response

E to an electric field excitation E′. The GD can be written as a sum of a resonant and a
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non-resonant term, Gd = Grs +Gnr, the former containing the contribution from RSs, the

latter from SMs. The resonant part (with poles kν = kn ̸= 0) of Gd inside the system can be

written in the well known form [14,41,66]

Grs(r, r
′) =

∑
n

En(r)⊗En(r)

kn(k − kn)
. (1.28)

Writing the non-resonant contribution in the form

Gnr =
∑
λ

Eλ(r)⊗Eλ(r)

k2
, (1.29)

and inserting Gd = Grs + Gnr into Eq. (1.27), then comparing the coefficients of k in the

equation leads to the well know sum rule [66,82]

∑
n

En(r)⊗En(r)

kn
= 0 . (1.30)

In case of dispersive materials there are additional sum rules for the eigenmodes [82]. Using

the sum rule Eq. (1.30), and subtracting a zero divided by k from Grs, for k ̸= 0 we can find

an alternative form of the resonant part that is also often used [62,63,100]

Grs(r, r
′) =

∑
n

En(r)⊗En(r)

kn(k − kn)
− 1

k

∑
n

En(r)⊗En(r)

kn

=
∑
n

En(r)⊗En(r)

k(k − kn)

(1.31)

In Appendix E.2 we investigate the the validity of Eq. (1.30) and Eq. (1.31) in relation to

calculating the scattering-matrix, which is the subject of Chap. 6.

Now considering the coupled wave equation (either Eq. (1.5), or Eq. (1.24) and Eq. (1.25)

together) the corresponding GD, which we take in the form of Eq. (1.21), satisfiesk
εεε(r) 0

0 µµµ(r)

−

 0 ∇×

∇× 0

GEE(r, r′) GEH(r, r′)

GHE(r, r′) GHH(r, r′)

 =

δ(r− r′)I 0

0 δ(r− r′)I

 .

(1.32)

Multiplying out the terms leads to a set of coupled differential equations again, but this time

four, which are

kεεε(r)GEE(r, r′)−∇×GHE(r, r′) = δ(r− r′)I , (1.33)

kµµµ(r)GEH(r, r′)−∇×GHH(r, r′) = 0 , (1.34)

kµµµ(r)GHE(r, r′)−∇×GEE(r, r′) = 0 , (1.35)

kεεε(r)GHH(r, r′)−∇×GEH(r, r′) = δ(r− r′)I . (1.36)
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Putting Eq. (1.35) into Eq. (1.33) results in

kεεε(r)GEE(r, r′)−∇×µµµ−1(r)∇× GEE(r, r′)

k
= δ(r− r′)I . (1.37)

Clearly, GEE/k = GEE
d . Naturally, if GEE has a simple pole at k = 0 (static pole) then GEE

d

has a double pole at k = 0.

1.2.3 Resonant-state expansion

Following Ref. [60, 68, 85] we now introduce a perturbation to the system described in

Sec. 1.2.1, in the form

∆P̂(r) =

∆εεε(r) 0

0 ∆µµµ(r)

 , (1.38)

where the perturbation is limited to be inside the original system volume V . The perturbed

modes satisfy (
M̂(k̃, r) + k̃∆P̂(r)

)
F̃(r) = 0 , (1.39)

where F̃ is the perturbed field and k̃ is the perturbed wavenumber. Taking the perturbation

term to the other side, treating it as a source term, then using the GD of the unperturbed

system to solve the equation we obtain the Lippman-Schwinger integral equation for the

perturbed eigenmodes

F̃(r) = −k̃
∫

G(r, r′; k̃)∆P̂(r′)F̃(r′)dV ′ , (1.40)

where the volume integral is for the primed coordinates. Using the spectral representation of

the GD (Eq. (1.22)) we get

F̃(r) = −k̃
∑
ν

Fν(r)

k̃ − kν

∫
Fν(r

′)∆P̂(r′)F̃(r′)dV ′ , (1.41)

which can also be seen as the expansion of perturbed modes into the complete set of unper-

turbed modes as

F̃(r) =
∑
ν

cνFν(r) , (1.42)

with the expansion coefficient given as

cν =
−k̃

k̃ − kν

∫
Fν(r

′)∆P̂(r′)F̃(r′)dV ′ . (1.43)
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Inserting Eq. (1.42) into Eq. (1.41) we get

∑
ν

cνFν(r) = −k̃
∑
ν

Fν(r)

k̃ − kν

∫
Fν(r

′)∆P̂(r′)
∑
ν′

cν′Fν′(r
′)dV ′ . (1.44)

Equating the coefficients of Fν gives us the RSE matrix equation

(k̃ − kν)cν = −k̃
∑
ν′

Vνν′cν′ , (1.45)

where

Vνν′ =

∫
Fν(r) ∆P̂(r)Fν′(r)dV . (1.46)

Using the fact that F̃(r) =
∑

n cnFn(r) +
∑

λ cλFλ(r), and introducing a substitution bn =

cn

√
kn/k̃ to symmetrise the matrix, we obtain a numerically more efficient symmetric RSE

matrix equation

∑
n′

δnn′

kn
+

V nn′
√
kn

√
kn′

bn′ =
1

k̃
bn , (1.47)

where

V nn′ = Vnn′ −
∑
λλ′

VnλWλλ′Vλ′n′ , (1.48)

and W is the inverse of the matrix δλλ′ + Vλλ′ . The static mode expansion coefficients are

then

cλ = −
∑
λ′

Wλλ′
∑
n

Vλ′ncn . (1.49)

On Fig. 1.1.3 we illustrate in case of a slab and a sphere that the RSE can find the perturbed

eigenmodes accurately even for larger perturbations. For practical implementations it is

important to note that when the matrix equation (Eq. (1.47)) is diagonalised, a matrix of

eigenvectors B is produced. This matrix of eigenvectors has to be normalised as BTB = I,

where T denotes the transpose, in line with Ref. [38], as opposed to B†B = I, where † denotes

the conjugate transpose, which is often the convention in numerical algorithms.

In the limit of infinite modes in the basis the formalism gives the exact solution to the

perturbed problem. In practice however, the RSE matrix is truncated to a finite size N , with

the corresponding condition that only modes with |kn| < kmax are taken in the basis. The size

of the basis influences the accuracy of the results. Increasing the basis size has two effect: first,

by taking a fixed perturbed mode k̃ it decreases its error, secondly, it increases the spectral

range where |k̃| are calculated, see for example Fig. 2.4.1 in Chap. 2. For a well behaved
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1.3. THESIS PLAN

perturbations, in case of a slab, or in case of permittivity (permeability) perturbation of TE

(TM) modes of a sphere the error in k̃ is ∝ 1/k3max [14]. The average error of the perturbed

field (Eq. (1.42)) has slower, 1/kmax convergence [101]. In case of permittivity (permeability)

perturbation of TM (TE) modes of a sphere the SMs have a significant influence of the

convergence rate, and it was found that using the general expansion
∑

λ Fλ(r) ⊗ Fλ(r
′) for

the static pole residue can leads to a slower, 1/kmax convergence rate for k̃ [32]. It was shown

in Ref. [85] that in case of a spherically symmetric basis system the residue of the static pole

can be written as

∑
λ

Fλ(r)⊗ Fλ(r
′) = δ(r− r′)

 r̂rr⊗r̂rr
ε 0

0 r̂rr⊗r̂rr
µ

+
∑
j

Fj(r)⊗ Fj(r
′), (1.50)

where r̂rr is the radial unit vector in spherical coordinates, and r̂rr⊗r̂rr/ε (r̂rr⊗r̂rr/µ) corresponds to

the EE (HH) dyadic block in G (Eq. (1.21)) in spherical basis vectors. Using this expansion

lead to a quicker, 1/k3max convergence rate for spherically symmetric perturbations as now

the δ function which appears on the right hand side is not expanded into a set of continuous

functions, the SMs. While Fj(r) ̸= Fλ(r) and Fj(r) ̸= Fn(r), the field Fj(r) can be defined

in relation to the RSs and possibly SMs, and there is a range of possible forms that it can

take. These are discussed in more detail in Chap. 3. Following the nomenclature of Ref. [85],

we refer to Eq. (1.22) as ML1, and to Eq. (1.50) as ML3 or ML4, depending on the set of

modes used for Fj(r). As Fj(r) expresses part of the static pole residue, we refer to them as

static-like modes.

1.3 Thesis plan

In Chap. 2 we look at 1D examples, planar systems with waves propagating normal to the

surface. We study the convergence rate of the different ML expansion of the GF, namely,

with (Eq. (1.31)) and without (Eq. (1.28)) the use of a sum rule. We investigate a special

case of the sum rule (Eq. (1.30)) and its validity, which has an impact on the GF convergence

rate. We look at the accuracy of the RSE when the basis or perturbed system has no step

like boundary. Finally we will consider a size perturbation of a slab, which results in artificial

modes that can be interpreted as analogues to PML modes, in the sense that they provide

completeness over the original system volume.

In Chap. 3 we consider spherically symmetric systems, which due to the symmetry can

be considered as an effective 1D system. We investigate how using different functions Fj(r)

in the static pole expansion impact the accuracy of the RSE. We analyse the confinement of
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modes in terms of reflection from the resonator surface, and based on an effective potential

picture. We consider how various continuously changing permittivity profiles, without step

like boundaries, affect the spectra, and how this can give rise to quasi-degeneracy of TE and

TM modes.

In Chap. 4 we develop a rigorous first-order perturbation theory for the eigenmodes based

on the RSE. We investigate the contribution of static modes to the first-order results, find

that all orders of the standard perturbations series can contain in fact first order contributions

when the boundary of the system is changed, and finally we present a general formalism that

can treat both material and shape perturbations simultaneously. We look at an example

where the spherical symmetry of the system is broken.

In Chap. 5 we apply the RSE to the case of a sphere being perturbed into a cylinder,

breaking the spherical symmetry. The impact of static modes on the accuracy is investigated

in detail, which reveals additional divergent terms in the static pole residue.

In Chap. 6 we implement a scattering calculation method based on the RSE, and test it

in case of a size and shape perturbation of the spherical basis system. The role of artificial

modes in this method is exemplified, and the validity of sum rules are revisited in case of 3D.

In Chap. 7 we provide concluding remarks.
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2

One dimensional planar systems

2.1 Introduction

In this chapter we investigate the convergence rate of the ML representation of the GF, and

the convergence rate of the sum rule that the eigenmodes satisfy. The ML form of the GF is

a core part of the RSE, as well as it can be used to calculate observables of the system, such

as transmission [101], scattering cross section [38] or Purcell effect [43], therefore it is crucial

to understand the properties of the series representation and its validity. As an example we

use a 1D planar dielectric system, that is, a slab in a homogeneous background, with electric

field propagating normal to the surface, which allows us to compare the numerical results to

easily derivable analytic ones. Furthermore, 1D systems also constitutes a special case, where

the sum rule of the eigenmodes is no longer equal to zero, and the static pole of the Green’s

function changes its order.

Previously, Ref. [101] studied the convergence rate of the ML series of the perturbed GF

in case of a homogeneous slab, and it was found that when compared to the exact solution

the error scaled inversely proportional to the number of basis modes N . However, this sum

included error of the perturbed electric field, which was expanded into the unperturbed

eigenmodes. This could obscure the true convergence rate that would be achieved if the

exact perturbed eigenmode fields were used. Furthermore, the error was calculated for all

coordinate combinations inside the slab, then an average was taken. The use of averaged error

can hide the different convergence rates which can occur at certain coordinate combinations,

as we will show later. Ref. [59] also investigated the dependence of error of the ML expansion

on N for a homogeneous slab, for one set of fixed coordinates inside the resonator, at a

fixed frequency, using exact eigenmodes, and also found the same convergence rate, 1/N .

Additionally, they also investigated the error when one spacial coordinate is fixed inside the

resonator, and one is varied, and found that the ML sum reproduces the exact GF correctly
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2.2. EIGENMODES, GREEN’S FUNCTION, AND SUM RULES

even in some cases when one coordinate is taken outside the resonator. This naturally follows

from the analytic form of the GF (see Appendix A.1.3), which leads to the condition that for

√
εsx< < a(1 +

√
εs)− x> , (2.1)

the GF vanishes for large k, therefore it is possible to expand it into a ML series. Here a is

the slab half width, εs is the slab permittivity, x< = min(x, x′) and x> = max(x, x′). This

is not a contradiction with the more conventional view on the completeness of eigenmodes,

namely, that they are only complete inside the system, which was also derived based on the

condition that the GF vanishes for large k [31, 66], but simply an extension to it. Ref. [85]

investigated the error convergence rate of the ML expansion of the full Green’s dyadic in a

spherically symmetric system, when both coordinates are inside the resonator. It was found

that the G11 dyad, which is analogues to the 1D GF, has a 1/N error convergence rate. It

was also found that other components of the dyadic can have different convergence rates, e.g.

1/N3. Furthermore, the convergence rate can also depend on the form of ML representation

used.

We extend on the previous works by investigating how does the error depend on the

two spacial coordinates, with different combinations of them taken, such as both coordinates

on the same boundary, or on opposing boundaries. This will reveal that certain forms of

the ML expansion are not always correct due to the sum rule of the eigenmodes not being

satisfied. In section 2.2 we will briefly review the eigenmodes and the sum rule for a 1D

system. In section 2.3 we investigate the convergence of the ML representation, first in case

of a homogeneous slab, then in case of a linear permittivity profile that is continuous at

the boundaries, removing the step like permittivity edge. In section 2.4 we test how the

RSE performs when the perturbed or the unperturbed system has the aforementioned linear

permittivity profile. Finally, in section 2.5 we look at the convergence of the ML expansion

of the perturbed GF when the size of the slab is changed, and investigate the role of the

artificial mode generated by the RSE.

2.2 Eigenmodes, Green’s function, and sum rules

Without loss of generality we take a 1D slab as a system extending from x = −a to x = a,

with permittivity εs(x) that can be arbitrary, as long as it, or one of its spacial derivatives,

has a discontinuity at the surface. This condition is required for the modes to form a complete

set inside the system [31, 66]. The homogeneous background to the left of the slab has the
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permittivity εl, and to the right of the slab εr, giving the permittivity over all space as

ε(x) =


εl x < −a

εs(x) −a ≤ x ≤ a

εr a < x

. (2.2)

Taking the electric field polarised along ŷyy and propagating along x̂xx (so E(r) = E(x)ŷyy), the

eigenmodes satisfy the differential equation(
d2

dx2
+ ε(x)k2n

)
En(x) = 0 . (2.3)

The outgoing wave boundary condition means that the field is En ∝ e−ikn
√
εlx for x < −a,

and En ∝ eikn
√
εrx for a < x. For sake of generality here we just write the eigenmode in the

slab as a sum of backward (φb) and forward (φf) propagating waves, giving the field over all

space as

En(x) =


Ale

−ik
√
εlx x < −a

Afφf(x) +Abφb(x) −a ≤ x ≤ a

Are
ik
√
εrx a < x

. (2.4)

where A are the amplitudes of the waves, and on the right hand side we dropped the depen-

dence of A, φ, and k on n for brevity. In case of a 1D system with the field propagating

normal to the interface Maxwell’s boundary conditions (namely, that the parallel component

of the electric field E and the magnetic field B are continuous across a boundary) imply that

En(x) is continuous and smooth everywhere. As the field is continuous and smooth at x = a,

we can find

Ab = Af
ik
√
εrφf(a)− φ′

f(a)

φ′
b(a)− ik

√
εrφb(r)

. (2.5)

The eigenvalues kn, for which Eq. (2.3) can be satisfied, can be found by applying Maxwell’s

boundary conditions at both interfaces x = ±a. Alternatively one can also find kn from the

condition that the Wronskian in the denominator of the GF (Eq. (A.2) in the Appendix A.1.1)

is zero at kn, that is, the GF has a pole here. For a slab with an arbitrary permittivity profile,

the secular equation is

ik
√
εr
{
−
[
ik
√
εlφf(−a) + φ′

f(−a)
]
φb(a) +

[
φ′
b(−a) + ik

√
εlφb(−a)

]
φf(a)

}
= −

[
(ik

√
εlφf(−a) + φ′

f(−a)
]
φ′
b(a) +

[
φ′
b(−a) + ik

√
εlφb(−a)

]
φ′
f(a) , (2.6)
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where the prime denotes the derivative with respect to the spacial coordinate. In certain

special cases, for example when the slab is homogeneous, kn can be expressed explicitly, as

we will show later, but otherwise the equation needs to be solved numerically.

The normalisation of the modes determining A is given by (see Appendix A.1.1 for a

derivation)∫ a

−a
ε(x)En(x)Em(x)dx−

√
εlEn(−a)Em(−a) +√

εrEn(a)Em(a)

i(kn + km)
=
δnm
2

. (2.7)

Here, consistent with Ref. [102],
√
εl and

√
εr appears in the surface term compared to

the normalisation in Ref. [14], where vacuum was taken as a background on both sides

(
√
εl =

√
εr = 1).

The GF satisfies the equation(
d2

dx2
+ ε(x)k2

)
G(x, x′; k) = δ(x− x′) , (2.8)

with the same outgoing boundary conditions as the eigenmodes, and can be expressed as a

ML sum (see Appendix A.1.2 for a derivation)

Ger(x, x
′; k) =

∑
n

En(x)En(x
′)

kn(k − kn)
+
R0

k
, (2.9)

where the first term is a sum of each pole contribution with kn ̸= 0, and the second term is

the static pole, with the R0 denoting the residue of the GF at k = 0. We chose the subscript

‘er’ (exact residue) to emphasize that the static pole residue is separated from the resonant

part. In 1D the static pole residue is identical to the static pole residue of the background

GF (Gb), and the static pole is a single pole of the GF of the decoupled wave equation. This

can be seen from the Dyson equation, which can be found similarly to the integral equation

for the perturbed eigenmodes (Eq. (1.40)), and it expresses the perturbed GF in terms of the

unperturbed one as [14,59]

G(x, x′; k) = Gb(x, x
′; k)− k2

∫ a

−a
Gb(x, x

′′; k)∆ε(x′′)G(x′′, x′; k)dx′′ . (2.10)

Gb has a single pole in k (see Appendix A.1.3). Multiplying Eq. (2.10) with k, then taking

the limit k → 0 will show that unless G(x′′, x′; k) also has a single pole in k the equation

can not be satisfied. Furthermore, when the equation is satisfied the static pole residue of

G(x, x′; k) and Gb(x, x
′; k) are equal, assuming that ∆ε has no pole at k = 0 [59]. In 1D

the curl free equation defining the static modes (Eq. (1.15)) gives a constant electric field E0.

Taking R0 = E0E0/k0 to ensure the correct dimensionality, where k0 = 0, the amplitude A

of the static mode is proportional to
√
k for k → 0, which is also consistent with applying

the normalisation Eq. (2.7) for the static mode.

25



2.3. CONVERGENCE OF THE ML SUM IN THE UNPERTURBED SYSTEM

Inserting Eq. (2.9) into Eq. (2.8) and comparing the coefficients of the terms proportional

to various powers of k we obtain the following sum rules

ε(x)
∑
n

En(x)En(x
′) = δ(x− x′) , (2.11)

−
∑
n

En(x)En(x
′)

kn
= R0 , (2.12)

and the property d2R0

/
dx2 = 0, which is consistent with a static mode having constant

electric field. Eq. (2.11) is the closure relation well known in literature [31,66]. Eq. (2.12) is a

special case of the sum rule Eq. (1.30) in 1D. For non-normal incidence the latter would give

R0 = 0 [14,66,80], while the actual static pole residue is still non-zero [32]. Using Eq. (2.12)

we can rewrite Eq. (2.9) as

Gsr(x, x
′; k) =

∑
n

En(x)En(x
′)

k(k − kn)
, (2.13)

and we chose the subscript ‘sr’ (sum rule) to indicate that for the residue of the static pole

the sum rule (Eq. (2.12)) is used. We note that Eq. (2.13) is derived using the normalisation

Eq. (2.7), which is consistent with Ref. [35, 68]. If we chose the normalisation from Ref. [14,

101] then a factor of would 2 appear in the denominator of Eq. (2.13). This would also mean

that we need to replace V with V /2 in Eq. (1.47).

In the following sections we investigate how quickly the two different GF sums, namely

Eq. (2.9) and Eq. (2.13), converge to the exact solution. To study the convergence we take

all modes with |kn| < kmax (i.e. a circle of radius kmax, centred at the origin), and see how

the relative error |GML/Gex − 1| of each ML representations changes with kmax, where GML

is either Ger or Gsr. We note that kmax ∝ N in case of a 1D non-dispersive system, and we

can use these quantities interchangeably in relation to the convergence rate.

2.3 Convergence of the ML sum in the unperturbed system

We investigate how the ML sum converges to the exact GF for an unperturbed system.

2.3.1 Case of a homogeneous slab

First we take the example of a homogeneous slab, with refractive index
√
εs =

√
2, and

embedded in vacuum as in Ref. [14]. For such a system
√
εl =

√
εr = 1 and

φf = eik
√
εsx , (2.14)

φb = e−ik
√
εsx . (2.15)
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Fig. 2.3.1: Homogeneous slab in vacuum. a) eigenvalues in the complex ka plane, and the transmission

coefficient T . b) real part of the electric field for the first three modes. The shading indicates the

permittivity of the system and the environment.

For this case the secular equation (Eq. (2.6)) can be reduced to the explicit expression for the

wavenumber

kn =
1

2a
√
εs
(πn− i lnα) , (2.16)

α =

√
εs + 1

√
εs − 1

, (2.17)

where n = 0,±1,±2, .... Clearly, for a homogeneous slab kn and a are inversely proportional.

The eigenvalues are show in Fig. 2.3.1a, along with the power transmission coefficient T

through the slab, illustrating that the eigenvalues correspond to peaks in the transmission

spectra. In Fig. 2.3.1b we show the real part of the electric field of the first three modes.

We can see that they are growing outside of the slab, and that the even and odd modes are

alternating.

The GF of the system has the residue R0 = 1/(2i) at the single static pole, which can

be seen from the analytic GF (Eq. (A.51) in Appendix A.1.3) or from the background GF

(Eq. (A.68) in Appendix A.1.3).

To investigate the convergence of the of the ML sum to the exact GF, we take ka = 10,

and select four spacial coordinate pairs, or points P = (x, x′) in the 2D spacial coordinate

plane of the GF. Point A = (0.25a, 0.5a) corresponds to both coordinates being inside the

the resonator, point B = (0.25a, a) has one coordinate on the boundary, point C = (−a, a)

has coordinates at opposite boundaries, and point D = (a, a) has both coordinates at the

same boundary. On Fig. 2.3.2 we show the error corresponding to each of these points, for

both sum forms, Ger and Gsr. We can see that Ger converges at a rate 1/k2max for A, B, C,
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Fig. 2.3.2: Relative error of the ML expansion of the GF for a homogeneous slab, shown by solid lines.

Dashed coloured lines are for reference to help estimate the error convergence rate. Slab half width is a,

permittivity εs = 2, wavenuber ka = 10, which is indicated by the vertical dashed line.

and it has a convergence rate of 1/kmax for D, that is, when both coordinates are at the same

boundary. On the other hand, Gsr has a 1/kmax convergence rate for A and B, when at least

one point is inside the resonator, it has a 1/k2max rate for C, when the spacial coordinates

are at opposing boundaries, and it does not converge to the correct solution for D, when the

coordinates are taken at the same boundary, albeit it does converge to a different value. It is

also notable that neither of the sums start to converge to the correct value until the spectral

coverage kmax approximately includes the appropriate k value, so until kmaxa ≈ 10 in this

case. This consistent with the behaviour observed in [101], where it was found that increasing

N increases the radius in the complex k plane where the GF converges to the correct value.

To understand the difference between the convergence rates of Ger and Gsr we look at the

sum rule for the residue, that is, Eq. (2.12). For a homogeneous system with vacuum as the

background this is [14] ∑
n

En(x)En(x
′)

ikn
= 1 . (2.18)

On Fig. 2.3.3a we show how this expression converges for two different cases: when one of the
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Fig. 2.3.3: a) relative error in Eq. (2.18). For the solid line the point x = −x′ = a is highlighted with a

circle, and the point x = x′ = a is highlighted with a diamond. b) relative error in Eq. (2.19).

spacial coordinates is at the boundary (x′ = a, solid line) while varying the other coordinate

(x) inside the resonator, and when the two spacial coordinates are equal (x′ = x, dashed line).

We can see that generally the relative error converges as 1/kmax. For the former case, when

x′ = a, there are two significant deviations from this. First, when the two spacial coordinates

are at opposing boundaries, which corresponds to the left edge of the plot, highlighted with

a circle. We can see that here the expression converges as 1/k2max. Second, when both points

are at the same boundary, on the opposite end of the plot, highlighted with a diamond, the

expression does not converge to the expected solution. The dashed line shows that this is not

an issue when both coordinates are equal and inside the resonator, as for x = x′ ̸= ±a the

expression converges.

By adding the terms of the series pairs, so taking n and −n together, it can be shown

that when both points are inside the slab, the terms in Eq. (2.18) will take the form ∝

sin(|n|)/|n|, which has a convergence rate proportional to 1/N . When the points are at

opposite boundaries a similar analysis will result in terms ∝ (−1)|n|/n2 and ∝ cos(n)/n2,

both of which have convergence rates of 1/N2. The sum Ger is in the latter form (∝ 1/n2),

for both of the aforementioned cases, which explains the better convergence rate when both

points are inside the slab. When both points are at the same boundary the sum rule will

take the form (see Appendix A.2.1 for details)∑
n

En(x = x′)En(|x′| = a)

ikn
=

2
√
εs

εs − 1
coth(logα) , (2.19)

so it no longer expresses the residue. The convergence of Eq. (2.19) is verified numerically on

Fig. 2.3.3b, showing a 1/kmax rate. We can observe that the convergence rate of the sum rule
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corresponds exactly to the convergence rate of Gsr, and identify it as the main source of the

error for that expression.

2.3.2 Case of an inhomogeneous slab without a step-like boundary

For the inhomogeneous slab we take a linear permittivity profile given as

εs(x) = εL +
εR − εL

2a
(x+ a) , (2.20)

where εL and εR are the permittivity of the slab at the left and right boundary, respectively.

For a continuous permittivity profile these are equal to the background at the corresponding

boundary, so εL = εl and εR = εr. In case of a linear permittivity profile the forward and

backward propagating waves are given by Bessel functions of the first (J) and second kind

(Y ), respectively, of order 1/3 (or alternatively, by Airy functions) [103]

φf = k
√
εs(x)J1/3(Z) , (2.21)

φb = k
√
εs(x)Y1/3(Z) , (2.22)

Z =
2

3ε′s
k[εs(x)]

3/2 , (2.23)

where the prime over εs denotes the derivative with respect to the spacial coordinate.

The sum rule for the static pole residue based on the background GF is (Appendix A.1.3)

−
∑
n

En(x)En(x
′)

2kn
=

1

i(
√
εl +

√
εr)

, (2.24)

which is consistent with Eq. (2.18), for a completely homogeneous vacuum background.

For the background permittivity we chose εl = 1 and εr = 2. In Fig. 2.3.4a the resulting

eigenvalues and the transmission coefficient are shown. The straight dashed horizontal line is

the transmission coefficient between an interface with refractive indices
√
εl and

√
εr. We can

see that for small k, so long wavelength, the transmission approaches this value. Intuitively,

we can understand this as the incoming wave is insensitive to the thin slab between the

different layers, it only “sees” a single step. At large k, so small wavelength, the permittivity

does not change significantly over one wavelength, therefore no reflection occur and the

transmission tends towards unity. In correlation with this, Im (kn) increases with Re (kn),

which corresponds to the broadening of the lineshape and the consequent overlap of the

peaks in the transmission spectra. Similar effects can be observed for a dispersive system,

when the permittivity is described by the Drude model and the frequency independent term

is equal to the background permittivity, resulting in a vanishing permittivity contrast at
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Fig. 2.3.4: Slab with a linear permittivity profile. a) eigenvalues in the complex ka plane, and the

transmission coefficient T . b) real part of the electric field for the first three modes. The shading indicates

the permittivity of the system and the environment.

high frequency [82]. In Fig. 2.3.4b we show the permittivity profile, as well as the first three

modes which now are neither odd nor even due to the lack of symmetry of the system. The

mode fields are also growing much faster outside when compared to the homogeneous case

on Fig. 2.3.1b, which can be attributed to the weaker reflection at the boundary. Relation

between the reflection coeffcient of a boundary (the Fresnel coefficient) and the imaginary

part of the modes is described in detail in Sec. 3.2 of the next chapter.

Let us consider the convergence of the GF at the same four points as before. We choose

the wavenumber ka = 2 this time, so that ML sum starts to converge to the correct solution

for smaller kmax. The results are shown on Fig. 2.3.5. For A and B, the rate of convergence

is approximately a factor of
√
kmax slower than for a homogeneous slab. When both spacial

coordinates are taken at opposite boundaries (C) the rate of error convergence for both sums

are the same, but this time it is 1/kmax and not 1/k2max. Furthermore, when both points

are taken at the same boundary Gsr does not converge at all, and Ger seems to converge to

the wrong value in the observed spectral range. The slower convergence can be attributed to

the modes losing confinement at higher frequencies due to the reducing reflection coefficient,

which is approximately inversely proportional to k for a linear profile [103]. This is exemplified

on Fig. 2.3.4a by the increasing imaginary part of the modes with increasing real wavenumber.

While at a single point in parameter space, at x = x′ = a, neither of the ML sums give the

correct solution, we can conclude that overall, the ML expansion works correctly for system

without a step-like boundary, even if the convergence rate might be slower. We consider

this a numerical validation of the proof given in Ref. [31, 66], where it was shown that as
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Fig. 2.3.5: Relative error of the ML expansion of the GF for a slab with a linear permittivity profile

(Eq. (2.20)). For A and B a fitted line is shown, the data is shown with a faded line.

long as the permittivity, or any of its derivatives have a discontinuity, the eigenmodes form

a complete set, and thus they form a suitable basis to expand the GF into. Note that if the

linear profile is kept, but it is discontinuous at the boundaries, i.e. εL ̸= εl and εR ̸= εr , then

Im (kn) does not grow unbounded, and the convergence rate of the ML sum will be the same

as for the homogeneous slab.

2.4 Perturbation via the RSE

We investigate the error convergence rate of the RSE wavenumbers for two cases. In the first

case we will look at perturbing a homogeneous slab, with different left and right background

media, to a slab with a linear permittivity profile as in subsection 2.3.2. This will validate the

RSE formalism for a piecewise homogeneous background, which has not been implemented

before. This will also tests the convergence rate we can expect when the quality of the modes

radically change, such as going from the FP modes of the homogeneous slab, with fixed

Im (kn), to the FP modes of a slab without a step-like boundary, where Im (kn) increases
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with increasing Re (kn). In the second case we swap the systems compared to the first case:

we take a slab with a continuous linear profile as basis, and perturb it to a homogeneous slab.

This will show how the slow convergence rate of the GF compares with the convergence rate

of the eigenvalues.

For the background medium we choose again εl = 1, εr = 2, but the qualitative results

should not depend significantly on the combination of parameters. As the static pole residue

is expressed by RSs, and the static mode itself has a vanishing amplitude, in the RSE matrix

equation (Eq. (1.47)) we take V nn′ = Vnn′ =
∫ a
−aEn(x)∆ε(x)En(x)dx.

2.4.1 Perturbation of a homogeneous slab

The backward and forward propagating waves in the slab are the same as before, given by

Eq. (2.15) and Eq. (2.14), respectively. Due to the different refractive indices of the back-

ground to the left and to the right, the eigenvalues will be given by

kn =
1

4
√
εsa

(2πn− i ln(α)) , (2.25)

α =
(
√
εs +

√
εr)(

√
εs +

√
εl)

(
√
εs −

√
εr)(

√
εs −

√
εl)

, (2.26)

with again n = 0,±1,±2.... For the basis system we chose a slab with εs = 1.5, the average

of the two background permittivities. We introduce a perturbation that will results in the

final permittivity to be given by Eq. (2.20). In summary, the basis permittivity is

ε(x) =


εl = 1 x < −a

εs = 1.5 −a ≤ x ≤ a

εr = 2 a < x

, (2.27)

and the perturbed is

εp(x) =


εl = 1 x < −a

εl +
εr−εl
2a −a ≤ x ≤ a

εr = 2 a < x

. (2.28)

The complex wavenumber plane and the relative error of the calculation are shown on

Fig. 2.4.1. We can see that the exact solution is reproduced well, and the relative error

converges as 1/k3max as expected from Ref. [14, 101]. There are two modes in the complex

plane at the top right (circled) that are significantly different from the exact solution. These

are artificial modes, and they are produced by the RSE. They usually appear when the size
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Fig. 2.4.1: Perturbing a homogeneous slab (as in Fig. 2.3.1) into a slab with a linear permittivity profile

(as in Fig. 2.3.4). a) RSs wavenumbers in the complex ka plane. The circle indicates the artificial modes

generated by the RSE. b) Relative error of the perturbed eigenvalues.

of the system is changed, see for example Fig.1. of Ref. [85], or Fig. 2.5.1 in Sec. 2.5. The

role of these modes is to provide completeness over the original, unperturbed system volume.

This will be discussed in more detail later in Sec. 2.5. In the example considered here we

removed the step like boundary of the system, and this can also be interpreted as reducing

the system size infinitesimally, which would lead to the formation of the artificial modes.

2.4.2 Perturbation of a slab with linear profile

Now we make reverse of the case from the previous section. We take the basis system to

be the one from Sec. 2.3.2, with linear permittivity profile in the slab that is continuous

at the boundaries. We introduce a perturbation that changes the inhomogeneous slab to a

homogeneous one with a permittivity εs = 1.5. Therefore, the basis permittivity is

ε(x) =


εl = 1 x < −a

εl +
εr−εl
2a −a ≤ x ≤ a

εr = 2 a < x

, (2.29)

and the perturbed is

εp(x) =


εl = 1 x < −a

εs = 1.5 −a ≤ x ≤ a

εr = 2 a < x

. (2.30)
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Fig. 2.4.2: Perturbing a slab with a linear permittivity profile (as in Fig. 2.3.4) into a homogeneous slab

(as in Fig. 2.3.1). a) RSs wavenumbers in the complex ka plane. The left inset shows the artificial modes

along the imaginary axis that are generated by the RSE; the right inset illustrates the absolute error at

high frequency. b) Relative error of the perturbed eigenvalues.

The modes and the error are shown on Fig. 2.4.2. Compared to the previous case, when

a homogeneous slab was perturbed to a linear profile, here the error converges significantly

slower, with a factor of 1/kmax. This is expected as the ML sum itself, which the RSE relies

on, was converging slower in case of a linear slab without a step-like boundary, as it was

shown in Sec. 2.3.2. It is also notable that the change of the relative error along ka for a

fixed kmax is much slower (a factor of ∼
√
ka) than it was for a homogeneous slab (a factor

of ∼ (ka)2). Furthermore the error saturates much quicker, at k ∼ 0.2kmax here, versus

k ∼ kmax before. Note that, as shown on the inset, this perturbation also generates artificial

modes, this time along the imaginary axis, with negligible real part. These modes do not

disappear as we increase the basis size. Nevertheless, the results reproduce and converge to

the exact solution, and this provides a further verification of the completeness of the modes

of a system without a step-like boundary.

2.5 Convergence of the ML sum in a perturbed system

The convergence of the perturbed field Ẽn(x) and the perturbed GF was investigated in

Ref. [101] for a case when the permittivity was increased in a layer of the slab. It was

found that the average error of the perturbed field converges as 1/N (or 1/kmax). This puts

a limitation on the convergence rate of the GF itself, at least for Ger, as it relies on the

accuracy of Ẽn(x). It was found that the transmission, which is calculated from the GF with
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coordinates taken at opposite boundaries, and it is given by the equation [101]

T (k) = |2kG(−a, a; k)|2 , (2.31)

converges with approximately 1/N , whereas, from the results in Sec. 2.3.1 we know that with

the exact field the convergence could be better, 1/N2.

Instead of looking at just the general convergence rate of the perturbed GF, here we also

look at this property in conjunction with the completeness of the modes. As mentioned in the

introduction of this chapter, Sec. 2.3.1, as well as in Appendix A.1.3, for certain combinations

of spacial coordinates the ML sum converges to the exact GF even when one coordinate is

taken outside of the system. However, it is not possible to expand the GF into eigenmodes

with both spacial points outside of the system. The eigenmodes are not complete under this

condition, and the analytic GF does not vanish for large k (see Appendix A.1.3). Despite

this, we will show, that when the perturbed modes are generated with the RSE we obtain

a set of modes that will allow the GF to be constructed as a ML sum in all regions of the

original, unperturbed system.

Lets consider a size perturbation of a homogeneous slab with vacuum as background. We

change the width of the slab from 2a→ a. Therefore, the basis permittivity is

ε(x) =


εl = 1 x < −a

εs = 2 −a ≤ x ≤ a

εr = 1 a < x

, (2.32)

and the perturbed is

εp(x) =


εl = 1 x < −a

2

εs = 2 −a
2 ≤ x ≤ a

2

εr = 1 a
2 < x

. (2.33)

The perturbed eigenvalues are shown on Fig. 2.5.1a. We can see that while all the analytic

eigenmodes are found in a certain spectral range, there are a number of additional modes,

with significantly larger imaginary parts (i.e. Im (ka) < −2), that are not actual eigenmodes

of the slab. As we increase the basis size these additional artificial modes move away from

the origin, while the true modes converge to the exact solution. Therefore, we can refer to

the true modes as convergent modes, while we can refer to the artificial modes as divergent

modes.
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Fig. 2.5.1: Perturbation of a slab into a smaller slab. a) eigenvalues in the complext ka plane. b):

absolute value of two modes that are calculated with the RSE. The green is a ‘true’ eigenmode, the red is

an artifical mode due to the RSE. These modes are highlighted with a circle in a). The full gray shading

indicates the final permittivity, the striped gray region indicates the perturbation.

To understand the origin and role of these modes, let us consider the following. The

expansion of perturbed modes Ẽν(x) =
∑

n cνnEn(x) can be considered simply as a linear

transformation, like a rotation, with matrix c applied to the vector of basis modes E(x),

which rotates the basis. The linear transformation preserves completeness, therefore the

perturbed modes that are obtained as the results of the rotation must be complete under

the same spectral and spacial region as the unperturbed modes. This generates additional

modes compared to the approximately exact perturbed eigenmodes, as these alone would not

be complete under the original system volume which is larger than the perturbed system

volume. On Fig. 2.5.1b the field of one of the artificial modes is plotted. As these modes

have significantly larger imaginary parts than the true modes their fields grow faster and

are mainly located outside of the perturbed slab, which can be seen by comparing the field

amplitudes. As opposed to the true eigenmodes, these do not satisfy Maxwell’s equations with

the outgoing boundary conditions. They correspond to solutions that have waves propagating

backwards and forwards in the perturbed region, as if waves are reflected from the position

of the original boundary.

To numerically verify the completeness of the perturbed RSE modes outside of the per-

turbed slab volume we expand the GF into the ML series across the total space of the

unperturbed slab. The series will contain both the convergent and the divergent modes. We

compare this with a ML expansion of the GF which contains only the exact analytic modes

of the perturbed system, and also with the exact analytic GF.
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Fig. 2.5.2: a) GF of a slab, with boundary at ap, and source placed at x′. Exact solution (black), ML

expansion into analytic modes using kmaxa = 2000 (red) , ML expansion into modes generate via the RSE

using kmaxa = 200 (green). b) Error in the ML expansion. Solid line is for Gsr, dashed is for Ger, red

line shows the use of analytic modes, other colours are with RSE modes, using kmaxa = 200 (green) and

kmaxa = 2000 (blue). c) as b) but x′ placed further away. d) as c) but ka increased. Beyond the initial

system boundary at a none of the ML expansions (Gam, GRSE converge to the correct solution (Gex),

therefore this is not shown on the plot.

The GFs are shown in Fig. 2.5.2a, as a function of x, with the source placed at x′ = 0.6,

which is outside of the perturbed slab boundary ap = 0.5a, and the wavenumber ka = 5 is

used. We can see that when using only the exact analytical modes in the ML sum, which is

labelled Gam (red line), the expression deviates from exact solution at x/a ≈ 0.43. This is

expected from the condition
√
εsx< < a(1+

√
εs)−x>. We apply it with x being inside, which

gives the boundary for convergence at x/a = 0.429. When using all the perturbed modes

that are generated by the RSE in the ML series, including convergent and divergent ones,

there is a good agreement between sum, labelled GRSE (green line), and the exact solution

across the whole unperturbed slab region.

In Fig. 2.5.2b we look at how the results converge to the exact value when kmax is varied.
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We can see that for small kmax the RSE ML expansion reproduces the GF well across all

space inside the unperturbed slab. There is no qualitative difference between which form of

the GF is used, Gsr or Ger, though the latter shows an order of magnitude lower error. As

we increase the basis size, the error deep inside the perturbed slab decreases as expected.

However outside the slab, away from the perturbed boundary ap, the error starts to increase

with increasing basis size. This is further highlighted in Fig. 2.5.2c, where the source x′ is

placed further away from ap. The error of GRSE starts to resemble that of the Gam. This

can be understood from the perspective that for large kmax the divergent modes are moved

further away from the origin, and within a certain spectral limit klim only the convergent

modes remain. This leads to loosing the completeness property inside klim that is provided

by the divergent modes. Interestingly, as we move to a larger ka while keeping the basis size

kmax fixed, the error for Gsr reduces outside of the slab, as shown in Fig. 2.5.2d. This could

be due to the divergent modes still being relatively close to the real axis in this region, with

smaller detuning k − krse from the real wavenumber k. In Appendix A.2.2 we investigate in

more detail the dependence of the error outside of the perturbed slab on the combination of

k and kmax parameters. We find that for fixed k initially the error decreases with increasing

kmax, however after a certain kmax the error increases again, in line with the observation in

Fig. 2.5.2b and Fig. 2.5.2c.

We note that when using modes generated by the RSE for a system with linear continuous

permittivity profile, as in Sec. 2.3.2, Ger will converge even when x = x′ = a. This is due

to the divergent modes generated, see Fig. 2.4.1a, and it is consistent with the results in this

section.

2.6 Conclusion

We studied the convergence of the ML expansion of the GF to the exact values, for a slab at

normal incidence. This revealed that when both spacial coordinates are taken at the same

boundary, the ML expansion does not necessarily converge to the correct solution. In case

of a slab with a step like boundary this is caused by the use of the sum rule, which is not

satisfied when both spacial coordinates are taken at the same boundary. The sum rule for a

1D planar system (Eq. (2.12)) is also a special case of the general 3D sum rule (Eq. (1.30)),

as the former gives the residue of the single static pole, while the latter gives zero. There are

no separate static modes in planar 1D systems due to the vanishing normalisation coefficient.

In case of a slab without a step-like boundary the convergence rate of the ML series is slower
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than with a step-like boundary, and it does not converge to the correct value when both

spacial coordinates are on the same boundary, regardless of the use of the sum rule. We

looked at the convergence rate of the RSE results when the basis system has no step-like

boundary, and found that these also converge slower, which is due to the slower convergence

of the ML series. These examples verify the results of Ref. [31, 66], where it was shown that

the eigenmodes form a complete set as long as there is a discontinuity in the permittivity,

or in one of its derivatives. By applying a size perturbation to a slab, and expanding the

GF outside of the perturbed system into the RSE modes, we have shown that the modes

generated by the RSE form a complete set inside the original system volume. This is due to

artificial, or divergent, modes generated by the RSE, which can be though of as an analogue to

the PML modes, in the sense that they provide completeness inside the original volume, but

outside the perturbed volume. These results, in particular, the completeness outside of the

size-perturbed system and the limitations on when the sum rule is valid, will be particularly

important when we consider scattering calculations later on in Chap. 6, which will depend on

these properties.
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Spherically symmetric, radially inhomoge-

neous systems

The contents of this chapter are presented in the publication Ref. [104].

3.1 Introduction

Modeling inhomogeneous optical resonators is challenging as generally a simple analytic so-

lution is not available. A special case are spherically symmetric systems, having an inho-

mogeneity, for example in the permittivity, only dependent on the radius. Examples can be

found in core-shell systems which allow highly directional scattering [105], when modeling

surface contamination on a sphere due to diffusion [106] or high pressure [107], or when mod-

elling biological cells [108]. Graded index profiles can be used to engineer the cancellation of

electric and magnetic dipole excitation which reduces the visibility of small particles at cer-

tain wavelengths [109]. With an inhomogeneous and anisotropic sphere one can even achieve

perfect cloaking of a cavity over a range of frequencies [110]. On a larger scale, one may use

inhomogeneous profiles to model emission from stellar atmospheres [111].

The scattering properties of systems with graded permittivity have been studied in the

literature using various approximate methods. In the multilayer approach (also referred to

as stratified medium method), the graded index profile is approximated by a piecewise con-

stant function, describing the system by homogeneous regions comprising a core covered by

a sequence of shells [112,113]. In the short wavelength limit, a Debye series expansion for the

scattered field was used [114], and in the long wavelength limit a Born approximation [115]

or a dipole limit [109] were applied to dispersive systems with complex permittivity. Fur-

thermore, the dipole moment of dielectric spherical particles with power law radial profiles of

the permittivity was calculated in the electrostatic limit [116]. A generalized scattered field
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formulation developed in [106] requires solving scalar Schrödinger-like equations, similar to

the scalar wave equations solved in this work. To study the electromagnetic (EM) modes,

first and second-order perturbation methods were developed [21] and applied to deformations

of a homogeneous sphere [76]. Whispering gallery (WG) modes in both TE and TM polar-

izations were studied in [107] for small inhomogeneous perturbations of the surface layer of

a sphere. In that approach, the modes were found in the complex frequency plane based on

the expansion coefficients of the generalized scattered field, and the secular equations were

solved numerically using a Runge-Kutta method. The effect of a linearly changing permittiv-

ity profile was investigated in [117] for high-frequency TE modes in large spheres, using Airy

functions as an approximate solution to the corresponding scalar problem. Finally, in [118], a

resonant mode of a sphere was treated in the electrostatic limit, for a negative and frequency

dependent permittivity, described by an undamped (i.e. non-absorbing) Drude model, with

radial dependencies of the permittivity and the electric field approximated by polynomials.

Here we will use the RSE to study the modes of graded index spherical resonators. For

a general perturbation, one needs to include static modes [32, 63] alongside the RSs in the

ML representation of the dyadic Green’s function. Note that the latter is at the heart of the

RSE approach. Recently, the RSE has been reformulated [85], in order to eliminate static

modes, and the illustrations provided for perturbations of the size and refractive index of

a homogeneous sphere show a significantly improved convergence compared to the original

version of the RSE [32]. The approach [85] has also proposed, though without providing

illustrations, another quickly convergent version of the RSE, the one which keeps static modes

in the basis.

In this chapter we consider both versions of the reformulated RSE, with and without

static modes, demonstrating a similar efficiency of both. Using the RSE, we then investigate

spherically symmetric inhomogeneous systems, with graded permittivity profiles. The RSs

in such systems are still split into TE and TM polarizations, and are characterized by the

azimuthal (m) and angular (l) quantum numbers. Importantly, while some graded profiles are

approximately solvable analytically [111,119], the RSE can treat arbitrary perturbations and

finds all the RSs of the system within the spectral coverage of the basis used, thus generating

a full spectrum. This allows us to identify some prominent features in spectra, such as the

quasi-degeneracy of modes and the Brewster angle phenomenon, and ultimately to engineer

the shape of the spectrum via changing the permittivity profile.

This chapter is organized as follows. In Sec. 3.2 we study the TE and TM RSs of a ho-

mogeneous sphere, using the qualitative ray picture of light propagation as well as a more
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rigorous phase analysis of the secular equations describing the light eigenmodes, both ap-

proaches introducing several useful approximations. In Sec. 3.3 we briefly describe the RSE

method and its optimizations used here for calculating the RSs of a graded index sphere. We

then recap the analogy between wave optics and quantum mechanics, by introducing a radial

Schrödinger-like wave equation containing an effective potential. The RSs of a sphere with

linear and quadratic radial permittivity profiles eliminating the discontinuity at the sphere

surface are then discussed, and an approximate analytical solution using Morse’s potential

is presented. In Sec. 3.4 we investigate the TE-TM RS splitting and its reduction for graded

index profiles.

3.2 Homogeneous sphere

The secular equation determining the RS eigen wavenumber kn of a non-magnetic homoge-

neous sphere of radius R with vacuum outside is given by [85]

J ′(nrknR)

J(nrknR)
=

1

β

H ′(knR)

H(knR)
, (3.1)

where β = nr (β = n−1
r ) for TE (TM) polarization. Here J(x) = xjl(x) and H(x) = xh

(1)
l (x),

with jl and h
(1)
l being, respectively, the spherical Bessel function and Hankel function of first

kind, and primes denote the first derivatives of functions with respect to their arguments.

Figure 3.2.1 shows the spectrum of the RSs of a homogeneous dielectric sphere in vacuum

in the complex wavenumber plane, for a refractive index of the sphere of nr = 2 and an

angular momentum quantum number of l = 20. For the example given, the combination of

parameters nr and l are chosen such that the spectrum contains a few WG modes. Here,

k = 2π/λ0/c is the wavenumber in vacuum, λ0 is the wavelength of light in vacuum. Only

Re k ≥ 0 is shown, noting that RSs come in pairs with both signs of the real part of their

wavenumber. The spectrum consist of TE and TM modes which appear in alternating order,

with one exception related to the Brewster’s angle phenomenon, as discussed later. The RSs

of a sphere can be divided into three groups: leaky (L) modes, WG modes, and Fabry-Pérot

(FP) modes. Physically, all of them are formed as a results of interference of electromagnetic

(EM) waves interacting with the sphere surface.

L modes typically have quality factors (Q factors) which are very low and their EM fields

are located mainly outside the sphere. The number of L modes is exactly l in TE and l − 1

in TM polarization, although the Brewster mode discussed later can be regarded as a hybrid

L-FP mode, so that one could say that the number of L modes is effectively the same in

both polarization. For comparison, the case of l = 5, with the same refractive index nr, can
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Fig. 3.2.1: Wavenumbers of the TE and TM RSs of a homogeneous sphere in vacuum, with a refractive

index of nr = 2 and an angular momentum quantum number of l = 20. The regions of leaky modes (L),

whispering gallery modes (WG), and Fabry-Perot modes (FP) are indicated. Solid line is the approximation

to the imaginary part of the wavenumbers, given by Eq. (3.3). Note the double y-axis break.

be seen in Ref. [63]. L modes arrange around the origin in the complex wavenumber plane,

forming a roughly semicircular arc.

WG modes are formed due to the total internal reflection and therefore have wavenumbers

with |Re k| < l/R, as discussed below. The number of WG modes is increasing with nr and l.

The Q factor of the fundamental WG mode is increasing exponentially with l, and values of

up to 1010, only limited by material properties, have been demonstrated experimentally [120].

The EM field of the WG modes is concentrated inside the sphere close to the surface.

FP modes of a sphere have moderate Q factors and are named for their similarity to the

original FP modes [121] of a double-mirror planar resonator. In fact, at large frequency, the

FP modes of a sphere approach the limit of an equidistant spectrum of a dielectric slab, with

all the eigenfrequencies having the same imaginary part [14]. The number of FP modes is

countable infinite. Their EM fields are distributed within the sphere, avoiding the centre due

to the non-zero angular momentum (l > 0). The FP modes are spectrally separated from the

WG modes by the critical angle of the total internal reflection, as discussed in more depth

below.

The arrangement of the RSs in Fig. 3.2.1 is overall similar in the TE and TM polarizations.

The imaginary part of their wavenumbers approaches the same high frequency asymptote,

albeit from opposite sides. Additionally, there is a peak in the imaginary part of the TM
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Fig. 3.2.2: Real part of the wavenumber of the TM RS at the Brewster peak (circles) as a function

of the sphere refractive index n1 = nr, for l = 10, l = 20 and l = 80, compared with the ray optics

approximation Eq. (3.2) (lines). Inset: sketch of the ray geometry at the boundary.

RS wavenumbers near the transition region from WG to FP modes, which occurs around

the Brewster angle in the ray picture of light propagation, and we therefore refer to it as

a Brewster peak. At this peak, an additional TM mode is formed, breaking the otherwise

alternating order of TE and TM RSs.

Let us know discuss and analyze the spectrum of the RSs of a sphere in more detail,

using the ray picture approach. This provides an approximations for the mode positions and

linewidths of non-WG modes and offer an intuitive understanding of the origin and properties

of the RSs of a sphere.

3.2.1 Ray picture: Brewster’s phenomenon and total internal reflection

To understand the observation of the Brewster peak in the spectrum of the RSs, we recall

that increasing the angle of light incidence θ at a planar interface between two media, the

Fresnel reflection coefficient for TM (aka p) polarized light passes through zero, changing

its sign at the Brewster angle [122]. The same occurs at the surface of a sphere in the ray

picture, which is valid in the limit of wavelengths much smaller than the surface curvature.

This local geometry is illustrated in the inset of Fig. 3.2.2. The magnitude of the incident
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wave vector is n1k, where n1 is the refractive index of the corresponding medium, i.e. that

the sphere, n1 = nr. Since the angular momentum l gives the number of wave periods along

one circumference 2πR, the wave vector component p parallel to the surface is determined by

2πl = 2πRp, so that p = l/R. With simple trigonometry we can see that sin θ = p/(n1k). The

Brewster angle θb is determined by tan θb = n2/n1, so that for a sphere in vacuum (n2 = 1)

the wavenumber corresponding to the Brewster angle is given by

kb =
l

R

√
1

n21
+ 1 . (3.2)

At this angle, the reflectivity vanishes. This would correspond to a divergence of the imagi-

nary part of the RS wavenumber for an ideal planar geometry. Here instead it is kept finite

due to the finite curvature of the surface and the RS discretization, resulting in the Brewster

peak.

In Fig. 3.2.2 we compare Eq. (3.2) with the real part of the wavenumber of the Brewster

mode (the TM mode at the Brewster peak in the spectrum), for l = 10, l = 20 and l = 80,

all showing good agreement. We find that the relative error for small n1 increases with

decreasing l. For smaller l the peak position shifts to longer wavelength, and the ratio of

internal wavelength to the radius increases, therefore the validity of the ray picture reduces.

With increasing n1 the RSs are packed more densely in the complex k plane, so that the

discretization does not result in significant deviations. At the same time, the light wavelength

within the sphere 2π/(n1k) decreases with n1, thus improving the accuracy of the ray picture.

The Brewster mode can also be associated with the leaky branch. In fact, as n1 increases,

the Brewster peak in the spectrum is getting sharper, so that the Brewster mode is taking a

significantly larger imaginary part of the wavenumber compared to the neighboring FP modes

and is thus getting more isolated from them, at the same time approaching the edge of the

leaky branch. Indications of this can be seen in Fig. 3.3.2. We also note that for high l, the

Brewster peak can be shifted further into the FP spectral region. This happens because the

Brewster angle θb is always smaller than the critical angle θc of the total internal reflection.

The latter determines the point in the spectrum separating WG from FP modes and can be

evaluated in a similar way, leading to kc = l/R. Comparing it with Eq. (3.2), we see that as

l increases or n1 decreases, the difference kb − kc is getting larger, so that the corresponding

region in the spectrum, between the critical and the Brewster angles, can accommodate more

RSs.

The ray picture is also useful for understanding the imaginary part of the FP mode

wavenumbers. Assuming the reflectivity amplitude rP at the sphere surface in polarization
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P is given by the corresponding Fresnel coefficient, we equate it to the ratio of the field

amplitude before and after each reflection. This ratio is in turn given by the temporal decay

of the field, |rP | = exp(−t/τ), where t is the time between consecutive reflections and τ is the

mode decay time which is given by the imaginary part of its eigenfrequency, 1/τ = −Im (kc).

At the same time, the optical path length across the sphere between two reflections is given

by L = 2Rnr cos θ. Finally, using the fact that t = L/c and taking the logarithm of the

reflectivity results in

Im (k) =
ln |rP |

2Rnr cos θ
, (3.3)

where the Fresnel coefficient rP depends on the angle of incidence θ and the refractive index of

the sphere nr. The expression is valid up to the critical angle θc of total internal reflection, at

which ln |rP | = 0. The values obtained according to Eq. (3.3) are shown in Fig. 3.2.1 as solid

lines. We can see a good agreement for both polarizations, including the Brewster peak and

the asymptotic value for FP modes, evaluated to −0.27465/R for nr = 2 and θ = 0, which

again validates the ray optics interpretation of the RS properties. The WG modes are located

in the total internal reflection region of the spectrum where Eq. (3.3) is not applicable – their

non-vanishing imaginary parts are the result of the finite curvature of the sphere making the

reflection imperfect. Such refinement is taken into account in Ref. [123], but with specific

focus on WG modes only. In Sec. B.1 of Appendix B we also evaluate the approximation in

case of a homogeneous slab at non-normal incidence, and show that it is more accurate in

that case due to the planar boundary. At non-normal incidence, the TE and TM FP modes

of a slab asymptotically converge to each other in pairs, as shown in Fig. B.1.1 in Sec. B.1.

The planar system gives rise to both even and odd modes (using the parity of the electric or

magnetic field), with odd TE modes converging to even TM modes at large frequencies, and

vise versa. In the sphere, however, there are no even modes, as required by the finiteness of

the EM field at the origin (as in any other point in space). Considering only the even modes

of the slab spectra, we obtain the FP modes of the sphere, which are alternating between TE

and TM RSs with increasing Re (k).

As an alternative approach to the ray picture, if |√εrknR)| >> l one can obtain an

approximate secular equation that is only a function of Re (k), as in Ref. [104]. From this it

is possible to extract an approximation for the imaginary part of the modes. This method

also gives the correct asymptotic behaviour for the FP modes, and while it is less accurate

in the transition region than the ray picture, it provides an approximation even for WGMs.
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3.3 Graded index spheres

In this section we study, using the RSE, the RSs in spherically symmetric non-magnetic

systems with graded permittivity profiles. A particularly interesting situation is reached by

removing discontinuities of the permittivity. Here we study cases where the discontinuity

is removed either only in the permittivity (linear case) or both in the permittivity and its

derivative (quadratic case), and compare both cases with each other and with the constant

permittivity profile studied in Sec. 3.2. We note that removing discontinuities of the refractive

index yields broadband anti-reflecting coatings in planar dielectric layers [124]. For the

WG modes, we introduce a radial Schrödinger-like wave equation containing an effective

potential, compare potentials and mode properties in all three cases, and provide an analytical

approximation based on the Morse potential.

3.3.1 Calculating the resonances

Resonant-state expansion

Here we briefly discuss the methodology based on the RSE [32,63,85] which is used for the

numerical calculations. The RSE is well suited for calculating the RSs of a graded index

sphere. The difference in the permittivity between the target system (a graded index sphere)

and the basis system (a constant index sphere) is treated as a perturbation, and the RSs

of the constant index sphere serve as a basis for the RSE. The EM fields of the RSs of

the target system are expanded into the basis RSs, and the expansion coefficients and the

RS wavenumbers of the target system are found by solving a linear eigenvalue problem, see

Eq. (3.4). This eigenvalue problem of the RSE contains as input the RS wavenumbers of

the basis system and the matrix elements of the perturbation. For spherically symmetric

systems, TE and TM polarizations, or RSs with different l and magnetic quantum number

m, do not mix and can be treated separately in RSE. However, the matrix elements used in

the RSE for the TE and TM RSs are different, see [85] for details, and as discussed below. In

particular, for TM polarization, one needs to include in the basis additional functions which

are required for completeness and physically describe the part of the EM field in a graded

index sphere which is not divergence free. More rigorously, these functions are required to

properly describe a longitudinal part of the dyadic GF related to its static pole in the ML

expansion. Without these additional functions the mode wavenumbers calculated by the RSE

carry a systematic error [32].

The RSE eigenvalue problem leads to an infinite matrix. For computational evaluation,
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this matrix is truncated to a finite size N × N , where N is the number of RSs of the basis

system used in the calculation. The specific RSs used are the basis RSs having complex

wavenumbers with an absolute value below kmax.

Previously, the static pole of the GF in the ML expansion has been treated within the RSE

by introducing a complete set of static modes [32]. However, even though the treatment of

static modes is numerically less complex, a slow convergence versus the basis size N observed

in [32] remained an issue. To develop quickly converging versions of the RSE, the full ML

representation of the dyadic GF of a spherically symmetric system has been studied in [85],

focusing in particular on the static pole of the GF containing a δ-like singularity. A quick

convergence of the RSE has been achieved and demonstrated in [85] by an explicit isolation

of the singularity that has allowed to avoid its direct expansion into static modes. Two ML

forms of the GF have been introduced in [85], called there ML3 and ML4, which led to slightly

different versions of the RSE, both quickly convergent to the exact solution.

The quick convergence of the RSE based on ML4, with static mode elimination and

suited only for a basis system in a form of a homogeneous sphere, was demonstrated in [85]

on examples of both size and material (strength) perturbations of a sphere. However, the

version of the RSE based on ML3, which is using explicitly a static mode set and an arbitrary

spherically symmetric basis system, has not been studied so far numerically. Such a study is

given later in this section, including a comparison with ML4, demonstrating a similar level

of convergence. We show here in particular that the RSE based on ML3 and ML4 have

both a quick 1/N3 convergence to the exact solution, where N is the basis size of the RSE.

Furthermore, taking three different static mode sets introduced earlier in [32, 85], we show

that the results of the RSE based on ML3 are similar for all the different static mode sets

previously suggested.

Let us finally note that for perturbations without discontinuities, the above mentioned

optimization of the RSE might be not needed, as demonstrated in a similar approach based

on eigen-permittivity modes [88]. However, as we are going to consider a transformation of

an optical system from a homogeneous sphere, having a discontinuity, to a sphere with a

continuous permittivity profile, the perturbation describing this transformation and used in

RSE contains a discontinuity, both in linear and quadratic cases, and therefore the above

optimization is in fact needed.
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Resonant-state expansion for spherically symmetric systems

According to Ref. [85], the matrix equation of the RSE for non-dispersive systems has the

following general form:

(k − kn)an = −k
∑
n′

Ṽnn′an′ , (3.4)

where an are the expansion coefficients of a perturbed RS into the basis RSs labeled by index

n. For spherically symmetric systems, all n refer to the same spherical quantum numbers l

and m, but the matrix elements Ṽnn′ of the perturbation are quite different in TE and TM

polarizations.

For a radially-dependent permittivity perturbation ∆ε(r) of a nonmagnetic system, the

matrix elements in TE polarization are given by

Ṽ TE
nn′ =

∫ R

0
En(r)∆ε(r)En′(r)dr , (3.5)

where En(r) is the electric field of the basis RS n, satisfying Eq. (3.23), in which k = kn is

the RS wavenumber and ε(r) is the permittivity profile of the basis system. The fields En(r)

are normalized according to [14,85]

2

∫ R

0
εE2

ndr +
1

kn

[(
EnrE ′

n

)′ − 2r(E ′
n)

2
]
r=R

= 1 . (3.6)

For TM polarization, the matrix elements have a more complex form:

Ṽ TM
nn′ = Vnn′ −

∑
jj′

VnjWjj′Vj′n′ (3.7)

where Wjj′ is the inverse of matrix δjj′ + Vjj′ , index n labels the basis TM RSs, and index

j labels additional functions required for completeness. They are used in the expansion of

the perturbed EM vector fields and the dyadic GF, and are responsible for the static pole

representation of the latter [85]. It is convenient to introduce a combined index ν which labels

together the RSs (n) and the additional basis functions (j). It is also useful to separate each

basis electric vector field into the radial Er
ν (r) and tangent E t

ν(r) components. The matrix

elements contributing to Eq. (3.7) then take the form [85]:

Vνν′ =

∫ R

0

[
E t
ν∆ε(r)E t

ν′ + Er
ν

ε(r)∆ε(r)

ε(r) + ∆ε(r)
Er
ν′

]
dr (3.8)

with E t
ν(r) and Er

ν (r) defined below.

For the basis TM RSs, the fields are given by E t
n(r)

Er
n(r)

 = − 1

knε(r)

 d
dr

α
r

Hn(r) ≡

 Kn(r)

Nn(r)

 , (3.9)
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where Hn(r) is the magnetic field of the basis TM RS n, satisfying Eq. (3.25), in which

k = kn is the RS wavenumber and ε(r) is the permittivity profile of the basis system. The

fields Hn(r) are normalized according to [14,85]

2

∫ R

0
H2

ndr +
1

kn

[(
Hn

r

ε(r)
H′

n

)′
− 2r

ε(r)
(H′

n)
2

]
r=R+

= 1 (3.10)

with R+ = R+ 0+, where 0+ is a positive infinitesimal.

All other basis states can be expressed in terms of functions Kn(r) and Nn(r) introduced

in Eq. (3.9) and static modes ψλ(r) introduced in [32] and also discussed in [85]. Let us note

at this point that the two slightly different versions of the efficient (i.e. quickly convergent)

RSE developed in Ref. [85] are based on two different Mittag-Leffler representations of the full

dyadic GF of a spherically symmetric system, called in [85] ML3 and ML4. Essentially, they

differ in the basis functions describing the static pole of the GF. Also, ML4 is introduced for

a homogeneous sphere only, while ML3 is valid for any spherically symmetric basis system.

In the ML3 version of the RSE, all the additional basis states can be divided into three

groups. In the first two groups, indices jI and jII take the same values as the TM RS index

n, and the fields are given by E t
jI

Er
jI

 =

 iKn

iNn

 and

 E t
jII

Er
jII

 =

 Kn

0

 . (3.11)

In the third group,  E t
jIII

Er
jIII

 =

 αψλ

0

 , (3.12)

and the index jIII coincides with λ labeling static modes defined in terms of the radial part of

their potential function ψλ(r). Static modes are the solutions of a generalized Sturm-Liouville

problem [32,85] and are normalized according to

λ2
∫ R

0
ε(r)ψ2

λ(r)r
2dr = 1 . (3.13)

For a basis system in the form of a non-magnetic homogeneous sphere in vacuum, de-

scribed by the permittivity profile given by

ε(r) = (ϵ− 1)θ(R− r) + 1 , (3.14)

the static mode potentials take the explicit form

ψλ(r) = Aλjl(λr) (3.15)
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within the sphere (r ⩽ R), where jl(x) is the spherical Bessel function of order l, λ is

the mode eigenvalue (here also used to label the modes), and Aλ is a normalization constant

determined according to Eq. (3.13). The eigenvalues λ are found from the boundary condition

of the Sturm-Liouville problem [32], which leaves a large range of possible sets. Following [85],

we consider here three sets of static modes for ML3 version of the RSE: (i) the volume-charge

set (VC), with the eigenvalues generated by the secular equation

λϵRj′l(λR) + (l + 1)jl(λR) = 0 , (3.16)

(ii) the volume-surface-charge set (VSC), with a simpler secular equation

jl(λR) = 0 , (3.17)

and (iii) a modified-volume-surface-charge set (MVSC), determined by the following secular

equation

λRj′l(λR) + (ϵl + 1)jl(λR) = 0. (3.18)

Note that apart from the modes generated by the secular equations, both VSC and MVSC

sets include one additional mode, that corresponds to λ = 0. Also note that the VSC and

VC sets were used in [32] for a slowly convergent version of the RSE.

In the ML4 version of the RSE, developed in [85] for the basis system in a form of a

homogeneous sphere in vacuum, all basis states responsible for the static pole of the GF can

be divided into four groups. The first two groups are the same as in ML3 and are given by

Eq. (3.11). The third and fourth groups of basis functions provide an alternative to the static

mode sets described above. The third group is given by E t
jIII

(r)

Er
jIII

(r)

 =

 Nn(r)

0

 , (3.19)

where index jIII again takes the same values as the TM RS index n, in the same way as in

the first two groups, and the fourth group consists of the single element E t
jIV

(r)

Er
jIV

(r)

 =

 M0(r)

0

 , (3.20)

where

M0(r) =

√
l(l + 1)

ϵR

ϵ− 1

ϵl + l + 1

( r
R

)l
, (3.21)

which can also be found as

M0(r) = (ϵ− 1)

√
l

ϵ
lim
kn→0

Kn(r) (3.22)

= (ϵ− 1)

√
l + 1

ϵ
lim
kn→0

Nn(r)
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Fig. 3.3.1: RSE applied for size perturbation. TM RSs of a dielectric sphere with permittivity ϵ = 4 and

permeability µ = 1, for angular momentum number l = 20. Top: Wavenumbers in the complex k plane.

Basis RSs for size R, target RSs for size 0.8R. Bottom: Relative error of the RSs calculated by RSE with

method of elimination of static modes (ML4) and with efficient inclusion of static modes (ML3) for various

static mode sets and basis sizes N as given. Inset: unperturbed and perturbed permittivity profiles.

by treating both Kn(r) and Nn(r) as analytic functions of kn and taking the limit kn → 0.

To test the convergence of the RSE based on ML3 for the different static mode sets, we

apply the RSE to a size perturbation of a homogeneous sphere. We choose as unperturbed

system a homogeneous sphere in vacuum, having radius R, permittivity ϵ = 4, and perme-

ability µ = 1. We focus here on the TM RSs with angular momentum l = 20, also noting

that in spherically symmetric systems, all states are degenerate in m. The target system is a

sphere of the same material and radius 0.8R, so that the perturbation is given by ∆ε = 1− ϵ

in the outer 0.2R thick shell of the basis sphere. Figure 3.3.1 shows the resulting perturbed

and unperturbed eigenvalues k, and their error, for various basis sizes N , which include RSs
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with |kn|R ≲ 0.77N and static modes with |kλ|R ≲ 3.31N . For a homogeneous sphere, in

the absence of dispersion the RS wavenumbers kn and R are inversely proportional, which

can be seen as a scaling of the target RSs compared to the basis RSs in the complex plane.

The relative error for ML3 scales as 1/N3 (the same as in ML4), independent of which

static mode set is used. In the original version of the RSE [32], with a slow (1/N) convergence

for static mode inclusion, there was a more significant difference between the VC and VSC

sets, as they were used for the expansion of the complete residue of the static pole of the

GF, including the δ-function term. We find that ML4 provides smaller errors for the leaky

branch. This can be understood by noting that ML4 uses instead of static modes basis

functions proportional to the RSs, including L RSs, and thus can be expected to be better

suited for expanding the L RSs of the target system. A slow initial convergence of L RSs is

testament to their unusual spatial shape, not well described by the basis RSs, but the 1/N3

convergence is eventually recovered above N = 400.

The results for strength perturbation, that is, changing the permittivity of the sphere

homogeneously, are shown in Fig. 3.3.2, displaying a similar behavior. Here, using the same

basis sizes as in Fig. 3.3.1, we apply the RSE for a homogeneous increase of the permittivity

of the sphere by ∆ε = 5, giving a target sphere permittivity ϵ+∆ε = 9. The higher refractive

index leads to a denser array of RSs, increased number of WG modes and smaller imaginary

part for the FP modes. We can see that the error converges with the basis size N as 1/N3 for

ML3, independent of the static mode set used. For the WG modes, the ML3 representation

has some advantage over ML4, having up to five times smaller errors. The static modes thus

seem better suited to describe these WG modes, likely because they are bound to the sphere,

similar to the WG modes.

We thus conclude that for all three static mode sets, ML3 has a convergence similar to

ML4. In all calculations of the RSs of the graded index spheres done later in this chapter,

we use the RSE based on ML4, as it has a fixed number of additional basis functions in

TM polarization, which is three times the number of the TM RSs included in the basis. We

use a basis size of N = 800 (reached at kmaxR ≈ 600) in both cases of linear and quadratic

profiles, which provides a relative accuracy better than 10−6, as exemplified in Fig. 3.3.2 and

Fig. 3.3.1.

3.3.2 Quantum mechanical analogy - the effective potential

To intuitively understand the properties of the RSs in graded-index optical systems, it is useful

to consider the analogy between Maxwell’s and Schrödinger’s wave equations and to introduce
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Fig. 3.3.2: As Fig. 3.3.1, but for a homogeneous perturbation. Basis system ϵ = 4, target system

ϵ+∆ε = 9.

an effective optical potential [125]. In spherically symmetric systems, all the components of

the electric and magnetic fields can be expressed in terms of a radially dependent scalar

field [85]. For TE (TM) polarization, this is the magnitude of the electric (magnetic) field,

which has only a tangential component E(r) = E(r)/r (H(r) = −iH(r)/r). For non-magnetic

systems, with the radial permittivity profile ε(r) and permeability µ(r) = 1, the scalar field

E(r) satisfies the Schrödinger-like equation [85](
d2

dr2
− α2

r2
+ k2ε(r)

)
E(r) = 0 , (3.23)

where α =
√
l(l + 1). In fact, assuming a particle mass M = ℏ2/2, Eq. (3.23) can be in-

terpreted as a quantum-mechanical analogue (QMA). An obvious limitation of this QMA is

that k2, playing the role of the complex eigenvalue for the RSs, contributes to Eq. (3.23) not

in the same way as the energy in Schrödinger’s equation. Associating k2 with the particle
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energy, and using the fact that ε(r) = 1 (or a constant) outside the system, Johnson [125]

introduced an energy-dependent effective potential, which makes the analogy with quantum

mechanics no so straightforward. Here instead, we interpret Eq. (3.23) as an equation for the

zero-energy state of a particle in a one-dimensional potential

V TE(r) = −k2ε(r) + α2

r2
, (3.24)

in which k plays the role of a complex parameter of the potential. In this QMA, every RS

of the optical system, described by the wave function E(r), has zero quantum-mechanical

energy and a potential Eq. (3.24) valid for this RS only, given by the corresponding value of

k.

Likewise, for TM polarization, the scalar field H(r) satisfies an equation [85](
− 1

ε(r)

dε

dr

d

dr
+

d2

dr2
− α2

r2
+ k2ε(r)

)
H(r) = 0 , (3.25)

again, valid for a non-magnetic system described by the permittivity ε(r). Compared to

Eq. (3.23), there is an additional term proportional to the logarithmic derivative of the per-

mittivity, which can be included in the potential, yielding

V TM(r) = V TE(r) +
ε′(r)

ε(r)

H′(r)

H(r)
, (3.26)

where the prime indicates the spatial derivative. The second term in Eq. (3.26) is analyzed and

discussed in more depth in Sec. 3.4.1, which helps understanding the TE-TM mode splitting.

Here, we only note that this term, in its above form depending on the wave function, is

inconsistent with the standard definition of the potential. However, introducing a re-scaled

wave function H̃(r) =
√
ε(r)H(r) brings the effective potential to the form

Ṽ TM(r) = V TE(r) +
3

4

[
ε′(r)

ε(r)

]2
− 1

2

ε′′(r)

ε(r)
, (3.27)

which is now independent of the wave function, thus providing a valid QMA also for TM

polarization, as detailed in Appendix B.2.

Note that the radial equations (3.23) and (3.25) are aligned with the standard Maxwell

boundary conditions requiring that E and E ′ are continuous in TE polarization, and H and

H′/ε are continuous in TM polarization. Clearly, any discontinuity of ε results inH′ being also

discontinuous in TM polarization, which is in particular the case of a homogeneous dielectric

sphere in vacuum. We note that one can find the eigenmodes of graded index spheres by

solving the radial equations directly with an appropriate numerical method. However this

approach does not guarantee that all modes in a region of interest in the complex plane are

found. In this paper we therefore use the effective potential picture in the following only for

qualitative discussions, and developing an approximation based on the Morse potential.
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3.3.3 Graded index permittivity profiles

Constant permittivity

The TE and TM modes of a homogeneous sphere in vacuum, used as basis system in the

RSE and described by a constant permittivity

ε(r) = 1 +Aθ(R− r) , (3.28)

where θ(x) is the Heaviside function and A = n2r − 1, are shown in Fig. 3.3.3a for nr = 2

(note they are the same as in Fig. 3.2.1). The fields, E(r) and H(r), and the corresponding

effective potentials, given by Eq. (3.24) and Eq. (3.26), are illustrated in Fig. 3.3.3b for the

fundamental WG mode for TE and TM polarizations, respectively. Both potentials decrease

with radius due to the centrifugal term α2/r2 and have similar step-like barriers at the sphere

surface (r = R) due to the step in the permittivity. In the TM potential, there is additionally

a δ function at the sphere surface due to the derivative of the permittivity, see Eq. (3.26).

The fields are effectively confined near the sphere surface, on one side by the centrifugal term

increasing towards the center of the sphere and on the other side by the refractive index step

at the sphere surface. The fields have evanescent tails extending outside of the sphere, which

convert at larger distances into propagating waves once the potentials become negative, and

then grow exponentially due to the imaginary part of the potentials created by the complex

k.

The optical transmission through the barrier determines the losses of the WG modes

and hence the imaginary part of their wavenumbers. The height of the barrier depends on

the size of the permittivity step and the angular quantum number l, and the transmission

reduces about exponentially with l, thus allowing for very low mode losses [49]. Note that

in a purely quantum-mechanical problem, having a real potential, the eigenenergy of such a

state would necessarily have a finite imaginary part [12] – our potentials are however complex

due to the finite imaginary part of the RS wavenumbers, though the latter is small for WG

modes. Interestingly, it is the complex potential which allows the state energy in the QMA to

have zero imaginary part, even though there is a finite probability for the particle to tunnel

through the barrier and to escape from the system.

Linear permittivity

We choose here a linear profile in the form

ε(r) = 1 +Bθ(R− r)(1− r/R) , (3.29)
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Fig. 3.3.3: RSs for l = 20, and constant (a,b), linear (c,d), and quadratic (e,f) permittivity profiles as

shown in the insets. Left: RSs in the complex k plane. Right: Real part of the potential and the field

of the first WG mode. The TE and TM fields are normalized to the same maximum value. The unitless

effective potentials V TER2 and V TMR2 are given, respectively, by Eqs. (3.24) and (3.26).
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so that ε(r) is a continuous function. The parameter B is chosen such that the volume

integral of the permittivity
∫
ε(r)dV within the sphere of radius R is equal to that of the

homogeneous sphere with refractive index nr, yielding B = 4(n2r − 1). Since the basis system

used in the RSE has nr = 2, we take here B = 12.

The resulting RS wavenumbers calculated via the RSE are shown in Fig. 3.3.3c. Their

distribution in the complex k-plane is qualitatively similar to that of the homogeneous sphere.

The L RSs are nearly unaffected. The WG RSs have a smaller TE-TM splitting and a quicker

growth of the imaginary part of k with the real part. The Brewster peak is less pronounced,

broader, and is shifted towards larger values of the real part of k. At the sphere boundary

the refractive index is approaching 1, so that using Eq. (3.2) one would expect the Brewster

peak to appear at around kbR ≈ l
√
2, which is indeed observed in the spectrum, see a dotted

line in Fig. 3.3.3c.

The FP RS wavenumbers show a significantly larger imaginary part compared the homo-

geneous case. Also, it is increasing with the real part, which is qualitatively different from

the homogeneous sphere, where the imaginary part of k for the FP RSs is converging to a

finite value with increasing the real part of k. This can be understood again considering the

reflection at the sphere surface. For graded index boundaries, the reflectivity is wavelength

dependent. It is proportional to the index change over one wavelength, thus proportional to

1/Re (k) for short wavelength. An example of this can be found in [103] for a segment having

an exponential permittivity profile. Using Eq. (3.3) we therefore expect Im (k) ∝ ln(Re (k)),

which is shown as a dashed line in the lower inset of Fig. 3.3.3c, in good agreement with the

high frequency asymptote of TE and TM wavenumbers.

To understand the behavior of the WG RSs, we consider the QMA, with potentials shown

in Fig. 3.3.3d. The potential well is shifted towards the centre of the sphere, and while it

is not as deep as in case of the constant case, the barrier itself is wider, providing a good

containment for the modes. This is in agreement with observing high quality WGs despite

the lack refractive index contrast at R.

Approximation based on the Morse potential

The shape of the potentials suggests that they can be approximated with the anharmonic

Morse potential [126], for which analytical solutions are known. The Morse potential is a

non-parabolic potential with known analytical solutions for energy levels and corresponding

wave functions, often used to describe the binding of diatomic molecules [127]. We take the
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Morse potential in the form

VM(r) = De {1− exp[−a(r − re)]}2 (3.30)

where De is the dissociation energy, re is the position of the potential minimum, and a is

an inverse well width. The potential is zero at r = re and approaches De asymptotically

with increasing r. The bound energy levels of a quantum particle with a mass M = ℏ2/2

in this potential are En = −a2(λ − n − 1/2)2 +De, where λ =
√
De/a and n = 0, 1, ... with

n < λ− 1/2.

We apply this potential here to find approximate solutions for WG modes in the QMA,

given by Eq. (3.23) for TE and Eq. (3.25) for TM polarization. To do so, we match the

coefficients of the Taylor expansion of the Morse potential VM(r) and the corresponding

QMA potential V (r) at their minimum re up to third order. Matching the value at the

minimum is achieved by adding the value V (re) to the Morse potential and its eigenenergies:

En = −a2(λ− n− 1/2)2 +De + V (re) . (3.31)

The first derivative of both potentials is zero at the minimum and thus is matched by con-

struction. We then determineDe and a by matching the second and third derivatives, yielding

V ′′(re) = 2a2De and V ′′′(re) = −6a3De , (3.32)

where the prime denotes the derivative with respect to r. As V (r) depends on k, each WG

mode has its own Morse potential parameters.

Now, since the solution corresponding to the WG mode has zero energy in the QMA, we

can find an explicit equation determining the approximate value of the WGmode wavenumber

kM. Eliminating De and a from Eqs. (3.31) and (3.32), and requiring that En = 0 yields[
V ′′′

3V ′′

(
n+

1

2

)]2
= V +

√
2V ′′

(
n+

1

2

)
, (3.33)

which is evaluated at r = re, where re is determined by

V ′(re) = 0 with V ′′(re) > 0 , (3.34)

to select a minimum. Generally, Eqs. (3.33) and (3.34) provide a nonlinear set of equations

for k2M, which can be solved numerically. Notably, for the case of a linear permittivity profile

ε(r) and TE polarization, the second and third derivatives of the potential are independent

of k. They are given by V ′′(r) = 6α2R2/r4 and V ′′′(r) = −24α2R2/r5, so that the minimum
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n kRSER kMR Relative error re/R 1/aR DeR
2

0 54.11860 54.12054 0.00004 0.71708 0.53781 21266

1 55.26400 55.27396 0.00018 0.70707 0.53030 21872

2 56.40250 56.42867 0.00046 0.69739 0.52304 22484

3 57.53360 57.58464 0.00089 0.68802 0.51602 23100

4 58.65710 58.74180 0.00144 0.67896 0.50922 23721

5 59.77250 59.90012 0.00214 0.67018 0.50263 24347

6 60.87960 61.05955 0.00296 0.66167 0.49625 24977

7 61.97800 62.22004 0.00391 0.65341 0.49006 25612

8 63.06740 63.38155 0.00498 0.64541 0.48405 26251

9 64.14750 64.54401 0.00618 0.63763 0.47822 26895

10 65.21800 65.70736 0.00750 0.63008 0.47256 27544

11 66.27870 66.87152 0.00894 0.62275 0.46706 28196

Tab. 3.1: Comparison of TE WG mode wavenumbers calculated by the RSE (real part) and the Morse

approximation Eq. (3.35), along with the Morse parameters for each fit. The relative error is calculated

with respect to the RSE. Results are shown for the linear permittivity profile as in Sec. 3.3.3 and l = 80.

position is determined by r3e = −2Rα2/(k2ε′). Inserting these into Eq. (3.33) provides the

explicit algebraic expression for the approximate wavenumbers of the WG modes:

kTE
n ≈ αB

2R(1 +B)
3
2

(
3 +

√
3
2n+ 1

α
− 4

(
2n+ 1

3α

)2
) 3

2

(3.35)

with the level number n = 0, 1, ... In this expression n has the physical meaning of number

of nodes of the field inside the resonator. The accuracy of this expression relies on a high

potential barrier, providing a small tunneling (and thus small imaginary part of k) which is

typical for WG modes. Therefore the approximation Eq. (3.35) has a higher accuracy for the

lowest WG modes at higher l and lower n. For l = 80, Eq. (3.35) gives kn values with the a

relative error to the RSE values of only 10−5 for the first WG mode (n = 0) to 10−2 for the

12th WG modes (n = 11), as illustrated by Table 3.1. Furthermore, Eq. (3.35) creates, for

n≪ α, equidistant levels of spacing 9B/(2R
√

(1 +B)3), resembling a harmonic oscillator.

A fit of the effective potential V (r) for the first WG mode (n = 0) in TE polarization with

a Morse potential VM(r) is illustrated in Fig. 3.3.3d, showing an excellent visual agreement

between the two.

Finally, Table 3.2 shows the six lowest states in each of the Morse potentials corresponding

to the first five WG modes in TE polarization. The state describing the WG mode has zero
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WG 1 WG 2 WG 3 WG 4 WG 5

kMR 54.12 55.26 56.40 57.53 58.66

n En(kM)R2

0 0 -551 -1124 -1720 -2338

1 535 0 -558 -1139 -1742

2 1064 543 0 -566 -1154

3 1585 1080 551 0 -573

4 2100 1609 1095 558 0

5 2608 2131 1631 1109 565

Tab. 3.2: Energy levels in the five different Morse potentials corresponding to the first five WG modes

for TE polarization, l = 80, and a linear permittivity profile as in Sec. 3.3.3.

energy, and is changing from the first (n = 0) to the fifth state (n = 4) in the Morse potential.

Importantly, the other states at non-zero energy are not describing WG modes, different from

what could be implied by the QMA.

The Morse approximation of the TM potential Eq. (3.27) for linear permittivity, and

of both TE and TM potentials for other spatial dependencies of the permittivity, result

in non-linear simultaneous equations for k2n. Solving these numerically is still a lower cost

compared to using the RSE or solving the radial equations (3.23) and (3.25) directly. The

Morse approximation also provides analytical wave functions, which can be used for applying

perturbation approaches like the one presented in Sec. 3.4.1 later.

Quadratic permittivity

In addition to the continuity of the permittivity we can require also that its first derivative

is continuous, which can be achieved by using a quadratic profile

ε(r) = 1 + Cθ(R− r)(1− r/R)2 , (3.36)

where we again choose to conserve
∫
ε(r)dV relative to the basis system, yielding C =

10(n2r−1), so that C = 30 for nr = 2. The resulting RS wavenumbers are shown in Fig. 3.3.3e.

The RSs change further along the same trends as seen when going from constant to linear

profile. Notably, the Brewster peak is shifted further to higher wavenumbers compared to

constant and linear case. The contrast with the surrounding is lower compared to the linear

profile, creating an increased uncertainty in the position of the plane of reflection. It can

also be seen from the permittivity profile that the effective radius of the sphere is reduced
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compared to the constant and linear cases, which results in a larger kb, in accordance with

Eq. (3.2).

The imaginary part of the FP RSs is increased compared to the linear case as the reflection

is further reduced at the surface due to the smooth permittivity. There are still high quality

WG modes, with a decreased splitting between TE and TM RSs. Looking at the potential

Fig. 3.3.3f, we find the well further inside the sphere with a wide barrier extended towards the

outside, which provides good containment for the RSs. Higher-order TM WG modes along

with the corresponding TM effective potentials are shown in Fig. B.2.1 of Appendix B.2.

3.4 TE-TM splitting

We found in the previous section that for the linear and quadratic permittivity, the splitting

between TE and TM RSs is reduced compared to the constant permittivity, and this effect

is further investigated in this section. The degeneracy of TE and TM modes might be

of particular interest for chirality sensing, as that can convert second order perturbation

effects due to a chiral material in the surrounding into the first order, similar to the effect

of Faraday rotation by a circular magnetic field [128, 129]. To understand the cause of the

reduced splitting we first develop in Sec. 3.4.1 a perturbative approach. Then, we revisit the

optical systems discussed in Sec. 3.3.3 and quantify the splitting, followed by considering in

Sec. 3.4.3 a new system featuring a wide effective potential well to reduce the splitting of the

fundamental WG mode.

3.4.1 Perturbation treatment

The RSs form, together with static modes or their equivalents, a complete set inside the

system and therefore provide a suitable basis for expanding any vector field within the system.

This is the core principle of the RSE. In fact, an expansion into known basis modes is used

in this paper to find the modes of the graded index profiles. In this subsection, we apply the

same principle, however, in a simpler situation. Namely, we solve the scalar wave equation

(3.25) with the TM potential by expanding its solution into the complete set of eigenstates

of the corresponding wave equation (3.23) for TE polarization. In the simplest case, we

reduce our basis to a single TE mode and thus solve Eq. (3.25) in the so-called diagonal

approximation which can further be reduced to and interpreted as a first-order perturbation

theory result.
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The scalar equation (3.23) for the TE RSs can be written as

L̂(kn, r)En(r) = 0 , (3.37)

where

L̂(k, r) =
d2

dr2
− α2

r2
+ k2ε(r) . (3.38)

The corresponding scalar Green’s function satisfies

L̂(k, r)Gk(r, r
′) = kδ(r − r′) (3.39)

and can be expanded as

Gk(r, r
′) =

∑
n

En(r)En(r′)
k − kn

= k
∑
n

En(r)En(r′)
kn(k − kn)

, (3.40)

where En is normalized according to Eq. (3.6), the same way as in Ref. [85]. Accordingly,

Eq. (3.25) for TM polarization takes the form

L̂(k, r)H(r) = ∆L̂(r)H(r) , (3.41)

where

∆L̂(r) =
ε′(r)

ε(r)

d

dr
, (3.42)

and can be further written as a Lippman-Schwinger equation, in terms the Green’s function

of the operator L̂(k, r):

H(r) =
1

k

∫ R

0
Gk(r, r

′)∆L̂(r′)H(r′)dr′ . (3.43)

Now, using the completeness of the basis states En(r),

H(r) =
∑
n

cnEn(r) , (3.44)

and the Green’s function expansion Eq. (3.40), we convert Eq. (3.43) into the following matrix

equation

kn(k − kn)cn =
∑
n′

∆nn′cn′ , (3.45)

where

∆nn′ =

∫ R

0
En(r)

ε′

ε
E ′
n′(r)dr (3.46)

and the primes in ε and E mean derivatives with respect to r. Finally, using a single state

only (n′ = n), this reduces to the diagonal approximation:

k ≈ kn +
∆nn

kn
, (3.47)
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which is clearly equivalent to the first-order result in terms of the perturbation matrix ∆nn′ .

We call the above method re-expansion as the basis functions En(r) used in the expansion

Eq. (3.44) are in turn expanded into the RSs of the homogeneous sphere.

A less rigorous and perhaps simpler approach is to treat the extra term in the TM poten-

tial, added to the TE equation, in a single mode approximation, in a manner it is usually ap-

plied to closed systems. Assuming H(r) ≈ E(r) and taking the difference between Eqs. (3.23)

and (3.25), we find [
−ε

′(r)

ε(r)

d

dr
+ (k2TM − k2TE)ε(r)

]
E(r) ≈ 0 , (3.48)

where kTE (kTM) is the TE (TM) RS wavenumber. Multiplying Eq. (3.48) with E(r) and

integrating over the system volume yields

k2TM − k2TE ≈

∫ R
0 E(r) ε

′(r)
ε(r) E

′(r)dr∫ R
0 E(r)ε(r)E(r)dr

≡ 2∆ . (3.49)

The first-order correction to the wavenumber, determining the TE-TM splitting is then given

by

kTM ≈ kTE +
∆

kTE
. (3.50)

For high-quality WG modes, the field E(r) is small at the surface, so that the integral in the

denominator of Eq. (3.49) is getting close to the exact normalization, 2
∫ R
0 ε(r)E2(r)dr ≈ 1,

and the two results, Eqs. (3.47) and (3.50), become identical.

3.4.2 Constant, linear and quadratic profiles

The exact splitting of TE and TM RSs is quantified in Fig. 3.4.1, showing the distance from

each TE RS to its nearest TM RS, both in the complex plane (Fig. 3.4.1a) and for the real

part only (Fig. 3.4.1b). Considering first the constant permittivity (black circles), we find

that the TE-TM splitting of WG modes is smaller than that of FP modes, and the real part

of the splitting changes its sign at the Brewster peak, due to the additional TM mode as

discussed in Sec. 3.2.1. At this peak there is a maximum of the absolute difference, due to

the much larger imaginary part of the TM mode.

Moving to the linear profile (blue diamonds), the splitting decreases by a factor of about

5 for the WG modes, but only by about 30% for FP modes. Consistent with the weaker

Brewster peak in the spectrum (see Fig. 3.3.3c), the splitting also does not show a pronounced

peak. Finally, for the quadratic profile (red squares), the splitting is further reduced by a

factor of about two for the WG modes and by about 10% for the FP modes. Due to the

larger imaginary part (see Fig. 3.3.3e), also the absolute difference shows a Brewster peak.
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Fig. 3.4.1: Absolute value (a) and the real part (b) of the splitting between a TE (kTE) and the nearest

TM (kTM) RS, for the considered permittivity profiles and l = 20. The vertical lines are the positions of

the Brewster peak (kb) in each TM spectra. The single-mode (SM) values are based on the re-expansion

Eq. (3.47).

For all three cases, the smallest absolute distance between RSs is found for the WG modes

near the critical wavenumber kc = l/R of the total internal reflection.

A similar behavior is observable for higher l, as shown in Appendix B.3. In this case,

it is also easer to see that the graded permittivity profile reduces the dispersion of the WG

modes, creating an approximately equidistant spectrum as shown in Appendix B.4. This has

been also discussed in literature [117] and is consistent with results from the Morse potential

approximation given by Eq. (3.35).

The RS splitting can be understood more mathematically by looking at the additional

term of the TM potential in Eq. (3.26), which is the product of the logarithmic derivatives

of the permittivity and the field. An obvious way to reduce the influence of this term is to

spatially separate the maxima of the logarithmic derivative of the permittivity and the field

amplitude. For the constant permittivity, the derivative creates a δ function at the boundary

which overlaps much with the field thus creating a rather large splitting. Moving to the linear

profile, the field maximum is shifted to smaller radii but the derivative of the permittivity

is constant everywhere within the sphere. Still its influence is more spatially distributed

compared to the δ function, and this reduces the splitting. Finally, for the quadratic profile,

the maxima of both functions are spatially separated, and this reduces the splitting even

further.

We also evaluated the TE-TM mode splitting using the diagonal approximation Eq. (3.47)

for the linear (blue dots) and quadratic (red dots) profiles and compare it with the accurate
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RSE result in Fig. 3.4.1. The obtained values from the single mode approximation are in

qualitative but not quantitative agreement with the RSE result, and for the WG modes

about a factor of two smaller. So interestingly, while the TE-TM splitting is small, suggesting

that a single mode approximation would be suitable, the TE and TM field distributions are

actually significantly different. This is due to a rather large perturbation of the potential (see

Fig. 3.3.3), showing both positive and negative regions, and thus mixing with other modes

while having a small single-mode perturbation integral.

A qualitative discussion of the TE-TM splitting of the fundamental WG mode is provided

in Ref. [104], in terms of the radial and polar confinement of light in an effective waveguide

with an asymmetric cross-section.

3.4.3 Reduction of splitting in a wide potential well

We expect the TE-TM degeneracy may be reduced for a wider potential well, as this can

decrease the overlap of the RS field with the gradients of the permittivity, thus reducing

the perturbation of the potential treated in Sec. 3.4.1. To create such a well in the effective

potential V TE, given by Eq. (3.24), the centrifugal radial term α2/r2 has to be compensated

by a permittivity with the same functional dependence, ε(r) ∝ 1/r2. In this case the refractive

index n(r) scales as 1/r, so that the circular round-trip phase, 2πkrn(r), which is equal to

2πl in the ray picture, is independent of r. In other words, this graded index creates equal

optical ray path lengths at all radii.

Since a permittivity diverging towards the sphere centre is not realistic, we introduce a

cut-off radius r0 ≪ R at which the permittivity saturates, using the expression

εw(r) = ϵw
R2 + r20
r2 + r20

. (3.51)

Here ϵw is the permittivity at the sphere surface r = R. In order to create a smooth potential

with no discontinuities up to the first derivative across the sphere surface, we further introduce

a transition region of width r0 by defining the permittivity as

ε(r) =


1 r > R ,

εw(r) r < R− r0 ,

1 + [εw(r)− 1] sin2
(
π r−R

2r0

)
otherwise .

(3.52)

The resulting permittivity profile and RSs for ϵw = 2 and r0 = 0.1R are shown in Fig. 3.4.2a,

calculated by the RSE with N = 1600 (kmaxR ≈ 1200). The number of basis modes was

increased to retain the accuracy at the higher perturbation strength used. The Brewster peak
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Fig. 3.4.2: RSs in a graded index profile Eq. (3.52) creating a wide potential well. a) as Fig. 3.3.3 left

column. b) as Fig. 3.3.3 right column. c) and d) as Fig. 3.4.1 but using Eq. (3.45) with N = 100 basis

modes, in comparison with the full RSE. As the imaginary part of kn is monotonously increasing from WG

to FP modes, the Brewster peak value kb is chosen at the mode that has the largest difference of Im (k)

between the closest TE and TM modes.

is blended in with the rest of the TM RSs, which have a monotonously increasing imaginary

part; however we can still identify the peak in the difference of the imaginary part compared

to the TE RSs. The potential for the first WG mode (Fig. 3.4.2b) shows a wide and flat well,

as designed. The splitting between TE and TM RSs (see black on Fig. 3.4.2c) has reduced

overall compared to the other profiles considered, and now the smallest absolute distance is

observed for the first WG mode, being about twice smaller than for the quadratic profile

(see Fig. 3.4.1). Increasing r0 reduces the well width leading to larger splitting (see red on

Fig. 3.4.2c,d). When using a sharp boundary at the edge, i.e. without the sin2 term in

Eq. (3.52), the splitting of the first mode is not significantly changed, as it has a small field

at the boundary. Higher order modes instead acquire a larger splitting, and furthermore a

sharper Brewster’s peak is found (see blue on Fig. 3.4.2c,d).
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We also calculated the splitting using the perturbation method introduced in Sec. 3.4.1.

While the degeneracy in k is decreased, the TE and TM fields are still spatially separated,

so that instead of using a single mode we evaluate the full matrix equation Eq. (3.45) for

N = 100 RSs. On Fig. 3.4.2 we can see that this leads to a much better agreement with

the results compared to the single mode approximation used for the linear and quadratic

case before. For increasing k the error in the results increases. This is due to a combination

of factors, including the truncation of the matrix, the slow convergence of the expansion

Eq. (3.40) as discussed in Ref. [85], and the error in the unperturbed fields En.

3.5 Conclusion

We have studied, for different static-mode sets, an optimized version of the resonant-state

expansion (RSE) and demonstrated the same quick (1/N3, where N is the basis size of

the RSE) convergence to the exact solution for different static-mode sets. We have also

compared it with a similar version of the RSE, studied earlier in [85], in which static modes

are eliminated from the basis, and demonstrated the same convergence for both versions.

We have then applied the RSE to spheres with graded permittivity profiles and showed that

the RSE is a reliable and simple method to determine all the resonant states (RSs) up to a

maximum wavenumber controlled by the basis choice. Looking at the full spectrum provided

by the RSE, instead of just distinct RSs, allows us to identify physical phenomena reliably

and rapidly, as shown by the results presented. We have further discussed the results using

the ray picture with surface reflections, the phase analysis based on the secular equation,

and the concept of an effective potential, treating the radial wave equation as a quantum-

mechanical analogue. Importantly, we provide a MATLAB program to calculate modes of

a spherically symmetric system with a polynomial permittivity profile [130]. Once the

basis modes are calculated across the whole system volume, applying the perturbation and

finding the new modes takes only a few seconds on a modern computer, therefore the RSE

is particularly suited to explore large parameter spaces. From the eigenmodes of graded

index spheres one can calculate their scattering cross section [38]. The results shown here are

thus relevant for applications such as atmospheric aerosol detection by light detection and

ranging (LIDAR) [131], the modeling of the human head in medical imaging [132, 133], and

the propagation of EM waves around Earth [134].

For a homogeneous sphere, we have provided a detailed analysis of the spectrum of the

RSs in the complex wavenumber plane, consisting of leaky, Fabry-Pérot (FP), and whispering-
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gallery (WG) modes. This analysis includes development of a number of approximations. For

the transverse-magnetic (TM) polarization, we have explained the peak in the RS linewidth

and an additional mode with respect to the transverse-electric (TE) polarization in terms of

the Brewster phenomena. Using the ray picture further, we have evaluated the RS linewidth

from Fresnel’s coefficients of reflection which provides a good agreement with the exact solu-

tion for FP modes. We have shown that the wavenumber kc = l/R evaluated at the critical

angle of the total internal reflection plays the role of a boundary in the spectrum separating

the WG from FP modes.

We have then investigated graded index spheres with linear or quadratic permittivity

profiles eliminating the discontinuity at the sphere surface. We have found that the imaginary

part of FP modes is increasing logarithmically with their wavenumber, with a larger slope

for quadratic profiles. We have used the concept of the effective potential for the radial

electro-magnetic wave equation and suggested an interpretation of this quantum-mechanical

analogy by associating all the physical solutions with zero-energy states, emphasizing that

the effective potentials are complex. This provides a clear qualitative picture explaining the

existence and properties of WG modes. We have further approximated the obtained effective

potentials around their minimum with the analytically solvable Morse potential, which for

TE polarization yields a simple explicit algebraic expression of high accuracy for the WG

mode wavenumbers. For large angular quantum numbers l, this solution predicts a nearly

equidistant spectrum of WG modes, similar to that of a harmonic oscillator.

We have studied the TE-TM splitting and demonstrated its reduction for WG modes

when going from constant to linear and then to quadratic permittivity profile. We have

shown that the splitting is further reduced in a wide flat potential well designed via the

radial permittivity. To understand the TE-TM splitting, we have developed a re-expansion

method, which perturbatively treats the difference between the effective potentials of TE and

TM polarizations. The results are in good agreement with the exact solution. We have also

provided a diagonal approximation, which turns out to be insufficient for the investigated

cases despite the small splitting – a consequence of the underlying strong perturbation. Us-

ing this understanding, we have designed a graded index profile providing a wide effective

potential well leading to a reduced TE-TM splitting, which in turn enhances the sensitivity

of optical systems to chiral materials.
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4

First order perturbation theory of resonant

states

The contents of this chapter are submitted as an article to Physical Review Letters, which is

under review at the time of writing, and it is also available on arXiv [50].

4.1 Introduction

Eigenmodes, which are solutions to a differential equation of Sturm-Liouville type with a set

of boundary conditions, are used to describe physical phenomena across physics, including

gravitational astronomy [20], acoustics [135], seismology [136], quantum mechanics (QM) [19],

and electromagnetism (EM) [137]. The eigenmodes of open systems are also referred to as

resonant states [14], or quasi-normal modes [51]. They determine the optical properties of

a resonator, such as its scattering cross-section or Purcell enhancement [60]. For simple

electromagnetic systems, such as a slab or a sphere, the RSs can be found analytically [70].

For more complicated shapes they can be found numerically [51, 138] or via perturbative

approaches [51, 60]. The resonant-state expansion is a method that treats perturbations in

all perturbation orders by transforming the problem of solving Maxwell’s equation into a

matrix eigenvalue problem [14]. Its accuracy is controlled by the selection of eigenmodes in

the basis.

For small changes of the system, it is sufficient to take only a few suited RSs in the ba-

sis, or even a single one in a non-degenerate case. The latter corresponds to the diagonal

approximation in terms of the matrix equation, and in certain cases this can also be equiv-

alent to the first-order approximation, though not necessarily, as we will show in this paper.

Following the terminology of Ref. [139], we distinguish two different kinds of perturbations:

volume perturbation (VP) and boundary perturbation (BP). A VP is a small change of the
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medium properties over a finite volume, for example, in QM a small change in the poten-

tial over the width of a quantum well, or in acoustics a small change of the density of the

medium. A BP instead moves the spatial position of a medium interface with a discontinuity

in medium properties, such as changing the width of a quantum well in QM. In EM, VPs

could be a small change of a resonator’s permittivity ∆ε, for which first- and second-order

results are well know [63, 76], or a small change of the background medium surrounding the

resonator [46,48,140]. The VP examples in EM correspond to the diagonal approximation in

the RSE matrix equation, and they include an overlap integral of the eigenmode field with

the perturbation (e.g., ∆ε), in complete analogy with conventional QM [71]. For BPs, this

approach is not suited, because the local change of the medium property is not small. Instead,

the deformation depth h(r), which is the shift of the surface at position r, plays the role of

a small perturbation parameter, and an interesting consequence arises from the boundary

conditions. For an open system, these are outgoing waves [141] which cannot be expressed as

a combination of Neumann and Dirichlet boundary conditions, which makes the approach of

Ref. [139] inapplicable. The underlying cause for the different treatment required in EM is the

discontinuity of the normal component of the electric field at a material boundary [142,143].

We note that similar effects can also occur in condensed matter physics when the effective

mass in Schrödinger’s equation is discontinuous, or in acoustics at the boundary between

two media with different densities. In EM, the first-order correction to the RS frequency for

a BP was treated for closed isotropic dielectric systems by using the electric displacement

field normal to the surface [144]. In case of isotropic open dispersive systems, it was also

recognized that the VP diagonal matrix element does not give the correct first-order results,

and an alternative treatment was found based on distinguishing the electric fields inside and

outside the resonator, and Taylor expanding them [51]. The case of a thin contamination

layer surrounding the resonator has also been treated similarly to BP cases, with a local

field correction [145]. The two approaches [51, 144] are equivalent apart from the frequency-

dependent permittivity and the different field normalization for open systems [51]. It is also

known that generally zero-frequency [32] or zero-permittivity [88] longitudinal modes need

to be included in the basis alongside the RSs, however the contribution of these additional

modes to the first-order results have not been considered in detail. Notably, the above BP

methods [51,144] do not treat VPs, and the mentioned VP methods do not treat BPs.

The purpose of this chapter is twofold. Firstly, we show that when treating a BP by

applying the standard perturbation theory valid for VP, all orders of the perturbation series

can contribute linearly in h. Using EM for illustration, we demonstrate this surprising finding
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in terms of static (zero-frequency) modes of a non-dispersive open optical system.

Secondly, we derive a unified treatment of small BP and VP, describing correctly the

first-order RS wave number change, linear in h and ∆ε, respectively. This treatment is

generalized to include frequency dispersion, arbitrary media (including magnetic and chiral),

and arbitrary shape. Illustrations for both spherical and non-spherical dispersive systems are

provided.

4.2 Perturbations of a dielectric sphere

For clarity of presentation, we start by considering an unperturbed dielectric system described

by a non-dispersive permittivity tensor ε̂εε(r) with known RSs having wave numbers kn and

electric fields En(r). This system is perturbed by a change of the permittivity ∆ε̂εε(r), where

∆ε̂εε(r) is inside the original system volume. In the RSE approach [14, 63], the electric field

E(r) of a perturbed RS is expanded as

E(r) =
∑
ν

cνEν(r) , (4.1)

leading to a matrix eigenvalue problem

(k − kν)cν = −k
∑
ν′

Vνν′cν′ , (4.2)

which determines the exact values of the perturbed RS wave numbers k and the expansion

coefficients cν in the limit of all unperturbed modes included in the summation. Here, index

ν labels both the RSs (ν = n, with kn ̸= 0) and static modes (ν = λ, with all kλ = 0 [32]),

and the matrix elements of the perturbation have the form

Vνν′ =

∫
Eν(r) ·∆ε̂εε(r)Eν′(r)dr , (4.3)

where all fields Eν are properly normalized [14, 68]. From the exact RSE equation (4.2) one

can extract, in the spirit of a standard perturbation theory [71], corrections to the eigenvalue

kn in all orders, in a form of an infinite series [63] (for details see Appendix C.1)

k = kn − knVnn + knV
2
nn + k2n

∑
ν ̸=n

VnνVνn
kn − kν

+ . . . , (4.4)

which suggests that

k(1) = −knVnn (4.5)

is the first-order correction to the wave number kn. In fact, each matrix element Eq. (4.3)

is linear both in the permittivity perturbation ∆ε̂εε and in the deformation depth h in lowest

order.
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Fig. 4.2.1: (a) Schematic illustration of a BP as a permittivity perturbation of the sphere, with its radius

R changing by h. (b) Effect of the BP on the wave number k of first RS with orbital number l = 1 in

a sphere of permittivity ε = 4 surrounded by vacuum. (c) Relative error of RS wave numbers calculated

without static modes (squares), with all static modes (circles), and with 1000 static modes included (stars),

for two different BPs as given.

The above first-order correction k(1) is illustrated in Fig. 4.2.1 for TM modes of a dielectric

sphere of radius R in vacuum, with angular momentum l = 1, for a BP changing the radius

of the sphere by h. Clearly, for the fundamental mode, Eq. (4.5) (squares) does not describe

correctly the first-order changes of the RS wave number k, as a deviation linear in h is

observed implying that first-order contributions to k are missing.

The origin of this mismatch lies in the role of static modes, which surprisingly can con-

tribute linearly in h via the second-order sum, kn
∑

λ VnλVλn, and also via all higher-order

terms of the perturbation series Eq. (4.4). Using the closure relation for the modes this is

indicated for the second order term only in Appendix C.1.2. To take the cumulative effect of

static modes into account, let us write the RSE equation (4.2) in terms of the RSs only, by
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4.2. PERTURBATIONS OF A DIELECTRIC SPHERE

using the kλ = 0 degeneracy of static modes [85]:

(k − kn)cn = −k
∑
n′

Ṽnn′cn′ , (4.6)

where

Ṽnn′ = Vnn′ −
∑
λλ′

VnλWλλ′Vλ′n (4.7)

and the matrix Wλλ′ is the inverse of δλλ′ + Vλλ′ with δλλ′ being the Kronecker delta. The

full linear correction to the RS wave number is then given by

k̃(1) = −knṼnn. (4.8)

To evaluate the sum in Eq. (4.7), we use a Neumann series expansion W = (I + V )−1 =

I − V + V 2 − V 3 + . . . , where W (V ) is a matrix with elements Wλλ′ (Vλλ′) and I is the

identity matrix. Substituting it into Eq. (4.7) results in an infinite series

Ṽnn′ = Vnn′ −
∑
λ

VnλVλn′ +
∑
λλ′

VnλVλλ′Vλ′n′ − . . . , (4.9)

which we evaluate below to first order in h, using the static pole residue of the dyadic Green’s

function (here, its electric part only, which is sufficient for permittivity perturbation). For

a spherically symmetric dielectric systems with permittivity ε(r), the residue can be written

explicitly as (see Sec. C.1.3 in Appendix C)

∑
λ

Eλ(r)⊗Eλ(r
′) =

r̂⊗ r̂

ε(r)
δ(r− r′) + R̂(r, r′) , (4.10)

where the tensor R̂(r, r′) is a regular part of the residue, r̂ is the unit vector in the radial

direction and ⊗ denotes the dyadic product. Using Eq. (4.10) for each sum over static modes

in Eq. (4.9), one can see that the δ function in Eq. (4.10) eliminates one volume integration,

reducing each term in Eq. (4.9) to a single volume integral, proportional to h. Furthermore,

the contribution of the regular part can be neglected in linear order in h, as it comes with an

additional volume integral, and hence is of higher order. Summing over all orders, we arrive,

after some algebra, at

k̃(1)

kn
= −

∫
En ·

[
1̂+

∆ε̂εε(r)

ε(r)
r̂⊗ r̂

]−1

∆ε̂εε(r)Endr (4.11)

= −
∫ [

E∥
n ·∆ε(r)E∥

n +E⊥
n · ε(r)∆ε(r)

ε(r) + ∆ε(r)
E⊥

n

]
dr ,

where 1̂ is the identity tensor, and the perturbation ∆ε(r) in the second line is assumed

isotropic but not necessarily spherically symmetric. The superscript ∥ (⊥) labels the vector
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4.3. PERTURBATIONS OF AN ARBITRARY RESONATOR

component parallel (normal) to the interface of the basis system. More details of the deriva-

tion of the above equations and their extension to magnetic and chiral materials are provided

in Appendix C.1.4.

Figure 4.2.1 demonstrates that Eq. (4.11) (circles) correctly describes the effect of the size

perturbation in first-order. In fact, comparing h/R = −0.01 and −0.001, one can see that

the residual error scales quadratically, i.e. is of second order in h, as expected. We also show

in Fig. 4.2.1 the error for the RS wave numbers calculated with an explicit use of N = 103

static modes [104] in Ṽnn via Eq. (4.7) (stars). This demonstrates that as h gets smaller,

even a large number of static modes is not sufficient to represent the δ function in Eq. (4.10)

well, resulting in errors for the eigenmodes close to zero wave number that are similar with

and without the static modes. More details about the static mode contribution can be found

in Appendix C.2.2, while in Appendix C.2.1 we consider a homogeneous perturbation of a

dielectric sphere where the static modes do not contribute to the first order results. For

higher l, the static modes can still contribute to the RSs in first-order, thought the effect is

less pronounced due to the higher frequencies of the RSs (see Fig. C.2.3 in Appendix C). Note

that, while the total number of static modes is countable infinite, the freedom of choosing

such a set, granted by their wave number degeneracy, allows one to concentrate the effect of

the boundary shift in a single-mode contribution [146], which is sufficient to describe the full

first-order correction.

As it is clear from Fig. 4.2.1 and the above derivation, the first-order term of the standard

perturbation series Eq. (4.4) does not contain all first-order effects of the BP. Instead, addi-

tional first-order terms can be found in all orders of the perturbation theory. An alternative

derivation of the first order results based on scalar equations can be found in Appendix C.3.

We emphasize that this occurs in any area of physics describing wave phenomena, and we

give in Appendix C.4, examples from condensed matter and acoustics illustrating this effect.

4.3 Perturbations of an arbitrary resonator

The first-order result Eq. (4.11) was for clarity obtained for a spherically symmetric non-

dispersive system. We now generalize Eq. (4.11) to optical systems with (i) any geometry, (ii)

magnetic and chiral materials, and (iii) arbitrary frequency dispersion. To do this, we write

Maxwell’s equations for the unperturbed system in the compact form [68][
knP̂0(kn, r)− D̂(r)

]
F⃗n(r) = 0 , (4.12)
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4.3. PERTURBATIONS OF AN ARBITRARY RESONATOR

S

S0 n

Fig. 4.3.1: Sketch of the unperturbed and perturbed systems occupying the volumes V0 and V and

having surfaces S0 and S, respectively. The vector field n̂(r) is normal to both S0 and S.

where

P̂0 =

 ε̂εε −iξ̂ξξ

iζ̂ζζ µ̂µµ

 , D̂ =

 0̂ ∇×

∇× 0̂

 , F⃗n =

 En

iHn,

 (4.13)

and 0̂ is the 3× 3 zero matrix. P̂0(k, r) is a 6× 6 tensor describing the system which consists

of frequency-dispersive tensors of permittivity ε̂εε(k, r), permeability µ̂µµ(k, r), and bi-anisotropy

ξ̂ξξ(k, r) and ζ̂ζζ(k, r). F⃗n(r) is a 6 × 1 vector comprising En(r) and Hn(r), the electric and

magnetic fields of the RS with the wave number kn. Applying a perturbation ∆P̂(k, r) of the

generalized permittivity, the electromagnetic field and the wave number of this RS change,

respectively, to F⃗(r) and k, which in turn satisfy perturbed Maxwell’s equations[
kP̂(k, r)− D̂(r)

]
F⃗(r) = 0 (4.14)

with P̂(k, r) = P̂0(k, r) + ∆P̂(k, r) of the perturbed system. For clarity of presentation, we

assume below isotropic and reciprocal materials; and a further generalization to anisotropic

[147] or non-reciprocal materials is possible [69]. Multiplying Eq. (C.48) with F⃗ and Eq. (C.50)

with F⃗n, integrating both equations over the unperturbed system volume V0 (which contains

the perturbation ∆P̂, see Fig. 4.3.1), taking the difference between the results, and applying

the divergence theorem to the terms with D̂-operators [68], we obtain∫
V0

F⃗n(r) ·
[
knP̂0(kn, r)− kP̂(k, r)

]
F⃗(r)dr

= i

∮
S0

[En(r)×H(r)−E(r)×Hn(r)] · dS , (4.15)

where S0 is the boundary of V0.

To extract from Eq. (C.52) the first-order correction k̃(1) to the wave number, we introduce

a real vector field n̂(r) which is normal to both surfaces S0 and S (of the unperturbed and

perturbed systems) and is normalized at each point as |n̂(r)| = 1 (if there are other surfaces

77



4.3. PERTURBATIONS OF AN ARBITRARY RESONATOR

with material discontinuities, n̂ should be chosen normal also to them). Then we introduce

a perturbed field component

F⃗⊥(r) =

 E⊥(r)

iH⊥(r)

 =

 n̂(r)[n̂(r) ·E(r)]

n̂(r)[n̂(r) · iH(r)]

 , (4.16)

which is normal to both S0 and S. The tangential component is then given by F⃗∥ = F⃗− F⃗⊥.

Now, according to Maxwell’s boundary conditions, fields F⃗∥(r) and P̂(k, r)F⃗⊥(r) are continu-

ous everywhere. Similarly, the unperturbed fields F⃗∥
n(r) and P̂0(kn, r)F⃗⊥

n (r), introduced in the

same manner, are also continuous. Then, approximating F⃗∥(r) ≈ F⃗∥
n(r) and P̂(k, r)F⃗⊥(r) ≈

P̂0(kn, r)F⃗⊥
n (r), which is sufficient for determining the wave number k to first order, we use

in Eq. (C.52)

F⃗(r) = F⃗∥
n(r) + P̂−1(k, r)P̂0(kn, r)F⃗⊥

n (r) , (4.17)

where P̂−1 is the inverse of P̂. Finally, applying a Taylor expansion kP̂(k, r) = knP̂(kn, r) +

[kP̂(k, r)]′(k−kn)+. . . and F⃗(r) = F⃗n(r)+F⃗′
n(r)(k−kn)+. . . for the field outside the systems

and keeping only terms linear in k − kn, we arrive, after some algebra at (see Appendix C.5

for more details)

k̃(1)

kn
=

−
∫
V0

[
F⃗∥
n ·∆P̂F⃗∥

n + F⃗⊥
n · P̂0P̂−1∆P̂F⃗⊥

n

]
dr∫

V0
F⃗n ·
[
kP̂0

]′F⃗ndr+i
∮
S0
(En×H′

n−E′
n×Hn)·dS

, (4.18)

where the prime indicates the derivative with respect to k and all quantities are taken at k =

kn. Equation (4.18) is a generalization of Eq. (4.11), which is valid also for small perturbations

outside the basis system, including deformation outwards. Note that we have not assumed

so far any specific normalization of F⃗n(r). The analytic normalization introduced in [14, 68]

ensures that the denominator in Eq. (4.18) is equal to 1.

It is important to note that Eqs (4.11) and (4.18) contain the exact first-order correction

both in terms of the permittivity change (∆ε̂εε or ∆P̂) and in the deformation depth h. They

also include higher order corrections which are not exact. For simplicity we assumed non-

degenerate modes in the above derivation. To find the first order correction to degenerate

modes, a matrix equation similar to Eq. (4.6), including only degenerate states, will need to

be diagonalized.

The above derivation provides a clue for understanding the demonstrated phenomenon

that the standard perturbation series Eq. (4.4) can have contributions to the RS wave number

which are linear in h in all perturbation orders. The zeroth-order approximation of the field

Eq. (C.57), which is the key point of the derivation, is different from the standard expansion

Eq. (4.1) used for a single mode. The failure to extract the correct first order from a series
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4.3. PERTURBATIONS OF AN ARBITRARY RESONATOR

like Eq. (4.4) technically arises from approximating discontinuous functions with continuous

ones. Further illustrations of this fact and a link to the completeness of the basis functions

are provided in Sec. C.3 of Appendix C.
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Fig. 4.3.2: (a) Real and (b) imaginary part of the wave number of the dipolar surface plasmon mode of

a silver sphere perturbed to an ellipsoid, which is sketched in the inset of (b). The mode degeneracy is

shown in brackets, and m is its magnetic quantum number. The COMSOL data is taken from [51].

We now demonstrate the first-order formula Eq. (4.18) on a non-spherical system with

frequency dispersion. Figures 4.3.2(a) and (b) show, respectively, the real and imaginary

part of k for the dipolar surface plasmon mode of a silver sphere being distorted in to an

ellipsoid. The permittivity of silver is given by the Drude model: ϵ(ω) = 1− ω2
p/(ω

2 + iωγ)

with ℏωp = 9 eV and ℏγ = 0.021 eV, as used in [51]. The perturbation theory Eq. (4.18) (solid

lines) agrees in first order of h with numerically calculated values (circles), for both inwards
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(a < R) and outwards (a > R) perturbations of the silver sphere. The results using k(1)

are also shown for comparison (dashed lines), and are clearly incorrect. This example was

chosen identical to the one used in [51], where the first-order RSE was taken as k(1) given

by Eq. (4.5), even though earlier works [32,85] indicate that static modes could contribute in

first order. Thus the statement in Ref. [51] that the RSE is providing an incorrect first-order

result was premature.

4.4 Conclusion

In conclusion, we have shown that a first-order perturbation theory of the eigenfrequencies in

open systems requires separate considerations for volume perturbations and interface shifts.

While volume perturbations lead to first-order diagonal matrix elements capturing the com-

plete first-order effect, moving interfaces which host discontinuities of the underlying medium

properties leads to additional first-order contributions arising from higher-order terms. In

case of electromagnetism, this is due to the coupling to the countable infinite number of

degenerate static modes. The underlying mechanism is clarified by explicitly treating the

static pole of the Green’s dyadic, as well as the discontinuity of the electric field, and a first-

order perturbation theory expression valid for both medium changes and interface shifts is

provided.
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5

Three dimensional systems with rotational

symmetry

5.1 Introduction

While the spherically symmetric approximation might be sufficient to describe certain physi-

cal system [131–134], for many applications one needs to consider systems of lower symmetry,

such as when describing nanorods [148, 149], dimers [36], or cubes [150]. When describing

such systems, where the polar, azimuthal, or both symmetries are broken the RSE formalism

remains valid but the eigenmodes of different polarisations (TE, TM), and different angular

momentum (l) and magnetic quantum number (m) can be mixed by the perturbation [63].

Previously, when treating such systems with the RSE it was observed that while the results

converge to the correct solution, which is calculated by another numerical method, such

as COMSOL, the convergence is usually only 1/kmax, similar to when the TM modes of the

sphere are perturbed to that of a smaller sphere [32]. As discussed in Sec. 1.2.3 and Sec. 3.3.1,

it was shown in Ref. [85] that the slow convergence of TM modes in case of the size perturba-

tion of a spherically symmetric resonators was due to a δ function in the GD being expanded

into a set of static modes. The expansion is a poor, slowly converging representation of the

δ function, which then impacts the performance of the RSE. Extracting the delta function

from the static pole residue, and expanding only the remainder of the residue into static-like

modes resulted in significant improvement in performance and a 1/k3max convergence rate. In

this chapter we will test if the new formalism improves the performance of the RSE when

the perturbation is not spherically symmetric anymore, and the modes of different l, m, and

polarisations are mixed.

For the purpose of testing we will limit the perturbed system to be axially symmetric.

This has the benefit that, by assuming a rotational symmetry along the polar axis, the vol-
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ume integral in Vνν′ (Eq. (1.46)) can be reduced to a 2D surface integral, as the integral

along the azimuthal angle can be calculated analytically. Furthermore, modes with different

m are not all mixed together, allowing the factorisation of the problem into smaller ma-

tricies [63]. Rotationally symmetric systems can describe cylindrical resonators [17,34,56,151]

or rods [148, 149], but also ellipsoids [51], spherical dimers [152], cylindrical or rod dimers if

they are aligned at the rotational-symmetry axis [40]. These systems can give rise to inter-

esting physical phenomena, such as dielectric cylinders supporting supercavity modes [153],

which are analogues to bound-states in the continuum [154]. Such modes have recently been

experimentally observed in a high permittivity dielectric cylinder [155]. The utilisation of

supercavity modes can lead to efficient second-harmonic generation [55], and semiconductor

lasers with very small size-to-wavelength ratios [156].

It is important to note that, as previously discussed in Sec. 1.1.5, one can use fully numer-

ical methods to calculate the eigenmodes, but the existing perturbation methods only treat

first and second order corrections to the wavenumber, except for the RSE, which can treat

perturbations of arbitrary strength.

In Sec. 5.2 we calculate the RSE matrix elements in case of an arbitrary shape perturba-

tion. In Sec. 5.3 we apply the RSE to a perturbation that deforms a spherical resonator to a

cylindrical one, and investigate the convergence of the modes.

5.2 Matrix elements of the RSE

In Ref. [85], and in Sec. 3.3.1 of Chap. 3, the matrix elements Ṽνν′ were given in case of a

spherically symmetric perturbation. Here we give the matrix elements under an arbitrary

perturbation. For simplicity we consider only permittivity perturbations. This allows us to

use only the electric part GEE of the 6× 6 GD (Eq. (1.21)). Using Eq. (1.22) and Eq. (1.50),

in spherical coordinates we can write GEE of the unperturbed spherically symmetric basis

system as

G(r, r′) =
∑
n

En(r)⊗En(r
′)

k − kn
+
δ(r− r′)

kε(r)
r̂rr ⊗ r̂rr +

∑
j

Ej(r)⊗Ej(r
′)

k
. (5.1)

Then, as described in Ref. [85], we introduce an isotropic perturbation ∆ε(r) to the basis

system, integrate out the delta function, collect terms, expand the perturbed eigenmodes into

the unperturbed eigenmodes, which then leads to the matrix elements

Vνν′ =

∫
Eν(r) ·∆P(r)Eν′(r)dV , (5.2)
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where

∆P(r) =


∆ε(r) 0 0

0 ∆ε(r) 0

0 0 ε(r)∆ε(r)
ε(r)+∆ε(r)

 . (5.3)

Here ε(r)∆ε(r)/(ε(r)+∆ε(r)) is at the position of the r̂rr⊗r̂rr dyad, and ε(r) is the permittivity

of the spherically symmetric basis system. In spherical coordinates we can write this as

Vνν′ =

∫ [
Eϕ̂ϕϕ

ν (r)∆ε(r)E
ϕ̂ϕϕ
ν′(r) + Eθ̂θθ

ν(r)∆ε(r)E
θ̂θθ
ν′(r) + Er̂rr

ν(r)
ε(r)∆ε(r)

ε(r) + ∆ε(r)
Er̂rr

ν′

]
dV (5.4)

where the superscript denote respective component of the field, see Ref. [63] for representation

of the eigenmodes in spherical coordinates. In vector spherical harmonic (VSH) basis we can

write this as

Vνν′ =

∫
E1lmν(r)E1l′m′ν′(r)∆ε(r)ŶYY 1lm(Ω) · ŶYY 1l′m′(Ω)dV

+

∫
E2lmν(r)E2l′m′ν′(r)∆ε(r)ŶYY 2lm(Ω) · ŶYY 2l′m′(Ω)dV

+

∫
E3lmν(r)E3l′m′ν′

ε(r)∆ε(r)

∆ε(r) + ε(r)
ŶYY 3lm(Ω) · ŶYY 3l′m′(Ω)dV

+

∫
E1lmν(r)E2l′m′ν′(r)∆ε(r)ŶYY 1lm(Ω) · ŶYY 2l′m′(Ω)dV

+

∫
E2lmν(r)E1l′m′ν′(r)∆ε(r)ŶYY 2lm(Ω) · ŶYY 1l′m′(Ω)dV

. (5.5)

Here Eilmν(r) is the radial component of the basis field, and in terms of the notation in

Sec. 3.3.1 of Chap. 3 TE modes are E1lmν(r) = Eν(r)/r, and TM modes are E2lmν(r) =

E t
ν(r)/r, E3lmν = Er

ν (r)/r. Under a non-spherically symmetric perturbation the modes with

different l and m can mix, therefore in this section we keep these subscripts alongside ν,

as opposed to the spherically symmetric systems in Chap. 3 where they were dropped. The

VSH basis vectors ŶYY are defined in Appendix D.1, and note that ŶYY 1lm(Ω) · ŶYY 3l′m′ = 0 and

ŶYY 2lm(Ω)·ŶYY 3l′m′ = 0, therefore such terms do not appear above. The last two terms in Eq. (5.5)

make it possible for TE and TM modes to mix, as the former polarisation only has E1 non-

zero, while the latter has E2 and E3 as non-zero. So far, the matrix elements are valid for

arbitrary isotropic perturbations without any symmetry. Generally the volume integrals need

to be evaluated numerically, which can be computationally expensive. If the permittivity can

be factorised as ∆ε(r) = f(r)g(ϕ)h(θ), then we can separate the integrals along each variable,

significantly reducing the computational time needed. When the perturbation is spherically

symmetric due to the orthogonality of the VSH basis vectors under integration (see Eq. (D.12)

in Appendix D.1) the modes of different l and m do not mix anymore and Vνν′ reduces to a

line integral, as in Ref. [85] or Sec. 3.3.1 of Chap. 3.
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Fig. 5.2.1: Illustration of the discretisation and factorisation of the 2D integral along the radial and

angular direction. For example, for radius r1 we obtain limits for the intervals of the integral as: from θI1

to θII1 , from θI1II to θIV1 , and from θV1 to θV I
1 .

Let us restrict our attention to rotational symmetry along the azimuthal angle, so ∆ε(r) =

∆ε(r, θ). As shown in Appendix D.2, this will provide selection rules for the polarisation and

m. Specifically, TE modes with magnetic quantum number m will only mix with other

TE modes of the same m, and with TM modes of −m. Similarly, TM modes with m mix

with TM modes of m and TE modes with −m. In practice this means that we can solve

the RSE equation for each magnetic quantum number |m| and polarisation pair separately.

Furthermore, solving the azimuthal integral analytically reduces the volume integral to a

surface integral, which is much faster to calculate numerically. Modes with different l will

generally mix, though symmetry along the polar angle can provide further selection rules for

l (see Appendix D.2.1 for an example), simplifying the calculation.

Computationally we can further optimise the calculation by considering the integral along

the polar angle, and performing a shell integrations, as in Ref. [32]. If the limits of the integral

depend on r, such as would be the case for perturbing a sphere to a cylinder, then ∆ε(r, θ)

can not be factorised further into f(r)g(θ) form. However, at a certain radius r = rq, where q
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labels a set of radial points inside the resonator, we have a number s of fixed θsq integral limits

and we can evaluate the polar integral. This is illustrated on Fig. 5.2.1 for a case when a

sphere is perturbed into a cylinder, which will be the example taken in the next section. The

more slices along r we take, the more accurately the shape of the object will be reproduced.

By evaluating the polar integral at several radial points rq, we in practice sample at discrete

points in r space the function

[∆P (r)]i
′l′m′
ilm =

∫
ŶYY ilm(Ω) ·∆P(r)ŶYY i′l′m′(Ω)dΩ . (5.6)

For further details on how to evaluate the integral see Appendix D.2. For a spherically

symmetric ∆P(r) the above expression can be evaluated analytically and it simplifies to

the orthogonality of the VSHs, see Eq. (D.12) in Appendix D.1. Using Eq. (5.6) in Eq. (5.2)

simply means doing the angular integrals first, for each radial distance rq, leaving only the

line integral

Vνν′ =

∫ R

0

∑
i,i′

Eilmν(r)[∆P (r)]
i′l′m′
ilm Ei′l′m′ν′(r)r

2dr (5.7)

to be evaluate, which is even quicker computationally than the surface integral mentioned in

the previous paragraph.

In this section we use the ML4 version of the RSE (see Sec. 3.3.1 of Chap. 3 for the details

of this version).

5.3 Sphere to cylinder perturbations

We perturb a sphere to a cylinder. We take the same cylinder as in Ref. [32,43], with permit-

tivity εr = 9, height 2h and diameter 2a, both equal to a = h = 2R/
√
2. In the 2D projection

onto the polar axis the cylinder will be a square, see Fig. 5.2.1, and the equation defining the

boundary of the square rs(θ) in polar coordinates is rs = a/ (| cos(θ)− sin(θ)|+ | cos(θ) + sin(θ)|).

For a cylindrically symmetric perturbations the number of modes in the basis are no

longer N ∝ kmax, instead they are N ∝ k2max. This is due to the modes of different l coupling

to each other by the perturbation.

On Fig. 5.3.1 we show how the eigenvalues evolve in the complex k plane under a per-

mittivity perturbation. ∆ε = 0 corresponds to a homogeneous sphere of εr = 9, ∆ε = −8

corresponds to a cylinder. For ∆ε values in between these the structure is a cylinder of per-

mittivity εr = 9, and a shell of permittivity εshell = 9+∆ε extending up to the surface of the

basis sphere. Generally, breaking the spherically symmetry, and lowering the permittivity
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Fig. 5.3.1: Evolution of RS when a sphere is perturbed to a cylinder, for mTE = 1, mTM = −mTE.

The numbers show l of the unperturbed modes, marked with + and x. After perturbation each RS is a

combination of different l, polarisation and corresponding m. Modes of a cylinder in vacuum are marked

with ∗. Leaky modes, which have Im (kna) < −1 are outside of the displayed range. Results of the RSE

using kmaxR = 10.

of the outside shell reduces the quality of the modes, and causes a shift to higher frequen-

cies. Qualitatively this is consistent with observation of how the size and permittivity change

modifies the modes of a sphere (see Fig. 3.3.1 and Fig. 3.3.2 in Chap. 3), namely, reduction

of the size of the resonator, or reduction of its permittivity both reduce the quality of the

modes and shift them to higher frequency. One could consider the perturbation acting as a

scatterer, which also changes the modes of a spherical resonator in a similar fashion. Note

the tightly packed modes around kR = 3.84− 0.04i, which maybe candidates for supercavity

modes [153] or exceptional points [157] if further perturbation of the cylinder is performed,

such as changing its hight to diamater ratio, or its permittivity. It is important to re-iterate

that after perturbation, each of the modes is a combination of different basis polarisations,

ls, and mTE and mTM.
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Fig. 5.3.2: Convergence of one selected RSE mode for various kmax values, when a sphere is perturbed

into a cylinder. The label shows
√
εskmaxR, with

√
εs = 3. The COMSOL mode, which includes approxi-

mate error bars, and the VC and VSC RSE modes are from [32]. Solid markers are extrapolated values.

5.3.1 Convergence rate of modes

To test the convergence rate of the ML4 version of the RSE under a cylindrical perturbation

we take a range of kmax values and we investigate how the results converge to the eigenvalue

that was calculated with COMSOL in Ref. [43]. The results are shown on Figure 5.3.2.

When compared against the COMSOL result the RSE wavenumbers converge only at a rate

of 1/kmax. For reference, we plotted the results from Ref. [32], which are labelled VSC

and VC, which are two different static mode sets, and are based on the slowly converging

expansion of the static pole residue (Eq. (1.22)). These shows a similar rate of convergence

as ML4, albite the error is approximately a factor of 2 smaller. This may be due to that the

integral Vνν′ was calculated using a different numerical method, or due to the difference in the

static modes sets. Interestingly however, when using the extrapolation, which provides an

estimate for the final convergence point of the mode based on at least three RSE calculation

with different basis sizes [101], the final error in the mode is smaller for ML4.

5.3.2 Influence of static modes

Previously in Ref. [32] the slow convergence of TM modes of a sphere under size perturbation

was due to the influence of the static modes, and the expansion of the δ function into a
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Fig. 5.3.3: As Fig. 5.3.2, but not including static-like modes in the RSE basis.

summation form [85]. To rule a possible problem coming from the representation of the

static pole we evaluate the RSE for a cylindrical perturbation using the ML4 formalism,

but using RSs only (kν ̸= 0), i.e. not including the static-like modes. That is, we take

V nn′ = Vnn′ in Eq. (1.48). The results are shown on Fig. 5.3.3. From the decrease of the step

size between the different kmax we can see the convergence rate is improving significantly to

approximately 1/k3max. However, the results converge to the wrong values. This confirms that

the representation of the static pole, its expansion into the static-like modes is responsible

for the slow convergence in Fig. 5.3.2.

To better understand the reason for this we consider now the exact form of the static pole

residue of GEE. For simplicity, we will focus on the ŶYY 3lm ⊗ ŶYY 3lm = YlmYlmr̂rr ⊗ r̂rr dyad. In

VSH representation, for a homogeneous sphere as a basis, it has the form [85]

R33 = RR
33 +RS

33 , (5.8)

where

RS
33 =

1

ε(r)
δ(r − r′) , (5.9)

RR
33 = −α2 l

l + 1
c1ξ(r)ξ(r

′) + α2c2ξ(r<)η(r>) , (5.10)
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and

c1 = − 1

2l + 1

1

ε(r)R

(µ− 1)(l + 1)

ε(r)l + l + 1
, (5.11)

c2 = − 1

2l + 1

1

ε(r)R
, (5.12)

ξ(r) =
( r
R

)l
, (5.13)

η =

(
R

r

)(l+1)

. (5.14)

The term RS
33 has the delta-like singularity, and RR

33 is a regular term. Keeping RS
33 as it is,

and expanding RR
33 into static-like modes (Eq. (1.50)) led to the improved performance of the

RSE in Ref. [85] for spherically symmetric perturbations. Let us write the regular part as

RR
33 = A+B , (5.15)

where

A =

(
l(l + 1)

l

l + 1

)(
1

2l + 1

1

ε(r)R

(ε(r)− 1)(l + 1)

ε(r)l + l + 1

)(
rr′

R2

)l

=
(ε(r)− 1)(l3 + l2)

ε(r)R(2l2(ε(r) + 1) + (ε(r) + 3)l + 1)

(
rr′

R2

)l

, (5.16)

B = −l(l + 1)
1

2l + 1

1

ε(r)R

(r<
R

)(R
r>

)l+1

= − l(l + 1)

(2l + 1)ε(r)

(
r<
r>

)l 1

r>
. (5.17)

We note that for a homogeneous sphere A is already in the symmetric form f(r)⊗f(r′) which

would be convenient to used in the eigenfunction expansion of the GF, however B can not

be factorised in such way, and therefore needs to be represented by a summation of a large

number of modes, which can impact the performance of the RSE. For large l Eq. (5.16) and

Eq. (5.17) are Al ∝ l(rr′/R2)l and Bl ∝ l(r</r>)
l. To further simplify the calculation we

take θ = θ′ = 0, which means that the Associated Legendre polynomials P in the spherical

harmonics (see Eq. (D.2) of Appendix D.1) will be zero unless m = 0, in which case P = 1.

For m = 0 the azimuthal function is χ0(ϕ) = 1/
√
2π, the normalisation of the VSH is

√
l,

therefore the total (summed over l and m) regular part of the GD of a spherically symmetric

system is

∑
lm

RR
33YlmYlm =

∑
l

lAl + lBl , (5.18)

(5.19)
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Fig. 5.3.4: Divergence of the static pole
∑lmax

lm RR
33YlmYlm with lmax. Horizontal (vertical) dashed line

shows the value of θ′ (r′). Top row: lmax = 40. Bottom: θ = θ′ = π/4. Solid lines on the bottom right

show the normalised values at lmax = 20, 40, 60.

and in the large l limit

∑
l

lAl ∼
∑
l

l2
(
rr′

R2

)l

, (5.20)

∑
l

lBl ∼
∑
l

l2
(
r<
r>

)l

. (5.21)

From the convergence test, which states that the series u with k-th element uk converges, if

limk→∞ |uk|1/k = q and q < 1 [158], we can see that
∑

l lAl diverges if r = r′ = R, and
∑

l lBl

diverges if r = r′. However, these terms are not δ(r − r′)-like divergences, as for r ̸= r′ the

sums do not go to zero.

On Fig. 5.3.4 we plot the value of
∑lmax

lm RR
33YlmYlm for a combination of different spa-

cial coordinates and lmax to illustrate the divergence of the summation more generally and

accurately. On the top left, for lmax = 40 and ϕ ̸= ϕ′, we can see that the value di-

verges in case r = r′. There is an oscillation along the polar angle which is expected

due to the angular distribution. In the region of θ ≈ θ′ the divergence is stronger. On

the top right, for lmax = 40 and ϕ = ϕ′ we can see the same behaviour, but the diver-
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gence now is much stronger. The features resemble the spherical harmonics closure relation∑∞
l=0

∑l
m=−l Ylm(θ, ϕ)Ylm(θ′, ϕ′) = δ(cos θ − cos θ′)δ(ϕ − ϕ′), but the δ singularity is now

spread out over a region, not only because of the finite sum, but also because of the addi-

tional coefficient RR
33 in the sum. On the bottom of the figure we show how the term diverges

when we increase the limit of the summation lmax, while θ = θ′. On the bottom left, for

ϕ ̸= ϕ′, the term diverges as we increase lmax, but retains an oscillatory behaviour now with

respect to lmax. On the bottom right, for ϕ = ϕ′, the divergence is much quicker and seem-

ingly without oscillation. It also shows that for r ̸= r′ the sum tends to a finite non-zero

value. The lines show the normalised value of the sum for a fixed lmax. As we increase lmax

the lines get sharper, which also illustrates the divergent nature.

To verify that this additional divergence, with respect to lmax, and its expansion into static

modes has an impact on the convergence, we evaluate the RSE for a cylindrical perturbation

using the ML4 formalism, but limit the maximum l for which modes (static and RS) are

included in the basis. The results are shown on Fig. 5.3.5 for lmax = 5 . From the decrease of

the step size between the different kmax we can again see the convergence rate is improving.

However the results once again converge to the wrong value, which is also expected as not

all theoretically contributing modes are taken into account in practice. Interestingly, while

static modes are included, for the particular mode (at k = 4.16 − 0.24i) limiting lmax = 5

creates a larger error for the maximum basis size used, compared to when there was no limit

on l, but static modes were not included. This can be understood from the first-order results

which showed that static mode influence is decreasing with increasing k, while the influence of

neighbouring modes, with kn ̸= 0 and l > 5 could be more important. These results provide

further confirmation that the summation representation of the divergence of the static pole,

with increasing lmax, is responsible for the slow convergence of the ML4 version of the RSE

under non-spherically symmetric perturbation.

5.4 Conclusion

We calculated the modes of a cylinder structure by perturbing the permittivity of a homoge-

neous sphere. As the permittivity of the sphere is changed inhomogeneously, generally, the

modes shift to higher frequency and their Q-factor reduces.

We tested the ML4 representation of the GD in the RSE in case of a cylindrically sym-

metric perturbation. We found that it produces a similar slow, 1/kmax convergence rate as

the full expansion of the static pole in ML1 (Eq. (1.22)). This is despite that for spherically
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Fig. 5.3.5: As Fig. 5.3.2, but also for a calculation with only lmax = 5 modes in the basis. For blue

diamond all modes within kmax are taken, regardless of their angular momentum number.

symmetric perturbation ML4 was showing a 1/k3max convergence rate. By considering the

exact static pole residue we showed that there can be additional divergent terms alongside the

δ function in ML4, which appear when the full GD is used, that is, when modes of different l

and m are coupled. As previously seen for the δ function, this additional divergent term can

also cause slow convergence of the error, as it is poorly represented in terms of the continuous

and smooth (except at the basis surface) static modes.

To avoid the poor representation of the divergence one can consider an optimised set

of static modes, where one static modes has surface charges on the perturbed and one on

the unperturbed surface, similarly to the method in [159]. Alternatively, for an isotropic

perturbation, one could directly fit RR
33 with a function of the form f(r)f(r′). Other required

dyadic components of the static pole residue can be found from RR
33 [85]. This would in

practice reduce the number of static modes needed to two per l. One could also consider

continuously perturbing the sphere along the vector field n̂nn, which was introduced for the

first-order results in Chap. 4 and it is normal to both the unpertrubed and the perturbed

surface. This would mean treating the parallel and tangental component of the electric field

separately in the RSE. Beyond first-order however all RSs will contribute to the perturbation.

Important to note that the observed divergence only happens when the different ls are no

longer independent. So while it affects general shape perturbations of arbitrary perturbation

order, it does not affect the first-order perturbation results or spherically symmetric results.
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6

Scattering

6.1 Introduction

Cross-section measurements in conjunction with simulations are an important sensing and

characterisation method in optics. The optical cross-section spectrum of an object is de-

termined by its morphology, its material, and the surrounding medium [24]. If three of

the four quantities are know, the fourth can be inferred. For example, if one knows the

shape and material of a resonator, and measures the cross-section, one can infer properties

of the surrounding medium, which is of particular interest in biosensing, providing a label

free detection method capable of sensing single molecules based on the spectral shift [49].

Alternatively, if the medium and the resonator material are know, the shape of the resonator

can be found, thereby providing a cheap and non-invasive alternative method to electron

tomography measurements [149]. If the shape and the medium is know, the material of the

particle can be measured optically, which, for example, provides a simple method to mea-

sure permittivity [160]. These methods rely on measuring the cross-section experimentally,

and then comparing it with simulated data covering a large parameter range, and finding a

fit. By conducting such a study we recently detected optically a tarnish layer, which was

only a few atomic layer thick, on silver nanocubes [150] and nanodecahedra [161]. In these

studies I conducted scattering and absorption cross-section simulations using COMSOL, a

commercially available numerical solver using FEM [162].

The correct determination of the aforementioned properties require knowing the quan-

titative cross-section spectrum with exact amplitudes, as opposed to qualitative spectrum

which only give the position and lineshape of the resonance. The former can be particu-

larly expensive computationally when a range of illumination and detection angles need to

be taken into account [148], while the latter can be quicker as often only a specific coherent

illumination, such as a normal incidence incoming wave, is considered [163]. The cross-section
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6.2. REVIEW OF RESONANCE BASED METHODS

of homogeneous spheres can be analytically calculated, and this is often referred to as Mie

scattering [164]. For some other shapes, or certain illumination cases, approximate solutions

are available, such as scattering from small particles (compared to the wavelength) [165].

Generally however, for arbitrary shapes and excitations, numerical methods are used for cal-

culation, such as DDA [166], FEM [150], FDTD [167]. These rely on calculating the field in

the entire simulation domain which usually consists of the particle, the surrounding medium,

and a PML layer. While these are well established and reliable methods, computationally

they can be slow, especially if high resolution spectra are needed. An alternative approach

that emerged in the last decade is based on the eigenmodes of a resonator, as detailed in the

next section. The benefit of this approach is that once the eigenmodes are know, usually it

is fast to calculate the response of the system under excitation, particularly if the response

is dominated by very few modes, which is often the case in plasmonics.

This chapter is organised as follows. In Sec. 6.2 we review various methods in literature

that use RSs to calculate cross-section, and in Sec. 6.3 we review in more detail the formalism

of Ref. [38] which we will use for the scattering cross-section calculation in this chapter. In

relation to this, in Appendix E.2 we also investigate the validity of sum rules in a spherical

system, just as we did for a planar system in Chap. 2. In Sec. 6.4 we consider a case of size

perturbation of a sphere and illustrate that the modes generates via the RSE are complete on

the surface of the unperturbed sphere, similarly to what we saw in case of a slab in Chap. 2.

Finally in Sec. 6.5 we apply the method to a scattering calculation of a non-spherical case,

specifically to the cylinder studied in Chap. 5.

6.2 Review of resonance based methods

We review some of the main scattering (and absorption) calculation methods in recent litera-

ture that are based on RSs, QNMs, or similar approaches. We will progress in approximately

chronological order of publication dates, as some of the papers build on each other and are

cross referenced.

Ref. [168] develops a temporal coupled-mode theory based scattering calculation, which

expresses the scattering matrix as a sum of a background, or non-resonant term, and a single

resonant term, thus using a single mode limit. The method is applied to a 2D scatterer

that is not cylindrically symmetric, with the assumption that it is small compared to the

incoming wavelength, so that for the background term an identity matrix can be used, further

simplifying the calculation. The material permittivity is given by the Drude model, and
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calculations are made with and without damping. The results show approximate agreement

with FEM calculations. Ref. [169] uses the Lippman-Schwinger integral equation and the

background GF (GF of infinite homogeneous media) to find a matrix equation, similarly to

the methods used to find the RSE equation in Sec. 1.2.3, but here the matrix equation is solved

directly for the scattered field coefficients, which is expanded into spherical wave functions

in each scatterer. The authors of Ref. [169] do not use an eigenmode expansion into RSs,

therefore we can assume there is no contribution from static modes to the scattering. Results,

which are obtained for spherical dimer scatterers, are compared to a dipole approximation of

the individual scatterers. The authors note that the approximation has only limited accuracy.

Ref. [40] develops a formula for the decay rate of an emitter, with a similar matrix method

to Ref. [169], except the expansion of the emitted field is using QNMs, but the non-resonant

background term is again assumed to be negligible. The method is tested on a gold nanorod,

with permittivity given by the Drude model, in the single mode limit, assuming a dipole-like

emission. The decay rate shows good agreement with results from FMM. It is also tested

on a pair of nanorods using two modes, showing good agreement with FMM. However the

contribution of the two modes to the decay rate are seemingly taken individually, so in terms

of the full 2 × 2 matrix equation only the diagonal elements are kept. Ref. [17] extends on

the work of Ref. [40], deriving a full expression for the cross-section in terms of QNMs. The

background term and the static modes, the non-resonant contributions, are again neglected.

The method is tested on a gold nanorod in the single mode limit, with both scattering and

absorption showing a good agreement with FEM calculations from COMSOL. The expansion

coefficients of the scattered field include an integral of the incoming field at the excitation

frequency. Ref. [34] provides an improvement of the formulas in Ref. [17] by replacing the

normalisation integral of the QNMs, which includes the PML region, with one that can be

evaluated only inside the resonator. Ref. [151] develops a scattering calculation method for

an open dispersive resonator, by the pole expansion of the impedance matrix. The paper

avoids using RSs or QNMs, however it still requires a numerical method to find the poles of

the impedance matrix. The peak positions are accurate due to the accurate pole positions,

however the scattering amplitude shows a slow convergence with respect to the number of

poles in the basis. Ref. [170] develops a QNM expansion of the scattering matrix. The

non-resonant terms are found by minimizing a so-called objective function that is related

to the QNMs. The method is tested on various photonic crystals where the non-resonant

background term is assumed to be an identity matrix. It is unclear how difficult it is to find

the non-resonant term in a non-trivial case, or when many QNMs contribute to the objective

95



6.2. REVIEW OF RESONANCE BASED METHODS

function. The method is also tested on a core-shell metal-dielectric sphere. Ref. [36] is

an extension of Ref. [17] (and thus Ref. [40]), with slightly different expansion coefficients

of the scattered field, which now take into account non-resonant contribution of static and

zero permittivity modes. The method is tested on a silver bowtie antenna in homogeneous

background, with permittivity given by the Drude model. The authors distinguish between

resonant and non-resonant contribution to the cross-section, where presumably the non-

resonant contribution is due to zero-permittivity modes, as the PML mode contribution is

discussed separately. Another system, a silver bullet on a slab, so a resonator in a non-

homogeneous background, is also investigated. It is found that in this case the PML modes

are particularly important, as without taking them into account in the calculation the cross-

section amplitude is incorrect, though the peak position is determined correctly. This can

be understood from that the resonant scattering response is dominated by the modes of

the bullet, and knowing those give the correct peak position, but the modes of the bullet

alone are not complete over the total system, which includes the slab, therefore, additional

modes, the PML modes are required to have the correct expansion of the scattered field.

Ref. [171] uses a pole expansion of the scattering matrix in terms of QNMs, and highlights

the importance of non-resonant terms when calculating the scattering efficiency of a dielectric

resonator. The method relies on finding the residues of the scattering matrix separately, for

which a method is not outlined, and hence only an analytically treatable spherical problem

is solved. The authors express the outgoing waves in the far-field (FF) in terms of the

diverging QNMs, and the divergence of the mode fields outside is treated by considering

causality and time dependence [172]. In Ref. [35] the scattering matrix was split into a

resonant contribution and a background term. A rigorous form for the background term is

not provided. It is suggested that it can be found via the method of [170], or alternatively

by fitting, though it is unclear what to fit exactly, it could be the long wavelength limit of

the response. The residues of the scattering matrix are clearly defined in terms of overlap

integrals of the incoming field and the eigenmodes. Interestingly, in contrast to Ref. [17],

here the incoming field is evaluated at eigenmode frequency kn, and the overlap integral is

a surface integral not a volume integral. The method is tested with the use of 300 RSs on

a slab at normal incidence, for which the background term can be found analytically. It is

also tested with 4 RSs in case of a dielectric grating with the incident field propagating at

non-normal incidence, with the background term found by fitting. A test with plasmonic

antennas and circularly polarised incident waves is also carried out with the use of 2 RSs

and fitting the background. All tests show good agreement with results from FMM. Ref. [38]
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gives an explicit formalism which links the GD to the scattering matrix. Non-resonant terms

are included in the GD via the static mode contribution and an explicit identity matrix as

background term. The method relies on expressing all fields in VSH, and a GD expansion

that is complete on a spherical surface including the resonator. This allows a computationally

simple treatment of the scattering problem, which could be significantly faster to calculate

than the methods which rely on volume overlap integrals between the RSs and the incoming

field. Treatment of z (in Cartesian coordinates) propagating excitations waves is presented,

but for waves propagating in other direction the formalism needs to be extended. This is the

method that we will use in this chapter for scattering calculation and it will be reviewed in

more detail in Sec. 6.3. Ref. [44] developed a method based Riesz-projection to calculate the

electric field of a resonator excited with a dipole emitter. The total field is expanded into

a sum of integrals of the electric field around contours in the complex eigenfrequency plane.

Resonant contribution is given by clockwise contour integrals enclosing a RS eigenfrequency,

whereas explicit expression for the non-resonant term is given by the anti-clockwise contour

integral around the chosen eigenfrequencies and the real excitation frequency of interest.

The eigenfrequencies are calculated using a PML to enforce the outgoing waves boundary

conditions, which results in the generation of PML modes. However it is possible that their

contribution can be neglected as the non-resonant integral term expresses all contributions

from non-physical eigenmodes. Ref. [173] considers highly dispersive media, where material

properties, such as the permittivity, are given by general non-Hermitian invertible matrices.

They expand the scattered field into eigenmodes, obtaining a similar expression to Ref. [17].

The background term is assumed to be zero. The method is tested on a 2D system over a

large range of frequency with many modes used in a calcuation, showing a generally good

agreement with calculations from another numerical method. The paper itself considers

only a closed system, with testing on open systems left for future work. Ref. [95] does a

comparative study of the different scattered field expansions from Refs. [36], [173], and [58],

the latter one reviewing results from Ref. [17] and Ref. [36] and introducing an additional form

of expansion coefficients. The paper also shows how the various forms are linked to each other.

The convergence rate of the error, with respect to the number of modes used for expansion of

the scattered field, is studied in case of a 2D cylinder and a 3D metallic sphere, showing that

all three expansions converge at identical rates. The paper demonstrates the importance of

PML modes for the convergence rate even in case of a homogeneous background. Ref. [174]

also compares formulas from Refs. [173] and [40], and similarly to Ref. [95] derives a general

formalism from which the previous two individual forms can be extracted. They investigate
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the accuracy of the scattered field, and find that issues can occur at frequencies close to

the plasmonic branch ε(ω) = −1, or at the poles of the permittivity, as both of these result

in an accumulation of large number of modes in a small area in the complex frequency

plane. In addition, at high frequencies accuracy can be limited due to the instability of PML

modes. Ref. [99] discusses the differences between expansions for the scattered field based

on the GD and its direct ML expansion, showing that when the overlap integrals in the

resonant term are independent of the incoming frequency, as in Ref. [35], the formalism leads

to a more complicated background term, as opposed to cases when the overlap integral is

dependent on the incoming frequency, as in Ref. [17]. The drawback of the latter, frequency

dependent form however is that for each frequency the overlap integrals have to be calculated

separately, which can be computationally expensive. Ref. [37] investigates the role of static

modes in the background term in the scattering formalism of Ref. [17]. It was found that for a

homogeneous lossless sphere the static modes do not contribute to the scattering cross-section

directly, however static modes are needed for an absorbing sphere. It is noted that in both

cases the static modes contribute to the calculation of the total field, which includes the near

field where static modes are important, or when a perturbation is done to the system modes,

such as in case of the RSE. Ref. [47] rectifies the missing element of Ref. [35] and provides

a method to calculate the background term in the pole expansion of the scattering matrix.

The role of static modes is not discussed however. The method is tested on chiral systems

with up to three modes in the expansion. The authors remark in the conclusion that when a

large number of modes are needed the approach might not be efficient. This could be due to

the frequency dependent volume integral expressing the residue, which is also remarked as a

potential drawback in Ref. [99].

6.3 Formalism

In this chapter we will use the method from Ref. [38], which is based on the RSE, to calculate

the cross-section of resonators. We do not replicate the entire formalism of the paper here,

but summarise the key elements. The overall steps of the method is as follows: the incoming

field, such as a plane wave excitation with wavenumber k, is represented in VSHs, with

distinct angular momentum number l′, orbital magnetic number m′, and polarisation p′,

which is either TE or TM. Each incoming field component is projected onto a spherical

surface enveloping the scatterer, creating a source term for the excitation of the system. The

response of the system to the excitation is calculated via the radially dependent part of the
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electric GD (GEE), expressed in VSH for the decoupled equation as (see Appendix E.1)

G(r, r′; k)l
′m′p′

lmp =
∑
ñ

[
Elm

ñ (r)
]
p

[
El′m′

ñ (r′)
]
p′

k̃ñ(k − k̃ñ)
+
∑
λ̃

[
Elm

λ̃
(r)
]
p

[
El′m′

λ̃
(r′)
]
p′

k2
, (6.1)

which is evaluated with both spacial coordinates at the surface, so Gl′m′p′

lmp (R,R; k) is used.

We denote with tilde (∼) the modes of the system of interest, which may be expanded into the

RSs (with index n) and static modes (with index λ) of a basis system. Note that compared

to [85] this GF is divided by k, and the sum rule (Eq. (1.30)) of the eigenmodes was used.

The super and subscript of G denote the source (or incoming) channel l′m′p′ and the response

(or outgoing) channel lmp, respectively, for the excitation wavenumber k, and Elm
ñ is the lm

component in VSH of the eigenmode Eñ. The outgoing (or scattered) field amplitudes, which

are also expressed in VSHs, are found from the scattering matrix, which is expressed in terms

of the GF as

Sl′m′p′

lmp = Gl′m′p′

lmp (R,R; k)σl′,p′(k)− δpp′δll′δmm′ , (6.2)

where δ is the Kronekker delta, and σl′,p′(k) is the effective source term evaluated at the

frequency of the incoming field, defined as

σl,TE(k) = R
[
γ−1
l,out(k)− γ−1

l,in(k)
]
, (6.3)

σl,TM(k) = k2R3 [γl,in(k)− γl,out(k)] . (6.4)

Here γl,d(k) = hl,d(kR)/ξ
′
l,d(kR), where hl,d(x) is the spherical-Hankel function with d = out

denoting the first-kind and d = in denoting the second-kind, ξl,d(x) = xhl,d(x), and the prime

denotes the derivative with respect to the argument.

From Eq. (6.2) we can identify the Kronekker delta term, and the static pole of the GD as

the so called off-resonant contribution to the S-matrix. When the electric GD is represented

in VSHs, the polarisation TE (TM) corresponds to p = 1 (p = 2), and GEE
pp′ denotes the pth

row and p′ column of the GD. Therefore, the component GEE
11 is a coupling between TE and

TE, GEE
12 is a coupling between TE and TM, and GEE

22 is a coupling between TM and TM

fields. Importantly, in VSH representation the static modes contribute to GEE
22 [85], therefore,

in this formalism they directly contribute to the S-matrix, and later on to the cross-section.

This is in contrast with, for example, Ref. [37], where seemingly the static modes did not

contribute to the cross-section of a spherically symmetric homogeneous dielectric resonator,

though they still contribute in the expansion of the total electric field.

Note that Gl′m′p′

lmp (R,R; k) is evaluated with both coordinates at the surface of the sphere.

Therefore care needs to be taken which ML representation one uses for the resonant part,
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the one with (Eq. (1.31)) or the one without (Eq. (1.28)) the application of the sum rule

(Eq. (1.30)), as the latter may not necessarily converge to the correct value with both coordi-

nates taken at the surface, as we have seen in 1D in Chap. 2. This is discussed in more detail

Appendix E.2, and it is found that only the form
∑

nEn(r)⊗En(r
′)/(kn(k − kn)) gives the

correct resonant part of the GD when both radial coordinates are taken at the surface. The

expression
∑

nEn(r)⊗En(r
′)/(k(k − kn)) however does not give the correct value as it uses

the sum rule, which is not valid when both radial coordinates are on the surface.

An advantage of this approach is that it directly links the GD, constructed from the

eigenmodes of the system, to the scattering matrix. Also, in contrast to other approaches

which use an overlap volume integral of the incoming field with the eigenmodes in order to

find the residues of the scattering matrix, as is done in Ref. [17] or Ref. [47], such integrals

are not present here. Therefore this method is potentially computationally efficient even

when large number of modes are needed. We note that it may be possible to reduce the

overlap surface integrals in Ref. [35] to a single point evaluation by using a VSH basis and

the orthogonality relations of the VSH, therefore improving the computational efficiency of

that approach as well.

From the S-matrix we find the plane-wave scattering amplitudes into an outgoing channel

lmp by summing over all incoming channels l′m′p′ as

Asca
lmp =

∑
l′m′p′

Sl′m′p′

lmp Bin
l′m′p′ −Bout

lmp , (6.5)

where Bl′m′p′ is the expansion coefficient of the electric field, with ‘in’ and ‘out’ denoting the

incoming and outgoing amplitudes, respectively. From the scattered field amplitude of the

outgoing channel l and m one can find the partial cross-section for that channel by summing

over the polarisations as σscalm =
∑

p Γlmp

∣∣∣Asca
lmp

∣∣∣2, where Γlmp is a weight function defined as

Γlm,TE = |khl,in(kR)|−2 and Γlm,TM = k2R2|γl,out|2Γlm,TE. From the partial cross-section we

can find the total cross-section σsca by summing up over all outgoing channels

σsca =
∑
lmp

Γlmp

∣∣Asca
lmp

∣∣2 . (6.6)

What makes most of the calculation analytically treatable, that is, without volume overlap

integrals of the incoming and the eigenmode field, are two key elements of the derivation in

Ref. [38]: firstly expressing the incoming wave in VSH, and secondly the use of a GD, also

expressed in VSH, that is know on a spherical surface around the resonator.

The first requirement gives a simple expression for B for an incoming plane wave prop-

agating along the polar (z) axis, as it described in Ref. [38], and this propagation direction
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will be used in this chapter as well. For other propagation direction a modified expression for

B needs to be found. Note that when the system is cylindrically symmetric along the polar

(z) axis, as all examples will be in this chapter, for a z propagating incoming plane wave it is

enough to calculate only the m = ±1 modes of the resonator. This is because the incoming

plane wave contains terms of m = ±1 modes only, and the GD of the cylindrically symmetric

system with this orientation only mixes modes with the same magnitude of |m|. Specifically,

x (y) polarised incoming light only couples to mTE = −1 and mTM = 1 (mTE = 1 and

mTM = −1), so only that set of modes is needed.

The second requirement, for the GD expression, is clearly true if the resonator itself is

spherical, as the RSs are complete on the surface. However, it is not necessarily true if the

resonator is not spherically symmetric. Generally it is assumed that eigenmodes are complete

in the minimal convex volume including the resonator [68]. For example, in case of a cylinder,

the true eigenmodes are only complete on the surface of the cylinder, and not on the surface

of the smallest sphere fully enveloping it. However, this is not a limitation in practice. As we

have demonstrated in Chap. 2 the RSE generates modes that are complete on the original,

unperturbed surface, which in case of a 3D system is usually a sphere. Therefore, when the

modes are generated with the RSE the formalism outlined above remains valid. Note, that

when eigenmodes are calculated via other numerical methods and with the use of PML, if

PML modes are present they could be sufficient to obtain a correct expansion of the GD

on the surface of a spherical volume around the resonator, making this approach potentially

viable even without the use of the RSE, as long as the electric field and the GD is expressed

in VSH. The importance of PML modes in other scattering calculation methods have been

demonstrated [36, 95], so in comparison to those, the second requirement is not a drawback.

Alternatively, one might be able to find the GD on the spherical surface from true eigenmodes

only via causality-related regularisation [172], or via an approximate ML expansion where the

divergence in terms of k is partially compensated based on the methods outlined in Ref. [99]

for the expansion of the scattered field, or via a simple Taylor expansion of the GD at the

resonator surface.

The method has already been tested on a homogeneous sphere [38]. It was found that the

amplitude of the cross-section converges at a rate of 1/kmax, which is due to the 1/kmax con-

vergence rate of GEE
11 and GEE

22 [85]. While it is not stated explicitly in Ref. [38], presumably

in the ML1 (Eq. (1.22)) expansion of the GD, which was used in the paper, the single λ = 0

mode of the VSC static mode set was used alongside the RSs. This mode alone is sufficient

to represent all the static mode contribution to GEE
22 at the surface, as all other static modes
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in the VSC set have zero tangential field at the surface [32, 85]. In this chapter we will use

the ML4 version of the RSE, and to generate the static modes of the perturbed system we

simply use the RSE equation Eq. (1.45), which includes static modes in the main RSE matrix,

they are not subtracted as in Eq. (1.47). This results in a larger matrix eigenvalue problem

to solve as the ML4 expansion contains many static modes, but it is a simple and straight

forward method to find the static modes of the perturbed system.

6.4 Size-perturbed sphere

To illustrate the completeness of the modes generated by the RSE outside of the perturbed

resonator, but inside the original system volume, we calculate the scattering cross-section

of a sphere of reduced radius 0.7R on its exact perturbed surface and on the surface of the

unperturbed sphere, which has radius R. The cross-section is calculated with and without

using the diverging modes (modes that tend to infinite k, rather than to the true eigenmodes,

as we increase the basis size kmax). The results are demonstrated in Fig. 6.4.1, with the modes

shown on the inset. When the cross-section is calculated on the surface of the perturbed

sphere the results with and without diverging modes are nearly identical. In this case there

is no significant benefit or drawback from using the artificial modes in the calculation for the

given parameters. When the cross-section is calculated on the original, unperturbed surface,

which now lies outside the perturbed resonator, the impact of the artificial, diverging modes

are significant. If only the true, converging modes are used in the calculation the resulting

spectrum is an order of magnitude larger than the exact solution. This is expected as the true

eigenmode field amplitudes diverge outside the perturbed system, and they are not suitable

for a ML expansion of the GD in that region, as discussed in Chap. 2, with the convergence

of the 1D GF outside the system studied in Sec. 2.5. Including the diverging RSE modes

in the calculation restores the convergence of the ML expansion, and the results show good

agreement with the exact solution.

We can conclude that the use of artificial modes is required in the expansion of the GD on

the surface of the unperturbed system. This implies that the scattering formalism developed

in Ref. [38] is suitable in case of non-spherical perturbation as well. This will be shown in

the next section.
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Fig. 6.4.1: Scattering cross-section calculated on the perturbed (solid line) and unperturbed sphere

surface (dashed line). Inset shows the modes in the complex plane, with red ones representing the true

RSs, and blue ones the artificial modes. Exact solution, using the analytic GD is shown with black line.

Only angular momentum l = 1, 2 taken into account in all calculations. The number of modes is N = 40

per polarisation per angular momentum (total of 160 RSs). The permittivity of the sphere is εs = 9, the

unperturbed sphere has radius R, the perturbed sphere has radius 0.7R. The red dashed curved is scaled

down by a factor of 10.

6.5 Cylinder perturbation

We apply the scattering calculation method to the cylinder from Chap. 5. To summarise the

procedure: first the eigenmodes of a sphere of radius R are calculated, then we introduce a

perturbation and calculate the modes of a cylinder via the RSE, and based on the modes of

the cylinder we calculate the scattering cross-section, using Eq. (6.1)-Eq. (6.6).

The results are shown on Fig. 6.5.1, and they are compared to a simulation with COMSOL.

The estimated accuracy of the COMSOL result is within 1% of the exact value, based on the

convergence of the amplitude of the scattering cross-section at the dipole peak, at kdR = 1.25,

with respect to refining the size of mesh elements in the domain. We can see that the dipole

peak is reproduced within the error, already when kmaxR = 6.5 ≈ 5kdR. Higher order

mode positions show a slight blueshift compared to COMSOL, and usually an increase in

amplitude. Both of these deviations decrease approximately linearly with the increasing basis

size kmaxR. The linear convergence of the peak position corresponds to the slow convergence

of the eigenfrequencies, as discussed in Chap. 5. The linear convergence of the scattering
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Fig. 6.5.1: cross-section calculated for a cylinder of permittivity ε = 9, height 2h = 4R/
√
2, and

radius a = h, with incident light propagating along the axis of symmetry of the cylinder. Inset shows the

schematic view of the perturbation incident wave propagation. The cross-section is calculated based on

the value of the GD on the surface of the basis sphere (black line on inset) enveloping the cylinder (blue).

amplitude is due to the 1/kmax convergence of GEE
11 and GEE

22 (see Appendix E.2 or Ref. [85]),

and it is consistent with the observations in Ref. [38].

Considering the computational efficiency of the method, once the perturbed modes are

known, the kmaxR = 13 curve on Fig. 6.5.1 was calculated in 15s using 200 spectral points (on

a i5-8500 CPU). In comparison, obtaining a conventional full wave solution with COMSOL

takes at least a couple seconds per spectral point, even with the axial symmety of the system

taken into account, which results in approximately 15min total simulation time for 200 spec-

tral points. This is significantly slower then method described in this section. If we consider

that generating the perturbed modes for the same curve takes about 3-4min with the RSE,

this method is still potentially 3-5 times faster than COMSOL or other similar approaches.

6.6 Conclusion

By considering a size perturbation of a spherical resonator we have shown numerically that

the RSE generates a set of modes, which include true (convergent) RSs and artificial (diver-

gent) modes, that are complete inside the unperturbed system volume. This allows the ML

expansion of the GD on the original, unperturbed surface. Following from this, we imple-

mented the formalism of Ref. [38] to calculate the cross-section of a cylindrical resonator. The
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results show a good agreement with calculations from COMSOL. The accuracy of the peak

position and the amplitude scales as 1/kmax. Instead of just increasing the basis size, the

former can be improved by the extrapolation method detailed in Ref. [101], while the latter

can be improved with the first-order approximation of high frequency terms, as described in

Ref. [38]. While the results in Sec. 2.5 of Chap. 2 imply that the smallest spherical surface

should be chosen around the target resonator to evaluate the GD, it should be investigated

if using a larger basis sphere in the RSE is beneficial for the accuracy.

Apart from the method [38] used in this chapter, in the literature reviewed only a handful

of other methods consider carefully the non-resonant contribution to the scattered quantities

rigorously, and formulate explicit expression for these in terms of eigenmodes. Namely, these

are Refs. [36] and [37], which are both extensions of Ref. [17], and they explicitly acknowledge

the contribution of static modes. Ref. [47] gives a general expression for the scattering matrix

in terms of eigenmodes, which could potentially include static modes, but this is not explicitly

stated. Ref. [44] formulates the background term as a contour integral instead of an eigenmode

expansion. Most of other methods neglect the background term completely, or use various

assumptions or fitting methods to find it. The convergence of the average error of the cross-

section versus the basis size is studied only in [36], showing an approximately 1/N convergence

rate for non-spherical systems, and in [37] a remarkable 1/N3 rate for a homogeneous sphere,

while [38] has a 1/kmax = 1/
√
N convergence rate. However in the former two, the modes

were sorted with respect to their contribution to the scattering, which maybe results in a

different convergence rate compared to [38] where the modes taken with increasing distance

from the origin kR = 0. A thorough comparison of all the methods mentioned in this

paragraph would be appropriate, particularly, because apart from the convergence rate with

respect to the number of modes used, the computational cost itself should also be investigate.

While based on the initial results it may seem that Ref. [38] has a slower convergence rate

than Ref. [36, 37], as opposed to other methods [36, 37, 47] it does not rely on the overlap

integral of the incoming field with the eigenmodes, which could result in significantly better

computation times.
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Conclusion

7.1 Summary

In this thesis we have rigorously tested the ML expansion of the GD and applied the RSE

for a variety of dielectric systems.

On a planar 1D example we numerically verified that eigenmodes form a complete set

even when the permittivity of the system does not have a step like boundary. In this case

the imaginary part of the eigenmodes can grow unbounded due to the decreasing reflection

coefficient at high frequencies, and the ML expansion of the GF converges slower than for a

homogeneous slab with a step like boundary.

Using a recently formulated, quickly convergent version of the RSE, we investigated

the modes of 3D spherically symmetric systems, including ones with inhomogeneities. We

provided physically insightful approximations explaining the formation of the Fabry-Pérot

modes, and related the peak in the TM spectra to the Brewster phenomenon. We found that

removing the discontinuity of the permittivity at the boundary, for example with a linear

permittivity profile, can reduce the splitting of the TE and TM spectral mode positions. We

provided an approximation based on the Morse potential to find the eigenmodes of certain

inhomogeneous systems, which in case of a linear profile and TE polarisation reduces to a

simple closed form expression. We analysed the modes based on a quantum mechanical anal-

ogy, the effective potential picture. Based on this we designed a permittivity profile that

gives rise to an extended flat potential well, which can further reduce the splitting of the

fundamental TE and TM WGMs.

We derived a first-order perturbation theory based on the RSE matrix equation for the

eigenmodes of an optical resonator. We found that due to the divergence in the static pole

residue, all orders of the perturbation series can contribute linearly in the small parameter

describing the deformation of the resonator boundary. Correctly taking all of these terms into

106



7.2. FUTURE WORK

account we presented a unified perturbation theory, that can treat both material and shape

changes of the resonator in first-order, using the same formalism and a single RS only. The

results have implication beyond optics as similar effects in the perturbation series could occur

for interface shifts in system where the wavefunction is not smooth across the boundary.

We applied the quickly converging version of the RSE, to non-spherically symmetric

perturbations, and discovered that in this case the convergence is much slower. We found

that additional, previously unaccounted divergences of the static pole residue are adversely

affecting the convergence rate when modes of different l couple to each other under the

perturbation.

We have shown numerically that modes generated by the RSE form a complete set inside

the unperturbed system volume, which can be larger than the perturbed system, as opposed to

the exact eigenmodes of the perturbed system, which are complete only within the perturbed

system volume.

We examined the validity of the eigenmode sum rules, and discovered that they are not

valid when both spacial coordinates are on the surface of a spherical resonator. In this case,

only one of the two forms of the ML expansion of the resonant part of the GD is valid.

Building on the latter two results, we successfully applied a novel method to calculate

the scattering cross-section of a cylinder based on its eigenmodes, which were obtained from

perturbing the shape of a spherical resonator and calculated via the RSE. The method uses

the value of the radial part of the GD in VSH representation, and potentially can be com-

putationally much faster than other existing techniques which rely on the volume integral of

the excitation field and the eigenmodes.

7.2 Future work

Regarding the development of the RSE, it is important to improve the convergence rate of

the eigenmodes in case of non-spherical perturbations. One way address this issue could be

using an optimised set of static modes, where only a limited number of them couple to the

RSs. Alternatively, once could attempt to find the vector field describing the change of the

surface elements from the unperturbed surface to the perturbed one. This would allow the

separation of tangential and normal component of the field, treating the discontinuity of the

latter explicitly. For size perturbation of spherical resonators, both of these methods can

be applied analytically, but for arbitrary geometries numerical methods based on FEM type

meshing would be needed.

107



7.2. FUTURE WORK

For generality, the above method also has to be extended to dispersive resonators as

well. The dispersive RSE has only been implemented for spherically symmetric homogeneous

resonators so far. In addition, while zero-frequency modes have a vanishing amplitude in

systems which have a permittivity pole at zero frequency, dispersive systems have additional

modes at zero-permittivity, which are presently not taken into account in the dispersive RSE

formulation.

To generalise the scattering calculation method further, the VSH expansion of plane waves

propagating in arbitrary directions needs to be found. One could also investigate the validity

of the eigenmode sum rule on the surface of non-spherical dielectric resonators, or the sum

rules of dispersive systems.

So far the RSE has only been implemented for systems with homogeneous background.

While this can be a reasonable approximation for many real physical scenarios, an important

class of systems can not be treated, namely a resonator on a mirror. While one could start

from a basis systems that is rotationally symmetric, it would not have translational symmetry,

and no convenient unperturbed system can be chosen which has known analytic solutions for

the eigenmodes.

Another interesting problem that arises often, is finding the modes of two (or more)

coupled resonators. Naturally, we could defined the perturbation in the RSE so that the final

structure is made up of multiple individual resonators, and find all the modes the usual way.

However this may be computationally expensive if a large perturbation is needed to express

the target system. An alternative approach to address this issue could be the coupled mode

theory, that is, expressing the modes of the total system by the modes of two (or more)

individual resonators. While attempts have been made to find such theory for RSs, no

methods can presently treat perturbations up to arbitrary order. This is due to the lack of

completeness and the divergence of the modes outside of the individual resonators.

In terms of device applications, the approximation of the eigenmodes based on the Morse

potential in spherically symmetric systems, combined with the efficiency of the RSE in this

case, allows a rapid exploration of large parameter spaces, and custom design of resonators.

Particularly, one can engineer an optical resonators that has a double well structure, with a

smooth, continuously changing permittivity barrier between the wells, which in practical ap-

plications can reduce scattering effects due to fabrication imperfections, allowing an efficient

and reliable storage of optical modes.
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A

One dimensional systems

A.1 RS mode normalisation and the GF in 1D

A.1.1 Normalisation

Here we derive the ML expansion of a GF of a dielectric slab, with arbitrary permittivity

profile, and with a background that is piecewise homogeneous to the left and right of the

slab, but the left and right media are not necessarily identical. The slab is extended from −a

to a, the halfspace left of the slab (x < −a) has refractive index
√
εl, the slab has refractive

index
√
εs(x), and the halfspace right of the slab (a < x) has refractive index

√
εr. The GF

can be written as [175]

G(x, x′; k) =
EL(x<)ER(x>)

W
, (A.1)

where x< = min(x, x′), x> = max(x, x′) and W is the Wronskian

W (k) = EL(x)
dER(x)

dx
− dEL(x)

dx
ER(x) , (A.2)

EL(x) is the left solution, satisfying the left boundary condition (which is that waves propa-

gating away from the slab on the left hand side)

EL(x) =


e−ik

√
εlx x < −a

ψ(x) −a < x < a

BLe
−ik

√
εrx +ALe

ik
√
εrx a < x

, (A.3)

and ER(x) is the right solution, satisfying the right boundary condition (which is that waves

propagating away from the slab on the right hand side)

ER(x) =


BRe

−ik
√
εlx +ARe

ik
√
εlx x < −a

ϕ(x) −a < x < a

eik
√
εrx a < x

, (A.4)
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The field is continuous and smooth at all points in line with Maxwell’s boundary conditions.

The coefficients A,B are dependent on k, while the Wronskian is independent of x. The

latter can be seen by considering that for the equation y′′ + py′ + qy = 0 we can write

W = Ce−
∫ x p(u)du [175], and in the wave equation p(u) = 0. When W (k) = 0 the GF

has a pole, and we obtain the eigenmodes. At W (k) = 0 the left and right solutions agree

up to a factor f , which can be seen by rearranging the equation to EL
dER
dx = dEL

dx ER,

dividing both sides by ELER, then integrating
∫

dER
dx /ER dx =

∫
dEL
dx /EL dx, which gives

lnER = lnEL + C, so we can write EL = fER.

Before we find the residues of the GF we show how to obtain the orthogonality and

normalisation conditions. First lets take the wave equation

d2EL(x)

dx2
+ ε(x)k2LEL(x) = 0 . (A.5)

Now dropping the dependence on x for brevity, multiplying with ER and integrating over the

slab width, we obtain ∫ a

−a
ER

d2EL

dx2
dx+

∫ a

−a
εERk

2
LELdx = 0 . (A.6)

Taking the interchange expression L↔ R and subtracting it from the above equation we get∫ a

−a
ER

d2EL

dx2
dx−

∫ a

−a
EL

d2ER

dx2
dx+ (k2L − k2R)

∫ a

−a
εERELdx = 0 . (A.7)

Integration by parts of the first two terms give[
ER

dEL

dx

]a
−a

−
[
EL

dER

dx

]a
−a

+ (k2L − k2R)

∫ a

−a
εERELdx = 0 . (A.8)

The left and right solution is satisfied for any wavenumber. Therefore, taking a wavenumbers

at the eigenmodes kL = km and kR = kn, with n,m labeling different eigenmodes, we obtain[
En

dEm

dx

]a
−a

−
[
Em

dEn

dx

]a
−a

+ (k2m − k2n)

∫ a

−a
εEnEmdx = 0 . (A.9)

As the eigenmodes E are known outside and at the boundary, and we have

En(a) = eikn
√
εra , (A.10)

dEn(a)

dx
= ikn

√
εrEn(a) , (A.11)

En(−a) = eikn
√
εla , (A.12)

dEn(−a)
dx

= −ikn
√
εlEn(−a) . (A.13)
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Putting these into Eq. (A.9), and after rearranging the terms and dividing the equation with

km − kn we get

i (
√
εrEn(a)Em(a) +

√
εlEn(−a)Em(−a)) + (km + kn)

∫ a

−a
εEnEmdx = 0 . (A.14)

Requiring that for n = m the above equation is one half, which we can do due to the km−kn

term that was factorised out, we obtain the orthonormality condition∫ a

−a
εEnEmdx−

√
εrEn(a)Em(a) +

√
εlEn(−a)Em(−a)

i(kn + km)
=
δnm
2

. (A.15)

Compared to Ref. [14] the surface terms on the left hand side are multiplied with the refractive

index outside (in Ref. [14]
√
εl =

√
εr = 1 was taken), and the right hand side is scaled by a

factor of 1/2.

A.1.2 GF residue

To find the residue of the GF at the poles we take the Taylor-expansion of the Wronskian

around a pole, up to first order, as

W (k) =W (kn) + wn(k − kn) . (A.16)

where W (kn) = 0, and

wn =
dW

dk

∣∣∣∣
k=kn

=

[
dEL

dk

dER

dx
+ EL

d2ER

dkdx
− d2EL

dkdx
ER − dEL

dx

dER

dk

]
k=kn

, (A.17)

where all terms are evaluated at k = kn. Inserting these into Eq. (A.1) gives the GF Gn near

the pole n as

Gn =
fEn(x)En(x

′)

wn(k − kn)
, (A.18)

where f is the ratio of the left and right solution at a pole, as defined in the previous section,

and we used ER = En and EL = fER = fEn. Taking the derivative of Eq. (A.8) with respect

to kR, we obtain [
dER

dkR

dEL

dx

]a
−a

−
[
EL

d2ER

dkRdx

]a
−a

− I = 0 , (A.19)

(A.20)

with

I = 2kR

∫ a

−a
εERELdx− (k2L − k2R)

∫ a

−a
ε
dER

dkR
ELdx . (A.21)
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This can be written as[
−dER

dkR

dEL

dx
+ EL

d2ER

dkRdx

]
x=−a

=

[
EL

d2ER

dkRdx
− dER

dkR

dEL

dx

]
x=a

+ I . (A.22)

Taking wn(−a), and using the above expression we get

w(−a) =
{[

dEL

dk

dER

dx
− d2EL

dkdx
ER

]
x=−a

+

[
EL

d2ER

dkRdx
− dER

dkR

dEL

dx

]
x=a

+ I

}
k=kn

(A.23)

where all wavenumbers are evaluated at kn. The fields just outside the surface at x = −a are

EL(−a) = eikL
√
εla , (A.24)

dEL(−a)
dx

= −ikL
√
εlEL(−a) , (A.25)

dEL(−a)
dk

= ia
√
εlEL(−a) , (A.26)

d2EL(−a)
dkdx

= −i
√
εlEL(−a) + k

√
εl
2aEL(−a) , (A.27)

while at x = a

ER(a) = eikR
√
εra , (A.28)

dER(a)

dx
= ikR

√
εrER(a) , (A.29)

dER(a)

dk
= ia

√
εrER(a) , (A.30)

d2ER(a)

dkdx
= i

√
εrER(a) + k

√
εr

2aER(a) . (A.31)

For evaluating the term at x = −a we replace ER with EL/f , which we can do as the

expression is evaluated at the eigenwavenumber, and the derivative with respect to x is

continuous[
dEL

dk

dER

dx
− d2EL

dkdx
ER

]
x=−a

∣∣∣∣
k=kn

=
1

f
e2ikn

√
εla
[√

εl
2akn + i

√
εl − kn

√
εl
2a
]

(A.32)

=
1

f
E2

L(−a)i
√
εl (A.33)

= fE2
R(−a)i

√
εl . (A.34)

For evaluating the term at x = a we replace EL with fER,[
EL

d2ER

dkRdz
− dER

dkR

dEL

dx

]
x=a

∣∣∣∣
k=kn

= fe2ikn
√
εra
[
i
√
εr −

√
εr

2kna+
√
εr

2kna
]

(A.35)

= fE2
R(a)i

√
εr . (A.36)

As we approach the limit kL = kR = kn in the integral I we can drop the second term

and also make the substitution EL = fER, ER = En, and from the normalisation condition
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(Eq. (A.15)) for the eigenmode n we get

wn = w(−a) = fE2
R(−a)i

√
εl + fE2

R(a)i
√
εr + 2knf

∫ a

−a
εERERdx (A.37)

= fkn . (A.38)

Placing this in the pole structure of the GF we get

Gn =
En(x)En(x

′)

kn(k − kn)
. (A.39)

In addition to the poles at kn ̸= 0 the GF can also have a pole at k = 0. We write this term

as G0 = R0/k. Summing over all poles, including the static one, gives Eq. (2.9). We note

that a derivation of Eq. (2.9), based on contour integrals in the complex plane, can be found

in Ref. [59].

A.1.3 GF

The explicit functional form of the GF can be found from Eq. (A.1)-Eq. (A.4). We list them

and briefly describe how they are found for a homogeneous slab. We take the background to

be
√
εl =

√
εr = 1 unless noted otherwise.

GF with both points inside the slab

For a homogeneous slab for the left solution (Eq. (A.3)) we can write

ψ(x) = As
Le

ik
√
εsx +Bs

Le
−ik

√
εsx , (A.40)

where we denote the amplitudes inside the slab with a superscript ‘s’. Using the condition

that the field is continuous and smooth at x = −a we get

eika = As
Le

−ik
√
εsa +Bs

Le
ik
√
εsa , (A.41)

−ikeika = ik
√
εs

(
As

Le
−ik

√
εsa −Bs

Le
ik
√
εsa
)
, (A.42)

Bs
L = αAs

Le
−2ik

√
εsa , (A.43)

ψ(x) = As
Le

ik
√
εsx + αAs

Le
−2ik

√
εsae−ik

√
εsx . (A.44)

Similarly, the right solution (Eq. (A.4)) is

ϕ(x) = Bs
Re

−ik
√
εsx +As

Re
ik
√
εsx , (A.45)
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and based on the continuity and smoothness of the field at x = a we get

eika = As
Re

ik
√
εsa +Bs

Re
−ik

√
εsa , (A.46)

ikeika = ik
√
εs

(
As

Re
ik
√
εsa −Bs

Re
−ik

√
εsa
)
, (A.47)

Bs
R =

As
Re

2ik
√
εsa

α
, (A.48)

ϕ(x) =
As

Re
2ik

√
εsa

α
e−ik

√
εsx +As

Re
ik
√
εsx . (A.49)

Taking the derivative of these and inserting them into the Wronskian gives

W = 2ik
√
εs
1

α
As

LA
s
R

(
αe−ik

√
εsa − eik

√
εsa
)(

αe−ik
√
εsa + eik

√
εsa
)
, (A.50)

giving the GF as in Ref. [14]

G(x, x′; k) =
1

2i
√
εsk

ei
√
εsk(a−x>) + αe−i

√
εsk(a−x>)

ei
√
εska + αe−i

√
εska

ei
√
εsk(a+x<) + αe−i

√
εsk(a+x<)

−ei
√
εska + αe−i

√
εska

. (A.51)

Taking the limit of Im (k) → ±∞ will show that the GF is vanishes in both the upper and

the lower half of the complex plane, therefore it is possible to expand it into a ML series.

GF with one point inside and one outside the slab

We take one point inside the slab, and one point outside, for example to the right of the

slab. Following from Eq. (A.1) the left solution will be taken inside the slab and it is given

by Eq. (A.44). The form of the right solution, from Eq. (A.4), is eikx. While the Wronskian

(Eq. (A.2)) does not depend on the position, for convenience we re-evaluate it here to a

different form (which will later allow us to simplify with the field amplitudes A), and write

it as

W = ikeikx(1−
√
εs)As

L (
√
εs − 1)

(
αe−ik

√
εsa − eik

√
εsx
)(

αe−ik
√
εsa + eik

√
εsx
)
. (A.52)

Evaluating it at x = a for simplicity, and inserting it into Eq. (A.1) gives the GF

G(x, x′; k) =
1

ik(
√
εs − 1)

(
eik

√
εs(x<+a) + αe−ik

√
εs(x<+a)

)
eik(x>−a)(

eik
√
εsa + αe−ik

√
εsa
) (
αe−ik

√
εsa − eik

√
εsa
) . (A.53)

This expression is the same as if we were to evaluate the ‘inside’ GF with one point at the

right boundary, and then multiply it with eikx> to account for wave propagation on the right.

This expression vanishes when Im (k) → ∞ for any combination of x<, x>. However in the

lower half of the complex plane, when Im (k) → −∞, it only vanishes when the condition

√
εsx< < a(1 +

√
εs)− x> , (A.54)
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is satisfied. This can be seen by approaching Im (k) → −∞, then dropping the exponential

terms that ave −i in the above expression, as these tend to zero. This is consistent with the

results from Ref. [59], where they found that the ML expansion of the GF work up to this

cut-off condition.

GF with both points outside the slab

For this example we take the region right from the slab a < x, x′, where

EL(x) = BLe
−ikx + rBLe

ikx , (A.55)

ER(x) = eikx . (A.56)

Here r is the reflection coefficient from the slab. This can be found, for example by using an

Airy summation approach, such as in Ref. [103]. We note that using the Airy sum approach

Ref. [176] has an error in their transmission coefficient. Here we just used the boundary

conditions of continuity and smoothness at both edges of the slab to find

r = e−2ikaα
e2ik

√
εsa − e−2ik

√
εsa

α2e−2ik
√
εsa − e2ik

√
εsa

= e−2ikaα

(
eik

√
εsa − e−ik

√
εsa
) (
eik

√
εsa + e−ik

√
εsa
)(

αe−ik
√
εsa − eik

√
εsa
) (
αe−ik

√
εsa + eik

√
εsa
) .

(A.57)

The Wronskian is just going to be

W = 2ikBL , (A.58)

and the GF is

G(x, x′; k) =
e−ikx<eikx>

2ik
+
reikx<eikx>

2ik
. (A.59)

The first term is just the GF of the vacuum background, and the second term is the scattered

part of the GF, which could be thought of as an interference term due to the reflection of the

wave from the slab. In the above expression in the first term x> − x< is always larger than

zero, in the second term x>+x< is also always larger than zero, therefore when Im (k) → ±∞

the GF tends to infinity exponentially, thus it can not be expressed in a ML expansion.

GF of the background

To find the background GF of system consisting of two half-spaces, the left ranging from x < a

and the right from a < x, with refractive indices
√
εl and

√
εr, respectively, we construct the

GF from left and right solutions as before. The left solution is

EL(x) =


e−ik

√
εlx x < a

BLe
−ik

√
εrx +ALe

ik
√
εrx a ≤ x

. (A.60)
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Using the condition that the field is smooth and continuous at x = a we obtain

AL = e−ika(
√
εr+

√
εl)

√
εr −

√
εl

2
√
εr

, (A.61)

BL = eika(
√
εr−

√
εl)

√
εr +

√
εl

2
√
εr

. (A.62)

The right solution, satisfying the right boundary condition

ER(x) =


BRe

−ik
√
εlx +ARe

ik
√
εlx x < a

eik
√
εrx a ≤ x

. (A.63)

Using the condition that the field is smooth and continuous at x = a we get

AR = eika(
√
εr−

√
εl)

√
εr +

√
εl

2
√
εl

, (A.64)

BR = eika(
√
εr+

√
εl)

√
εl +

√
εr

2
√
εl

. (A.65)

To find the static pole residue of the GF we take both points to be in the left half space

x, x′ < a, giving the GF to be

G(x, x′; k) =
e−ik

√
εlx<

(
eik

√
εlx> +

√
εl−

√
εr√

εl+
√
εr
e2ik

√
εlae−ik

√
εlx>

)
2ik

√
εl

. (A.66)

Which has the residue at the static pole

lim
k→0

kG(x, x′; k) =
1

i(
√
εr +

√
εl)

. (A.67)

We note that when
√
εb =

√
εr =

√
εl, Eq. (A.66) will take the form as in Ref. [59]

G(x, x′; k) =
e−ik

√
εbx<eik

√
εbx>

2ik
√
εb

, (A.68)

and has the static pole residue of 1/(2i
√
εb).

A.2 ML sum convergence

A.2.1 Sum rule with both points on the same boundary

Here we show how to obtain Eq. (2.19), which is a special case of the expression
∑∞

−∞En(x)En(x
′)/ikn

(Eq. (2.18)) when x = x′ = a. We take the exact form of the eigenmodes [14]

En = An

(
eikn

√
εsx + (−1)ne−ikn

√
εsz
)
, (A.69)

An =
(−i)n

2
√
a
√
εs
. (A.70)
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Multiplying out the terms in the numerator and using the values for kn (Eq. (2.16)) gives

En(a)En(a) =
(−1)n

4aεs

(
e2i

√
εskna + e−2i

√
εskna + (−1)n

)
=

1

a(εs − 1)
. (A.71)

The n = 0 term is
E0(a)E0(a)

ik0
=

2
√
εs

(εs − 1) lnα
. (A.72)

For convenience we can add the n ̸= 0 terms in pairs as

En(a)En(a) + E−n(a)E−n(a) =
1

a(εs − 1)

(
1

kn
+

1

k−n

)
, (A.73)

=
1

a(εs − 1)

(
2a

√
εs

πn− i lnα
−

2a
√
εs

πn+ i lnα

)
, (A.74)

=
4
√
εs lnα

(εs − 1)π2
× 1

n2 + b2
, (A.75)

(A.76)

with

b =
lnα

π
. (A.77)

Therefore, we can write the total sum, including the n = 0 term, as

∞∑
−∞

En(a)En(a)

ikn
=

2
√
εs

(εs − 1) lnα
+

4
√
εs lnα

(εs − 1)π2

∞∑
1

1

n2 + b2
. (A.78)

Noting that [158]
∞∑
0

1

n2 + b2
=

1

2

(
1

b2
+
π coth(bπ)

b

)
, (A.79)

so
∞∑
1

1

n2 + b2
=

1

2

(
− 1

b2
+
π coth(bπ)

b

)
, (A.80)

we can arrive at the result

∞∑
−∞

En(a)En(a)

ikn
=

2
√
εs

(εs − 1) lnα
+

4
√
εs lnα

(εs − 1)π2
π

lnα

(
− π

2 lnα
+
π coth(lnα)

2

)
, (A.81)

=
2
√
εs

εs − 1
coth(lnα) . (A.82)

A.2.2 Error outside

We take a brief look at the error of the ML expansion of the GF in the region outside of

the perturbed slab. We take ap = 0.5a, x′ = 0.6a, εs = 2. We evaluate the relative error

of the GF in the region outside of the perturbed slab, then integrate the results over the

spacial region to obtain a single error value. We take a range of k and kmax combinations,
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Fig. A.2.1: Relative error of the ML expansion of the GF for size perturbed slab, with error calculated

outside of the perturbed slab, but inside the original system volume. On the left, the integral of the relative

error shown, as it scales with the choice of kmax. On the right optimal kmax value is shown for different

ks, where the optimum is found from minimizing the relative error.

and we find the optimal kmax value, which we label kopt, where the integral of the relative

error (R.err.) is minimised. The results are shown on Fig.A.2.1. For ka = 1 the error

decreases to approximately kmaxa ≈ 400, after which it increases. For ka = 100 the error

decreases up to kmaxa ≈ 800, after which it increases. Looking at the trend for a different ka

values, the optimal cut-off point in kmax to minimise the error outside is approximately linear

kopta = Ska + O. On the specific example here the scaling factor is S ≈ 4 and the offset is

O ≈ 400. We can expect that the specific values of S and O will depend on the parameters

ap, x
′, and εs, but the overall trend will likely be similar.
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B

Spherically symmetric, radially inhomoge-

neous systems

B.1 Eigenmodes of a homogeneous slab

By approximating the surface of the sphere with a flat boundary, we compare the modes of

a sphere with those of a homogeneous slab, in which EM waves propagate at a non-normal

incidence to the boundary. We also compare here the modes of the slab with an approximation

similar to Eq. (3.3) which is provided by the ray picture.

The secular equation determining the TE modes of a homogeneous slab of thickness 2a,

permittivity ϵ, and permeability µ is given by [9]

e2iqna = (−1)n
qn + µkn
qn − µkn

, (B.1)

where q =
√
ϵµω2 − p2 and k =

√
ω2 − p2 are the normal components of vector inside the

slab and in vacuum, respectively, ω is the wave vector in vacuum here, and p is its in-plane

component, which is conserved. Note that p was also introduced to discuss the Brewster

peak, see Fig. 3.2.2. The factor (−1)n gives the mode parity and can be used to label the

modes. The corresponding equation for TM modes is provided by just swapping ϵ and µ in

Eq. (B.1).

One can find an approximate imaginary part of the mode wavenumbers in the same way

as described in Sec. 3.2.1. The angle of incidence inside the slab is given by θ = atan(p/q),

and the optical path length is L = 2anr/ cos θ where a is the slab half width. The imaginary

part of the RS wavenumbers is then given by

Im (k) =
ln |rP |
2anr

cos θ , (B.2)

where again rP is the polarization dependent Fresnel coefficient taken at real wavenumbers

– compare Eqs. (B.2) and (3.3).
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Fig. B.1.1: Eigenmodes of a homogeneous slab with ϵ = 4, µ = 1, and p = 20, along with approximate

solutions for the imaginary part obtained from Eq. (B.2). The ‘(e)’ and ‘(o)’ label the even and odd modes,

respectively. Here ω is the wavenumber in vacuum.

We show in Fig. B.1.1 the TE and TM modes of a slab with permittivity ϵ = 4, permeabil-

ity µ = 1, and in-plane wavenumber p = 20/a, so that the system parameters are matching

those used for the sphere in Sec. 3.2.1. In the TM spectrum, there is a peak again, which is

aligned with the position of the Brewster angle. Overall, for these parameters the approxi-

mation works better for the slab than for the sphere, as the boundary is strictly flat. The

observed small deviation of the modes from the approximation at the Brewster peak stems

from the neglecting the imaginary part of the wavenumber in rP , which can be significant

around the peak. We can see that for both polarizations, there are even and odd modes al-

ternating with increasing Re(ωa). We can also see that at high frequencies, both TE and TM

FP modes converge to the same asymptote, which is the same behavior as for the sphere. As

in the spherical case, the TE and TM modes of the same parity appear in alternating order.

In fact, even TE modes align with the odd TM modes, and vice versa. However, in case of a

sphere even modes do not exist. Finally, instead of the WG modes of a sphere, in case of a

slab there are waveguide modes with purely real eigenfrequencies, formed as a consequence

of total internal reflection at the planar boundary, and instead of the L modes of a sphere,

there are anti-waveguide modes in case of a slab [80]. Both waveguide and anti-waveguide

modes have ω < p and are not shown in Fig. B.1.1.
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B.2. EFFECTIVE POTENTIAL FOR TM MODES

B.2 Effective potential for TM modes

Here we show that the wave equation (3.25) for the scalar magnetic field H(r) in TM polar-

ization can be brought to a Schrödinger-like equation with an effective potential independent

of the wave function. Following [114], we introduce a substitution H(r) =
√
ε(r)H̃(r), from

which we find

dH
dr

=
1

2

ε′√
ε
H̃+

√
εH̃′ (B.3)

d2H
dr2

=

(
−1

4

(ε′)2

ε
3
2

+
1

2

ε′′√
ε

)
H̃+

ε′√
ε
H̃′ +

√
εH̃′′ , (B.4)

where the prime indicates the derivative with respect to r and where we omit the dependencies

on r for brevity. Using these expressions the wave equation takes the form

(
d2

dr2
− α2

r2
+ k2ε− 3

4

(
ε′

ε

)2

+
1

2

ε′′

ε

)
H̃ = 0 , (B.5)

in which the first derivative of the wave function present in Eq. (3.25) has cancelled out,

so that the corresponding effective potential Ṽ TM given by Eq. (3.27) is independent of the

wave function H̃. This comes at the cost of adding a term containing the second derivative

of the permittivity to Ṽ TM. We show Ṽ TM in Fig. B.2.1 for the lowest four WG modes, for

the quadratic permittivity profile described in Sec. 3.3.3. Overall, the potential has a shape

similar to V TE shown in Fig. 3.3.3(f), apart from the step at the sphere surface due to the

contribution from the second derivative of the permittivity which has a discontinuity. As in

the TE polarization, the potential is getting deeper with the mode number, and its minimum

is slightly shifting towards the center, as it is clear from Fig. B.2.1.

B.3 TE-TM splitting for l = 80

In Fig. B.3.1 the difference between the TE and nearest TM RSs for l = 80 is shown, for

the constant, linear, and quadratic permittivity profiles, using a basis size of N = 800. The

qualitative behaviour is similar to l = 20 shown in Fig. 3.4.1, but the RSs are shifted to

higher wavenumbers, and more WG RSs are present. For the linear and quadratic profile the

minimum splitting is reduced by approximately a factor of four. This is consistent with the

modes being more tightly packed which can be seen by comparing Fig. 3.3.3 and Fig. B.3.1.
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B.4. RS SEPARATION
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Fig. B.2.1: Real part of the unitless effective potential Ṽ TMR2 and the normalized field H̃ for the

first four TM WG RSs, for the quadratic permittivity profile and l = 20 as in Fig. 3.3.3. WG RS 1

kR = 14.4 − 6.74 × 10−9i, WG RS 2 kR = 15.4 − 3.51 × 10−7i, WG RS 3 kR = 16.3 − 8.47 × 10−6i,

WG RS 4 kR = 17.2− 1.22× 10−4i.

B.4 RS separation

It is interesting to investigate the RS separation of each polarization for the different per-

mittivity profiles. This is shown in Fig. B.4.1. Let us consider in the ray picture a nearly

normal incidence, corresponding to RS wavenumbers much larger than the critical wavenum-

ber, kc = l/R. In this case, the mode separation ∆k can be evaluated from the optical path
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Fig. B.3.1: As Fig. 3.4.1, but for l = 80.

length between successive reflections, L = 2
∫ R
0

√
ε(r)dr. L/R takes the values of 4.0, 5.1,

and 6.0, for the employed constant, linear, and quadratic permittivity profiles, respectively.

Using the resonator condition of constructive interference of waves, 2L = nλn, where n is

a natural number, and the missing even states, we find ∆k = 2π/λn+1 − 2π/λn = 2π/L.

Therefore, ∆k in units of 2π/L tends towards unity for large k, which can be observed in

Fig. B.4.1.

Overall, for the constant profile, the spacing reduces with Re k, while for the linear and

quadratic profiles, the spacing is nearly constant, increasing only slightly. There are two re-

gions of deviation from the monotonous behaviour, indicated by vertical arrows in Fig. B.4.1.

Firstly, at the Brewster peak kb, where the spacings of TM RSs, which otherwise are nearly

identical to the TE RSs, are reduced in order to accommodate the additional Brewster RS,

as discussed in Sec. 3.2.1. Secondly, at the wavenumber for the critical angle of total internal
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Fig. B.4.1: RS separation for l = 80, for constant (black), linear (blue), and quadratic (red) permittivity

profiles shown in the left inset. The right inset shows the corresponding refractive index profiles. The

separation ∆k is taken between a RS at k and the following RS of the same polarization. The vertical

arrows indicate positions kb of the Brewster peak mode and the wavenumber kc at the critical angle of

total internal reflection.

reflection at the surface, kc = l/R, which is the transition region between WG and FP modes,

where both TE and TM RSs show a slightly reduced splitting, somewhat more pronounced

for the TM RSs, specifically for the constant permittivity.
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C

First order perturbation theory of resonant

states

C.1 First-order approximations based on the RSE

In this section we provide, based on the RSE, a more general and detailed derivation of the

correct first-order change of the RS wave number due to a small perturbation. Based on

the closure relation of the modes, we discuss qualitatively how the second-order term can

lead to a linear contribution in the deformation depth h(r). We then show explicitly, for

spherically-symmetric basis systems, the exact conversion from second to first order based on

the residue of the Green’s function at the static pole. Finally, we extract the exact first-order

correction from all higher orders.

C.1.1 Perturbation series up to second order

Instead of solving the complete matrix equation in Eq. (4.2), one can extract a perturbation

series for κ in terms of powers of the matrix elements Vνν′ of the perturbation. This is done

below by applying a standard procedure, namely, by taking a perturbed solution in the form

κ = κ(0) + κ(1) + κ(2) + . . . , F⃗ =
∑
ν

cν F⃗ν , cν = c(0)ν + c(1)ν + c(2)ν + . . . (C.1)

where the superscript indicates the related power of the matrix elements. Here we consider

terms only up to second order, simply for the purpose of illustrating how can a second-order

term be turned into a first-order correction. Later we extract first-order corrections from all

higher-order terms.

Substituting the above expansions into Eq. (4.2), we find the first-order corrections to the

wave number and the wave function of state n,

κ(1) = −knVnn , c
(1)
ν ̸=n = − knVνn

(kn − kν)
. (C.2)
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C.1. FIRST-ORDER APPROXIMATIONS BASED ON THE RSE

Using these one can find the second order correction to the wave number,

κ(2) = knV
2
nn + k2n

∑
ν ̸=n

VnνVνn
kn − kν

, (C.3)

giving the perturbed wave number up to second order as

κ = kn − knVnn + knV
2
nn + k2n

∑
ν ̸=n

VnνVνn
kn − kν

+ . . . , (C.4)

where the sum in the last term includes all other RSs (kν ̸= 0) and all static modes (kν =

0). The first three terms in Eq. (C.4) can also be understood as a diagonal (i.e., ν = n)

approximation to the matrix equation (4.2), expanded to second order in Vnn:

κ ≈ kn
1 + Vnn

= kn − knVnn + knV
2
nn + . . . (C.5)

However, the diagonal approximation Eq. (C.5) does not contain the full first-order informa-

tion. In fact, the last term in Eq. (C.4) can contain implicit first-order corrections arising

from the static-modes as we will show in the following subsection.

C.1.2 Converting second-order terms to first order based on closure relation

Let us consider only the static-mode contribution to the sum in Eq. (C.4), setting ν = λ, and

kν = 0. The last term then reduces to

∑
λ

VnλVλn =
∑
λ

∫∫
F⃗n(r) ·∆P(r)F⃗λ(r)⊗ F⃗λ(r

′)∆P(r′)F⃗n(r
′)drdr′ , (C.6)

leaving out the factor k2n. Using the closure relation [85]

P(r)
∑
ν

F⃗ν(r)⊗ F⃗ν(r
′) = Iδ(r− r′) , (C.7)

where I is the 6× 6 identity matrix, one can express the sum in the middle of Eq. (C.6) as

∑
λ

F⃗λ(r)⊗ F⃗λ(r
′) = P−1(r)Iδ(r− r′)−

∑
n

F⃗n(r)⊗ F⃗n(r
′). (C.8)

Inserting this into Eq. (C.6) and integrating out the delta function gives∑
λ

VnλVλn =

∫
F⃗n(r) ·∆P(r)P−1(r)∆P(r)F⃗n(r)dr

−
∑
n

∫∫
F⃗n(r) ·∆P(r)F⃗n(r)⊗ F⃗n(r

′)∆P(r′)F⃗n(r
′)drdr′.

(C.9)

The first term is clearly second order in ∆P(r). However, ∆P(r) may not be small, and if

we consider a perturbation that is a thin layer of thickness h(r) and approximate the volume
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C.1. FIRST-ORDER APPROXIMATIONS BASED ON THE RSE

integral with a surface integral multiplied with h(r) (this is equivalent to taking the zeroth

order Taylor expansion of the field F⃗n(r) normal to the surface), then it is clear that the term

is first order in the layer thickness h.

The elimination of the static mode contribution via the closure relation has been already

explored in [85], in the context of the full matrix equation Eq. (4.2) – this is referred to as

ML2 in [85] and corresponds to one of the Mittag-Leffler representations of the dyadic Green’s

function (GF). However, as shown in [85] this leads to a slow convergence of the RSE, as

it turns out that the term
∑

n F⃗n(r) ⊗ F⃗n(r
′) can also contain a singularity. In the next

subsection we will see how the result changes if the full singularity of the static-pole residue

of the dyadic GF is taken into account.

C.1.3 Converting second-order term to first order based on the static pole of the

Green’s dyadic

So far we have not used any symmetry of the basis system. Let us now consider a spherically-

symmetric basis system, with isotropic radially dependent permittivity ε̂εε(r) = 1̂ε(r) and

permeability µ̂µµ(r) = 1̂µ(r), where 1̂ is the 3×3 identity matrix. As derived in [85], the static

pole residue of the dyadic GF of such a system has a δ-like singularity. Following [85], one

can write the full dyadic GF in the basis of vector spherical harmonics (VSHs) as

G(r, r′) =
∑
ij

∑
lm

[
Ĝij(r, r

′)
]
l,m

Yilm(Ω)⊗Yjlm(Ω) , (C.10)

where Yilm(Ω) are the VSHs with i = 1, 2, 3, and l and m being, respectively, the orbital and

magnetic quantum numbers. Here, Ĝij are 2 × 2 matrices, each consisting of four elements:

GEE
ij , GEH

ij , GHE
ij , and GHH

ij [compare with Eq. (1.21)], the first and the last element being,

respectively, the electric and magnetic part of the Green’s dyadic. These two were shown [85]

to have δ-like singularities, and their singular parts are given by

GEE
33 (r, r′) =

δ(r − r′)

r2kε(r)
, GHH

33 (r, r′) =
δ(r − r′)

r2kµ(r)
. (C.11)

Using the definition Y3lm(Ω) = r̂Ylm(Ω), where Ylm(Ω) is a spherical harmonic and r̂ is a

unit vector in the radial direction, the closure relation for spherical harmonics∑
lm

Ylm(Ω)Ylm(Ω′) =
1

sin θ
δ(θ − θ′)δ(ϕ− ϕ′) , (C.12)

and the spherical-coordinate representation of δ(r − r′), the static-pole singularity of the

Green’s dyadic of a spherically-symmetric system takes the form

Gsing(r, r
′) =

ĜEE
sing(r, r

′) 0

0 ĜHH
sing(r, r

′)

 =
δ(r− r′)

k
Ir̂⊗r̂P

−1(r) , (C.13)
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where

Ir̂⊗r̂ =

r̂⊗ r̂ 0

0 r̂⊗ r̂

 and P(r) =

ε̂εε(r) 0

0 µ̂µµ(r)

 (C.14)

are 6× 6 diagonal tensors.

Equation (C.13) allows us to write the static-pole residue of the dyadic GF [see Eq. (1.22)]

in the form ∑
λ

F⃗λ(r)⊗ F⃗λ(r
′) = Ir̂⊗r̂P

−1(r)δ(r− r′) + R(r, r′) , (C.15)

where R(r, r′) is a regular part of the Green’s dyadic. Using Eq. (C.15) in Eq. (C.6) and

integrating the term containing the δ function leads to∑
λ

VnλVλn =

∫
F⃗n(r) ·∆P(r)Ir̂⊗r̂P

−1(r)∆P(r)F⃗n(r)dr

−
∑
n

∫∫
F⃗n(r) ·∆P(r)R(r, r′)∆P(r′)F⃗n(r

′)drdr′.

(C.16)

The first term on the right-hand side of Eq. (C.16) is a single-volume integral and is thus of

first order in h, which needs to be included in the first-order perturbation theory result. The

second term in Eq. (C.16) contains a double-volume integral, not reducible to a single-volume

integral, and is thus of second order, both in ∆P and h. We note that R(r, r′) may also show

a singularity when the summation over all quantum numbers l and m is taken, similar to

Eq. (C.12); however, this does not influence the first-order results as modes with different l

do not mix in first order.

C.1.4 Extracting the first-order correction from all higher-order terms

Based on the results for second order we can expect that even higher-order terms can have a

linear in h contribution. Instead of attempting to derive corrections in the infinite perturba-

tion series Eq. (C.4) to arbitrary order and then extracting first-order corrections from them,

we take the RSE matrix equation (4.2) in a form which does not explicitly depend on static

modes [32,38,85]:

(κ − kn)cn = −κ
∑
n′

Ṽnn′cn′ , (C.17)

where

Ṽnn′ = Vnn′ − Snn′ (C.18)

and

Snn′ =
∑
λλ′

VnλWλλ′Vλ′n′ , (C.19)
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with W being the inverse of the matrix δλλ′ + Vλλ′ . Note that in what concerns the RSs,

Eq. (C.17) is equivalent to Eq. (4.2). We can express the matrixW as a Neumann series [177],

W = (I + V )−1 = I − V + V 2 − V 3 + V 4 . . . , (C.20)

where I is the identity matrix and V has matrix elements Vλλ′ , which are overlap integrals

between static modes only. Inserting the expansion Eq. (C.20) into Eq. (C.19), we obtain a

series (for n′ = n)

Snn =
∑
λ

VnλVλn −
∑
λλ1

VnλVλλ1Vλ1n +
∑
λλ1λ2

VnλVλλ1Vλ1λ2Vλ2n − . . . , (C.21)

which can also be understood as part of the full perturbation series Eq. (C.4) relevant to the

first-order correction we are looking for.

Now, using Eq. (C.15) and neglecting any terms containing the regular part of the static-

pole residue, we find approximately

Snn ≈
∫

F⃗n ·
[
∆PIr̂⊗r̂P

−1 −
(
∆PIr̂⊗r̂P

−1
)2

+
(
∆PIr̂⊗r̂P

−1
)3 − . . .

]
∆PF⃗ndr . (C.22)

The above infinite series in the square brackets can be summed up, again using the Neumann

series Eq. (C.20), which results in

Snn ≈
∫

F⃗n ·
[
I−

(
I+∆PIr̂⊗r̂P

−1
)−1
]
∆PF⃗ndr, (C.23)

so that finally

Ṽnn = Vnn − Snn ≈
∫

F⃗n ·
(
I+∆PIr̂⊗r̂P

−1
)−1

∆PF⃗ndr. (C.24)

Equation (C.24) is a generalization of Eq. (9) of the main text, and is one of the main

results of this work. It provides the exact first-order correction to the wave number via

κ = kn − knṼnn . (C.25)

The above result is valid for spherically-symmetric systems described by the generalized

permittivity P(r), which are subject to an arbitrary perturbation ∆P(r) without assumptions

regarding its symmetry. Equation (C.25) can also be seen as a first-order approximation to

the diagonal version of Eq. (C.17), similar to Eq. (C.5) but using the modified matrix elements

Eq. (C.18). When ∆P is small, for example in case of a small homogeneous perturbation across

the whole sphere, the term ∆PIr̂⊗r̂P
−1 in Eq. (C.24) provides a second-order contribution

due to the static modes, and the original first-order approximation Eq. (C.2) to the matrix

equation Eq. (4.2) is recovered. However, when ∆P is not small, as in the case of a shape
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deformation of an interface hosting a discontinuity of P, the term ∆PIr̂⊗r̂P
−1 provides a

first-order contribution coming from the static modes, in this way modifying the first-order

perturbation theory result.

In order to bring the above result to a more familiar form, let us consider unperturbed and

perturbed non-magnetic systems with isotropic permittivity. Equation (C.24) then simplifies

to

Ṽnn ≈
∫

En(r) ·∆P̂ (r)En(r)dr , (C.26)

where

∆P̂ (r) =


∆ε(r) 0 0

0 ∆ε(r) 0

0 0 ε(r)∆ε(r)
ε(r)+∆ε(r)

 , (C.27)

with the bottom-right corner representing the r̂⊗ r̂ component of the tensor. In terms of the

electric field components parallel and normal to the surface of the basis system, Eq. (C.26)

can be written as

Ṽnn ≈
∫ [

E∥
n(r) ·∆ε(r)E∥

n(r) +E⊥
n (r) ·

ε(r)∆ε(r)

ε(r) + ∆ε(r)
E⊥

n (r)

]
dr . (C.28)

This is consistent with the results in [85], where the same perturbation matrix was obtained

for the general RSE from a modified spectral representation of the Green’s dyadic, in which

the singular part of the static pole was kept as a δ-like term, not expanded as a series. This has

led, in particular, to a significantly faster convergence of the RSE. Interestingly, in [21], the

same perturbation matrix as in Eq. (C.27) was obtained, specifically for a shape perturbation.

It was derived by using both the inside and outside fields in the overlap integral, and by taking

the zeroth order of the Taylor expansion of the field, i.e. its value at the surface. A similar

method was used later on in [51], again for shape perturbations. The approach of [21, 51],

however, masks the contribution of the static modes to the first-order correction and is limited

to shape deformations only. Here we reproduce their results by fully considering the static

pole of the Green’s dyadic. In [77], which builds on the results of [76], the perturbation term

ε∆ε
ε+∆ε was also used, but for both components of the TM field. For small ∆ε this gives the

correct results as it was shown in the paper, however we expect that this fails for larger ∆ε,

which is the case of a shape perturbation. In [102], TM polarization was considered for a

photonic-crystal slab at non-normal incidence. While the permittivity change was large, the

volume of the change was small, and seemingly accurate results could be obtained without

using static modes for RSs of ka ≈ 0.2, where a = 100 nm was the characteristic length of

the structure (of the order of the thickness of the grating and its period). To the best of
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our knowledge, the role of static modes has not been yet investigated in photonic-crystal

structures.

C.2 Example: Dielectric sphere in vacuum

In this section, we provide a few illustrations of the first-order results derived in Sec. C.1 and

their comparison with the exact solutions for a dielectric sphere in vacuum, perturbing either

its refractive index (volume perturbation) or its size (boundary perturbation). The general

formula correctly describing the wave number of a perturbed RS to first order is given by

Eq. (C.25),

κ = kn − knṼnn = kn − kn(Vnn − Snn) , (C.29)

here written also in terms of Vnn and Snn, given by Eqs. (4.3) and (C.23), respectively. This

highlights the importance of the static-mode contribution Snn, which will be evaluated for

the examples treated below, along with the diagonal matrix element Vnn. As basis system

we choose in all examples a dielectric sphere of radius R and permittivity ε = 4, surrounded

by vacuum.

C.2.1 Material perturbation

We apply the first-order formula Eq. (C.29) to the homogeneous dielectric sphere in vacuum,

perturbed uniformly, so that the permittivity of the sphere changes by ∆ε. A particular

change of the permittivity profile is illustrated in Fig. C.2.1b. Here we focus on perturbation

of the transverse-magnetic (TM) RSs with l = 1. For this value of the angular momentum,

the spectrum of the basis system in the complex k plane, shown in Fig. C.2.1a, consists of only

Fabry-Pérot modes, which for large |k| are spaced with a period of π/2
√
εR in Re(k), and

have the imaginary part converging to Im(k) = − ln((
√
ε− 1)/(

√
ε+ 1))/(2

√
εR), similar to

the modes of a homogeneous slab at normal incidence [14,104].

Applying a perturbation to the fundamental mode, shown in Fig. C.2.1(c) up to ∆ε = 0.04,

reveals excellent agreement between the first-order result Eq. (C.29) and the exact solution.

For all the RSs shown in Fig. C.2.1a, we provide in d) and e) more details for ∆ε = 0.004 and

∆ε = 0.04, corresponding to, respectively, 0.1% and 1% change of the permittivity. Vnn and

Snn are given in Fig. C.2.1d. For the applied perturbations, ∆ε ≪ 1. Therefore, Vnn which

is of first order in ∆ε dominates, whereas Snn which is of second order in ∆ε is negligible.

Accordingly, Vnn scales linearly and Snn scales quadratically with ∆ε. This is consistent with

examples in the literature, where for small ∆ε static mode contributions were not included
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Fig. C.2.1: a) Wave numbers of TM modes with angular momentum l = 1 of a dielectric sphere with

permittivity ε = 4 and radius R, surrounded by vacuum; b) illustration of the homogeneous permittivity

perturbation across the sphere; c) perturbed wave number of the fundamental RS with the permittivity

change given by the color code; d) magnitude of the matrix elements |Vnn| and |Snn| of the perturbation;

e) relative error of the perturbed RS wave numbers calculated with (crosses) and without (dots) inclusion

of static modes.

in the RSE [178]. The magnitude of Snn is reducing with increasing |k|. This is intuitively

expected as we move away from the influence of the k = 0 pole in the k-plane. Figure C.2.1e

shows the relative error with respect to the exact solution of the first-order Eq. (C.29), with
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or without the static-mode contribution, which is given by Snn. One can see that the error

scales quadratically in ∆ε for both, confirming that first-order correction to k is accurate for

all the RSs. The relative errors calculated with or without static modes are very similar,

confirming that the static pole of the Green’s dyadic has a weak contribution when ∆ε is

small.

C.2.2 Size perturbation

We now apply to the same homogeneous dielectric sphere as in the previous section a per-

turbation that changes its size by h. This corresponds to a perturbation ∆ε = 1− ε, applied

to a layer of thickness |h| on the inner side of the surface of sphere. The permittivity change

is illustrated in Fig. C.2.2a, which corresponds to the shift of an interface hosting a disconti-

nuity of ε. We apply a perturbation of h/R = −0.01 and h/R = −0.001, corresponding to,

respectively, 1% and 0.1% change of the initial size, with the minus sign noting a decrease of

the sphere radius. One can see from Fig. C.2.2b that in the complex k plane, the first-order

result for the fundamental mode, calculated via Eq. (C.29), is in good agreement with the

exact solution.

Figure C.2.2c shows the values of Vnn and Snn for a large number of the RSs. For small

k both Vnn and Snn contribute with a similar magnitude, and for all k both change linearly

with h. This confirms that both terms contribute in first order under size perturbation. The

magnitude of Snn decreases for large k as discussed above. We can see that in this region

Ṽnn = Vnn−Snn fluctuates with k, which we would not expect if the first order approximation

was correct. To understand this, we recall that the secular equation determining the modes

use the dimensionless quantity kR, so that k and R are inversely proportional to each other

for a given mode under size perturbation. Therefore, the perturbed wave number should be

κ = knR/(R+ h) ≈ kn/(1+ Ṽnn), or alternatively, κ ≈ kn(1− Ṽnn) ≈ kn(1− h/R), implying

that Vnn should be constant with respect to kn in first order.

One can see from Fig. C.2.2d that the error for RSs of low |k| can increase by several

orders of magnitude when the static modes are not included, exemplifying their importance.

The relative error scales quadratically with h for |kh| ≪ 1. The error increases with k, and

at |kh| = 1 we can observe that the error only reduces proportionally to h. This is further

exemplified in Fig. C.2.2e by showing the absolute error (expected to scale quadratically)

relative to the change of the wave number scaling linearly when |kh| < 1. This suggests that

the first-order approximation requires |kh| ≪ 1. This, together with the oscillations in the

magnitude of the matrix elements, also suggests that for size perturbations, contributions
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Fig. C.2.2: a) Illustration of the permittivity perturbation corresponding to a radius reduction of the

sphere by −h; b) perturbed wave number of the fundamental RS with the sphere radius change given

by the color code; c) magnitude of the matrix elements |Vnn| and |Snn| of the perturbation; d) relative

error of the perturbed RS wave numbers calculated with (crosses) and without (dots) inclusion of static

modes; e) absolute error of the perturbed RS wave numbers relative to the wave number change due to

the perturbation, as functions of −h, for three selected modes.

from other neighbouring RSs are important for Fabry-Pérot modes when |kh| ≳ 1, meaning

that higher-order corrections need to be taken into account in the perturbation series repre-

sentation Eq. (C.4), or alternatively, in the context of the full matrix equation Eq. (4.2), the

off-diagonal elements cannot be neglected.

Moving to an angular momentum number l = 50, the results of the size perturbation

135



C.3. ALTERNATIVE DERIVATION FOR SPHERICALLY-SYMMETRIC SYSTEMS

are shown in Fig. C.2.3. For larger values of l, high-quality whispering-gallery modes form

in spectra, and the fundamental mode position shifts to higher k. Also, a sharper peak

associated with the Brewster angle is formed in the spectrum of the RSs [104].

We find that for this high l the role of the static pole is lessened, but still relevant, reducing

the error by up to an order of magnitude for the whispering-gallery modes. The contribution

from both matrix elements scales about the same way as for the l = 1 case, i.e. linearly in h,

but here the magnitude of the static-mode contribution is significantly smaller than the RS

contribution. This is related to the large detuning 1 ≪ |kR| from the static pole. Considering

the field contribution to the overlap integrals, for low values of the angular momentum the

tangential and radial component of the field are similar in magnitude, whereas for high l the

radial part, which contributes to the static-pole integral, is much weaker.

Considering the relative error, we observe the same features as for l = 1, namely, small

error for the initial modes, which then grows up to the point |kh| ≈ 1. If we compare relative

errors with and without the static pole included, we can see that with their correct inclusion

we still gain an order of magnitude accuracy for the h/R = −0.001 case, and about a factor of

2 for h/R = −0.01. In Fig. C.2.3d we can see that for larger perturbations, the fundamental

whispering-gallery mode produces higher errors relative to the change of the wave number

when compared to Fabry-Pérot modes. This could be due to the strong localization of the

whispering-gallery mode close to the surface of the sphere.

C.3 Alternative derivation for spherically-symmetric systems

In this section, we focus on non-dispersive dielectric spherically-symmetric systems, in order

to provide explicit and easy-to-follow derivations of the first-order correction to the RS wave

numbers. We start with the RSs in transverse-electric (TE) polarization where the correct

first-order result is identically to the diagonal approximation within the standard RSE ap-

proach. We then focus on TM polarization where we will illustrate the difference between the

standard first-order term (diagonal approximation) and our modified first-order term (which

includes static mode), and discuss the source of their inconsistency in relation to the smooth-

ness of the field. For simplicity we use a closed system approximation, therefore the integrals

have a finite limit, but identical results based on more rigorous approaches, either with the

regularisation of the field, as in Ref. [48], or with use of the expansion formulas for the field,

can be found in the the supplement of [50].
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Fig. C.2.3: a) Wave numbers of TM modes with angular momentum l = 50 of a dielectric sphere

with radius R and permittivity ε = 4, surrounded by vacuum. Inset shows a zoom of the high-quality

whispering-gallery modes in a logarithmic scale; b) magnitude of the matrix elements |Vnn| and |Snn| of

the perturbation; c) relative error of the perturbed RS wave numbers calculated with (crosses) and without

(dots) inclusion of static modes; d) absolute error of the perturbed RS wave numbers relative to the wave

number change due to the perturbation, as functions of −h, for three selected modes. Green line is the

fundamental whispering-gallery mode.
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C.3.1 TE polarization

In TE polarization, Maxwell’s wave equation for the RSs is reduced to a scalar wave equation

for the electric field [85,104], [
d2

dr2
− α2

r2
+ ε(r)k2n

]
En(r) = 0 , (C.30)

where r is the radial coordinate, ε(r) is the permittivity of the unperturbed spherically-

symmetric system, α2 = l(l+1), l is the orbital quantum number, kn is the RS wave number,

and En(r)/r is the radially-dependent part of the RS electric field.

A perturbed RS in TE polarization, with the wave number k and electric field E(r),

satisfies the perturbed wave equation[
d2

dr2
− α2

r2
+ ε(r)k2 +∆ε(r)k2

]
E(r) = 0 , (C.31)

where ∆ε(r) is a perturbation of the permittivity.

Multiplying Eq. (C.30) with E(r), and Eq. (C.31) with En(r), then integrating over the

system volume up to just outside the boundary, then taking the difference between the two

equations, approximating the continuous and smooth functions as E(r) ≈ En(r) we obtain∫ R

0

(
εk2n − εk2 −∆εk2

)
EnEndr = 0 , (C.32)

Then, using the approximate normalisation for high quality modes 2
∫ R
0 ε(r)E2(r)dr ≈ 1,

keeping only the first order terms we get

k − kn ≈ −kn
∫ R

0
∆ε(r)E2

n(r)dr , (C.33)

The same equation can be derived more rigorously for any mode, regardless of the quality,

and this is done more generally in Appendix C.5.

C.3.2 TM polarization

Now we apply the approach to the RSs in TM polarization. In this polarization, Maxwell’s

wave equation is also reducible to a scalar wave equation, but for the magnetic field [85,104]:[
d

dr

1

ε(r)

d

dr
− α2

r2ε(r)
+ k2n

]
Hn(r) = 0 , (C.34)

where −iHn(r)/r is the radially-dependent part of the RS magnetic field. The wave equation

for a perturbed RS with the wave number k and magnetic field H(r) is given by[
d

dr

1

εp(r)

d

dr
− α2

r2εp(r)
+ k2

]
H(r) = 0 , (C.35)
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where

εp(r) = ε(r) + ∆ε(r) (C.36)

and ∆ε(r) is a perturbation of the permittivity, as before. Again, multiplying Eq. (C.34)

with H(r) and Eq. (C.35) with Hn(r), taking their difference and integrating the result over

they system we find∫ R

0

(
H
d

dr

1

ε
H ′

n −Hn
d

dr

1

εp
H ′
)
dr +

∫ R

0

α2

r2

(
1

εp
− 1

ε

)
HHndr + (k2n − k2)

∫ R

0
HHndr = 0 .

(C.37)

Integrating by parts, and approximating the perturbed continuous functions with continuous

unperturbed functions in zeroth order as

H(r) ≈ Hn(r) ,
H ′(r)

εp(r)
≈ H ′

n(r)

ε(r)
, (C.38)

we obtain

−
∫ R

0

[
∆ε

ε2
(
H ′

n

)2
+
α2

r2
∆εp
εpε

H2
n − (k2 − k2n)H

2
n

]
dr ≈ 0 , (C.39)

from where we find the first-order correction to the wave number:

k − kn ≈ 1

kn

−
∫ R

0
∆ε

[(
H ′

n

ε

)2

+
α2

r2
H2

n

εpε

]
dr

2

∫ R

0
H2

ndr

. (C.40)

Now, using the electric field component definitions from Ref. [85] or Chap. 3, and the ap-

proximate normalisation for high quality modes 2
∫ R
0 H2

ndr ≈ 1 we end up with the correct

first-order formula

k − kn ≈ −kn
∫ R

0
∆ε

[
E∥

n

2
+

ε

εp
E⊥

n
2
]
dr , (C.41)

Using only the ‘naive’ zeroth order approximation H(r) ≈ Hn(r) and then differentiating

it in the expression leads to incorrect results in case of boundary shift. This is due to the

discontinuity of the field derivative shifting with the boundary.

In terms of standard expansion formulas for the field, as the eigenmdoes are complete,

we can write H(r) =
∑

n cnHn(r), which results in the derivative H ′(r) =
∑

n cnH
′
n(r). The

latter follows from the completeness of the modes, but it is a slowly converging expansion due

to the discontinuity. Instead, we can chose the expansion H ′(r)/εp(r) =
∑

n cnH
′
n(r)/ε(r) +∑

λ cλfλ(r), where we need to add the additional functions fλ, such as static modes, in the

form of the second term on the right hand side, as the validity of the expansion without them

does not follow from the standard expansion.
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C.4 Other fields of physics

In this section, we consider examples from other fields of physics describing wave phenomena

and demonstrate that for systems with interfaces, the same effect of higher-order terms of

the perturbation series contributing to the first-order correction (in the deformation depth)

to the eigenmode wave numbers takes place.

C.4.1 Condensed matter physics: Effective-mass approximation for semiconductor

heterostructures

In condensed matter physics, an effective Schrödinger wave equation describing the motion of

a carrier (an electron or a hole) has the following form in the effective-mass approximation:[
−ℏ2

2
∇ · µ̂µµ−1(r)∇+ V (r)

]
Ψ(r) = EΨ(r) , (C.42)

where µ̂µµ(r) is a spatially-dependent tensor of the effective mass which depends on the ma-

terial and can change abruptly at material interfaces. While typical semiconductor het-

erostructures have planar interfaces separating different materials, we concentrate below on

spherically-symmetric systems, in order to ease a comparison with TM modes in optical

systems considered in detail in Sec. C.3.2.

For a spherically-symmetric isotropic effective mass µ(r) and spherically-symmetric po-

tential V (r), Eq. (C.42) reduces to:[
d

dr

1

µ(r)

d

dr
− α2

r2
− V (r) + k2n

]
ψn(r) = 0 , (C.43)

where ψn(r)/r is the radial part of the full wave function Ψ(r), kn =
√
En is a wave number

corresponding to the state energy En, and index n is used to label quantum RSs. Here units

with ℏ2 = 2 are used for brevity of notations.

We consider also a perturbed Schrödinger wave equation[
d

dr

1

µp(r)

d

dr
− α2

r2
− Vp(r) + k2

]
ψ(r) = 0 (C.44)

for perturbed wave number k and wave function ψ(r), and

µp(r) = µ(r) + ∆µ(r) , Vp(r) = V (r) + ∆V (r) , (C.45)

where ∆µ(r) and ∆V (r) are perturbations of the effective mass and potential, respectively.

There is a clear similarity with the TM optical case Sec. C.3.2, with once again the wavefunc-

tion being continuous and non-smooth, and the first-order results would be similarly modified

as before.
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C.4.2 Acoustics

The acoustic wave equation for the total pressure P = p + δp in inhomogeneous quiescent

(static) media, with constant ambient pressure p, spatially variable ambient density ρ and

speed of sound c, with gravity neglected, can be written, assuming harmonic time dependence,

as [179]

ρ∇ ·
(
1

ρ
∇P

)
+ k2P = 0 , (C.46)

which, in case of a spherically symmetric inhomogeneity creating an acoustic cavity can be

written as (
ρ(r)

d

dr

1

ρ(r)

d

dr
− α2

r2

)
P (r) + k2P (r) = 0 . (C.47)

The acoustic boundary conditions at an interface mean that the pressure is continuous, though

not necessarily smooth, but the medium velocity normal to the surface is continuous. “The

requirement of pressure continuity assumes no mass transport across the interface and neglects

surface tension; under such circumstances it is the fluid-dynamic counterpart of Newton’s

third law” [179]. The requirement for the velocity component approximately means that the

normal component of the displacement to the surface element is continuous. The second-

order operator in Eq. (C.46) has the form similar to that in Eq. (C.42), with a discontinuous

density ρ(r) in the case of a boundary between two media playing the same role as the

discontinuous effective mass tensor. Note that here it is assumed that the densities of both

media separated by an interface are finite, allowing propagation of waves on either side of the

interface. This is different from the boundary perturbation for eigenmodes in cavities where

a soft or hard (rigid) boundary is assumed. The former assumption leads to zero pressure

at the boundary, whereas the latter to zero propagation velocity along the surface normal.

Both cases allow application of the perturbative methods from [139] and have been treated

in the literature [180,181].

C.5 Full derivation of Eq. (4.18)

In this section, we provide a full derivation of Eq. (4.18) of the main text and indicate its

validity in first order for perturbations located also outside the optical resonator.

Maxwell’s equations for the unperturbed system can be written in the form [68][
knP̂0(kn, r)− D̂(r)

]
F⃗n(r) = 0 , (C.48)
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where

P̂0(k, r) =

 ε̂εε(k, r) −iξ̂ξξ(k, r)

iζ̂ζζ(k, r) µ̂µµ(k, r)

 , D̂(r) =

 0̂ ∇×

∇× 0̂

 , F⃗n(r) =

 En(r)

iHn(r)

 . (C.49)

The electromagnetic field F⃗(r) and the wave number k of a perturbed RS are, in turn, solutions

of the perturbed Maxwell equations[
kP̂(k, r)− D̂(r)

]
F⃗(r) = 0 , (C.50)

where P̂(k, r) = P̂0(k, r) + ∆P̂(k, r),

F⃗(r) =

 E(r)

iH(r)

 , and ∆P̂(k, r) =

∆ε̂εε(k, r) −i∆ξ̂ξξ(k, r)

i∆ζ̂ζζ(k, r) ∆µ̂µµ(k, r)

 (C.51)

is a perturbation. As in the main text, we assume below isotropic and reciprocal materials.

Multiplying Eq. (C.48) with F⃗ and Eq. (C.50) with F⃗n, integrating both equations over the

unperturbed system volume V0 containing the perturbation ∆P̂, and taking the difference

between the results, we obtain∫
V0

[
F⃗(r) · knP̂0(kn, r)F⃗n(r)− F⃗n(r) · kP̂(k, r)F⃗(r)

]
dr

−
∫
V0

[
F⃗(r) · D̂(r)F⃗n(r)− F⃗n(r) · D̂(r)F⃗(r)

]
dr = 0 . (C.52)

The second line in Eq. (C.52) can be transformed, using the divergence theorem, to the surface

integral [68]

−i
∮
S0

[En(r)×H(r)−E(r)×Hn(r)] · dS , (C.53)

where S0 is the boundary of V0. To proceed with the first line in Eq. (C.52), we use the real,

normalized vector field n̂(r) introduced in the main text, which is normal to both surfaces S0

and S of the unperturbed and perturbed systems, respectively. We then define the projections

of perturbed and unperturbed RS fields,

F⃗⊥(r) =

 E⊥(r)

iH⊥(r)

 =

 n̂(r)[n̂(r) ·E(r)]

n̂(r)[n̂(r) · iH(r)]

 ,

F⃗⊥
n (r) =

 E⊥
n (r)

iH⊥
n (r)

 =

 n̂(r)[n̂(r) ·En(r)]

n̂(r)[n̂(r) · iHn(r)]

 ,

(C.54)

which are normal to both S0 and S, and

F⃗∥(r) = F⃗(r)− F⃗⊥(r) , F⃗∥
n(r) = F⃗n(r)− F⃗⊥

n (r) , (C.55)
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which are parallel (tangential) to both surfaces. Note that the field is normal or parallel

to a surface only when its argument r describes a point at that surface. Now, according

to Maxwell’s boundary conditions, fields F⃗∥(r) and P̂(k, r)F⃗⊥(r) are continuous everywhere.

Similarly, the unperturbed fields F⃗∥
n(r) and P̂0(kn, r)F⃗⊥

n (r), introduced in the same manner,

are also continuous. To derive the first-order correction to the wave number, we approximate

the perturbed RS field in zeroth order as

F⃗∥(r) ≈ F⃗∥
n(r) , P̂(k, r)F⃗⊥(r) ≈ P̂0(kn, r)F⃗⊥

n (r) , (C.56)

in this way respecting Maxwell’s boundary conditions on both surfaces. This results in

F⃗ = F⃗∥
n + P̂−1(k)P̂0(kn)F⃗⊥

n = F⃗n +
[
P̂−1(k)P̂0(kn)− 1

]
F⃗⊥
n , (C.57)

where P̂−1(k) is the inverse of P̂(k). Note that here and below, we omit for brevity the spatial

arguments but keep the wave number dependence. Now, using Eq. (C.57), the reciprocity of

the optical systems, and a Taylor expansion to first order in k − kn of terms containing

the generalized permittivity, such as P̂(k, r) ≈ P̂(kn, r) + [P̂(k, r)]′kn(k − kn), we find for the

integrand of the first line in Eq. (C.52)[
knP̂0(kn)− kP̂(k)

]
F⃗ ≈

[
knP̂0(kn)− kP̂0(k)

]
F⃗n − k∆P̂(k)F⃗n (C.58)

+knP̂0(kn)
[
P̂−1(k)P̂0(kn)− 1

]
F⃗⊥
n − k

[
P̂0(kn)− P̂(k)

]
F⃗⊥
n

≈ −(k − kn)
[
kP̂0(k)

]′
kn

F⃗n − k∆P̂(k)F⃗∥
n

−knP̂0(kn)P̂−1(k)
[
P̂(k)− P̂0(kn)

]
F⃗⊥
n − k

[
P̂0(kn)− P̂0(k)

]
F⃗⊥
n

≈ −(k − kn)
[
kP̂0(k)

]′
kn

F⃗n − k∆P̂(k)F⃗∥
n − knP̂0(kn)P̂−1(k)∆P̂(k)F⃗⊥

n ,

in the last line neglecting higher-order terms, which are

kn(k − kn)
[
P̂(k)− P̂0(kn)

]
P̂−1(k)

[
P̂0(k)

]′
kn

F⃗⊥
n + (k − kn)

2
[
P̂0(k)

]′
kn

F⃗⊥
n .

Finally, using an analytic continuation Q⃗(k, r) of the RS field in the area outside the

resonator, such that Q⃗(k, r) = F⃗(r) and Q⃗(kn, r) = F⃗n(r), and also Taylor expanding it to

first order,

Q⃗(k, r) ≈ F⃗n(r) + (k − kn)F⃗′
n(r) , (C.59)

the surface term Eq. (C.53) transforms to

−i(k − kn)

∮
S0

[
En(r)×H′

n(r)−E′
n(r)×Hn(r)

]
· dS . (C.60)
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Substituting the last line of Eq. (C.58) and the surface integral Eq. (C.60) into Eq. (C.52) and

taking the limit k → kn, we find the first-order correction to the wave number:

k − kn ≈ −
kn
∫
V0

[
F⃗∥
n ·∆P̂F⃗∥

n + F⃗⊥
n · P̂0P̂−1∆P̂F⃗⊥

n

]
dr∫

V0
F⃗n ·

[
kP̂0

]′
kn
F⃗ndr+ i

∮
S0
(En ×H′

n −E′
n ×Hn) · dS

, (C.61)

which is identical to Eq. (18) of the main text. Using the analytic normalization [68] of the

RSs, ∫
V0

F⃗n ·
[
kP̂0

]′
kn
F⃗ndr+ i

∮
S0

(En ×H′
n −E′

n ×Hn) · dS = 1 , (C.62)

Eq. (C.61) simplifies to

k − kn ≈ −kn
∫
V0

[
F⃗∥
n ·∆P̂F⃗∥

n + F⃗⊥
n · P̂0P̂−1∆P̂F⃗⊥

n

]
dr . (C.63)

For perturbations outside of the systems, in the form of a thin layer, the volume integral in

Eq. (C.52) will extend over the bass volume V0 and the shell volume Vs. This will result in

the integral in the numerator of Eq. (C.61) being extended over the external layer as well,

while in the denominator there will be an additional integral term over only the volume

of the thin shell. This additional volume integral is proportional to its thickness, therefore

it is of second order. Therefore, Eq. (C.61) is valid for thin layer perturbations, or shape

deformations outside of the system, where the RS fields are not diverging significantly. This

is also consistent with results in Ref. [45, 51,182].

C.6 Evaluation of the matrix elements for elliptical perturbations

For TM polarization, the electric field of a non-magnetic sphere is defined in spherical coor-

dinates as

E(r) = Eϕ(r)ϕ̂ϕϕ+ Eθ(r)θ̂θθ + Er(r)r̂rr, (C.64)

or in terms of the notation of Eq. (C.28) the field is given by

E∥ = Eϕ(r)ϕ̂ϕϕ+ Eθ(r)θ̂θθ, (C.65)

E⊥ = Er(r)r̂rr. (C.66)

The electric-field components of the RS with the wave number kn take the form [63,83]

Eϕ(r) = −AJ
′(x)

nrr

1

α

1

sin θ

∂

∂ϕ
Ylm(θ, ϕ), (C.67)

Eθ(r) = −AJ
′(x)

nrr

1

α

∂

∂θ
Ylm(θ, ϕ), (C.68)

Er(r) = −Ajl(x)
nrr

αYlm(θ, ϕ), (C.69)
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where J(x) = xjl(x) is the Ricatti-Bessel function, jl(x) is the spherical Bessel function, and

the prime means the derivative with respect to the argument. In Eqs. (C.67), (C.68), and

(C.69) we use x = nrknr, where nr =
√
ε(kn) is the refractive index of the sphere. The

normalization constant A is defined as [43,83]

A =
1

J(x0)

1√
R(n2r − 1)D

, (C.70)

D =

(
jl−1(x0)

jl(x0)
− l

x0

)2 1

n2r
+
α2

x20
+ ηC , (C.71)

(n2r − 1)C = − 2l

x20
+

(
jl−1(x0)

jl(x0)

)2

− jl−2(x0)

jl(x0)
, (C.72)

η =
k

2ε(k)

∂ε(k)

∂k

∣∣∣∣
k=kn

, (C.73)

where x0 = nrknR, with R being the radius of the sphere. Ylm(θ, ϕ) are real-valued spherical

harmonics in the form

Ylm(θ, ϕ) = c
|m|
l P

|m|
l (cos θ)χm(ϕ) , (C.74)

c
|m|
l =

√
2l + 1

2

(l − |m|)!
(l + |m|)!

, (C.75)

χm(ϕ) =


π−1/2 sin(mϕ) m < 0

(2π)−1/2 m = 0

π−1/2 cos(mϕ) m > 0 ,

(C.76)

and P
|m|
l are the associated Legendre polynomials.

Generally, the integral in Eq. (C.28) needs to be evaluated in 3D, but in case of a

cylindrically-symmetric perturbation the integration along ϕ can be done analytically, and

the remaining integrals along θ and r can be done numerically. In case of the sphere deformed

to a cylindrically-symmetric ellipsoid, the lower limit of the radial integral is given by the

equation of the corresponding ellipse and takes the form

r<(θ) =
ab√

b cos2 θ + a sin2 θ
(C.77)

where a and b are, respectively, the semi-minor and semi-major axes of the ellipse. This

makes the integrals along θ and r non-separable. As the integral along r cannot be done

analytically, we evaluate the double integral numerically in 2D. We note that to align the

ellipsoid as in [51], the ellipse given by Eq. (C.77) is rotated by 90◦ degrees, so θ in Eq. (C.77)

is replaced by π/2− θ. This results in the semi-axis a aligned with the polar axis. If we do

not make this substitution then the semi-axis a would be aligned normal to the polar axis and
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the modes m = 0 and |m| = 1 would be swapped. Here we consider perturbations changing

the length a. Putting all of the above together results in the following form of the diagonal

matrix element:

Vnn =

[
c
|m|
l A

nr

]2 ∫ π

0
sin θdθ

∫ R

r<(θ)
dr

{[
P

|m|
l (cos θ)

]2
[αjl(nrkr)]

2 ε∆ε

ε+∆ε

+
1

α2

(
m2

sin2 θ

[
P

|m|
l (cos θ)

]2
+ sin2 θ

[
P

|m|
l (cos θ)

cos θ

]2)[
J ′(nrkr)

]2
∆ε

}
,(C.78)

with ∆ε = 1 − ε(k) for the shape or size perturbation. In case of homogeneous size pertur-

bations which are spherically symmetric, the integral along θ can also be done analytically,

leaving only the radial integral to be evaluated, which then takes the form

Vnn =
A2

n2r

∫ r>

r<

dr

{
α2j2l (nrkr)

ε∆ε

ε+∆ε
+
[
J ′(nrkr)

]2
∆ε

}
, (C.79)

where r< and r> denote, respectively, the upper and lower limits of r.
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D

Three dimensional systems with rotational

symmetry

D.1 Vector spherical harmonics

We defined the real valued VSH as in Ref. [32, 38,85]

ŶYY 1lm =
r

α
×∇Ylm , ŶYY 2lm =

r

α
∇Ylm , ŶYY 3lm =

r

r
Ylm α =

√
l(l + 1) , (D.1)

where

Ylm(Ω) = c
|m|
l P

|m|
l (cos θ)χm(φ) , (D.2)

is the real values spherical harmonics and

c|m| =

√
2l + 1

2

(l − |m|)!
(l + |m|)!

. (D.3)

Here P
|m|
l is the associated Legendre polynomial, and

χm(φ) =


π−1/2 sin(mφ) m < 0

(2π)−1/2 m = 0

π−1/2 cos(mφ) m > 0

. (D.4)

The ∇ operator in spherical coordinates is

∇ = r̂rr
∂

∂r
+ θ̂θθ

1

r

∂

∂θ
+ φ̂φφ

1

r sin θ

∂

∂φ
, (D.5)

and the gradient of spherical harmonics is

∇Ylm = θ̂θθ
1

r
c
|m|
l χm(φ)

∂

∂θ
P

|m|
l (cos θ) + φ̂φφ

1

r sin θ
c
|m|
l P

|m|
l (cos θ)

∂

∂φ
χm(φ) , (D.6)
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giving the VSH as

Y1lm =
c
|m|
l

α

[
φ̂φφχm(φ)

∂

∂θ
P

|m|
l (cos θ)− θ̂θθ

1

sin θ
P

|m|
l (cos θ)

∂

∂φ
χm(φ)

]
, (D.7)

Y2lm =
c
|m|
l

α

[
θ̂θθχm(φ)

∂

∂θ
P

|m|
l (cos θ) + φ̂φφ

1

sin θ
P

|m|
l (cos θ)

∂

∂φ
χm(φ)

]
, (D.8)

Y3lm = r̂rrc
|m|
l P

|m|
l (cos θ)χm(φ) (D.9)

where

∂

∂θ
P

|m|
l (cos θ) =

∂

∂x

(
P

|m|
l (x)

)
(− sin θ) , (D.10)

with x = cos θ, and

dχm

dφ
=


mπ−1/2 cos(mφ) m < 0

0 m = 0

−mπ−1/2 sin(mφ) m > 0

. (D.11)

The VSH are orthogonal vectors if they have same l and m. They are not necessarily orthog-

onal vectors for different l and m (so often Yilm ·Yil′m′ ̸= 0), but the exception is that Y3lm

is always orthogonal to Y2l′m′ and Y1l′m′ . The VSH satisfy the orthogonality relation∫
Yjlm(Ω)Yj′l′m′(Ω)dΩ = δjj′δll′δmm′ , (D.12)

where dΩ = sin θdθdφ, and the integral is over a closed spherical surface.

D.2 Evaluation of the integral

Following from Eq. (5.2) the possible combination of VSH products that we need to consider

are

Y1lm ·Y1l′m′ =
c
|m|
l c

|m′|
l′

αα′

[
1

sin2 θ
P

|m|
l P

|m′|
l′

∂

∂φ
(χm)

∂

∂φ
(χm′) +

∂

∂θ
P

|m|
l

∂

∂θ
P

|m′|
l′ χmχm′

]
,

(D.13)

Y2lm ·Y2l′m′ = Y1lm ·Y1l′m′ , (D.14)

Y1lm ·Y2l′m′ =
c
|m|
l c

|m′|
l′

αα′
1

sin θ

[
P

|m′|
l′

∂

∂θ
P

|m|
l

∂

∂φ
(χm′)χm − P

|m|
l

∂

∂θ
P

|m′|
l′

∂

∂φ
(χm)χm′

]
,

(D.15)

Y3lm ·Y3l′m′ = c
|m|
l c

|m′|
l′ P

|m|
l P

|m′|
l′ χmχm′ . (D.16)

We continue with assuming rotational symmetry around the azimuthal angle. Lets con-

sider the azimuthal integral first. Starting with the coupling between i ̸= i′, so the product

148



D.2. EVALUATION OF THE INTEGRAL

Y1lm ·Y2l′m′ , we have terms

∂

∂φ
(χm)χm′ =



mπ−1/2 cos(mφ)π−1/2 sin(m′φ) m,m′ < 0

mπ−1/2 cos(mφ)(2π)−1/2 m < 0 = m′

mπ−1/2 cos(mφ)π−1/2 cos(m′φ) m < 0 < m′

0 m = 0

−mπ−1/2 sin(mφ)π−1/2 sin(m′φ) m′ < 0 < m

−mπ−1/2 sin(mφ)(2π)−1/2 m′ = 0 < m

−mπ−1/2 sin(mφ)π−1/2 cos(m′φ) 0 < m′,m

. (D.17)

After integrating the above terms from 0 to 2π only the integrals with term cos(mφ) cos(m′φ)

and sin(mφ) sin(m′φ) can be non zero, as
∫ 2π
0 cos(mφ) sin(m′φ)dφ = 0,

∫ 2π
0 cos(mφ)dφ = 0,

and
∫ 2π
0 sin(mφ)dφ = 0 for all combination of m,m′. The integral

∫ 2π
0 cos(mφ) cos(m′φ)dφ

and
∫ 2π
0 sin(mφ) sin(m′φ)dφ is non zero only if m = m′ or m = −m′. The integrals appear

above only for the case m = −m′. In this case the former integral with cos evaluates to π,

and the latter integral with sin evaluates to (−π). Collecting all this gives the integral as

∫ 2π

0

∂

∂φ
(χm)χm′dφ =



0 m,m′ < 0

0 m < 0 = m′

m m < 0 < m′

0 m′ = 0 = m

m m′ < 0 < m

0 m′ = 0 < m

0 0 < m′,m

. (D.18)

Therefore, we can conclude that for rotationally symmetric permittivity perturbations, when

m = −m′ the TE modes, which have electric field along Y1, only couple to TM modes, which

have field along Y2 and Y3. A similar selection rule applies in case of rotationally symmetric

permeability perturbations. Note that for chirality perturbations m = m′ mode mixing

between polarisation have to be considered as well, even if the perturbations is rotationally

symmetric. After the azimuthal integral the product of VSH will be∫ 2π

0
Y1lm ·Y2l′m′dφ =

c
|m|
l c

|m′|
l′

αα′
1

sin θ

[
P

|m′|
l′

∂

∂θ
P

|m|
l m′ − P

|m|
l

∂

∂θ
P

|m′|
l′ m

]
, (D.19)

= −m
c
|m|
l c

|m′|
l′

αα′
1

sin θ

[
P

|m|
l

∂

∂θ
P

|m′|
l′ + P

|m′|
l′

∂

∂θ
P

|m|
l

]
, (D.20)
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and the result of the integral along the polar angle gives∫ θ2

θ1

∫ 2π

0
Y1lm ·Y2l′m′dφ sin θdθ = −m

c
|m|
l c

|m′|
l′

αα′

[
P

|m|
l P

|m′|
l′

]θ2
θ1
, (D.21)

where we made that assumption that there is no further angular dependence function g(θ)

apart from the one that give the integral limits (e.g. g(θ) is only a Heaviside function).

Now we will consider the coupling between i = i′ states, between Y3 ·Y3 and Y1 ·Y1.

This has azimuthal terms

χmχm′ =



π−1/2 sin(mφ)π−1/2 sin(m′φ) m < 0,m′ < 0

π−1/2 sin(mφ)(2π)−1/2 m < 0,m′ = 0

π−1/2 sin(mφ)π−1/2 cos(m′φ) m < 0,m′ > 0

(2π)−1/2π−1/2 sin(m′φ) m = 0,m′ < 0

(2π)−1/2(2π)−1/2 m = 0,m′ = 0

(2π)−1/2π−1/2 cos(m′φ) m = 0,m′ > 0

π−1/2 cos(mφ)π−1/2 sin(m′φ) m > 0,m′ < 0

π−1/2 cos(mφ)(2π)−1/2 m > 0,m′ = 0

π−1/2 cos(mφ)π−1/2 cos(m′φ) m > 0,m′ > 0

, (D.22)

and

∂

∂φ
(χm)

∂

∂φ
(χm′) =



mπ−1/2 cos(mφ)m′π−1/2 cos(m′φ) m < 0,m′ < 0

0 m < 0,m′ = 0

mπ−1/2 cos(mφ)(−m′)π−1/2 sin(m′φ) m < 0,m′ > 0

0 m = 0

−mπ−1/2 sin(mφ)m′π−1/2 cos(m′φ) m > 0,m′ < 0

0 m > 0,m′ = 0

−mπ−1/2 sin(mφ)(−m′)π−1/2 sin(m′φ) m > 0,m′ > 0

. (D.23)

As before, only terms with sin(mφ) sin(m′φ) and cos(mφ) cos(m′φ) survive the integration

between 0 and 2π, and only for m = m′ and m = −m′. These integrals only appear in the

cases when m,m′ < 0 and 0 < m,m′, therefore m = −m′ case can be neglected.The integrals

of trigonometric functions for m = m′ give +π. In addition the integral of a constant C,

which appears for m = m′ = 0, is also non zero, and over the interval of 2π this gives 2πC.
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Combining all this leads to

∫ 2π

0
χmχm′dφ =


1 m = m′ < 0

1 m = m′ = 0

1 m = m′ > 0

, (D.24)

and

∫ 2π

0

∂

∂φ
χm

∂

∂φ
χm′dφ =


mm′ m = m′ < 0

0 m = m′ = 0

mm′ m = m′ > 0

, (D.25)

which gives the integrals of the VSH products as∫ 2π

0
Y1lm ·Y1l′m′dφ =

c
|m|
l c

|m′|
l′

αα′

[
1

sin2 θ
P

|m|
l P

|m′|
l′ m2 +

∂

∂θ
P

|m|
l

∂

∂θ
P

|m′|
l′

]
(D.26)∫ 2π

0
Y3lm ·Y3l′m′dφ = c

|m|
l c

|m′|
l′ P

|m|
l P

|m′|
l′ . (D.27)

These expression are then be integrated along the polar angle.

D.2.1 Mirror symmetry along the equatorial plane

The parity of associated Legendre polynomials is

Pm
l (−x) = (−1)l+mPm

l (x) . (D.28)

So they are even when l +m is even, and odd when l +m is odd.

The derivative of an even function is odd, and vice versa. The integrals along θ are∫
Y1lm ·Y1l′m′ sin θdθ ∝

∫ [
1

sin θ
P

|m|
l P

|m′|
l′ m2 + sin θ

∂

∂θ
P

|m|
l

∂

∂θ
P

|m′|
l′

]
D(θ)dθ , (D.29)∫

Y1lm ·Y2l′m′ sin θdθ ∝
∫ [

P
|m|
l

∂

∂θ
P

|m′|
l′ + P

|m′|
l′

∂

∂θ
P

|m|
l

]
D(θ)dθ , (D.30)∫

Y3lm ·Y3l′m′ sin θdθ ∝
∫ [

P
|m|
l P

|m′|
l′ sin θ

]
D(θ)dθ , (D.31)

where the function D(θ) gives the polar angle distribution of the perturbation. For example

this can be one (or more) Heaviside step function(s) determining the specific region of the

perturbation. We can take the limits of the integral from θ = 0 to θ = π, resulting in the

argument of P (which is cos θ) running from −1 to 1. If D(θ) is symmetric in the equatorial

plane we can potentially use the even/odd parity of P to simplify the integrals. Between

these integral limits of θ the function sin θ is even. We limit ourselves to the rotationally
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symmetric case, with the selection rules applied from the previous section. If D(θ) is even,

such as would be for a cylinder perturbations, then the TE and TM modes only couple if

their angular momentum number l differs by an odd number (due to Eq. (D.30)), while TE

to TE and TM to TM coupling only happens if the angular momentum numbers l differ by

an even number (due to Eq. (D.29) Eq. (D.31)).
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E

Scattering

E.1 GD of an arbitrary system

The electric GD of a general system (including a perturbed one), can be written in VSH as

G(r, r′; k) =
∑

ii′ll′mm′

G(r, r′; k)i
′l′m′
ilm ŶYY ilm(θ, ϕ)⊗ ŶYY i′l′m′(θ′, ϕ′) . (E.1)

Based on [38] we need G(R,R′; k)i
′l′m′
ilm of the decoupled wave equation in order to find the

scattering matrix. For the perturbed GD, which is a ML sum of the perturbed eigenmodes,

the perturbed modes are expanded into the basis modes as Ẽν̃ =
∑

ν cν̃νEν(r), where Eν(r)

are the basis eigenmodes, and ∼ denotes the perturbed modes. We can factorise out the sum

over the different m and l as

Ẽν̃(r) =
∑
ν

cν̃νEν(r) =
∑
lm

∑
ν′

clmν̃ν′E
lm
ν′ (r) =

∑
lm

Elm
ν̃ (r) . (E.2)

The field in the last sum, Elm
ν̃ (r) =

∑
ν′ c

lm
ν̃ν′E

lm
ν′ (r), is simply the contribution of all basis

eigenmodes ν ′ of a specific l and m, and the sum over l and m takes into account the various

multipole contributions. Then, we can write the electric GD of the coupled Maxwell’s wave

equations as

Gc(r, r
′; k) =

∑
ν̃

Ẽν̃(r)⊗ Ẽν̃(r
′)

k − k̃ν̃
, (E.3)

=
∑
ν̃

∑
lmElm

ν̃ (r)⊗
∑

l′m′ El′m′
ν̃ (r′)

k − k̃ν̃
, (E.4)

=
∑

ll′mm′

∑
ν̃

Elm
ν̃ (r)⊗El′m′

ν̃ (r′)

k − k̃ν̃
, (E.5)

from which we can identify

Gc(r, r
′; k)i

′l′m′
ilm =

∑
ν̃

[
Elm

ν̃ (r)
]
i

[
El′m′

ν̃ (r′)
]
i′

k − k̃ν̃
, (E.6)
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where [E]i is the ith component of the field in VSH.

Note on the practical computational implementation: the selection rules for m, m′, l, l′

in Appendix D allow to reduce the number of modes needed in the RSE matrix. If this is

utilized, then one needs to implement these selection rule in the above summation as well.

E.2 Using the sum rule in the GD

The key element of the scattering formalism is a correct GD representation on the surface

of the sphere, with both spacial coordinates at r = r′ = R. This can depend on the form

of the ML representation used, which we have shown for the GF in 1D, in Chap. 2, where a

difference between the two ML sums due to the application of the sum rule was observed. In

3D spherical system the sum rule is the well know dyadic of the form [66,82]∑
n

En(r)⊗En(r)

kn
= 0 , (E.7)

which is a sum over RS only, and not the static modes. The first form of the GD of the

decoupled wave equation can be written as

G(r, r′; k) =
∑
n

E(r)⊗E(r)

kn(k − kn)
+
∑
λ

Eλ(r)⊗Eλ(r)

k2
, (E.8)

and we can find the second one with the sum rule as

Gsr(r, r
′; k) =

∑
n

E(r)⊗E(r)

kn(k − kn)
− 1

k

∑
n

En(r)⊗En(r)

kn
+
∑
λ

Eλ(r)⊗Eλ(r)

k2
, (E.9)

=
∑
n

E(r)⊗E(r)

k(k − kn)
+
∑
λ

Eλ(r)⊗Eλ(r)

k2
, (E.10)

which is valid only for k ̸= 0 due to the factor 0/k added.

On Fig. E.2.1 we show the convergence of the sum rule Eq. (E.7) for two cases: r = r′ ̸= R

and r = r′ = R. In VSH representation the Y1lm⊗Y2lm and Y1lm⊗Y3lm terms are zero, as

TE modes only have Y1lm component, and TM only have Y2lm and Y3lm, while the dyadic

Eq. (E.7) is also symmetric, therefore all together we shown only four dyads.

The components Y1lm⊗Y1lm and Y2lm⊗Y2lm converge to zero as 1/kmax when r = r′ ̸=

R, and similarly to the 1D case, they do not converge when both coordinates are at the same

surface coordinate r = r′ = R. Interestingly, the components Y2lm ⊗Y3lm and Y3lm ⊗Y3lm

converge as 1/k3max when r = r′ ̸= R, while for r = r′ = R the former slows to 1/kmax and

the latter keeps the rapid convergence rate. The component Y1lm ⊗Y1lm and Y2lm ⊗Y2lm

contribute to the TE to TE, and to the TM to TM scattering, respectively, therefore one

needs to use to correct GD form (Eq. (E.8)) for the scattering calculation.
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Fig. E.2.1: Convergence rate of Eq. (E.7) for a spherically symmetric basis system, with εs = 9, radius

R, and l = 1.

Scattering matrix

We illustrate the effect of the sum rule on the scattering matrix on Fig. E.2.2. For the case

labelled ‘ML’ we use G(r, r′; k) =
∑

n
E(r)⊗E(r)
kn(k−kn)

+
∑

λ
Eλ(r)⊗Eλ(r)

k2
, and for ‘MLsr’ we use

Gsr(r, r
′; k) =

∑
n

E(r)⊗E(r)
k(k−kn)

+
∑

λ
Eλ(r)⊗Eλ(r)

k2
, which we insert into Eq. (6.2), and compare

the real part of the scattering matrix with the exact solution. We can see that for both

Y1lm ⊗ Y1lm and Y2lm ⊗ Y2lm the use of the sum rule leads to an offset in the scattering

matrix elements.

Note that the use of the sum rule probably would not significantly affect methods that

calculate the scattering matrix via volume integrals (just as the RSE, which also relies on the

volume integral, works with both GD versions). This is due to only an infinitesimally thin

surface layer being affected by the sum rule, which can be considered to have a vanishing

weight in the integral domain.
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Fig. E.2.2: Comparison of the real part of the scattering matrix, for a sphere with εs = 9, radius R, and

l = 1.
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