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Abstract 

Background:  Inducible expression of heme oxygenase-1 (encoded by the gene HMOX1) may determine protection 
from heme released during malaria infections. A variable length, short tandem GT(n) repeat (STR) in HMOX1 that may 
influence gene expression has been associated with outcomes of human malaria in some studies. In this study, an 
analysis of the association between variation at the STR in HMOX1 on severe malaria and severe malaria subtypes is 
presented in a large, prospectively collected dataset (MalariaGEN).

Methods:  The HMOX1 STR was imputed using a recently developed reference haplotype panel designed for STRs. 
The STR was classified by total length and split into three alleles based on an observed trimodal distribution of repeat 
lengths. Logistic regression was used to assess the association between this repeat on cases of severe malaria and 
severe malaria subtypes (cerebral malaria and severe malarial anaemia). Individual analyses were performed for each 
MalariaGEN collection site and combined for meta-analysis. One site (Kenya), had detailed clinical metadata, allowing 
the assessment of the effect of the STR on clinical variables (e.g. parasite count, platelet count) and regression analy-
ses were performed to investigate whether the STR interacted with any clinical variables.

Results:  Data from 17,960 participants across 11 collection sites were analysed. In logistic regression, there was no 
strong evidence of association between STR length and severe malaria (Odds Ratio, OR: 0.96, 95% confidence intervals 
0.91–1.02 per ten GT(n) repeats), although there did appear to be an association at some sites (e.g., Kenya, OR 0.90, 
95% CI 0.82–0.99). There was no evidence of an interaction with any clinical variables.

Conclusions:  Meta-analysis suggested that increasing HMOX1 STR length is unlikely to be reliably associated with 
severe malaria. It cannot be ruled out that repeat length may alter risk in specific populations, although whether this 
is due to chance variation, or true variation due to underlying biology (e.g., gene vs environment interaction) remains 
unanswered.
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Background
The gene HMOX1 (also known as heme-oxygenase 1) 
encodes for a protein HO-1 that has been shown to be 
critical for survival in cerebral malaria in mouse mod-
els of malaria [1, 2]. HO-1 breaks down heme (or haem) 
to iron, biliverdin and carbon monoxide, with the latter 
playing a protective role in experimental cerebral malaria 

[1]. In a non-coding region of the gene, there exists a 
short tandem repeat (STR), that shows a GT(n) poly-
morphism of variable length. Some but not all in-vitro 
studies have suggested that the length of this STR associ-
ates with expression of HMOX1, where cells containing 
longer STRs (more than around 35 repeats) have reduced 
inducible expression [2]. The STR ranges from around 
25 repeats to around 40, with wide ranging differences 
across different populations [3].

Multiple human studies across many diseases have sug-
gested that STR variation at this locus is associated with 
relevant clinical outcomes. For example, a meta-analysis 
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in diabetes suggested an effect of this STR (longer repeats 
increasing the risk of type II diabetes) [4], while another 
meta-analysis identified longer repeats decreasing the 
risk of neonatal jaundice [5]. Additionally, on the basis 
of pathway driven basic science and given the associa-
tion with mammalian malaria, multiple studies in malaria 
have examined the role of this STR in both the incidence 
of malaria and development of severe malaria (e.g., cer-
ebral malaria) [1, 6, 7]. Despite this, evidence of an 
effect of STR variation on the presence of severe malaria 
remains inconclusive, with studies having small sample 
sizes ( < 1000 participants) and variable definitions of 
STR length. Furthermore, given the nature of STR vari-
ation and recent evolution, controlling for ethnicity in 
both case status and STR length is key to understanding 
if there is a relationship between the HMOX1 STR and 
malaria outcomes, which requires some adjustment for 
population structure which has not been performed in 
studies so far.

This study aimed to impute the HMOX1 STR using a 
recognized haplotype reference panel for STRs [8] in 
a large, geographically diverse case–control study of 
malaria (MalariaGEN [9]) in order to analyse the asso-
ciation between STR genotype and (a) malaria case status 
(b) severe malaria subtype status.

Methods
Reporting guidelines
This study was reported in line with the STREGA report-
ing guidelines (refhttps://​journ​als.​plos.​org/​plosm​edici​
ne/​artic​le?​id=​10.​1371/​journ​al.​pmed.​10000​22) which are 
available in supplementS1
Data source
This analysis used the MalariaGEN dataset and was 
approved by the MalariaGEN IDAC (Application: 71). 
Clinical phenotyping (clinical parameters, parasite count) 
was available for one subset of this cohort, the Kenya 
cohort, and was arranged via Professor Tom Williams at 
the KEMRI-Wellcome Unit [10].

This study was a meta-analysis of 11 separate studies on 
resistance to severe malaria. Each study contributed to a 
wider meta-analysis of resistance to severe malaria [9]. 
Each site had the same genetic analysis pipeline (detailed 
in the above publication), with analysis performed at each 
site, and then meta-analysed for the summary results.

HMOX1 STR genotyping and definition of STR length
This analyses used the MalariaGEN data set. MalariaGEN 
SNP array data was downloaded from the EGA (EGA, 
dataset EGAD00010001799) [9]. Imputation was per-
formed using a recently developed haplotype reference 
panel based on the 1000 Genomes data using Beagle v4.2 
[8] Previous work has shown this imputation is reliable 

and have shown no benefit of filtering this imputation 
based on predicted genotype probability [11]. In that 
study, data from the 1000 Genomes Project [12] and the 
Human Genome Diversity project [13] was used to com-
pare the imputed STR length with the real STR length, as 
called by whole genome sequencing. In general, correla-
tion between real and imputed STR length in worldwide 
populations was good (Pearson’s R > 0.8), although there 
was worse imputation performance in some ethnic back-
grounds. Previous work provides detail on the imputa-
tion approach and quality control [11].

Previous literature on HMOX1 STR length in malaria 
has used a wide range of reference lengths for the 
HMOX1 STR [14]. Given the lack of consensus and evi-
dence for any given definition the decision was made to 
use the summed repeat length as our primary definition 
in this study, where STR length is defined by the total 
number of GT repeats. For further analysis, the repeat 
was split into three alleles—short (S), medium (M), and 
long (L), using definitions below, in line with previous 
literature and the trimodal variation at this STR. Geno-
types were subsequently defined by the combination of 
these alleles, e.g. SS, SM, etc., in line with previous litera-
ture, leading to six genotypes at this locus [3].

Malaria outcomes
Malaria outcomes were extracted from the MalariaGEN 
dataset provided by MalariaGEN alongside data on sex, 
ethnicity, and country. Outcomes included: case status 
and type of severe malaria status (cerebral malaria (CM) 
and/or severe malarial anaemia (SMA). Details of defini-
tions are with the original MalariaGEN publication [9].

For one MalariaGEN collection site (Kenya), more 
detailed clinical phenotyping of malaria cases was avail-
able (blood pressure, platelet count, haemoglobin, MCV, 
parasite count, severe renal disease, and mortality). 
Details of definitions are with the relevant publication 
[10].

Statistical approach
Main outcome
The primary analytic method was logistic regression 
on severe malaria case status in each individual study 
site with the total STR repeat length as the explana-
tory variable. Subsequently, site-specific estimates were 
meta-analysed in a random effects model to generate 
summary estimates across the whole cohort. For each 
severe malaria subtype (CM, SMA, or both), a similar 
analysis was performed comparing cases of each severe 
malaria subtype vs a) all other cases, and b) vs all con-
trols. Subsequently, an alternative repeat length defini-
tion was generated by splitting each allele across the 
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trimodal distribution into short (S), medium (M), long 
(L) alleles. The allele cut points were short ( < 27 repeats), 
medium (27–32 repeats) and long  > 32 repeats and these 
alleles were applied in a logistic regression against severe 
malaria case status.

As a third alternative model, the actual genotype was 
included (e.g., short-short, short-medium, medium-long, 
long-long), in a logistic regression model against the ref-
erence genotype (medium-medium). These analyses were 
again performed for each outcome in each country and 
meta-analysed in a random effects model. To ensure esti-
mates had some precision, models were only run if they 
included more than 30 cases, and more than 150 total 
patients.

The first 10 principal components and sex were 
included as covariates in our models. These principal 
components were supplied by MalariaGEN and calcu-
lated at the site level, and therefore represent genetic 
variation at each site, not across the whole meta-analysis.

Associations and interactions with clinical variables
One data set had available clinical data (Kenya). At this 
site, linear regression was performed with STR length 
on the clinical biomarkers of severity: Hb, platelet count, 
blood pressure, white cell count, MCV, and platelet 
count, and parasite count (logged to improve model fit).

Subsequently, an assessment was made of any poten-
tial intraction between STR length and clinical vari-
ables. In these models, logistic regression was performed 
on severe malaria case status with an interaction fit-
ted between repeat length and clinical variable (e.g. 
case ~ STR length * platelet count). This analysis was 
based on laboratory data suggesting that HMOX1 vari-
ation may only have clinical impact in certain subtypes 
(e.g. high parasite counts) of severe malaria.

Results
SNP array and clinical data were available for 17,960 par-
ticipants in MalariaGEN. All genotypes were successfully 
imputed. 215 parents and 3 patients had unknown case 
status, and 302 patients who had no country information. 
These were excluded from the analysis data set leading to 
8658 cases, and 8931 controls. Table 1 shows the break-
down of case status and severe disease by MalariaGEN 
site.

Case frequency differed by country with the highest 
number of cases in Nigeria (83% of included participants 
cases), and the lowest in Cameroon (46% of included par-
ticipants cases). The presence of severe malaria subtypes 
also differed greatly by site, with rates of severe malar-
ial anaemia as high as 31% in Mali, and as low as 1% in 
Nigeria.

Ethnicity had an equally large impact on case ratio and 
severe malaria subtypes, with Additional file 1: Table S1 
summarizing this data.

Details of the HMOX1 STR imputation process and 
accuracy are detailed in a recent publication on the 
HMOX1 STR in UK Biobank [11].

As expected, HMOX1 STR genotype differed across 
populations. Figure  1A shows the distribution of STR 
lengths across the whole of MalariaGEN, while Fig.  1B 
shows individual distributions of alleles stratified by case/
control status and Fig. 1C shows the summed STR length 
across both alleles for all countries. The trimodal distri-
bution (peaks at 29 STRs, 38 STRs, and 23 STRs) previ-
ously reported was identified, although all three peaks 
were not present in all subpopulations. The mean total 
repeat length across all cohorts was 60.9 repeats, with a 
standard deviation of 8.2 repeats.

Table 1  Distribution of severe malaria across the MalariaGEN cohort

Country Total number Cases (% total) SMA (% cases) CM (% cases) Both (% cases)

Burkina Faso 1327 733 (55.2%) 28 (3.8%) 94 (12.8%) 18 (2.5%)

Cameroon 1277 592 (46.4%) 66 (11.1%) 32 (5.4%) 8 (1.4%)

Gambia 5091 2487 (48.9%) 456 (18.3%) 780 (31.4%) 134 (5.4%)

Ghana 716 396 (55.3%) 41 (10.4%) 31 (7.8%) 5 (1.3%)

Kenya 3261 1646 (50.5%) 174 (10.6%) 690 (41.9%) 189 (11.5%)

Malawi 2499 1182 (47.3%) 65 (5.5%) 642 (54.3%) 109 (9.2%)

Mali 446 263 (59%) 81 (30.8%) 61 (23.2%) 51 (19.4%)

Nigeria 131 109 (83.2%) 1 (0.9%) 28 (25.7%) 0 (0%)

PNG 770 396 (51.4%) 115 (29%) 49 (12.4%) 7 (1.8%)

Tanzania 807 409 (50.7%) 178 (43.5%) 31 (7.6%) 25 (6.1%)

Vietnam 1264 718 (56.8%) 23 (3.2%) 154 (21.4%) 4 (0.6%)
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Primary analysis
The primary analysis consisted of logistic regression of 
severe malaria cases status on HMOX1 repeat length, 
performed at each site individually, then meta-analysed 
the results using random-effects meta-analysis. Overall, 
the meta-analysed effect estimate confidence intervals 
spanned the null (0R 0.96, 95% CI 0.91–1.02), but was 
consistent with a small negative effect (e.g., increasing 
repeat length being protective against severe malaria). 
There was evidence of variation in effect estimates across 
the sites (p value for heterogeneity = 0.06), and of vari-
ation in effects size across populations. For example, 
increasing STR length was associated with decreased 
odds of severe malaria in Nigeria (OR 0.54 for a 10 GT(n) 
repeat increase in repeat length, 95% CI 0.28–1.07, 
p = 0.07), but higher odds of severe malaria in Papua 
New Guinea (OR 1.32; 95% CI 0.94–1.85, p = 0.10). Full 
results are shown in Fig. 2 and Table 2.

For the severe malaria subtypes (CM, SMA, and these 
combined), there was no strong evidence of a consist-
ent effect across sites with any severe malaria subtype, 

with all estimates confidence intervals crossing the null 
(Fig. 3A–F and Additional file 1: Table S2).

Allelic and genotypic model
Allelic and genotypic models were generated by classi-
fying the repeat length into three alleles (S, M, L), and 6 
genotypes (SS, SM, MM, ML, LS, LL). Table 3 describes 
the number of included participants with each genotype.

There was weak evidence of an association between 
HMOX1 STR genotype and the outcome “any severe 
malaria subtype”. The strongest evidence for association 
was seen for the primary outcome of severe malaria and 
SM genotype, which reported an OR of 1.15 (95% CI 
1.01–1.13) (Additional file  1: Figure S2). All genotypes 
were associated with an OR of  > 1 (Additional file  1: 
Table  S3), suggesting the reference genotype had the 
lowest risk of severe malaria, although effect estimates 
were imprecise and confidence intervals cross the null. 
In contrast, our allelic model showed no clear associa-
tion between the number of L, M, or S alleles carried and 

Fig. 1  A STR length of each allele across MalariaGEN, B STR length across each site, and C summed STR length across each site (line represents 
median STR length)
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the development of severe malaria, with wide uncertainty 
around effect estimates (Additional file 1: Figure S3).

Interaction with clinical variables
Detailed clinical metadata was available for one clini-
cal site (Kenya) and was used to assess any association 
between the HMOX1 STR and clinical variables. Demo-
graphics of the included cohort, split by case status, are 
available in Table 4.

No associations between the HMOX1 STR length and 
any clinical variable directly were identified (Additional 
file  1: Table  S4). In analyses testing for an interaction 

between STR length and each clinical variable no evi-
dence for differences in STR association by clinical var-
iable were identified (all p for interaction  > 0.05).

Table  4 summarizes the clinical variables available 
across each malaria subtype.

All analyses were repeated without the addition of 
PCA’s and clinical sex as covariates. Results were similar, 
with no major changes in effect estimates.

Discussion
In the large, multi-centre, MalariaGEN cohort the 
HMOX1 STR polymorphism was imputed using a 
recently published reference panel for STRs. STR imputa-
tion could not be tested directly on this cohort, but exter-
nal validation in other cohorts of similar ancestry showed 
reasonable imputation accuracy [11]. Across the whole 
cohort, there was no strong evidence that the length of 
the HMOX1 STR altered the risk of severe malaria, or any 
severe malaria subtypes, although the data was consist-
ent with a small negative effect at some sites, particularly 
Kenya, Vietnam, and Nigeria. Additionally there was no 
association with any clinical variables in the cohort for 
which clinical metadata was available, nor any interaction 
with clinical variables and outcomes.

The relevance of the HMOX1 polymorphism in 
malaria has been recently reviewed [14]. Seven stud-
ies have focussed on this question, although all were 

Fig. 2  Effect of HMOX1 repeat length on severe malaria case status across each site

Table 2  Effect estimates for each country for our primary 
analysis

Country Estimate (95% CI) p value

PNG 1.32 (0.94–1.85) 0.104

Cameroon 1.05 (0.86–1.28) 0.635

Gambia 1.02 (0.94–1.1) 0.641

Burkina Faso 1.01 (0.84–1.22) 0.906

Malawi 1 (0.91–1.11) 0.953

Mali 1 (0.78–1.29) 0.979

Tanzania 0.91 (0.76–1.1) 0.344

Kenya 0.9 (0.82–0.99) 0.029

Ghana 0.86 (0.71–1.03) 0.101

Vietnam 0.75 (0.59–0.95) 0.018

Nigeria 0.54 (0.28–1.07) 0.079

Meta-analysis 0.96 (0.91–1.02) 0.171
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small and single centre, with a maximum size of 749 
patients [15–21]. In all previous studies, STR length 
was measured using the STR length fragment poly-
morphism. Nearly all studies used different definitions 
of STR length (dividing alleles arbitrarily into “short”, 
“medium” or “long”). Five studies compared develop-
ment of severe malaria subtypes within cases, with 
three studies identifying an association with develop-
ment of severe malaria in cases (strongest associa-
tion: OR of 0.16 for severe respiratory distress; 95% CI 
0.05–0.46 with carriage of a longer allele in Walther 
et al. [17]), while two studies did not identify any asso-
ciation with development of any severe malaria sub-
types. For comparisons of cases and controls, the data 
were less clear, with only one study (Mendonca et  al.) 

[16], identifying an association between symptomatic 
malaria and STR length, although this study was largely 
(90% of cases) in patients with Plasmodium vivax, not 
Plasmodium falciparum malaria.

Additionally, a recent large scale phenome wide asso-
ciation study using the HMOX1 STR across a wide 
variety of clinical and laboratory parameters was per-
formed in UK Biobank, a large, UK wide cohort study. 
In this study, there were no robust associations of the 
HMOX1 STR repeat [11].

Given the inconsistency of in-vitro evidence support-
ing the biological plausibility of effect, and the sug-
gestion of a differential effect at certain sites (p = 0.06 
for heterogeneity), it is worth exploring why the effect 
might differ at differing sites. Firstly, and most simply, 
the demographics and recruitment of cases at each site 
were quite different, with a median age of 29  years in 
Vietnam, to 1.7  years in Tanzania. Given the strong 
interactions between severe malaria and age, alongside 
the myriad of other demographic factors, the impact 

Fig. 3  Effect estimates of the effect of HMOX1 repeat length in severe malaria subtypes: A CM, vs all other cases, B CM, vs all controls, C SMA vs all 
other cases, D SMA vs all other controls, E Both vs all other cases, F Both vs all controls

Table 3  Genotypes of included participants

MM LL MS SS LS LM

2708 2164 3880 1625 2938 4274
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of the HMOX1 STR may only occur in certain clinical 
settings. Secondly, the genetic background at each site 
was markedly different. As STR’s also represent recent 
evolution, and the imputation relates to SNP haplotype, 
it may be that in certain sites these SNPs associate with 
severe disease, but do not at other sites. Against that, 
there has been little previous evidence that SNPs in or 
near HMOX1 have previously associated with severe 
malaria [9]. As discussed above, population structure 
may have also impacted the results, although there was 
no evidence that estimates varied with or without the 
use of PCs.

Finally, it may simply represent the play of chance or 
the microsatellite imparts no functional role in HO-1 
expression and/or translation. Given the uncertain pre-
vious literature on malaria and the variable functional 
importance of the repeat in gene expression, together 
with the weak evidence here, it is possible that there 
simply is a minimal effect, but that study and popula-
tion structure influence the results, meaning it is hard to 
determine conclusively if the effect is present.

Limitations
The major limitation of work undertaken here is a reli-
ance on imputation, rather than by direct genotyping 
of the HMOX1 STR. However, the reliability of this 

imputation in four separate datasets has been con-
firmed in recent work [11]; while other published data 
supports the reliability of the imputation [8, 11]. Sec-
ondly, although the imputed STR length was highly 
correlated with true STR length, it was much less reli-
able at calling the exact allele length (~ 45% correct), 
although ~ 80% were called to within 2 repeats, in the 
validation data. This is partly due to a large number 
of potential alleles (64 potential STR lengths), with a 
smaller number of common alleles, making imputa-
tion technically challenging [2]. Although this techni-
cal limitation should be recognized, it is important to 
note that all prior associations with this STR (both in 
and outside malaria) have been with STR length, with 
no data suggesting the effect is related to a particular 
allele rather than the total length of the STR [2–5, 14, 
17, 22–24]. Additionally, a genome-wide analysis of 
2060 expression short tandem STRs found linear asso-
ciations to be the most common association between 
STR’s and gene expression, a finding also identified 
in other studies of human STRs [25–28]. Also, other 
methods of genotyping STR’s, including fragment 
length polymorphism measurements used in all previ-
ous studies on malaria are also associated with some 
error in true repeat length due to PCR strand slippage.

Table 4  Characteristics of the Kenya cohort [10]

n (%); Median (IQR)

Other was any other form of severe malaria that was not CM or SMA

Characteristic Both, N = 182 Cerebral Malaria, N = 657 Other2, N = 387 Severe Malarial 
anaemia, N = 169

Mortality 34 (19%) 100 (15%) 29 (7.5%) 15 (8.9%)

Renal Disease 97 (53%) 218 (33%) 139 (36%) 16 (9.5%)

Diastolic BP 49 (42, 59) 58 (49, 66) 55 (48, 64) 50 (45, 58)

Unknown 84 231 147 67

Systolic BP 94 (84, 105) 99 (90, 110) 96 (86, 104) 93 (84, 102)

Unknown 82 207 138 65

Haemoglobin 4.00 (3.20, 4.50) 7.70 (6.20, 9.30) 6.90 (5.50, 8.58) 3.80 (3.20, 4.50)

Unknown 0 0 1 0

Platelet count 101 (63, 159) 117 (65, 250) 107 (64, 182) 106 (68, 154)

Unknown 17 27 14 6

MCV 73 (68, 80) 74 (67, 79) 73 (67, 79) 74 (68, 81)

Unknown 1 0 1 0

WBC count 17 (11, 27) 13 (9, 20) 12 (8, 17) 15 (9, 26)

Unknown 0 0 1 0

Parasite count 57,680 (4446, 254,950) 89,600 (7560, 376,200) 88,000 (8688, 358,200) 68,040 (8987, 264,000)

Sex

 F 88 (48%) 333 (51%) 188 (49%) 75 (44%)

 M 94 (52%) 324 (49%) 199 (51%) 94 (56%)
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Secondly, although principle componsents were used 
to control for relatedness and population structure 
within each site, it is well established that PC’s do not 
completely control for population structure [29]. As 
ethnic groups are likely to differ in both repeat length 
and incidence of severe malaria, it may be that popu-
lation structure within each country is not adequately 
controlled for in all sites, and the effects identified 
relate to population stratification. Against that, there 
were no changes in estimates when using models with 
and without PC’s, suggesting population stratification 
did not alter our results.

Implications
This study is suggestive that HMOX1 STR variation may 
not affect the risk of severe malaria, but it remains uncer-
tain whether there may be a suggestive effect, only pre-
sent under certain environmental conditions. Further 
research mechanistically linking HMOX1 genetic varia-
tion, gene expression of HMOX1 and downstream effects 
on the host–pathogen interaction would be helpful in 
understanding the role of heme metabolism in severe 
malaria. Given the potential to therapeutically modulate 
HMOX1 expression, this might provide a promising ave-
nue for therapeutics in the future [30].

In this large, multisite, study on the HMOX1 STR poly-
morphism, including a diverse worldwide population 
with robust outcome data, results were most consistent 
with a null effect at most sites, although there was weak 
indication that STR length might have a small effect in 
some sites.

Conclusions
The HMOX1 promoter STR was not robustly associated 
with severe malaria, in a large, multi-country cohort.
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