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Abstract—Autonomous vehicles are taking a leap forward by
performing operations without human intervention through con-
tinuous monitoring of their surroundings using multiple sensors.
Images gathered through vehicle mounted cameras can be large,
requiring specialized storage such as cloud. However, cloud data
centres can be prone to security and privacy challenges. A
partial image-based, homomorphic searchable encryption scheme
is proposed, which uses pixel-level encryption to identify objects
within encrypted images. The scheme provides Object-Trapdoor
and Trapdoor-Image indistinguishability – as the trapdoors are
probabilistic. The proposed scheme is deployed on a cloud
data centre and tested over a real data set. The proposed
scheme reduces storage overhead by approximately 20 times,
and is 33 times more efficient compared to the generic Paillier
homomorphic searchable encryption scheme. Security analysis
demonstrates that the scheme maintains high levels of security
and privacy.

Index Terms—Paillier homomorphic encryption, partial image
encryption, Searchable Encryption.

I. INTRODUCTION

THE necessity for Internet of Things (IoTs) in an industrial
setting has seen a significant rise. A self-driving au-

tonomous vehicle demonstrates how real-time inputs generated
by cameras, sensors and LIDAR can support vehicles to
operate on public roads. Figure 1 shows different sensors in
an autonomous car, enabling automated detection of multiple
objects such as cars, trucks, traffic signals, animals, lanes,
pedestrians etc., and generating a viable response accord-
ingly. However, several obstacles remain to transition from
non-autonomous to fully autonomous vehicles, such as the
danger of accidents, establishment of road traffic rules, and
accountability. The combination of human drivers and self-
driving automobiles can pose a risk at certain hazardous angles
and lighting conditions where accidents may occur [1]. There
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are several legal concerns from law enforcement agencies
when considering tracking autonomous automobiles or having
significant surveillance data [2].

Automated vehicles can generate data in the form of images/
videos via a real-time webcam feed that needs to be stored
and processed for further use e.g. for surveillance, location
tracking, keeping a record of the vehicle movement, and
protection of owners, etc. Local storage and management of
this data poses a challenge to the vehicle owner(s) and raises
concerns regarding the security and privacy of autonomous
vehicle data, often requiring third-party storage.

Cloud computing is the provision of on-demand computa-
tion and storage resources through the internet on a pay-as-
you-go basis. To decrease the expenses of local maintenance,
an increasing number of users opt for outsourcing their data to
the cloud server. However, outsourcing of data comes with its
challenges, the foremost of which is data confidentiality. More-
over, there remains the need to ensure the integrity of data,
its authenticity of access control in communication as well
as its storage. It implies that data should be secured against
unauthentic modification and scheme(s) should be employed
to ensure legitimate access control and authorization. One of
the major problems for cloud computing is data privacy since
the cloud server is not considered a fully trusted entity and is
assumed to be honest but curious to gain information about
the outsourced data. Although end-to-end encryption ensures
the security of users’ data, it eliminates the ability to carry out
searching over it.

While the applicability of the multiple secure and privacy-
preserving techniques on cloud services are widely being
explored [3] [4], most common techniques being employed
are Privacy Enhancement Technologies (PET) [5] and Homo-
morphic encryption-based searchable schemes [6]. In practice,
PETs are expensive, computationally extensive and resource
intensive, making them hard to implement, prone to user error
and can result in serious bandwidth issues. PETs may also
give people a false sense of security, which may encourage
them to engage in forms of behaviour deemed unacceptable
by regulations and jurisprudence [7] [8].

Homomorphic encryption schemes, on the other hand, en-
able the users to process and work on the data without de-
cryption, thus saving resources and time in terms of efficiency
[9]. Mathematically, it means that the processing is done
on plaintext after encryption will yield the same result as
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if the same process was done before on plaintext and then
was encrypted afterward. In this way, the underlying plaintext
remains unchanged with no threat to its integrity even after
performing various operations. This implies that searching can
be carried out efficiently and easily over encrypted data and
queries generated will yield no beneficial information about
the underlying data. Multiple applications for homomorphic-
based searchable encryption schemes have been proposed in
different domains i.e. finance, healthcare, artificial intelligence,
blockchain, vehicular ad-hoc networks (VANETS) as well as
telemedicine [10]–[13]. While some may propose the capabil-
ity to search securely over data [14]–[17], many other schemes
focus on secure key agreement i.e. mutual authentication, data
integrity and privacy preservation [18]–[20].

Fig. 1. Autonomous Vehicle Multi-Sensory Inputs and Cloud Connectivity

The data generated by multi-sensor cameras of autonomous
vehicles can be so large that local (on-vehicle) storage is not
an option. Therfore, data has to be migrated to an external
hosting platform, yet be secured so that it is not accessible
to unauthorized users. To achieve this, search operations need
to be carried out over encrypted images stored on a cloud.
In addition, search pattern security should also be ensured so
that no information is revealed about the encrypted image data
from the search history. A search query should be randomized
so that trapdoors are generated probabilistically and no two
similar trapdoors are generated even for the same query.
Searching over homomorphically encrypted data with privacy-
preserving mechanisms through probabilistic trapdoors, along
with the requirement of storing large quantities of data from
autonomous vehicles, form the two key motivations for this
research.

A. Contributions

The following contributions are made in this research:
• The prevalent issue of security and privacy associated

with autonomous vehicles connected to the cloud is
addressed for the first time through homomorphic-based
searchable encryption. A novel partial image-based ho-
momorphic scheme is proposed for preserving the privacy
of autonomous vehicles, which carries encrypted search-
ing over encrypted image data (at pixel level) gathered
from the camera embodied within an autonomous vehicle.

The searching is carried out over probabilistic trapdoors
to provide security against search pattern leakage.

• The scheme is deployed and tested in a real cloud
environment “Contabo” over a real world data set. The
proposed scheme reduces the storage overhead by approx-
imately 20 times and is nearly 33 times more efficient as
compared to generic Paillier Homomorphic Encryption
based searching scheme. The paper also highlights the
practical challenges, lessons learnt and way forward.

The rest of the paper is organized as follows: Related
work is discussed in Section II. Section III presents the
preliminaries. Section IV discusses the system model. Section
V revisits the security definitions. Section VI put forwards the
proposed methodology. Security and performance analysis are
discussed in Section VII and VIII respectively while Section
IX concludes the paper and explores future works.

II. RELATED WORK

Research on image processing algorithms and Searchable
Encryption (SE) on encrypted image data has highlighted
its high computational and resource requirements. There are
different image processing techniques and thus provide a vast
ground for image searching mechanisms i.e. feature detection,
content-based searching and digital watermarking, etc [21].
Research scholars working in the field of image process-
ing have been working on extracting features from heavily
encrypted image data sets. Different searchable encryption
schemes [22] are employed for encrypted image searching over
cloud i.e. homomorphic encryption, asymmetric watermarking,
zero-knowledge proofs, and zero-knowledge watermarking
detection to name a few. Application of existing techniques
over encrypted images remains an open challenge for data
owners, and many different theoretical proposals, as well as
mathematical models have been presented to counter issues in
this domain [22] [23].

The initial presentation of searchable encryption over image
data was claimed to be carried out by [24] with the help of
Scale Invariant Feature Transform (SIFT) and homomorphic
encryption. The research lacked the property of privacy preser-
vation and had the drawback of huge overhead on user’s end.
These vulnerabilities were addressed in [25] using a multi-
cloud model incorporating the user’s privacy preservation of
data while retaining the image’s original SIFT features. An
image feature extraction scheme for privacy preservation using
SIFT (PPSIFT) was proposed in [26] based on the Paillier
cryptosystem. The design goals and technological problems
of implementing a cloud-based privacy-preserving image pro-
cessing system were examined in [27]. An approach based
on Hahn Moment was put forward by [28] using somewhat
homomorphic encryption (SHE) and claimed that its model
provided confidentiality and privacy preservation of recon-
structed images. Another scheme for images’ feature similarity
searching over cloud environment was presented in [29].
It tackled both local and global feature extraction/retrieval
under Earth mover’s distance metric and searchable generation
of indices. An alternative technique for privacy preservation
of image data based on Linear Binary Pattern (LBP) was
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TABLE I
COMPARATIVE ANALYSIS OF IMAGE BASED SEARCHING SCHEMES

Research
Paper Technique Used Index based

Homomorphic
Encryption

based

Search Pattern
Security

Probabilistic
Trapdoor

Privacy
Preservation

Secure searching
over encrypted images [24] SIFT ✓

Multi-cloud model for
user’s privacy preservation [25] SIFT ✓ ✓ ✓

Privacy preserving searching
over encrypted images [26] PPSIFT & RSA ✓ ✓ ✓

Cloud-based privacy-preserving
image processing system [27] SIFT, HOG & SHE ✓ ✓

Privacy-preserving of
reconstructed images [28]

Hahn Moment &
SHE ✓ ✓

Image feature based
similarity searching scheme [29]

Earth Mover
Distance Metric ✓

Image features based technique
for privacy preservation [30] Linear Binary Pattern ✓

Ranked searchable
encryption scheme [31] LSH & kNN ✓

Privacy-preserving of
Image data [32]

K-means for
Indices generation ✓ ✓

Content Based
Image Retrieval (CBIR) scheme [33] DCT ✓

Privacy preservation CBIR (PIC) [34] kNN means & Multilevel
Homomorphic Encryption ✓ ✓ ✓

CBIR over
Mobile Cloud Computing [35] LSH & SIFT ✓ ✓

Privacy Preserving Searching over
Encrypted Medical Image data [36] CNN & PHE ✓ ✓ ✓

Efficient Privacy Preserving
Image Similarity Detection [37] PHE & Euclidean Distance ✓ ✓

CBIR scheme over Cloud [38] Inception with ResNet v2 (SIRS-IR)
& Multiple Share Creation (MSC) ✓

Privacy Preserving
Image retrieval scheme [39] 4D chaotic map & AES ✓ ✓

Privacy preserving
medical IR scheme [40] CNN & Random Number Generator ✓ ✓ ✓ ✓

TCSM [41] CNN, Proxy re-encryption & Bilinear mapping ✓ ✓ ✓
FMIR [42] CNN & Euclidean Distance ✓ ✓ ✓

TDHPPIR [43] CNN based Hash ✓ ✓

Proposed Scheme PHE & Partial
Image Encryption ✓ ✓ ✓ ✓

put forward in [30] to retrieve features from images after
encryption using the Image Plane Encoding algorithm with
the most significant bit (MSB) and converting images into
matrices. A cloud-assisted efficient and privacy-preserving
CBIR (EPCBIR) technique was suggested in [31]. The authors
based their scheme on LSH and kNN algorithms for indexing
and image feature security respectively. While their scheme
provides a ranked-based image searching scheme, it calls for
high computational resources. For the encryption and security
of images and their pertinent attributes, the approach in [44]
employs the same LSH and kNN algorithms as [31].

The authors in [32] put forward a scheme for user privacy in
outsourcing image data using K-means for the generation of
indices. An encrypted images-based secure retrieval scheme
was presented in [33] where index generation and content
based searching is carried out at CSP by carrying out Discrete
Cosine Transform (DCT). Yuan et al. proposed a Secure
and Efficient Encrypted Image Search with Access Control
(SEISA) in [45]. The scheme, based on Locality-sensitive
hashing (LSH) K-nearest neighbors (kNN) algorithms, claims
to be lightweight and provisions searching access control
for image retrieval over cloud storage. Another scheme for
privacy preservation CBIR for large-scale data over the cloud
was discussed in PIC [34]. PIC enables users to search over

encrypted images with efficient access controls defined by
data owners. Encrypted image searching in the mobile cloud
domain was discussed in [35].

A Privacy-preserving image search (PPIS) was presented in
[36] for large-scale medical image data using a convolutional
neural network (CNN). The authors claimed secure search
queries and privacy preservation of image data. A novel
scheme by Li et al. for cloud-connected image data in a multi-
user environment, was presented in [41]. The authors used
CNN for feature extraction, proxy re-encryption, and bilinear
mapping to carry out encryption and searching of image data in
their proposed model. Y. Duan et al. put forward a CNN-based
retrieval scheme for medical image data [42]. The authors
employed Euclidean distance for image features extraction and
kNN to evaluate image similarity.

A scheme for partial image encryption for Internet of Things
(IoTs) was initially proposed by Jang and Lee [46]. The
proposed scheme was based on format-preserving encryption
algorithms of FF1 and FF3-1. Hybrid schemes for image en-
cryption are discussed in [47] [48]. A partial image encryption
scheme for medical image data was proposed in [49] which
incorporates Discrete Cosine Transform (DCT) along with
the encryption algorithm. Panduranga and Naveenkumar [50]
put forward a selective encryption methodology for securing
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satellite and medical images. Partially encrypting RGB image
data with pixel position modification based on the region of
interest is presented in [51]. It claimed security features of
partial encryption and the scheme partially reconstructs the
images. The scheme also offers the storage of encrypted data
indefinitely using the SMART (Self Monitoring Analysis and
Reporting Technology Copyback) method. In [52], the design
and implementation of a system that uses a dynamic privacy-
preserving partial image sharing technique (PUPPIES) was
proposed. The scheme allows data owners to specify specific
private regions (e.g. face, SSN number) in an image and to
set different privacy policies for each user as a result. A novel
scheme for partial image encryption of medical media data
was discussed in [53]. A variety of partially encrypted images
were obtained by altering the DNA patterns of a chaotic DNA
sequence and performing DNA addition. Various partial image
encryption techniques are discussed in [54] for smart cameras
and in [55] for wireless multimedia sensor networks.

Some of the existing schemes for image-based searching are
given in table I. It is evident from the table that while some
existing image based schemes [25], [26], [28], [34] and [36]
are based on homomorphic cryptosystems, they neither operate
on partial images nor do they offer the feature of probabilistic
trapdoors. Moreover, the schemes that are dealing with partial
image encryption [46], [49], [50], [52]–[55] are based on non-
homomorphic schemes without probabilistic trapdoors. To the
best of our knowledge, no existing schemes deal with partial
image processing, and provides homomorphic searchable en-
cryption with probabilistic trapdoors. This further highlights
the claim that the scheme presented in this research is a novel
development in the case of partial image encryption technique
based on homomorphic encryption and enables searching over
the cloud with no threat to data security or privacy.

Algorithms for object detection can be classified on the basis
of their approach i.e. machine learning and deep learning;
as well as their stages i.e. single and dual stage detection.
Dual stage detection implies object location and classification.
Different object detection algorithms are discussed in [56]
[57]. The development of YOLO version 4 has reevaluated
the performance and accuracy of object detection. It is based
on the CSPDarkent53 architecture. Spatial pooling is utilised
in the backbone to enhance receptiveness and to locate the
necessary characteristics of data images/video frames [58]. It
boasts of a lesser requirement of storage and computational
time. YOLO v5 was released not long after YOLO v4 with
4 different models having different accuracy levels. However,
YOLO v4 is by far considered the fastest real-time model for
object detection to date.

III. PRELIMINARIES

A. Paillier Homomorphic Cryptosystem

In 1999, Paillier cryptosystem [59] was proposed by Pascal
Paillier with features of asymmetric probabilistic encryption
and additive homomorphic property. This partial homomorphic
encryption scheme is IND-CPA secure. The basic structure
of the Paillier cryptosystem consists of the following three
phases: i.e. key pair generation, encryption, and decryption.

1) Key Pair Generation: It consists of computing n by
n = pq and λ = lcm(p − 1, q − 1) where p and q are
two independent large prime numbers. A generator g is
then selected such that g ∈ Z∗

n2 ; with order of g being a
multiple of n i.e. gcd(n, λ) = 1. The key pair are secret
key = (p, q) and public key = (n, g).

2) Encryption: A random integer r ∈ Z∗
n is chosen such

that r < n and a message m ∈ Zn is encrypted by:
E(m) = gm.rn mod n2

3) Decryption: A ciphertext cT is decrypted by taking
discrete logarithm of cλ ∈ Zn to obtain λ. Since
gcd(n, λ) = 1, thus inverse λ−1 mod n is calculated
to retrieve message m.

IV. SYSTEM MODEL

A. Network Model

The network model comprises of three entities i.e. an
autonomous vehicle, data owner and a cloud server (CS). The
autonomous vehicle, while on road, generates a lot of data
through its cameras and sensors; and responds accordingly.
The data generated through the mounted camera can be stored
locally or transmitted at run time to the owner where it is
processed and encrypted before being outsourced to CS. The
term ’images/ image data’ here refers generally to all footage
/ video frames / images etc. The network model, however,
deals with the secrecy and storage of image data as well as
capability of an owner to securely search over encrypted image
files. The system flow diagram is shown in figure 2.

Fig. 2. System Flow Diagram

The owner is the entity that, upon receiving the data,
encrypts all images using a standard encryption algorithm
such as Advanced Encryption Standard (AES) and stores them
on CS. The scheme also processes the images for object
identification and classification based on image processing
techniques such as YOLO v4 whereas encryption of image
objects at the pixel level is carried out by Paillier homomorphic
encryption. All those encrypted objects are then outsourced to
the CS. Any user can request access to any image through
a trapdoor generated by a specific query and can decrypt the
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image provided he has the secret key. The user can also be
the data owner in the proposed case. A trapdoor is generated
by Paillier homomorphic scheme when a user inputs a query
image object and requests an image containing that particular
object. The CS carries out the search and returns a set
of encrypted image(s) containing the encrypted object. The
user/data owner can decrypt the encrypted image(s) with the
secret key to retrieve the original image. Figure 3 represents
different phases of proposed scheme. Figure 3 (a) presents the
image encryption phase whereas figure 3 (b) exhibits the image
decryption phase. Figure 3 (c) shows the object(s) encryption
where the detected objects in an image, are pixelated and pixel
values are encrypted by Paillier Homomorphic Encryption
after flatting their RGB values. Figure 3 (d) shows the trapdoor
generation from an image where the exact same process is
carried out as figure 3 (c). However, in the case of trapdoor
generation, for the same object, the query yields a different set
of encrypted pixel values of trapdoor as the searched object(s).

B. Threat Model

The threat model is established with 2 entities i.e. data
owner/user and CS, where data is images in the proposed
case. An adversary’s main aim is to gain unauthorized access
to images stored on CS. Since all the communication between
the owner and CS is carried out via a public channel, an
adversary can easily intercept and launch attack(s) to uncover
the underlying data. An adversary in the proposed case could
be an outsider or the honest but curious CS with the following
capabilities/conditions:

• Only passive attacks can be launched by the CS to
analyse data or to follow network activity to detect any
data or information that might be linked to the encrypted
content of images outsourced to the CS.

• Only a polynomially limited number of operations i.e.
encryption, decryption and / or passive attacks etc. may
be performed by the attacker. The adversary is not per-
mitted to make a limitless number of attempts or deduce
the actual image in an unlimited amount of time.

• The adversary can track the past search queries, search
results, and the communication pattern of data owner with
CS, and can utilize this information to its advantage.

C. Assumptions

In this research, the following assumptions are made:
• The image feed generated by the autonomous automobile

is communicated to the data owner over a secure channel
that can not be intercepted by any adversary.

• The owner is presumed to be completely trustworthy and
poses no harm to the system’s security.

D. Security Goals

Following security goals are established for this research:
• Search pattern hiding, trapdoor unlinkability and miti-

gating distinguishability attacks: Search pattern refers to
the leakage associated with the search queries. It reveals

to the adversary if the same object is being searched re-
peatedly. This requires to have probabilistic / randomized
trapdoors to prevent distinguishability attacks.

• Adaptive Security: In the known ciphertext model, the
scheme should be proven secure. This means that the CS
should not be able to extract anything about the query
terms, even if they are aware of the history of previously
searched trapdoors in an adaptive adversarial model.

• Secure Trapdoor Generation: Only an authorized person
having the correct secret keys should be able to generate
a meaningful trapdoor.

V. SECURITY DEFINITIONS

In this section, the searchable encryption security definitions
are revisited to establish the security of the proposed scheme.
These definitions are aligned with the definitions proposed
in [60] which are widely accepted and employed in case of
probabilistic trapdoor-based searchable encryption schemes.

SD1: Object - Trapdoor Indistinguishability

Object - Trapdoor Indistinguishability is defined as the
process of searching carried out by encrypted trapdoors gen-
erated by unencrypted queries. For every query, a trapdoor
is generated which is randomized and probabilistic such that
the same query being searched twice will yield two trapdoors
entirely different from each other and no trapdoor will reveal
any information about the underlying query. An adversary A
is unable to distinguish between the trapdoors even if pro-
vided with an adaptive history of queries and their associated
trapdoors. To forecast contextually relevant query information,
the adversary A must perform a large number of operations
in polynomial time and record large amounts of data.

Let KeyGen,Encs, Enc, TrG, SearchOut,Dec be a par-
tial image-based homomorphic searchable encryption scheme
over a set of images Imgi, image objects Iobji , query image
object Qobji security parameter λ and adversary A over
’N’ number of image objects respectively. A probabilistic
experimental function is as follows:

(ks, kp)← KeyGen(primebits)
EImgi ← Encs(Imgi, ks)
Eobji ← Enc(kp, Iobji)
for 0 < i < N :
(sA, Qobji)← A(sA, Tobj1 , Tobj2 , ....Tobji)
Tobji ← TrG(Qobji , kp)
a← {0, 1};
(sA, Qobj0 , Qobj1 ← A(ks, kp)
Tobja ← TrG(Qobji , kp)
a′ ← AN+1(sA, Tobja)
Tobj′a ← TrG(Qobjj , kp); j ∈ N
ifa′ = a; output 1;
otherwise output 0

where sA shows the adversary A’s state. The scheme is said
to be secure with respect to Object-Trapdoor Indistinguisha-
bility if the following hold true.

Pr[Obj TrapA(λ) = 1] ≤ 1

2
+ ngl(λ)
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SD2: Trapdoor-Image Indistinguishability

The complexity of a homomorphic-based searchable encryp-
tion protocol is related to trapdoor-image indistinguishability.
The queries, trapdoors, and associated object searching should
be complicated enough that the trapdoor does not reveal
any information about the associated image objects before
the search. As a result, even if the history (query, trapdoor,
image object) is created adaptively, the trapdoor should be
indistinguishable when the same search term appears again.
Furthermore, a minute change occurring in the query should
significantly alter the trapdoor and thus, the searching over it
should yield an altogether different result than before and vice
versa. An adversary should not be able to predict the trapdoor
leading to the retrieved image from the list of encrypted
objects. Thus, query security and user’s privacy are ensured
throughout in an adaptive adversarial model.

Let KeyGen,Encs, Enc, TrG, SearchOut,Dec be a par-
tial image-based homomorphic searchable encryption scheme
over a set of images Imgi, image objects Iobji , security
parameter λ and adversary A over ’M’ number of images re-
spectively. A probabilistic experimental function is as follows:

(ks, kp)← KeyGen(primebits)
EImgi ← Encs(Imgi, ks)
Eobji ← Enc(kp, Iobji)
for 0 < i < M :
(sA, Tobji)← A(sA, Img1, Img2, ...Imgi)
Imgi ← SearchOut(Eobji , Tobji)
a← {0, 1};
(sA, Tobj0 , Tobj1 ← A(Imgi, kp)
Imga ← searchOut(Eobja , Tobja)
a′ ← AN+1(sA, Imga)
Tobj′a

← TrG(Qobjj , kp); j ∈ N
ifa′ = a; output 1;
otherwise output 0

where sA shows the adversary A’s state. The scheme is said
to be secure with respect to Trapdoor-Image Indistinguishabil-
ity if the following hold true.

Pr[Trap ImgA(λ) = 1] ≤ 1

2
+ ngl(λ)

VI. PROPOSED METHODOLOGY

The image searching algorithm is twofold where an object
is identified using an image detection algorithm such as YOLO
v4. The image is then encrypted with standard encryption
such as Advanced Encryption Standard (AES). The proposed
scheme uses twofold encryption such that AES is employed
in the scheme for image data encryption, to increase the
efficiency and performance by reducing the storage and com-
putation overhead. Whereas Paillier homomorphic encryption
is carried out over the image object(s) and trapdoors, to
introduce highly secure primitives to enable searching over
the encrypted data. The object(s) identified are converted
to pixels and these pixel values are then encrypted using
Paillier homomorphic encryption scheme. The image search
is based on those encrypted image objects. The notations
and abbreviations used in the definitions and algorithms are

TABLE II
NOTATIONS AND ABBREVIATIONS

Ntn. / Abb. Explanations
CS Cloud server

Enc(), Dec() Encryption and decryption function
p, q Prime numbers

primebits Number of bits
kp, ks Public Key and Secret (private) Key
GCD() Greatest common divisor function
LCM() Least common multiple function

glambda (λ) λ = LCM(p-1,q-1)
gmu (µ) Modular Multiplicative Inverse

RN() Returns a random number
getprime() Returns the N-bit prime number

Sub Subtraction function
Sa Results of the Subtraction function
R V Result dictionary containing Obj IDs & Sa

Tobji Trapdoor image object
Qobji Query image object
Iobji Image object(s)
EImgi Encrypted Image(s)
Eobji Encrypted Object(s)
EFi

Encrypted File(s)
DImgi Decrypted Image

mentioned in table II. The proposed scheme consists of the
following phases:

1) Key Generation (ks, kp)← KGen(primebits): It is a
probabilistic algorithm that returns a Public Key and Se-
cret (Private) Key based on key pair generation phase of
Paillier cryptosystem [59]. The algorithm takes as input
a parameter of primebits which determine the number
of bits for generating a prime number. The algorithm
returns a ks and kp. The input parameter “primebits”
is used to generate two random prime numbers p &
q independent of each other, through which ks and
kp is generated. The ks is kept secret and is used for
decryption, whereas the kp can be shared and is used
for encryption.

Algorithm 1 Key Generation (ks, kp)← KGen(primebits)

Generate p = getprime (primebits,RN)
Generate q = getprime (primebits,RN)
Let n = p ∗ q
while g = RN(); GCD(g, n2) ̸= 1 do

Compute λ = LCM (p-1,q-1)
Compute Modular Multiplicative Inverse:
µ = (L(gλ)modn2)−1mod n
Compute: l = (pow(g, λ, n2)− 1)/n
Calculate: gmu = libnum.invmod (l, n)

end
return ks = (λ, µ), kp = (n, g)

2) Image Encryption EImgi ← Encs(Imgi, ks): The
images Imgi are encrypted by AES using secret key
ks and returns encrypted images EImgi .

3) Object Encryption Eobji ← Enc(kp, Iobji): This
phase, first identifies the objects Obji available in im-
ages Imgi, and returns the object class name and then
encrypts those image objects. The encryption process
is based on encryption phase of Paillier cryptosystem
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(a) (b)

(c)

(d)

Fig. 3. The Proposed Scheme (a) Image Encryption (b) Image Decryption (c) Object(s) Encryption (d) Trapdoor Generation

Algorithm 2 Image Encryption EImgi ← Encs(Imgi, ks)

for i← 0 to M; M are number of images do
Encs(Imgi, ks) = EImgi

end
return EImgi

[59] where ciphertexts are generated by an encrypting
image objects Iobji using public key kp in a for loop
using pow() function. The power function is a simple
exponential that will raise the input parameters i.e.
g,Obji, n

2 to yield the encrypted objects EObji .

Algorithm 3 Object Encryption Eobji ← Enc(kp, Iobji)

for i← 0 to N; N are the number of objects do
for i← 0 to Obji do

Enc (gIobji .rn) % n2

EObji = pow(g,Obji, n
2)

EFi
= write (EObji )

end
end
return EFi

4) Trapdoor Generation Tobji ← TrG(kp, Qobji): This
phase takes a query as input where the query is in the
form of an image object. A trapdoor Tobji is generated
by object identification of the query image and encryp-
tion of that object Qobji using public key kp in a for loop

using pow() function. The encrypted value of trapdoor
will be different for every instance if the same object
is encrypted again such that EObji ̸= E′

Qobji
if the

underlying object is same. The algorithm for generation
of trapdoors is based on encryption phase of Paillier
cryptosystem [59].

Algorithm 4 Trapdoor Generation Tobji ← TrG(kp, Qobji)

for i← 0 to K; K are the number of objects pixels do
Enc (gQobji .rn) % n2

E′
Qobji

= pow(g,Qobji , n
2)

Tobji = write (E′
Qobji

)
end
return Tobji

5) Search Out EImgi ← SearchOut(Eobji , Tobji): The
searching algorithm takes a set of encrypted files Eobji

and a trapdoor Tobji as input. Firstly, the trapdoor Tobji

is subtracted from the Eobji pixel by pixel through the
subtraction function Sub; the values are then accumu-
lated as Sa. A result dictionary R V containing Sa

values and encrypted objects’ IDs is sent to the user.
The user decrypts the R V values and occurrence of
zero corresponds to a match i.e. requested image being
stored over cloud. The user then requests explicitly with
the image’s ID with respect to the object’s ID mapping
and the corresponding EImgi is sent over to the user by
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CS.

Algorithm 5 Search Out EImgi ← SearchOut(Eobji , Tobji)

for i← 0 to EFi do
Sa = Sub(TIi , EFi

);
R V =

∑i
a=1 Sa

end
return R V
At User’s End:
for y ← 0 to R V do

if Dec (R Vy, ks).get(R Vy) == 0
EImgi = getImage(R Vy)

end
return EImgi

6) Image Decryption Imgi ← Dec(EImgi , kaes): It is the
decryption process where user decrypts the encrypted
image EImgi retrieved from CS with private AES key
kaes and gets the original image data Imgi.

Algorithm 6 Image Decryption Imgi ← Dec(EImgi , kaes)

for i← 0 to N; N are number of encrypted images do
Dec (EImgi , kaes) = DImgi

end
return Imgi

A. Correctness

The correctness of a scheme specifies that decryption of
a homomorphic evaluation on a ciphertext must be identical
to evaluation on the underlying plaintext message. Thus, the
proposed scheme is deemed correct if the security parameters
(g, λ, µ) and key pair kp, ks for encrypted image objects EObji

by Enc(kp, Obji), the searching by trapdoors TIi always
results in return of corresponding image objects present. The
following conditions are met in the proposed scheme with
significant probability:

• For Qobji ∈ IObji ;

SearchOut (kp, Tobji , Eobji) = IObji ∩Dec(ks, R V )

= IObji

• For Qobji /∈ IObji ;

SearchOut (kp, Tobji , Eobji) = IObji ∩Dec(ks, R V )

= 0

B. Soundness

The soundness of a scheme entails that the searching phase
of a homomorphic evaluation on an encrypted query must be
identical to the evaluation on the underlying keyword and
produce sound encrypted results. A scheme is considered
sound if the security parameters (g, λ, µ) and key pair kp, ks
for encrypted image objects EObji by Enc(kp, Obji), the
searching by trapdoors TIi never produce false positives and
always produce substantial search outcomes. The following

conditions are met in the proposed scheme with significant
probability:

• For Qobji ∈ IObji ;

SearchOut (kp, Tobji , Eobji) = 1

• For Qobji /∈ IObji ;

SearchOut (kp, Tobji , Eobji) = 0

VII. SECURITY ANALYSIS

This section presents a game-based approach to verify the
security of the scheme.

Game 1: Object-Trapdoor Indistinguishability: Suppose
that there are many query objects such that Qobj1 , Qobj2 ,...
Qobji in the image data Imgi. The game between an adversary
and a challenger constitutes of the following three phases:

• Query Phase: The challenger initiates the process by
generating multiple encrypted image objects’ trapdoors
against image data Imgi. The adversary sends a query
object Qobji and challenger returns the encrypted trap-
door Tobji . This process continues until the adversary
has accumulated polynomial many query object-trapdoor
pairs.

• Challenge Phase: The adversary chooses two query
objects Qobja and Qobjb and sends them over to the
challenger. The challenger after tossing a fair coin a ←
{0, 1}; generates trapdoor Tobja for Qobja and sends it to
the adversary.

• Outcome Phase: The adversary has to make a correct
guess of query object associated to the received trapdoor
a or b with a probability of higher than 1/2 to win the
challenge otherwise the scheme is said to be secure with
respect to Object-Trapdoor Indistinguishability.

The proposed scheme’s phases of key generation, object
encryption, and trapdoor generation are based on Paillier cryp-
tosystem’s key generation and encryption phases respectively.
The proposed scheme yields different encrypted image objects
by probabilistic encryption and generates a different trapdoor
for the same query on every repetition. The mapping of a
trapdoor to an encrypted image object is carried out over a
probabilistic searching algorithm leaving the adversary A with
no possible means to correctly guess the underlying image
and/or image objects from an encrypted retrieved result. It is
also not possible for an adversary A or CS to guess or predict
the search pattern. Thus, due to the probabilistic trapdoors, the
proposed scheme fulfills the security definition SD1.

Game 2: Trapdoor-Image Indistinguishability: Suppose
there are many query objects such that Tobj1 , Tobj2 ,... Tobji

in the image data Imgi. The game between an adversary and
a challenger constitutes of the following three phases:

• Query Phase: The challenger initiates the process by gen-
erating multiple encrypted image objects against image
data Imgi. The adversary sends an encrypted trapdoor
Tobji and challenger returns the corresponding image.
This process continues until the adversary has accumu-
lated polynomial many trapdoor-image pairs.
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Fig. 4. Multiple Images from Dataset Representing the Presence of Non-uniform Objects

(a) (b)

(c) (d)

Fig. 5. (a) Image Encryption Time (Standard Encryption-AES) (b) Object Encryption Time (Paillier Homomorphic Encryption) (c) Object Searching Time
(Paillier Homomorphic Encryption) including Network Latency (d) Image Decryption Time (Standard Decryption-AES)

• Challenge Phase: During the challenge phase, the ad-
versary chooses two new trapdoors Tobja and Tobjb and
sends them over to the challenger. The challenger after
tossing a fair coin a ← {0, 1}; carries out searching
among the encrypted image, selects a EObja and sends it
to the adversary.

• Outcome Phase: The adversary has to make correct guess
of image where it was the search result of trapdoor a or b
with a probability of higher than 1/2 to win the challenge
otherwise the scheme is said to be secure with respect to
Trapdoor-Image Indistinguishability.

Searching in the proposed scheme is carried out at the pixel
level of images. This implies that two seemingly identical
images with a difference of only one pixel will not be matched
and only exact search results will be returned to the user. Prior

to the search, it is difficult for an adversary A to create a link
between the query images, trapdoors and search outcomes.
This is also true even if the adversary A keeps a track of
the search history and its results. Therefore, the chance of
predicting the right outcome of an adversary A is less than
1/2 since the object queries to trapdoors are produced using
probabilistic encryption and each encrypted trapdoor is unique.
Hence, the proposed scheme fulfils security definition SD2.

In a typical model, it is assumed that the attack is initi-
ated by adversary A, thus the adversary is not restricted by
substituting any weak structure for the proposed method. The
information that is exposed within polynomial time is the focus
of the leakages described below:

• Leakage L1: It is associated with data stored on CS. i.e.
number of encrypted images and number of encrypted
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image objects. All image data outsourced on CS is stored
after encryption so the CS can have no information about
the underlying plaintexts but only about the number of
files being stored on it.

L1 =

{
EImgi , Eobji , (number of EImgi),

(number of EObji)

}
• Leakage L2: It is associated with the generation of

trapdoors from queries. The trapdoor is probabilistically
generated by Paillier encryption and reveals no informa-
tion about the underlying query image object.

L2 =
{
((gQobji ) ∗ (rn))(modn2)

}
• Leakage L3: It is associated with the proposed scheme’s

search outcome. The searching is carried out at CS and
its results are accessible to all entities including CS,
data owner as well as adversary A. The search outcomes
are encrypted results of a subtraction operation and can
only be decrypted by the data owner (in possession
of the secret key) and reveal no information about the
underlying search queries or image objects.

L3 =
{
Sub(Tobji , Eobji), (R V )

}
The assumptions and leakages described above are intercon-
nected and interdependent. As a result, to achieve the highest
level of security, it is required that all security assumptions
are scrupulously observed. Furthermore, none of the leakages
are giving away the plaintext or any information about the
characteristics of plaintext; therefore the proposed scheme
strengths and align with the security definitions. Also, such
a scheme can be called as a privacy-preserving searchable
encryption scheme as per the Corollary 1 presented in [60].

VIII. PERFORMANCE ANALYSIS

The simulations were carried out in a client-cloud scenario
where the standard encryption/ decryption (AES in this case)
of images, Paillier homomorphic encryption for image objects
is carried out at client’s end and Paillier homomorphic encryp-
tion searching is done over at CS.

A. System Specification

• Client Side: OS Ubuntu 18.04.5 LTS (64 bits) with 16
GB RAM, Intel Core i7-7700 CPU @ 3.6 GHz x 8 and
1 TB SSD storage.

• Server Side: Contabo Cloud Platform running an oper-
ating system Ubuntu 20.04 with CPU having 10 vCPU
Cores, 60 GB RAM, 1.6 TB SSD storage, 1 Gbit/s port
and data transfer rate of 32 TB traffic (100 Mbps).

B. Dataset Description

The images were taken from dataset [61]. The dataset,
shared by Roboflow in April 2020, has been generated by a
webcam mounted on a car with video frames from its feed
treated as images. The data set contains more than 15000
images and labels of objects include car, truck, pedestrian,
traffic lights etc. Object detection was carried by YOLO v4

on Google Colab. The images are diverse and non-uniform as
evident from figure 4, with some having multiple detectable
objects, some having objects far away from the detection
range, some objects out of the car’s driveway and some having
no detectable object.

C. Performance Metrics

To measure the performance of the proposed scheme,
tests were conducted over a total of 70 images. Figure 5
(a) represents the graphical representation of the results of
standard encryption that was AES encryption of image data
in proposed scheme. The encryption was performed by the
client in iterations of 10 images to plot results easily in
graphical representation. The graph is plotted with iteration
of 10 images on x-axis against time in seconds on y-axis. The
image encryption takes a linear time with the increase in the
number of images and takes 0.8 seconds to encrypt 70 images.

Figure 5 (b) shows the image objects encryption time using
Paillier homomorphic encryption performed on the client side.
The image objects encryption was also carried out at client’s
end. A graph is plotted with iteration of 10 objects on x-axis
against time in minutes on y-axis. A slight non-uniformity is
observed due to the non-uniformity of the number of objects
within the dataset. This has already been highlighted in the
dataset description. The dip in the graph is due to the non
uniform presence of objects in the images as shown in figure
4. For a total of 70 objects, the proposed scheme takes a total
of 30 minutes. A trapdoor was generated by a query image of
85 Kbs in 21.23 seconds. The trapdoor was generated for the
object ”car” that has been shown within the 5 (c).

The object searching time is carried out on the Cloud Server.
Since this is a true deployment, it also includes the network
latency. As shown in 5 (c), a graph is plotted with the number
of images over which the search is being conducted plotted
on x-axis, and the time in minutes is plotted on the y-axis.
The searching is the most resource intensive task that requires
some alternative resources such as the cloud. This is in line
with the proposed assumption of importance of connecting
autonomous vehicles to the cloud and to further emphasize
this, the cloud was configured to provide us with the minimum
resources. It is observed that to search against the previously
generated trapdoor, the time required is 205 minutes. It is
acknowledged that the searching is consuming too much time
which is by virtue of not incorporating any mechanisms to
enhance the performance such as multi-core processing and
parallel threading (that will be done in the future). Figure 5
(d) shows the results of AES decryption of image data with
the number of images on x-axis and time in seconds on the
y-axis. The slope of which is linear, i.e. for 70 images the
decryption time is approximately 0.55 seconds.

D. Performance Complexity

The computational overhead is discussed with regard to
different phases (i.e. Key Generation, Image Data Encryption,
Trapdoor Generation, Searching, and Decryption Phase) of the
proposed scheme. For each algorithm, the asymptotic notations
are represented where the analysis is based on an upper bound
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TABLE III
COMPLEXITY COMPARISON

Phases Proposed Scheme [37] [41] [42]
Key Generation O(2λ) O(2λ+1) (2λ+1) O(2λ)

Image Encryption O(M) O(2M + 1) O(M2) O(M2 + 1)
Object Encryption O(N.K) - - -
Index Generation - - O(8M.S2) O(4M.S2)

Trapdoor Generation O(K + 1) O(D.F + 1) O(8S2) O(4S2)
Searching O(M.N.K) O(M(M − 1)) O(4.M.S) O(4.C.S2 + 2.C.S)

Image Decryption O(M) O(2M + 1) O(M2) O(M2 + 1)
M = total number of images, N = total number of objects, K = image pixels,
S = number of images in each class, C = CNN input matrix of order c x c

analysis of the set of images and image objects. The complex-
ity for the Key Generation phase is O(2λ) for the proposed
scheme. Complexity for Image encryption and decryption is
same for proposed scheme i.e. O(M). The scheme proposed
in this research follows object encryption having complexity
O(N.K). Complexity of Trapdoor generation algorithm and
searching in proposed scheme is O(K + 1) and O(M.N.K)
respectively. A comparison of computational complexity is
presented in table III.

E. Performance Enhancements
The simulations were carried out on the proposed scheme

with comparison against generic Paillier-based homomorphic
searchable encryption scheme [59] for 1 image containing 1
object as been shown within the 5 (c). The proposed scheme
consists of image encryption and decryption by AES, object
encryption and searching by Paillier homomorphic encryption
and decryption of images is by carried out via AES. The AES
encryption and decryption time for 1 image was carried out
in 0.025 and 0.021 seconds respectively. The 2.55 MB sized
image was compressed to 770 Kbs after AES encryption and
format was changed from ’jpeg’ to ’png’ to retain its original
features. The size of object detected from the image was 146
Kbs and was increased to 1.79 MB after Paillier encryption.
Object encryption and searching by Paillier encryption was
carried out in 21.68 and 21.04 seconds respectively. The
overall storage overhead of the proposed scheme comes out
to be 2.54 MB and takes up a total of 42.766 seconds.

The encryption, searching and decryption of same image of
2.55 MB by Paillier based homomorphic searchable encryption
scheme, took 633.03, 263.31 and 507.11 seconds respectively.
The storage overhead in this case came out to be 49.496 MB.
The total time for the execution of this scheme was calculated
to be 1403.45 seconds. By this comparison, the proposed
scheme reduces storage overhead by approximately 20 times
and is nearly 33 times more efficient as compared to generic
Paillier Homomorphic Encryption based searching scheme.

Another important requirement of the cloud is the change
in the size of image object data before and after Paillier
Homomorphic Encryption is performed. It can be seen in table
IV that for 70 images, the unencrypted image data size is
8.1 MB which increases to 4.3 GB after encryption. The data
size generated after encryption, and its local management and
storage, can be a challenge. It is therefore necessary to make
use of an externally hosted cloud system. In the future, we
will also work on the compression of these encrypted images.

TABLE IV
SIZE COMPARISON OF IMAGE OBJECTS BEFORE AND AFTER
ENCRYPTION WITH PAILLIER HOMOMORPHIC ENCRYPTION

No. of
Objects

Unencrypted Image
Objects Size

Encrypted Image
Objects Size

10 2.8MB 261MB
20 4.8MB 808MB
30 5.4MB 1.3GB
40 6.3MB 2.1GB
50 7.3MB 2.7GB
60 7.0MB 3.6GB
70 8.1MB 4.3GB

IX. CONCLUSIONS AND FUTURE WORK

A novel partial image-based homomorphic scheme is pro-
posed for preserving the privacy of data captured from au-
tonomous vehicles. The proposed scheme allows search at
the pixel level and uses Paillier homomorphic encryption. The
generated search query/ trapdoor is also probabilistic, leading
to maintaining indistinguishability. The proposed approach is
therefore referred to as a privacy-preserving searchable encryp-
tion scheme. The implementation is deployed on a cloud envi-
ronment ”Contabo” and tested over a real-world data set. The
proposed scheme reduces storage overhead by approximately
20 times and is nearly 33 times more efficient in performance
compared to the generic Paillier homomorphic encryption-
based searching scheme. The results also demonstrate the
correctness of the scheme and highlight the requirement of
connecting autonomous vehicles to a cloud environment, to
achieve elevated levels of security and privacy. The efficiency
of the scheme can be achieved by introducing parallel pro-
cessing along with proposing mechanisms for compressing
images to reduce the required storage. The proposed scheme
involves human intervention for the encryption, searching, and
decryption of the images. Although this research is pioneering,
human involvement may be termed a dependency. In the
future, we plan to shift towards edge/fog computing to increase
the performance and enhance efficiency by making the vehicle
an edge device so that the entity of the data owner is removed
from the network model.
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