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Abstract

Studies of wildlife species distribution patterns are increasingly important in the face

of rapid ecosystem changes that have implications for disease emergence and spread,

food security, climate change, and invasive species biology. Citizen science campaigns

can be very effective for observing wildlife behaviour, but they can also be a resource-

consuming process and limited in coverage and sometimes their accuracy. Due to their

wide usage, social media platforms represent an untapped source of potentially valu-

able wildlife observational data which is less costly to obtain but could complement

citizen science data collections and support real-time species monitoring and analysis.

There are however concerns about the correctness and completeness of social media

data sources. Further, the exploitation of social media data related to wildlife involves

challenges such as its heterogeneity, noisiness and lack of adequate labelled data. Pre-

vious research on using social media sites in ecology studies is limited and often in-

volves manual or semi-automated approaches with few attempts to exploit advanced

machine learning methods.

In this thesis, we aim to identify social media mining techniques that facilitate the us-

age of social media datasets as a source of wildlife observational data. First, we study

the potential of social media data to supplement citizen science data collections and

perform a range of statistical, spatial, and temporal analyses. We also present image

and text-classification based verification approaches for identifying wildlife observa-

tions on social media which are suitable for large and diverse data collections. To

address the fact the only a small proportion of social media posts have coordinates, we

iv



Abstract v

develop geo-referencing techniques that use state-of-the-art transformer-based neural

network models, transfer learning, and regression models. These methods are extended

with hybrid approaches incorporating machine learning and rule-based methods to im-

prove the precision of geo-referencing models given limited amounts of training data.

A preliminary study of how social media can be exploited for spatio-temporal analysis

is conducted. The thesis shows that the image sharing platform, Flickr and the micro-

blogging service Twitter can be valuable sources of wildlife observational data but

require verification and preparation techniques to support their use. We show that com-

bining neural network models, transfer learning, and/or rule-based approaches can fa-

cilitate the verification and georeferencing of social media datasets even in the presence

of more specialised language and limited amounts of labelled data. We also present the

largest collections of geo-referenced wildlife-related Twitter and Flickr datasets as well

as a deep learning transformer model trained on wildlife Tweets. These resources can

be beneficial for further studies into passive citizen science and social media mining.
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Glossary

Neural Network: Neural networks are machine learning algorithms inspired by the

structure of the human brain. Neural networks are comprised of a node layers, con-

taining an input layer, one or more hidden layers, and an output layer. Each node, or

artificial neuron, connects to another and has an associated weight and threshold. If

the output of any individual node is above the specified threshold value, that node is

activated, sending data to the next layer of the network1.

Early Neural Networks: These neural networks are based on feed-forward approaches

where text is processed in a sequential manner, word by word. Examples of such

neural networks are Recurrent Neural Network (RNN) and Long Short Term Memory

(LSTM) Neural Network. These sequential neural network architectures can fail at

providing more context-specific word representations and tend to be computationally

expensive.

Recurrent Neural Network (RNN): RNNs are feed-forward NN, which process

text in a sequential manner where sentences are processed word by word. RNN process

sequential information by recurrence. Previous input is represented as the hidden state

of the recurrent computation and each new input is processed and combined with the

1Resource on Neural Networks: https://www.ibm.com/cloud/learn/

neural-networks
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hidden state. A limitation of RNN is that they process text from left-to-right or right-

to-left and have limited capacity to remember long term dependencies words.

Long Short Term Memory (LSTM) Neural Network: Long-short term memory

neural models (LSTMs) are an extension to RNNs and they address the problem of

RNN (learning only short-term dependencies) by using a gating unit which allows it to

selectively determine what to remember over long spans reducing the number of suc-

cessive gradient calculations. Despite, this improvement, these neural models can still

fail at providing more context-specific representations and tend to be computationally

expensive.

Transformer-based Neural Network: Transformer type neural network architec-

ture addresses the problems associated with earlier neural network models by using

an attention mechanism where each word representation is directly connected with the

representation of every other word. The non-sequential manner in which data is pro-

cessed enables capturing more relationships between words and thus provides better

contextual representation.

Skip-gram approach: An approach for building word embedding models where

during training it tries to predict the source context words (surrounding words) given a

target word (the center word).

CBOW approach: An approach for building word embedding models where during

training it predicts the target word according to its context words.

Pre-trained Model: Neural network architectures allow model pre-training where

word or language representation models can be trained on large generic corpora with

the possibility of subsequently being adapted to specific tasks using an application-

specific training dataset to fine-tune the model.
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Corpus-trained Model: Neural network language representations learned from scratch

using the application training set (task-specific dataset). Note though that all pre-

trained models have been trained on generic corpora.

Fine-tuning technique: This a technique, mainly used in transformer-based archi-

tectures where a pre-trained word model is adapted (fine-tuned) to the classification

task by adding a single additional neuron layer which is task-specific and requires la-

belled training data.

Word Embedding Model: Multi-dimensional vector space representations of words

generated using dimensionality reduction methods that represent the semantics of words

and capture semantic relationships between words. Word embeddings can be created

using principles from the neural network architectures. Some of the most efficient

techniques used to generate word embedding models are skip-gram and CBOW. A

problem with standard word embedding models is that they produce a single vector

representation per word independent of the context in which they appear.

Language Model: These are word representations also referred to as contextualised

word embeddings built using transformer-based principles. They address the limita-

tions associated with conventional word embeddings by computing dynamic repres-

entations for words based on the context in which they are used.

Bidirectional Encoder Representations from Transformers (BERT): A state-of-

the-art language model. It is available as a pre-trained model for various domains.

However, one of the biggest and most widely used pre-trained BERT models is trained

on Books corpus and Wikipedia data. This pre-trained model can be fine-tuned for

various tasks by adding a single output layer.
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GloVe: A count-based word embedding model where dimensionality reduction uses

a co-occurrence counts matrix. For this paper, we used GloVe model pre-trained on a

large corpus of generic Tweets.

Word2Vec: A word embedding model which uses the skip-gram approach to build

term representations. it is a two-layer neural network which gives as an output an

embedding matrix, where each term (single or multi-token) from the corpus vocabulary

is represented as an n-dimensional vector. A problem with the Word2Vec model is that

it ignores the morphology of words by assigning a distinct vector to each word. For

the paper, we used a pre-trained Word2Vec model trained on Google news datasets.

fastText: A word embedding model which generates vector representations of each

character n-gram and words are represented as the sum of these representations. This

allows the creation of representations of rare and misspelled words.

fastText classification pipeline: A one layer neural network which has been de-

veloped to deal with unbalanced large datasets with fast training time. The classific-

ation pipeline learns embeddings for each word in a sentence. These word repres-

entations are then averaged to create a sentence representation, which is fed into the

classifier layer.

Citizen science: The scientific work undertaken by members of the public, often

in collaboration with or under the direction of professional scientists and scientific

institutions to collect biodiversity data.

Passive citizen science: The use of social media that are unconnected to any particu-

lar citizen science program, but represent an unexploited source of valuable ecological

data.
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Twitter: Twitter is a micro-blogging social network which was established in 2006.

The platform has 302 million active users that send over 500 million tweets every

day. Twitter architecture is based on posting short messages, i.e. ‘tweets’ and user

connections are established based on ‘following’ principles.

Tweet: A tweet is a piece of user-generated text with its length up to 280 characters.

It may describe anything a user wants to post, e.g. mood, events, observations. In

addition to posting original content, users can also retweet other’s tweets. Tweets and

retweets from a user will be pushed to their followers Twitter interface for them to

read. A Tweet may include hashtags (words or phrases starting with ‘#’ and mentions

of another user’s name identified with a preceding ‘@’)s.

Followers: Besides posting tweets, a user may subscribe to others’ tweets by follow-

ing them. These relationships are unidirectional where a user can follow another user

without the opposite being true.

Twitter Date Information: A Tweet is associated with its posting timestamp so the

date of which a Tweet is posted is given automatically by Twitter architecture.

Twitter Location Information: Users may optionally publish their location inform-

ation. Further, users may complete their profiles to include information like home cit-

ies, timezones, and personal websites. Timestamps, geo-tags, and user profiles serve as

contextual information for tweets, and we refer to them as tweet context. The optional

sharing of location data may cause incompleteness in the data collections (i.e., lack of

coordinates) which is a critical issue for research on wildlife observations.

Flickr: Flickr, established in 2004, is one of the largest photo-sharing social network

platforms with more than 100 million registered users, and 10 billion photographs
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uploaded. It is used by professional photographers and amateurs to upload and organise

photos within collections on different topics.

Flickr Date Information: A Flickr post is associated with two dates, ‘taken date’

and ‘posted date’. ‘Taken date’ refers to the time at which the photo was taken while

‘posted date’ represents the time at which the photo was uploaded to Flickr. For the

purposes of the thesis, we focus mainly on the ’taken date’.

Flickr Location Information: Providing location information per Flickr post is op-

tional where the user has to choose whether they want to share the location of the photo

or not. Once the user has agreed to share the location, photos are automatically geo-

tagged using GPS coordinates of the device used to take the photo. A similar problem

associated with the lack of location information as for Twitter exists for Flickr, however

in a smaller degree.



Chapter 1

Introduction

Observations on the distribution of wildlife species have always formed a crucial part

of conservation and species management [Amano et al., 2016, Barve, 2014]. Wildlife-

related data is becoming increasingly important in the face of rapid ecosystem changes

that can be brought about, for example, by climate change and invasive species. The

consequences of such changes have implications for disease emergence and spread, as

well as food security [Barve, 2014].

High-quality species distribution data are typically collected by professionals, but such

data can be time-consuming, and expensive to gather, and hence often lack broad cov-

erage [Amano et al., 2016]. To overcome this knowledge gap, especially over a large

spatial and/or temporal scale citizen scientists are often engaged; members of the pub-

lic who volunteer to record the presence of a given species and associated metadata,

such as time, date, and location [Silvertown, 2009, Barve, 2014, Cohn, 2008]. Thus,

citizen science can be defined as the scientific work undertaken by members of the

public, often in collaboration with or under the direction of professional scientists and

scientific institutions to collect biodiversity data [Cohn, 2008, Brown and Williams,

2019]. Citizen science projects can effectively crowd source data [Cohn, 2008]. Due

to the fact of using non-professionals, however, projects frequently come under criti-

cism in terms of the accuracy of species identification, and associated data [Guerrini

et al., 2018]. Further, organising citizen science campaigns and recruitment of vo-

lunteers can be cost-consuming and challenging process [Adler et al., 2020]. More

recent citizen science projects have tried to address the problem of organising cam-

1
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paigns by using internet-based platforms. An example of such platform is iNatur-

alist (https://www.inaturalist.org/), a web-based and mobile-supported social network

which allows individuals to upload photo observations and identify organisms [Arist-

eidou et al., 2021]. However, the problems of attracting volunteers to participate, the

resource-consuming process of organising campaigns, and the lack of broad coverage

of the collected datasets still remain. Social media websites such as Flickr, Twitter,

and Facebook have built a network of more than 2 billion users worldwide, generating

millions of messages daily that are easily accessible, and reflect the observed reality

of a quarter of the human population [Daume, 2016]. Therefore, they emerged as an

informal real-time information source that can contribute to the detection of trends and

early warnings in critical fields such as ecological change, environmental problems,

and shifts in ecosystems [Daume, 2016, Di Minin et al., 2015, August et al., 2020].

We define the use of social media that are unconnected to any particular citizen science

program, but represent unexploited source of valuable ecological data as passive citizen

science. In contrast to citizen science campaigns, the passive citizen science approach

provides a cost and time-efficient method for collecting wildlife-related data on a lar-

ger scale and for wider time-span. Similar to the citizen science approach, it involves

the participation of non-experts. However, the passive citizen science approach con-

sists of crowdsourcing wildlife-related datasets uploaded by the public, independent of

campaigns.

A quantitative review of the application of social media in environmental research, con-

ducted by Ghermandi and Sinclair [2019] suggests a very rapid growth in the field of

environmental monitoring, with Twitter and Flickr being most frequently used as data

sources. Among the identified strengths of social media is the large volume of available

data samples which makes data collection a less labour-intensive, time-consuming and

costly procedure [Ghermandi and Sinclair, 2019, Antoniou et al., 2016, Soliman et al.,

2017]. Social media data also allows for a timely and (near) real-time monitoring and

analysis of species distribution [Ghermandi and Sinclair, 2019, Daume et al., 2014,

ElQadi et al., 2017, Jarić et al., 2020].
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1.1 The Problem

Despite the potential of social media to be used for species distribution models there

are still some concerns about the quality, reliability, and completeness of informa-

tion mined from social media [Ghermandi and Sinclair, 2019, Daume, 2016, Kent and

Capello Jr, 2013]. There are also concerns about the data ownership and future avail-

ability of social network data [Daume, 2016, Palomino et al., 2016, Ghermandi and

Sinclair, 2019]. Further, datasets related to wildlife observations need to be associated

with location information to allow for species tracking and observation of movement

patterns. However, often users refuse to share their location on social media sites which

leads to large quantities of potentially valuable wildlife-related social media data that

lack coordinates information.

Recent research on using social media data as a source for ecology related studies has

focused on addressing some of these problems by proposing verification approaches

and estimating the value of social media platforms to supplement official citizen sci-

ence portals [Daume, 2016, ElQadi et al., 2017, Barve, 2014, Ghermandi and Sinclair,

2019]. Most of the proposed approaches are limited in scale (suitable for verifying

data associated with a few species) and involve manual or semi-automatic verification.

More recent research [Jarić et al., 2020, August et al., 2020, Skreta et al., 2020] invest-

igates automated image verification methods suitable for verifying larger collections,

specifically plants or butterflies. However, the aforementioned research is still limited

in scale and there is lack of verification techniques suitable for textual data.

Text classification approaches are suitable for identifying wildlife-related text-based

social media posts. Machine learning methods [Al-Garadi et al., 2021, Guo et al.,

2020, Liu et al., 2021, Lopez-Lopez et al., 2021] are widely adopted in social media

mining where most of the work is based on using neural network models. However,

most of the existing solutions are suitable for big data analysis and lack extensive

comparison between different classification strategies and their suitability for verify-

ing wildlife-related data. Additionally, work on text classification for wildlife data is
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very limited and it is based on using statistical machine learning algorithms [Jeawak

et al., 2017, 2020, Leung and Newsam, 2012]. Similarly, research on geo-referencing

approaches [Scherrer et al., 2021, Eisenstein et al., 2010b, Priedhorsky et al., 2014,

Rahimi et al., 2017a, De Rouck et al., 2011, Laere et al., 2014a] lack comprehensive

investigation into methods suitable for smaller training datasets. Finally, existing geo-

referencing approaches do not fully take an advantage of recently created transformer-

based neural network models and transfer learning techniques which give state-of-the-

art performance for various Natural Language Processing (NLP) tasks.

The significant need for establishing methodologies for verifying and preparing social

media data to serve as a useful supplement to official citizen science campaigns is the

main motivation for this thesis. This involves the execution of number of steps which

have not been fully researched and can be challenging when dealing with social media

datasets which tend to be noisy and heterogeneous but also may include more spe-

cialised language when search is limited to wildlife observations and also lack large

labelled datasets. In particular, these steps involve validation and geo-referencing. Ad-

ditionally, there is need for establishing methods for analysing the wildlife-related so-

cial media data such as with respect to spatio-temporal patterns. We build towards

establishing such methods by extending on spatio-temporal techniques for object loc-

ation identification to support extraction of object’s trajectory data.

1.2 Research Questions

This thesis is motivated by the hypothesis that social media provide the poten-

tial to supplement active citizen science efforts to acquire observations of wildlife,

and that computing methods can be developed to assist in recognising and geo-

referencing such observations.

The validity of this hypothesis is tested through the conduct of large scale analysis

evaluating the value of social media datasets to supplement citizen science data collec-
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tions and identification of fully automated verification methods suitable for performing

large scale validation of image and text social media data related to wildlife. The thesis

also presents approaches for geo-referencing social media posts related to wildlife fo-

cusing on scenarios with small quantities of training data. Previous work on analysing

the potential of social media data to support wildlife-related studies and verification

techniques (discussed in Sections 2.2.3, 2.2.5 of the Background chapter) are scarce,

limited in scale, or present only semi-automatic approaches. Further, recent research on

geo-referencing social media posts and text classification methods (discussed in Sec-

tions 2.3 and 2.4) usually rely on large amounts of training data and lack extensive ana-

lysis on how state-of-the-art neural network models and transfer learning techniques

can be incorporated in creating more accurate text verification and geo-referencing

methodologies suitable for smaller training datasets and wildlife-related social media

data. Finally, we look at extending on existing spatio-temporal based methods, presen-

ted in Section 2.5, to support trajectory extraction for objects and thus facilitate studies

on movement patterns and tracking of wildlife and weather data objects. The cent-

ral point addressed by this research is that incorporating transfer learning techniques,

state-of-the-art neural network models, and less data consuming rule-based approaches

for geo-referencing can facilitate the creation of validation and preparation techniques

for social media data related to wildlife. In this work, the following research questions

help illustrate the steps towards realising this thesis:

• RQ 1: Can social media data serve as a useful supplement to citizen science data

portals in representing the spatial and temporal distribution of bio-diversity data?

• RQ 2: What are the most efficient text classification approaches for verifying

that social media postings are genuine wildlife observations?

• RQ 3: Can deep learning transformer regression models provide an effective

means of geo-referencing social media posts?

• RQ 4: Do zig zag persistent homology methods have good potential for extract-

ing trajectories of spatio-temporal objects?
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1.3 Solution Framework

In Figure 1.1 we have outlined the framework which we will follow in Chapters 3, 4, 5,

and 6 in order to answer the research questions presented in Section 1.2. In the ‘Veri-

fication’ stage, we looked to verify social media postings as true wildlife observations.

The verified datasets which lack coordinates are passed to the geo-referencing module

for assigning coordinates and finally the trajectory extraction stage can use the geor-

eferenced data to extract object trajectories. This will facilitate analysis into species

movement patterns.

Figure 1.1: Solution Framework

1.4 Contributions

The main contributions made in this research work are outlined below.

• Contribution 1: We conducted a large scale study (including the largest num-

ber of species considered to date) investigating the potential of social media data

to supplement official citizen science data portals. Specifically, a comparison

between image-sharing social media platform and citizen science data collection

has been performed using statistical, spatial, and temporal analysis considering

different spatial and temporal settings. The analysis revealed that image-based

social media platforms could offer a rich source of observation data for certain

taxonomic groups, and/or as a resource for dedicated projects. In particular,

spatial and temporal analysis suggest that the social media dataset best reflects

the citizen data collection when considering a purely spatial distribution with no
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time constraints. Further, we develop a fully automated verification method for

image-based social media platforms suitable for verifying large and diverse col-

lections of species. The approach is based on the the use of an image recognition

tool in combination with species taxonomic data to determine the likelihood that

the mention of a species on social media platform represents a given species.

The work relevant to this contribution is presented in Chapter 3.

• Contribution 2: A comparison between three different classification algorithms,

and various feature extraction and feature integration methods allowed us to

identify techniques suitable for verifying that postings in text-based social me-

dia data collections are relevant to wildlife observations, using limited amounts

of training data. This analysis revealed the potential of state-of-the-art large

pre-trained neural network models that are fine-tuned to the classification task

to correctly classify instances relevant to wildlife even when more specialised

language is used. Further, an investigation into the specific components of the

social media posts that are indicative for genuine wildlife observations on so-

cial media revealed trends concerning the use of hashtags that are unrelated to

official citizen science campaigns. Such hashtags could therefore be exploited

in automated feature selection techniques for improving classification perform-

ance, as well as used as part of more informal campaigns encouraging people to

use these hashtags when wildlife observations are posted. The work relevant to

this contribution is presented in Chapter 4.

• Contribution 3: We conducted analysis into less data-consuming geo-referencing

approaches based on regression, transformer-based models and transfer learn-

ing techniques. Findings showed that using a domain-trained state-of-the-art

language model that is adapted for multivariate regression and augmenting the

training set with datasets from multiple social media platforms can be beneficial

for geo-referencing social media posts. Evaluation has been performed using

wildlife-related social media posts and two regression models — one based on a
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widely used statistical regression approach and the other using neural network-

based regression. Further, we provided the largest collection of geo-referenced

wildlife-related Tweets and a domain-trained transformer model which can be

used in future research on geo-referencing and analysing social media data rel-

evant to wildlife. Finally, we proposed two hybrid approaches incorporating

multivariate regression models based on transformer architecture and rule-based

strategies, i.e., location name extraction and semantic similarities between the

training and test instances. Both strategies and especially location name extrac-

tion combined with regression, led to improvements in the precision of geo-

referencing models without requiring large amounts of training data. The work

relevant to this contribution is presented in Chapter 5.

• Contribution 4: A methodology for extracting and normalising geometric rep-

resentations of trajectories for tracking spatio-temporal phenomena has been de-

veloped. The methodology used the spatio-temporal objects resulting from topo-

logical data analysis based on zig-zag persistent homology. Further, clustering

and normalising the trajectories helped identify similar trajectories and similar

patterns of movement for weather-related dataset. The study also indicates the

potential for these methods to be applied to social media wildlife data. The work

relevant to this contribution is presented in Chapter 6.

1.5 Thesis Outline

The chapters containing the remainder of this thesis are laid out as follows.

• Chapter 2: Background and Research Domain — This chapter introduces

main concepts in citizen science and passive citizen science. It discusses re-

lated work on social media mining techniques, including text classification, geo-

referencing, and trajectory extraction methods. It further identifies gaps in liter-

ature related to verifying and geo-referencing sparse collections of social media
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content related to wildlife, as well as gaps related to trajectories extraction ap-

proaches.

• Chapter 3: Suitability of Social Media as a Supplement to Citizen Science

Portals — Chapter 3 presents a large scale study, including a range of statist-

ical, spatial and temporal analysis for identifying whether photo-sharing media

platforms can serve as a useful source of wildlife data that can complement cit-

izen science data collections. Further, a fully automated verification method has

been presented, suitable for verifying large and diverse collections of image-

based social media datasets. The chapter shows that verified and geo-referenced

image-based social media data can be used to observe certain types of species

and taxonomic groups. The work in this chapter relates to Contribution 1.

• Chapter 4: Text Classification for Verifying Social Media Relevant to Wild-

life — This chapter analyses the suitability of state-of-the-art classification ap-

proaches for verifying text-based social media content related to wildlife with

the presence of limited training data. Chapter 4 shows the potential of state-of-

the-art neural network techniques to facilitate the discovery of valuable wildlife

related data on social networks without the need of human verification steps or

officially organised citizen science campaigns. The work in this chapter relates

to Contribution 2.

• Chapter 5: Geo-referencing Social Media Data Related to Wildlife Obser-

vations — This chapter investigates the benefits of using state-of-the-art neural

network models and transfer learning techniques for building regression models

for geo-referencing social media posts. The research focuses on scenarios with

limited training data and the geo-referencing of wildlife-related posts. Chapter

5 shows that enriching small training sets with additional labelled data from di-

verse social media networks can be beneficial for the performance of regression

models, especially when combined with domain-trained contextual word repres-

entations. Further, we present analysis into two hybrid approaches for improving
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the precision of geo-referencing social media posts that do not require additional

training data. The work in this chapter relates to Contribution 3.

• Chapter 6: Extracting Geometric Representations Of Trajectories — This

chapter presents a method for trajectory extraction based on using objects loc-

ations extracted from imagery data using temporal analysis approaches. The

chapter also shows that normalisation techniques such as clustering help identify

object movement directions. The work in this chapter relates to Contribution 4.

• Chapter 7: Conclusions and Future Work — This chapter concludes this

thesis and summarises our contributions and findings. It also highlights work

that could be undertaken to take this project further and covers future plans for

building on approaches for facilitating the use of social media data in wildlife

studies.



Chapter 2

Background and Research Domain

As discussed in Chapter 1, wildlife data is often used for studying changes in species

movement patterns and invasive species occurrences. Such information is important

for detecting early environmental and climate changes as well as supporting species

preservation campaigns Amano et al. [2016], Barve [2014]. Traditional methods for

collecting environmental data involve professionals or more often volunteers (i.e., cit-

izen scientists) who take part in official campaigns to observe given species. These

campaigns or the involvement of professionals to collect wildlife-related data are often

costly and time-consuming to organise and execute [Amano et al., 2016, Silvertown,

2009, Doyle et al., 2019]. Due to its wide usage, social media platforms such as Flickr

and Twitter, represent an unexploited source of potentially valuable wildlife data which

is less costly to obtain but yet can complement citizen science data collections and

provide a real-time species monitoring [Daume, 2016]. However, concerns about the

correctness and completeness of social media data still remain unresolved. Previous

research is limited in scale and often involves manual processing. Further, preparing

social media data to serve as a supplement to citizen science data collections involve

the execution of a number of steps which have not been fully researched and can be

challenging when dealing with wildlife-related collections which lack large amounts

of labelled data. In particular, preparation of data involves validation, geo-referencing,

and extraction of spatio-temporal movement data. Thus, the problem of applying social

media mining techniques to validate social media data relevant to wildlife observations

is the basis of the research in this thesis. This chapter provides a review of main tech-

11
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niques and concepts in social media mining including a survey of some of the most

relevant works of the area. Further, we point to gaps in the literature in relation to

our problem focus set out in Chapter 1, i.e., verifying, geo-referencing, and analysing

social media data relevant to wildlife.

2.1 Citizen Science

2.1.1 Definition and Applications

Wildlife observation is the practice of noting the occurrence or abundance of a dead or

living animal species at a specific location and time [Davis and Winstead, 1980]. High-

quality species distribution data are typically collected by professionals, but such data

can be time-consuming, and expensive to gather, and hence often lack broad coverage

[Amano et al., 2016, Silvertown, 2009, Doyle et al., 2019]. To overcome this know-

ledge gap, especially over a large spatial and temporal scale many wildlife-related

studies involve the participation of members of the public who volunteer to record

the presence of a given species and associated metadata, such as time, date, and loca-

tion [Silvertown, 2009, Barve, 2014, Cohn, 2008]. These volunteers are referred to as

citizen scientists. In this context (recalling from Chapter 1), citizen science, also called

participatory science and crowd-sourced science, can be defined as ‘the scientific work

undertaken by members of the public, often in collaboration with or under the direction

of professional scientists and scientific institutions to collect biodiversity data’ [Cohn,

2008, Brown and Williams, 2019, Doyle et al., 2019]. Engaging non-professionals

in wildlife observation campaigns allows for the collection of biodiversity data on a

larger scale at a lower cost, compared to traditional wildlife-observation approaches

involving only professionals. Therefore, citizen science projects have been remarkably

successful in advancing research in bio-geography, ecology, invasive species biology,

climate change, and land cover use [Bonney et al., 2009, Barve, 2014, Amano et al.,

2016, Laso Bayas et al., 2021]. The data collected through citizen science campaigns
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is usually available through digital biodiversity data portals Barve [2014]. Some of

the most successful UK-based citizen science campaigns have been organised by the

British Trust for Ornithology’s (BTO) 1 and Royal Society for Protection of Birds

(RSPB) 2 [Hart et al., 2012]. In particular, garden-based citizen science programs have

been very successful in collecting biodiversity data, particularly on avian species. Ex-

amples of such citizen science campaigns are the ‘Garden BirdWatch’ and ‘Big Garden

Weigh-In’ organised by the BTO and ‘Make Your Nature Count survey’ organised by

the RSPB.

2.1.2 Citizen Science Data Portals

The emergence of Internet technologies stimulated a process of integrating the data,

collected by citizen science campaigns into digital data portals which provide easy

access to diverse data collections, facilitate the conduct of ecology and wildlife-related

analysis, and further help for the organisation of citizen science campaigns [Yesson

et al., 2007, Heberling et al., 2021]. Some of the most diverse and large citizen science

data portals are explained in the rest of this section.

Global Biodiversity Information Facility (GBIF) Global Biodiversity Information

Facility (GBIF) is the world’s largest biodiversity data network [Heberling et al., 2021].

It provides the largest single gateway to wildlife observational data collected by citizen

scientists [Yesson et al., 2007]. It has been created with the aim to make the world’s

biodiversity data freely and universally available via the Internet and enable scientific

research Bridgewater et al. [2010]. It has been funded by world’s governments and

aimed at providing anyone, anywhere, open access to data about all types of life on

Earth.
1BTO: http://www.bto.org/
2RSPB: http://www.rspb.org.uk/

http://www.bto.org/
http://www.rspb.org.uk/
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National Biodiversity Network (NBN) National Biodiversity Network (NBN) is the

UK node of GBIF (see Figure 2.1). The NBN is a collaborative project committed

to making biodiversity information available via the NBN Atlas. The National Biod-

iversity Network (NBN) is registered as a charity and supports the sharing of ecological

data in the UK since 2000. The goal of the project is to improve the availability of high-

quality species occurrence data in the UK. It is the largest collection of biodiversity

information within the UK and Ireland and has revolutionised the use of biodiversity

data by allowing it to be shared, downloaded, analysed, and researched by the public.

NBN Atlas holds more than 220 million species occurrence records combined from

individual observations and official organisations such as the ‘Royal Society for the

Protection of Birds (RSPB)’. NBN datasets have proved beneficial in studying wildlife

distribution in a number of studies [Leivesley et al., 2021, Blight et al., 2009]. It also

provides a programmatic API which facilitates fast and efficient data acquisition and

processing.

Figure 2.1: NBN interface

iNaturalist iNaturalist is a web-based and mobile-supported social network which

allows individuals to upload photo observations and identify organisms [Aristeidou

et al., 2021] (see Figure 2.2). It can be used to record species observations, share find-
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ings with others, get help with identifications, or access the observational data collected

by iNaturalist users. Therefore, it is a crowd-sourced species identification system and

an organism occurrence recording tool. Further, it aims to generate scientifically valu-

able biodiversity data from volunteer’s observations.

Figure 2.2: iNaturalist interface

2.1.3 Issues with Citizen Science Campaigns

Despite the large efforts in collecting, sharing, and providing easy accessibility to cit-

izen science data, projects frequently come under criticism in terms of the accuracy of

species identification, and associated data due to the fact of using non-professionals [Guer-

rini et al., 2018]. Further, organising citizen science campaigns and recruitment of vo-

lunteers can be cost-consuming and challenging process especially when observational

data need to be collected over long periods of time [Adler et al., 2020]. Therefore, stud-

ies are often conducted on a limited spatial and temporal scale and focus on a limited

number of species. These lead to gaps in the biodiversity data collections, both geo-

graphically and taxonomically [ElQadi et al., 2017, Barve, 2014]. More recent citizen

science projects have tried to address the problem of organising campaigns by creating

Internet-based platforms (described in Section 2.1.2) or using existing social networks
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for attracting and gathering volunteers. For instance, the citizen science platform iNat-

uralist has been successfully organising campaigns for observing wildlife [Aristeidou

et al., 2021]. The authors of [Aplin et al., 2021] uses a mobile application for collect-

ing observational data about parrots and studying their social organisation. Another

example includes urban residents reporting occurrences of tagged birds through a Face-

book group, a smartphone application and email [Davis et al., 2017]. A crowdsourcing

tool was employed in [Fritz et al., 2012] to collect data for the creation of a land cover

map, while in [Paul et al., 2018, Lowry and Fienen, 2013] crowdsourcing was used

as a supplemental method for collecting hydrologic data. However, the problems of

attracting volunteers to participate and the cost of organising campaigns still remain.

2.1.4 Summary

Citizen science, consisting of organising campaigns for non-professional volunteers

has become a standard approach for collecting wildlife observational data which can

be used to facilitate ecology-related studies. Despite the efforts of integrating and

making citizen science-related data easily accessible through data portals, the prob-

lems associated with the correctness, completeness, and diversity of the wildlife data

collected still remain. Additionally, organising specific campaigns for gathering vo-

lunteers can be a resource-consuming process. The emergence of social media sites

which provide a large sharing platform for information has led to an increasing interest

in the suitability of this data for studying wildlife. The need to further explore how

social media mining techniques can be used to validate and prepare such sources for

supporting wildlife studies is the main motivation for the research in the thesis and thus

we focus on this problem in the next sections.



2.2 Social Media 17

2.2 Social Media

2.2.1 Definition, Usage, Types

The rapid emergence of Web 2.0 and the easy public access to Web 2.0-based techno-

logies marked a new era for Internet use allowing users not only to view content but

also to communicate, share and exchange information through the use of social media

platforms. In this context social networking sites (SNSs) can be defined as ‘web-based

services that allow individuals to (1) construct a public or semi-public profile within a

bounded system, (2) articulate a list of other users with whom they share a connection,

and (3) view and traverse their list of connections and those made by others within

the system’ [Boyd and Ellison, 2010]. The wide accessibility and real-time manner in

which information is exchanged on SNSs led to an increasing use of these platforms

and the generation of large volumes of content, including text, photo, audio, and video

data [Camacho et al., 2020, Magge et al., 2021, Daume, 2016, Di Minin et al., 2015,

August et al., 2020, Gundecha and Liu, 2012]. Therefore, SNS have become not only

a valuable communication platform for people but also a valuable information source

that can contribute to various applications such as trend and event detection in the eco-

nomy, public opinion and population health [Magge et al., 2021, Burnap et al., 2016,

Preis et al., 2013, Ortiz et al., 2011, Mellon, 2014, Ahani and Nilashi, 2020], fake news

and propaganda identification [Ozbay and Alatas, 2020, Shu et al., 2017, Wu and Liu,

2018], emergency and disaster management [Imran et al., 2020, Luna and Pennock,

2018, Daume, 2016, Martin et al., 2020], marketing research [von Scheel et al., 2015],

and many more.

Based on the definition for SNSs by Boyd and Ellison [2010] and the type of data

exchanged on these platforms, we distinguish the following types of SNSs — social

communication networks, photo-sharing network sites, micro-blogging network sites,

location-based social networks (LBSNs).
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Social Communication Networks: The purpose of these Internet platforms is to

simulate the establishment of friendships and social connections from real life [Zheng,

2011]. These SNSs allow users to share with one another hybrid type of content, in-

cluding text, photos, and videos [Pittman and Reich, 2016]. Further, they require a

mutual connection between users based on ‘friendships’ where users in order to inter-

act have to be part of each other’s ‘friendship groups’. Facebook, established in 2004,

is the biggest social communication network worldwide with 2.85 billion monthly act-

ive users as of the first quarter of 2021 3. Another example of social communication

network is LinkedIn which is mainly used for professional networking, and facilitates

connections between job seekers and employers. Some of these social networks allow

users to share their location or attach GPS location information to their posts.

Micro-blogging Network Sites This type of SNSs allow users to share short state-

ments (i.e., micro-blogs) with other users of the network where micro-blogs are primar-

ily text-based but can also include links to other types of media (photos, videos, refer-

ences to web pages). In contrast to Social Communication Networks, micro-blogging

platforms do not require mutual ‘friendship’ connections for sharing and viewing in-

formation. Twitter is one of the most popular micro-blogging network sites that lets

users share 280-character ’tweets’ of text which might link to other sites or photo/video

files.

Photo-sharing network sites Photo-sharing platforms allow people to store, organ-

ise, share and search photos collections related to a given topic or interest. Photos are

usually associated with a title, description, and list of tags describing the content of

the photo. Unlike the other types of social networks, the purpose of these SNSs is

image sharing rather than text-based message exchange. The most widely used photo-

sharing network sites are Flickr, Snapchat, Instagram. Additionally, users can share

3https://s21.q4cdn.com/399680738/files/doc_financials/2021/

FB-Earnings-Presentation-Q1-2021.pdf

https://s21.q4cdn.com/399680738/files/doc_financials/2021/FB-Earnings-Presentation-Q1-2021.pdf
https://s21.q4cdn.com/399680738/files/doc_financials/2021/FB-Earnings-Presentation-Q1-2021.pdf
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GPS location associated with each photo as well as personal location.

Video-sharing Network Sites These platforms allow sharing video content where

similarly to the photo-sharing network sites videos are usually associated with a title,

description, and list of tags describing the video. TikTok is one of the most recent and

popular video-sharing network sites used for creating and sharing short videos. TikTok

was created in 2016 and it has 689 million users worldwide [Mohsin, 10]. However,

analysing video content is outside the scope of our research.

Location-Based Social Networks (LBSNs) The increasing availability of location-

acquisition technologies such as GPS led to the emergence of LBSNs where users

can share location-related data such as the venues, places, or Points-of-Interest (POI)

they visit. These platforms help users establish connections with other users based

on common location interests (nature walks, restaurant preferences), and also check

venue properties, such as their opening times, opinions, and pictures [Torrijos et al.,

2020] as well as provide recommendations based on previously visited locations. A

popular LBSN which allow users to share their current location and explore venue’s

information is Foursquare.

2.2.2 Passive Citizen Science

As described in Section 2.2.1, the exponential growth of connections and information

on social media platforms make them a valuable source of knowledge for many ap-

plications. Throughout the thesis, we focus on analysing the potential of social media

datasets to be used for wildlife observation studies and supplement citizen science data

portals. As mentioned in Chapter 1, we define the use of social media that are uncon-

nected to any particular citizen science program, but represent an unexploited source

of valuable ecological data, as passive citizen science. In contrast to citizen science,
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the passive citizen science approach provides a cost and time-efficient method for col-

lecting wildlife-related data on a larger scale and for a wider time-span. Similar to

the citizen science approach, it involves the participation of non-experts. However,

wildlife-related data can be obtained without organising specific campaigns. Further,

there are no restrictions on species observations and time-frames. Instead it consists of

a process of crowdsourcing in which data are retrieved from Internet resources, partic-

ularly social media, to which members of the public have uploaded observations such

as annotated photos of wildlife.

In particular social media data have the following advantages in being used to supple-

ment official citizen science campaigns [Ghermandi and Sinclair, 2019]:

• Large data volumes at no costs — Social networks generate large amounts of

user content daily, some of which might be useful for wildlife-related research.

The large volume of available data makes data collection a less labour-intensive,

time-consuming and costly procedure [Ghermandi and Sinclair, 2019, Antoniou

et al., 2016, Soliman et al., 2017].

• Support cross-validation of data collected by citizen science projects [Di Minin

et al., 2015]

• Support large scale of analysis — Traditional approaches are limited to exploring

only a few species depending on the purpose of the citizen science campaign that

has been conducted. Social media data can be easily applicable to scales, such

as entire populations, ecosystems or biomes.

• In locations where resources for field work and data collection are scarce, social

media can help save resources and allow directing professional data collection to

less known or more poorly accessible areas [Di Minin et al., 2015].

• Support real-time monitoring — Social media data allows for a timely and (near)

real-time monitoring and analysis of land use changes [Sitthi et al., 2016], spe-

cies distribution [Jeawak et al., 2020, Ghermandi and Sinclair, 2019, Daume
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et al., 2014, ElQadi et al., 2017], early warning to natural hazards [López-Cuevas

et al., 2017] and provide early alerts for pending and potentially irreversible

shifts in ecosystems [Daume, 2016, Di Minin et al., 2015, August et al., 2020]

Despite these benefits of social media to be used for species distribution models, there

are still some concerns about the quality and reliability of information mined from so-

cial media [Ghermandi and Sinclair, 2019, Daume, 2016, Kent and Capello Jr, 2013].

There are also concerns about the data ownership and future availability of social

network data [Daume, 2016, Palomino et al., 2016, Ghermandi and Sinclair, 2019].

Further, datasets related to wildlife observations need to be associated with location

information to allow for species tracking and observation of movement patterns. How-

ever, often users refuse to share their location information on social media sites which

leads to large, potentially valuable, quantities of wildlife-related social media data that

lack coordinates information.

2.2.3 Social Media Mining

Social media mining is the process of representing, analysing, and extracting know-

ledge patterns from unstructured social media content [Gundecha and Liu, 2012, Za-

farani et al., 2014]. It is an interdisciplinary field encompassing techniques from com-

puter science, statistics, social sciences and more.

Some of the main challenges associated with analysing social media data include noisy

user-generated content written in informal manner where it is possible to have mis-

spellings, jargon language, and unfinished sentences [Hua et al., 2012]. Further, posts

are often uploaded as micro-blogs with a limited length which can include text, im-

ages, links. Therefore, social mining techniques need to deal with short sequences

with heterogeneous nature [Liu et al., 2016, Imran et al., 2020]. Further, performing

Natural Language Processing (NLP) tasks such as Named Entity Recognition (NER)

and Part-of-Speech (POS) tagging are more challenging for short sequences and thus
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require different methods versus when analysing documents [Van Laere et al., 2013]

Social media mining techniques have been extensively used in numerous fields of sci-

ence such as identifying crime hotspots [Yang et al., 2018a], real time disaster man-

agement detection [Ekta et al., 2017], and monitoring public health [Magge et al.,

2021]. Much of the research in social media mining focuses on performing big data-

related analysis and using data-consuming machine learning approaches [Purohit and

Peterson, 2020, Usero et al., 2022, Manoharan and Senthilkumar, 2020]. Examples in-

clude classification approaches for disaster [Purohit and Peterson, 2020] and business

management [Usero et al., 2022], and for support for drug development [Manoharan

and Senthilkumar, 2020]. Further, machine learning techniques have been extensively

used for categorising and georeferencing social media data [Çöltekin and Rama, 2018,

Mohammad et al., 2018, Jeawak et al., 2017, 2018, Jauhiainen et al., 2019, Martinc

and Pollak, 2019, Jeawak et al., 2020].

There has also been a rapid growth of the use of social media mining techniques in

the field of environmental monitoring, with Twitter and Flickr being most frequently

used as data sources [Ghermandi and Sinclair, 2019]. An overview of the impact of in-

ternet social networks on traditional biodiversity data collection methods by Di Minin

et al. [2015] is optimistic and concludes that social media can potentially play an im-

portant role in conservation science. A couple of studies used crowdsourcing tools for

the creation of a land cover map [Fritz et al., 2012] and as a supplement to citizen

science campaigns for collecting hydrologic data [Lowry and Fienen, 2013]. Other

work by Daume [2016], ElQadi et al. [2017], Barve [2014] focused on evaluating so-

cial network sites (Flickr and Twitter) relative to biodiversity data portals in order to

identify the potential use of ad-hoc methods for augmenting traditional citizen science

data collections. However, this previous research was conducted on a narrow range

of species (between two and four) and verification of social network datasets was per-

formed semi-automatically or manually. For instance, the authors of Barve [2014]

collected geo-referenced Flickr image data related to Snowy Owl (Bubo scandiacus)
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and the Monarch Butterfly (Danaus plexippus) in order to compare the Flickr collec-

tion with the collection available on the citizen data portal GBIF. They did not perform

validation, instead they simply compared the map species distributions between the

two collections. The research by Daume [2016] used Twitter for collecting wildlife

data and performed verification manually. ElQadi et al. [2017] verify Flickr data using

an image content recognition tool. Google Reverse Image Search was used in order

to return labels per photo which best describe the content of the given photo. All la-

bels per species are ordered in descending order of frequency. Then, species-relevant

tags and species-irrelevant tags were identified among the most frequent ones which

indicate that the given photo is a true representation of the given species.

Recent research by Jarić et al. [2020] presents a review of the iEcology approach which

encompasses the use of automated tools for discovering patterns in the natural world

using data accumulated in digital sources collected for other purposes. The authors

highlight the value of social media such as Flickr. The use of iEcology approaches is

increasing as it provides low-cost and fast data collection, pattern identification, and

visualisation of nature-related data. In particular, the study of August et al. [2020] in-

vestigates whether a plant species image classifier can be used to extract relevant plant

observations from Flickr, using a general search term of ’flower’. Analyses showed

that automated methods have the potential to help identify wildlife-related imagery

data on social media, especially when photos were focused on single native species in

rural situations or when classification was performed at a genus or class level. It was

suggested that future work could usefully focus on searching for individual species

including invasive species. Work by [Skreta et al., 2020] presents an image-based clas-

sification approach which also considers image metadata information such as latitude,

longitude, and date to support a fine-grained distinction between different butterfly spe-

cies. The aim is to support the automated verification of butterfly images for the citizen

science portal eButterfly. Currently, the verification of the images has been conducted

manually by entomologists. The research shows that an automated model that, along

with the image, incorporates geographic and temporal information, can support the
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labelling of butterfly species without the need of human experts. A drawback of this

approach is the need of large amounts of labelled images to build an accurate classi-

fier. Image sharing social media platforms are also used in [Roos and Longo, 2021]

where authors collect fish-related images from three different social networks to ob-

tain fisheries information in order to detect illegal actions and help the development of

conservation strategies.

Most of the aforementioned approaches do not offer automated verification of social

media data that is suitable for large scale studies, especially when the data that is ana-

lysed is text-based. Additionally, there is need for the development of methods which

help object’s trajectory extraction and facilitate better visualisation of movement pat-

terns rather than simply plotting the coordinates of wildlife-observations obtained from

social media posts.

2.2.4 Twitter and Flickr

As identified in Section 2.2.3, Twitter and Flickr have been successfully used as part

of official citizen science campaigns and also as data sources for ecology and wildlife

observation studies. This shows their potential as passive citizen science sources. Both

networks provide a relatively easy access to the data uploaded and represent different

types of SNSs (i.e. images versus text). Twitter is a micro-blogging social network

while Flickr is is one of the largest photo-sharing social network platforms. Thus, they

provide a platform for experimenting with verification methods suitable for images and

text-based posts, which is the reason for using Twitter and Flick as exemplary social

media platforms for the research in the thesis.

2.2.5 Summary

Social media data, especially Flickr and Twitter, has been identified as a useful source

of ecological data. However, such informal sources of information require verification
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before data being used in ecology-related research. Additionally, most of the research

on using social mining techniques related to wildlife is limited in scale and it is using

manual or semi-automatic verification analysis. Additionally, most of the automated

image verification techniques require large amounts of annotated photos which are hard

to obtain as the annotation needs to be performed by experts. Research is also lacking

a large scale comparison between traditional citizen science portals and social media

platforms. We address this research gap with research question RQ 1.

Finally, this section outlined three main aspects of preparing social network datasets to

be used as part of wildlife-related research. These are: verification of genuine wildlife-

related posts which requires classification approaches, need for geo-referencing tools,

and ability to plot movement data to support identifying and tracking moving objects.

These are further discussed in the subsequent sections, Section 2.3, Section 2.4, and

Section 2.5.

2.3 Supervised Text Classification

2.3.1 Definition and Applications

Text or sentence classification methods typically use supervised machine learning to

assign one or more labels to a given sentence or document [Deng et al., 2019, Zhong

and Enke, 2019]. Text classification for social media data can be particularly challen-

ging because of the short text sequences [Chen et al., 2019], noisy data, and large num-

ber of misspellings and jargon language used, as well as the presence of polysemous

words [Bouazizi and Ohtsuki, 2019].

The main steps of the text classification process involve feature extraction, feature

integration, and using a machine learning algorithm to build a predictive model for

labeling unseen text instances (see Figure 2.3).
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Figure 2.3: Overview of Text Classification Pipeline

Text classification methods have been extensively used in social media mining for cat-

egorising and filtering data. Examples include detection of depression [Burdisso et al.,

2019], real-time emergency response [Imran et al., 2020, Luna and Pennock, 2018,

Daume, 2016, Martin et al., 2020], marketing research [Hartmann et al., 2019], and

many more. However, text classification has not been widely deployed in categorising

and identifying wildlife-related observations. The thesis is particularly concerned with

using sentence classification for verifying text-based social media posts related to wild-

life observations which can be used for supplementing citizen science collections. We

discuss relevant work and challenges associated with this task in Sections 2.3.5 and

2.3.6.

Our text verification approach consists of performing experiments with various ma-

chine learning and feature extraction and integration methods in order to identify clas-

sification methodologies suitable for identifying wildlife-related posts on social me-

dia. Thus, in the following, we describe classical machine learning approaches as

well as the state-of-the-art neural network models used for text classification (see Sec-

tion 2.3.2) which have become commonly adopted for categorising social media data.

Further, we explain methods for extracting and integrating the features often used as
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input for classification models (see Section 2.3.3 and Section 2.3.4).

2.3.2 Machine Learning Approaches

Classical Machine Learning

We refer to classical machine learning as a group of algorithms which are often coupled

with feature vectors that represent the frequency of occurrence of individual words. A

drawback of such approaches is that they are limited in their capacity to deal with out-

of-vocabulary words (i.e. words in the test data that were not observed in training) and

with fine-grained distinction between classes [Joulin et al., 2017]. However, classical

machine learning algorithms such as Support Vector Machines (SVM) and Logistic

Regression are still widely used for many social network classification tasks [Çöltekin

and Rama, 2018, Mohammad et al., 2018] and ecology studies [Jeawak et al., 2017,

2018, Jauhiainen et al., 2019, Martinc and Pollak, 2019, Jeawak et al., 2020]. For the

rest of this section, we review some of these machine learning algorithms which we

have also experimented with in the thesis.

Support Vector Machines (SVM) Boser et al. [1992]: The objective of the sup-

port vector machine algorithm is to find a hyperplane (decision boundary) in an N-

dimensional space(N - the number of features) that distinctly classifies the data points.

The optimum hyperplane is the one with the maximum distance between data points

of both classes. Hyperplanes are decision boundaries that help classify the data points.

Data points falling on either side of the hyperplane can be attributed to different classes.

Also, the dimension of the hyperplane depends upon the number of features. SVM

classifiers tend to perform well with a limited amount of labelled data and give a strong

baseline performance for many classification tasks.
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Naive Bayes classifier: These algorithms are based on applying Bayes’ theorem

with the assumption of conditional independence between every pair of features given

the value of the class variable. Despite their simplicity, they tend to perform classific-

ation fast and have led to strong performance in various classification tasks [Prabhat

and Khullar, 2017]. Further, these algorithms provide explanations of the features that

were most significant for classifying given test instance.

Logistic Regression (LR): Logistic regression is a statistical model that in its ba-

sic form uses a logistic function to model a binary dependent variable and it is used

to predict discrete data. It is widely used in classification to solve problems such as

identifying spam emails, fraud in online transactions, and medical notes applications

for identifying mentions of tumor malignant or benign. It can easily extend to mul-

tiple classes (multinomial regression) and makes no assumptions about distributions of

classes in feature space. However, non-linear problems cannot be solved with logistic

regression because it has a linear decision surface [Walker and Duncan, 1967].

Neural Network Machine Learning

Neural network models in contrast to some classical classification approaches such as

those described above can capture complex non-linear relationships. Earlier neural net-

work models commonly use a feed-forward approach, which processes the words of

text input in a sequential manner with one word followed by the next word (including

for their representations within the layers of network). Examples of such neural net-

works are recurrent neural network (RNN) and long short-term memory (LSTM) which

have been extensively used in various text classification tasks [Xiao and Cho, 2016],

including social network-related classification [Huang et al., 2019, Gambäck and Sik-

dar, 2017, Poria et al., 2016]. Though they process one word at a time in sequence

they do often include methods to retain, at each stage, knowledge of other words in

the input sequence. However such models can struggle to capture effectively these
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long term dependencies as doing so depends typically on a back-propagation training

process that involves calculating gradients where those gradients can become unman-

ageable due to being either too high or too low (referred to as exploding and vanishing

gradients respectively). The LSTM architecture mitigates this somewhat with a gating

unit which allows it to selectively determine what to remember over long spans redu-

cing the number of successive gradient calculations. Despite, this improvement, these

neural models can still fail at providing more context-specific representations and tend

to be computationally expensive [Merity et al., 2018, Yang et al., 2018b].

An example of a widely used neural network classification model is the fastText pipeline

classifier which addresses this problem with an approach based on word embeddings

(see also section 2.3.3) that represent the meaning of words with multi-dimensional

vectors based, in the case of fastText, on parts of words [Joulin et al., 2017]. The

approach enables good prediction accuracy in classification tasks where some classes

have very few examples. The fastText classification pipeline is referred to as a shallow

neural network as it consists of a single layer of neurons and it is also referred to as a

linear classifier (in contrast to multi-layer neural networks). The classification pipeline

initially represents each word in a sentence with its corresponding embedding. These

word representations are then averaged to create a sentence representation, which is

fed into the classifier layer. The fastText classification pipeline has given a strong per-

formance in many classification tasks [Joulin et al., 2017]. However, it has not received

much attention in ecology studies or social media-related research.

The limitations of the early feed-forward neural network architectures are addressed

in the transformer architecture in which the representation of each word is directly

connected to the representation of every other word [Merkx and Frank, 2020]. These

connections use attention methods (typically a form of dot product) that update one

representation as a function of other connected representations. The non-sequential

manner in which data is processed enables capturing more relationships between words

and thus provides better contextual representation [Vaswani et al., 2017].
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For instance, BERT (Bidirectional Encoder Representations from Transformers) [Devlin

et al., 2019] is a transformer-based model that achieves state-of-the-art performance in

various NLP text classification tasks. Although BERT has been used to classify Tweets,

such as to infer their locations [Scherrer et al., 2021], we are not aware of previous

work to date in applying such transformer models to wildlife observation. The BERT

model, similar to other transformer-based models, is created in two phases. In the pre-

training phase, word representations are trained from scratch using masked language

modelling with only unlabelled data. In the fine-tuning phase, a pre-trained model is

adapted to a particular downstream task. For example, for the classification task, the

embedding of the token called [CLS] is extracted from the last hidden layer of the

BERT neural network representation. The output corresponding to that token can be

considered as an embedding for the entire input sentence. This token is passed to a sep-

arate neural network layer (sequential classifier) in order to predict labels for unseen

instances. In this phase, labelled training data is required.

2.3.3 Feature Extraction

Feature extraction consists of selecting the tokens which will participate into train-

ing of the classification model and building numerical representations for the selected

tokens. We distinguish between three main types of feature extraction techniques, i.e. a

simple frequency-based feature representation, word embeddings consisting of multi-

dimensional vectors that represent the semantics of words and capture semantic rela-

tionships between words [Mikolov et al., 2013b, Pennington et al., 2014, Bojanowski

et al., 2017], and transformer language models (also referred to as contextualised word

embeddings) that have a neural network architecture.
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Frequency-based Representation

Traditional feature representation techniques represent words simply as indices in a

vocabulary. An example is the n-gram model, often used in combination with classical

machine learning approaches [Peng and Dean, 2007, Mikolov et al., 2013b], described

in Section 2.3.2 where the input features consist of a vector representing the presence

or frequency of each word from an entire text collection (with most elements therefore

being zero). Such approaches that represent words directly do not capture the meanings

of words and will fail to take account of out-of-vocabulary words encountered when

applying the classifier to unseen data [Peng and Dean, 2007, Mikolov et al., 2013b].

Word Embedding Representation

As mentioned earlier, word embeddings represent words as low-dimensional vectors

intended to capture the semantics of the respective words. Words that are similar in

meaning will tend to occur close to each other in the vector space, enabling measure-

ment of similarity between individual words or of analogy between pairs of words.

Common techniques for generating word embeddings are Continuous Bag-of-Words

(CBOW) and skip-gram [Mikolov et al., 2013a]. The skip-gram approach learns to

predict a target word based on a nearby word. On the other hand, the CBOW model pre-

dicts the target word according to its context. Unlike most of the previously used archi-

tectures for learning word vectors, training of the skip-gram or CBOW model does not

involve dense matrix multiplications which makes the training more efficient [Miko-

lov et al., 2013a]. One of the first widely used models using skip-gram approach for

building term representations is Word2Vec [Mikolov et al., 2013a]. Word2Vec embed-

dings [Mikolov et al., 2013a] are generated with a two-layer neural model where the

output of the model is an embedding matrix, where each term (single or multi-token)

from the corpus vocabulary is represented as an n-dimensional vector. A limitation

of Word2Vec is that it ignores the morphology of words by assigning a distinct vec-

tor to each word. This Word2Vec limitation is addressed in the fastText approach
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[Bojanowski et al., 2017] where each word is represented as a bag of character n-

grams. A vector representation is associated with each character n-gram and words

are represented as the sum of these representations. This enables the construction of

vectors for rare or misspelled words. Glove embeddings of words [Pennington et al.,

2014] are generated from a matrix of the co-occurrence of pairs of words such that the

learnt embeddings have the property that the dot product of pairs of word embeddings

reflects the log of the probability of the co-occurrence of the respective words. Word

embedding models, pre-trained on large corpora of unlabelled data such as news cor-

pora, are widely used in solving NLP problems by adapting the pre-trained models to

the specific task or domain.

Language Model Representation

A limitation of the word embedding models described above is that they produce a

single vector of a word independent of the context in which it appears. Language

models, built using transformer-based principles described in Section 2.3.2, address

this limitation by computing dynamic representations for words based on the context

in which they are used [Peters et al., 2018, Devlin et al., 2019].

One of the first state-of-the-art transformer-based models is BERT [Devlin et al., 2019].

It is built using using transformer-based Masked Language Model (MLM) which ran-

domly masks some of the tokens from the input, and the objective is to predict the

original vocabulary id of the masked word based only on its context. Unlike left-to-

right language model pre-training, the MLM objective enables the representation to

incorporate the left and the right context, which allows more context-based repres-

entations. The pre-trained BERT model can be fine-tuned with just one additional

output layer to create state-of-the-art models for a wide range of tasks, such as ques-

tion answering and language inference, without substantial task-specific architecture

modifications [Devlin et al., 2019]. We described the usage of BERT for classification

in Section 2.3.2.
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Transfer Learning

Neural network models usually require large volumes of annotated data to perform

well [Tan et al., 2018]. However, obtaining such large volumes of labelled datasets

is a time- and resource- consuming process [Tan et al., 2018]. Transfer learning is a

widely applied technique in neural network machine learning where representations

learned for one task can be applied or adapted for a different task using less volumes

of training data, compared to training neural models from scratch [Bailey and Chopra,

2018].

Some neural network architectures, such as transformer models, employ transfer learn-

ing in which, for NLP applications, the model is trained initially on large generic text

corpora, referred to as pre-training, which can be very time consuming. To apply

the model to a specific task, it can be fine-tuned on a smaller set of application spe-

cific data that allows the model to adapt to the particular application [McCann et al.,

2017, Howard and Ruder, 2018] (as already mentioned in previous sections). The pre-

training can be expected to have exposed the model to a much wider vocabulary and

range of language uses than in the task-specific training dataset. However, the word

representations obtained through pre-training might be similar to those of related words

that do appear in the task-specific dataset, which allows the model to generalise better

when it is applied to unseen data [Goldberg, 2016]. Such language models and sets

of word embeddings could also be learned from scratch using the application dataset,

resulting in the case of conventional word embeddings in corpus-trained embeddings.

2.3.4 Feature Integration

The feature integration step involves building a representation of the entire sentence us-

ing the token feature vectors, obtained during feature extraction. A simple but widely

used method for building text representations is bag-of-words (BOW) approach which

is based on the statistics of the n-gram occurrences, counts or tf-idf, of the 1-grams
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and 2-grams in the given text. Further, many feature integration approaches are based

on applying dimensionality reduction techniques over the word embedding representa-

tions in order to obtain sentence representations. We conduct experiments with differ-

ent dimensionality reduction techniques in Chapter 4.

2.3.5 Text Classification for Social Media

Text classification approaches have been extensively used for various social media-

related applications. These include disaster management [Reynard and Shirgaokar,

2019, Huang et al., 2019, Yu et al., 2019], e-commerce [Swamy and Gorabal, 2020],

healthcare-related studies [Liu and Chen, 2019, Sarker et al., 2018, Al-Garadi et al.,

2021, Tokala et al., 2018], detection of misinformation, hate-speech, and sarcasm de-

tection [Gambäck and Sikdar, 2017, Poria et al., 2016].

Many of the presented approaches use early neural networks such as Convolutional

Neural Network (CNN) for building classifiers or classical machine learning algorithms.

For instance, the authors of Reynard and Shirgaokar [2019] present a combination

of geospatial and machine learning techniques to categorize geolocated Tweets about

Hurricane Irma in Florida. The authors employed sentiment analysis to classify tweets

about damage and/or transportation. They used a multinomial logit model to examine

which features of the Tweet, Tweeter, or location were likely to be associated with

negative or positive sentiments. [Huang et al., 2019] identified disaster related social

media content experimenting with two CNNs, Inception-V3 CNN and word embed-

ded CNN. The neural network models are used to extract visual and textual features

which are then concatenated to form a combined feature representation which is fed

to the classification model. Results showed that combining the image and textual fea-

tures has benefits in classification. Similarly research by Gambäck and Sikdar [2017]

used a CNN framework but for identifying hate-speech text. Four classification mod-

els were trained on respectively character 4-grams, Word2Vec word embeddings, ran-

domly generated word embedding vectors, and word embedding vectors combined
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with character n-grams. The authors used as a baseline Logistic Regression model.

Results showed that CNN-based classifier achieve higher F1-measure while Logistic

Regression with character n-grams model gives higher recall. A similar approach is

proposed by Poria et al. [2016] who use CNN for identifying sarcasm features. Tokala

et al. [2018] present a deep learning approach to distinguish Tweets that present per-

sonal medication intake, possible medication intake and non-intake. They performed

extensive experiments with classical machine learning algorithms such as Logistic Re-

gression, Random Forest, SVMs, Gradient Boosted Decision Trees (GBDT) and neural

network architectures such LSTM and CNN.

The aforementioned approaches all assume the presence of large amounts of training

data (i.e., more than 20,000 training instances). Further, the described work do not

consider more recent state-of-the-art transformer-based neural network models.

A more generalised classification model for filtering crisis Tweets is proposed in Li

et al. [2018]. The method is based on the use of pre-trained and specialised corpus-

trained word embeddings for representing the Tweet’s vocabulary. The research presents

two approaches for building Tweets embedding vectors. The first approach is based on

calculating either the mean of all word embeddings in a Tweet, the TF-IDF weighted

average (of each dimension) of the word embeddings, or concatenating min, max and

average of the embeddings of each word in a sentence along each dimension. The

second approach uses sentence encoding techniques of respectively SIF [Arora et al.,

2017], InferSent [Conneau et al., 2017] and tfSentEncoder [Cer et al., 2018]. The

performance of the different embedding methods is evaluated with Naive Bayes, Ran-

dom Forest, K-nearest Neighbours and SVM classifiers. The authors provide extensive

analysis on how different word embedding models affect classification performance.

However, the research does not consider the use of multiple classification methods

and state-of-the-art language models. Additionally, it does not compare performance

of approaches for domains with a limited amount of training data. In the verification

approach presented in Chapter 4, we use similar approaches for building Tweets rep-
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resentations. However, the work here differs from and extends theirs in using different

classification models, settings, and pre-processing techniques.

Recent research [Al-Garadi et al., 2021, Guo et al., 2020, Liu et al., 2021, Lopez-Lopez

et al., 2021] on text classification for social media is using transformer-based methods.

For instance, the study by Guo et al. [2020] compares the performances of different

variants of pre-trained transformer-based models, RoBERTa, BERTweet and Clinical-

BioBERT, on a wide range of social media text classification datasets. Results showed

that RoBERTa and BERTweet perform comparably on most datasets, and considerably

better than Clinical-BioBERT, even on health-related datasets. Similarly, the authors

of Liu et al. [2021] use BERT architecture to develop CrisisBERT which is fitted for

two crisis classification tasks, namely crisis detection and crisis recognition. They

compared their model to the classification models of Logistic Regreession, SVM and

Naive Bayes, as well as CNN and LSTM. Similarly, Lopez-Lopez et al. [2021] use

BERT and roBERTa to detect sexism on social media and compared them with tradi-

tional machine learning approaches, such as SVM, Logistic Regression, SGD-based

classifier and XGBoost.

Finally, Al-Garadi et al. [2021] provide extensive comparison between multiple transformer-

based language models, which utilize tweet-level representations that enable transfer

learning (e.g., BERT, RoBERTa, XLNet, AlBERT, and DistilBERT). Further, they pro-

pose fusion-based approaches, and compared them with several traditional machine

learning models. The authors used the proposed approach for the automatic detection

of non-medical prescription medication use from social media. Results suggested that

transformer-based models are more stable and require less annotated data compared to

the other models.
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2.3.6 Text Classification for Wildlife Data

Relevant research on proposing classification approaches for identifying genuine wild-

life occurrences on social media is very limited. There are, however, a number of

studies that apply machine learning to detect various aspects of the environment and

to detect postings that relate to particular environmental topics. Some of these exploit

data from both images and text as in Leung and Newsam [2012] who use Flickr im-

ages and the tags describing the images to perform land-use classification with an SVM

classifier. The approach was evaluated on two university campuses and three land-use

classes were considered: Academic, Residential, and Sports. The study showed that

the text entries accompanying photos are informative for geographic discovery. In

other examples of classifying aspects of the environment such as Jeawak et al. [2017],

SVM classifiers take as input a bag-of words feature vector combining text from Flickr

postings with environmental data. They found for all experiments, including predicting

species distribution, scenicness, land cover and climate factors, that the use of the social

media data always improved the results relative to only using the environmental data in-

put. An associated study by the same authors [Jeawak et al., 2018] used Flickr data and

focused on bird species distribution. They demonstrated the benefit of a meta-classifier

approach that combines prior predictions with machine learning features that represent

the presence of the species name in postings in the vicinity of the predicted location.

In other related studies for similar prediction tasks, the same authors presented meth-

ods for creating embeddings (i.e. vector space representations) of geographic locations

using methods based on the GloVe word embedding technique [Jeawak et al., 2019].

The geographic embeddings were extended to spatio-temporal embeddings in Jeawak

et al. [2020]. In both cases the embeddings were used as input features to SVM, and

with spatio-temporal embeddings also to a MLP (multi-layer perceptron, a basic form

of neural network) classifier, and were demonstrated to provide improvement relative

to the simpler feature vector-based (bag-of-words) approaches. The use of MLP did

not provide significant benefit relative to SVM.
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Work by[Monkman et al., 2018] presents a text and data mining (TDM) approach ap-

plied to social media from specialised forums to gather spatio-temporal information on

wildlife recreation activity relating to fishing a particular species, European seabass,

that is subject to legal controls on overfishing. NLP-based software was used in a ruled

based system to classify sentences based on their inclusion of terms from a manually

constructed lexicon. Stringham et al. [2021] present research on categorising online

wildlife trade data. They test the ability of a suite of text classifiers to extract relevant

advertisements from wildlife trade occurring on the Internet. The authors use a collec-

tion from Australian classified websits where people can post advertisements of their

pet birds. The authors compare three classical machine learning algorithms, Logistic

Regression, Multinomial Naive Bayes, and Random Forest. The conclusions from this

work show that text classification is a suitable method for categorising online wildlife

trade data, however the approaches might be context-dependent.

Overall, the aforementioned research is limited in scale and classification approaches

are mainly based on using statistical classification models, without fully exploring dif-

ferent feature selection and classification methods.

2.3.7 Summary

Text classification approaches are widely adopted in various research in social media

mining with a prominence of applications in the medical domain, crisis identification

and emergency response, as well as fake news discovery. Most of the presented work

is based on using deep learning such as early neural networks, including CNN and

LSTM, or using state-of-the-art transformer models such as BERT and roBERTa. The

majority of the approaches have been evaluated with large amounts of training data

and they lack extensive comparison between different feature extraction and feature

integration approaches and how these affect performance of classifiers. Additionally,

state-of-the-art performance of transformer-based models have not been fully explored

in ecology-related studies where there is a limitation on amounts of labelled data avail-
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able. Further, most of the research on text classification for wildlife is limited to using

classical machine learning models such as SVM or semi-automatic methods, and lim-

ited in scale. We address these research gaps with research question RQ 2.

2.4 Geo-referencing Micro-blogs

2.4.1 Definition and Applications

Geo-referencing social media data refers to the process of assigning coordinates (lat-

itude and longitude values) to a social media posting. Social media data associated

with coordinates have been a valuable source of information for many studies such

as health, disaster management, tourism, environmental monitoring, crime, civil un-

rest and marketing [Stock, 2018b, Zheng et al., 2018, Gelernter et al., 2013, Castillo,

2016]. In particular, as mentioned in Section 2.2.3, geo-referenced social media data

collections can be used to facilitate studies of wildlife distribution patterns which in

turn are increasingly important for alerting rapid ecosystem changes such as climate

change, diseases spread, and invasive species occurrences [Amano et al., 2016, Barve,

2014].

Many social media platforms use location information provided by the user mobile

devices. However, many users deactivate the location sharing abilities and thus a large

proportion of the social media content do not include spatial coordinates [Middleton

et al., 2018, Di Rocco et al., 2021]. This problem is not as vivid for image-sharing

platforms such as Flickr as it is for the micro-blogging social platforms such as Twit-

ter [Middleton et al., 2018, Stock, 2018a]. For instance, recent research by Tuxworth

et al. [2021] showed that from 87,894,019 Tweets collected for identifying emergency

events only 0.34% of them were associated with coordinates. Different research also

estimated that the rate of geotagged messages out of all messages vary from 0.8% [Mu-

saev et al., 2015] to 6% [Chen et al., 2014].
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Despite the large potential of Twitter to provide a valuable source of wildlife obser-

vational data [Daume, 2016], its usage in such studies is limited due to the lack of

coordinate data. Therefore, in the thesis we focus specifically on the problem of geo-

referencing Twitter postings using only the message content.

In the rest of this section, we review and discuss main approaches used for geo-

referencing posts. Existing approaches can be split into three main groups: gazetteer-

based methods (see Section 2.4.2), language modelling-based methods (see Section 2.4.3),

and regression-based methods (see Section 2.4.4).

2.4.2 Gazetteer-based Methods

Gazetteer-based methods involve extracting location names from text and then map-

ping these place names to coordinates [Stock, 2018a]. The approach can be broadly

divided into two main steps. The first step involves identifying place names within

text using Named Entity Recognition (NER) in combination with gazetteers to identify

whether the extracted named entity is a genuine location and to extract associated co-

ordinates. Some of the most widely used NER tools for location names extraction in-

clude the Stanford NER tool [Bassi et al., 2016, Li et al., 2015], GATE [Jaiswal et al.,

2013], spaCy [Honnibal and Montani, 2017] and AllenNLP [Gardner et al., 2018].

More recent approaches are based on using deep learning neural network methods

such as CNN [Kumar and Singh, 2019] and BERT [Davari et al., 2020]. Commonly

used gazetteers include GeoNames [Inkpen, 2016, Zhang and Gelernter, 2014, Ikawa

et al., 2013] and OpenStreetMap [Daly et al., 2013, Di Rocco et al., 2016].

The second stage consists of location name disambiguation. Ambiguity of location

names can refer to the presence of multiple location names within a message text as

well as when a single location name is associated with multiple coordinates. A number

of methods are used to try to disambiguate place names, including weighting by popu-

lation, geographic feature types, geographical proximity and other place names that are



2.4 Geo-referencing Micro-blogs 41

found nearby in the text [Zhang and Gelernter, 2014, Inkpen, 2016]. Location names

disambiguation is an important step and it can be particularly challenging [Middleton

et al., 2018]. Rule-based approach is commonly employed to assist in identification

of place names following NER and sometimes gazetteer use, by looking for patterns

of language within which place names frequently occur [Gu et al., 2016, Zhang et al.,

2017].

A simple and popular gazeteer-based method is the google-geocoder approach which

uses NER to identify possible locations in text and then sends it to the Google Geo-

coder API to get a location reference. Another similar approach by Zhang and Gel-

ernter [2014] uses GeoLocator and it is based on extracting entities and verifying

them using GeoNames gazetteer. A more recent location name extraction tool called

GeoTxt [Karimzadeh et al., 2019] was developed for the extraction and geolocation of

place names in unstructured text. The tool offers six NER algorithms for location name

extraction and multiple gazetteers for toponym identification. These approaches per-

form location extraction without considering disambiguation or matching of location

names to coordinates.

In contrast, Middleton et al. [2018] create a geoparsing library performs extraction

of location names as well as location disambiguation. It uses a local OpenStreetMap

database. The location name extraction step is based on NER where named entities

are matched to OpenStreetMap (OSM) locations. After that, location name disambig-

uation is performed using rules such as token subsumption (rejecting smaller phrases

over larger ones (e.g. New York will prefer [New York, USA] to [New York, UK]))

and more. The authors also propose a hybrid approach for location names extraction

using language modelling and gazetteers which proved beneficial when compared to

approaches based only on using gazetteers. However, the method aims at building hy-

brid approaches for assigning most suitable location name to given pair of coordinates.

In the thesis, we focus on using gazetteers as part of hybrid approaches for facilitating

more accurate geo-referencing of social media posts.
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Gazetteer-based methods are simple and do not require training data. Further, these

approaches can lead to satisfactory results as long as the social media data is rich in

location names. However, location disambiguation still remains a challenging problem

especially considering the short length of the social media posts and the large number

of misspellings and jargon used. Further, in addition to location names which refer to

administration regions such as cities and towns there are many geographic names that

are ‘dynamic’ (e.g., shop names, emerging new hip areas). As a result, maintaining

comprehensive and up-to-date gazetteers of geographic names is a very challenging

task [Kordopatis-Zilos et al., 2017]. Further, these approaches usually fail at predicting

locations on fine-granularity and suffer with location disambiguation problems Stock

[2018b].

2.4.3 Language modelling Methods

Much of the work on geocoding social media posts is based on using language model-

ling methods [Di Rocco et al., 2021, De Rouck et al., 2011, Häberle et al., 2019, Kumar

and Singh, 2019, Paule et al., 2019, Rahimi et al., 2017b]. Language modelling is used

to reflect the entire range of words used in messages, with the idea that locations are

characterised by all the words used to refer to them, not just the toponyms [Stock,

2018b]. Location-based terminology may include location-specific words such as

venue names, dialect or language style typical for particular locations [Stock, 2018a].

This approach usually consists of four basic steps. First, messages are grouped within a

set of regions. Then, feature selection methods are applied to identify location-relevant

terminology. After that, most approaches use a form of text classification to identify

which area is most likely to contain the true location of the resource. The final step con-

sists of finding the most appropriate location for the given unlabelled instance within

the identified region which could be for example the centroid of the region or the loca-

tion of an existing post that is most similar to the one being georeferenced [Van Laere

et al., 2013]. The use of machine learning approaches allows the extraction of hidden
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patterns which can be much more valuable for providing geographic information than

the information derived using gazetteers [De Rouck et al., 2011].

Previous work considers three main language modelling approaches [Fornaciari and

Hovy, 2019a]. These are based on i.e., using fixed cell sized geodesic grids [Serdyukov

et al., 2009, Wing and Baldridge, 2011, 2014, Hulden et al., 2015, Melo and Martins,

2015, Eisenstein et al., 2010a, Cheng et al., 2010, Kinsella et al., 2011, Backstrom

et al., 2010, Cheng et al., 2010, Rahimi et al., 2015], clustering approaches [Van Can-

neyt et al., 2013, Laere et al., 2014b], adaptive grids [Kordopatis-Zilos et al., 2017,

Di Rocco et al., 2021, Roller et al., 2012], or predefined administrative regions where

coordinates are mapped to the closest administrative area [Fornaciari and Hovy, 2019a].

However, creating these grids or clusters usually requires large amounts of training data

especially when predictions are performed on sub-city level [Van Laere et al., 2013].

Some recent research on geo-referencing using language modelling has focused on de-

veloping approaches suitable for scenarios with a limited amount of training data. For

instance, Di Rocco et al. [2021] present a method for fine granularity location predic-

tion with an algorithm (Sherloc) that uses a gazetteer and associated ontology of feature

types to create a metric space language model that is specific to a particular geographic

region or grid cell. The model is an embedding (based on a dimensionality reduction

procedure) of the place name knowledge for the respective region, where toponyms

are reduced to their individual tokens (words). Sherloc extracts the toponyms from the

social media posts and matches the embeddings of their components to the elements

of the embedding space. The semantically closest toponyms to a message are found

and clustered, taking the centroid of the smallest cluster as the inferred location. While

Sherloc requires no prior training, and it can infer the location at sub-city level with

high accuracy, the approach can identify locations at sub-city level only when the par-

ent region (e.g. a city or grid cell), referred to as the reference area, is given, and only

when the message contains at least one toponym. In the thesis, we also experiment

with a strategy employing NER and gazetteer methods, the purpose of which in our

case is to improve the precision of our regression-based language models. However,
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our approach does not require prior knowledge of the local region and does not require

that a toponym is present in the text to be georeferenced.

Alternative approaches address the lack of geo-referenced training data by exploring

the transferability of language models built using different social media sites. For in-

stance, Laere et al. [2014a], building on De Rouck et al. [2011], investigate the applic-

ation of probabilistic language models trained on Flickr and Twitter to assign coordin-

ates to Wikipedia articles. The results showed that language modelling approaches

trained with Flickr data or a combination of Flickr, Wikipedia and Twitter data outper-

formed language models trained only with a Wikipedia dataset or classical gazetteer-

based methods (using Yahoo! Placemaker and Geonames). The authors use classical

machine learning models for building classifiers which requires pre-processing the het-

erogeneous data sources before building feature vectors. Further, classical machine

learning models still require large amounts of training data. The need of large amounts

of training data still remain a major problem associated with language modelling ap-

proaches [De Rouck et al., 2011, Stock, 2018b, Di Rocco et al., 2021]. This is partic-

ularly problematic for Twitter where many posts are not associated with coordinates

and the collection of large amounts of data is restricted by the Twitter API limitations.

It is even more challenging when data need to be collected for a very specific purpose,

region, or time frame. Further, the primary output of language modelling approaches is

an area, within which a particular location needs to be inferred. Also, the partitioning

of the training data into a finite set of areas superimposes a certain factor of scale to

the results where, depending on the information available, such a partitioning can be

too coarse for one resource or too fine-grained for another resource, although some

multi-scale methods attempt to address this issue [Kulkarni et al., 2020].

2.4.4 Regression-based Methods

Regression-based methods tackle the problems associated with language modeling ap-

proaches by creating models which can predict coordinates for a given instance without
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the need to split a given region into distinct areas. These methods are similar to lan-

guage modelling in that they use supervised machine learning algorithms for predict-

ing the coordinates of unlabelled instances. However, in the language modelling-based

methods, the classes are geographic areas while in the regression-based approaches,

models directly predict coordinates. These approaches have received less attention

compared to language modelling, but have the potential advantage of not needing

to specify grid cell sizes or cluster numbers or determine locations within such re-

gions. Therefore, we want to explore these methods and analyse their potential in

geo-referencing wildlife-related micro-blogs.

The research by Eisenstein et al. [2010b] is one of the first to formulate the problem

as a regression task predicting the coordinate values as numerical values. Priedhorsky

et al. [2014] use Gaussian Mixture Model (GMM) algorithms to predict the coordin-

ates of a given Tweet. They learn a mixture of bi-variate Gaussian distributions for

each individual n-gram in the training set. During prediction, they add the Gaussian

mixture of each n-gram in the input text, resulting in a new Gaussian mixture which

can be used to predict a coordinate with associated uncertainty. The approach does

nor require gazetteers or other supplementary data. Also, because the approach pre-

dicts geographic coordinates directly, there is no need to pre-specify regions of interest.

The approach outperformed other regression and classification methods and proved to

perform well for relatively small amount of training data (30,000 Tweets). Rahimi

et al. [2017a] extend on the work by Priedhorsky et al. [2014] by using neural net-

work models which incorporates mixtures of Gaussian distributions in order to predict

coordinates for Twitter data.

Alternatively, Fornaciari and Hovy [2019b] combine language modelling and regression-

based methods for coordinate prediction. They build a multi-task learning CNN model

by combining label classification with regression for predicting geo-coordinates for

Twitter data. The authors found that the two methods complement each other espe-

cially when using more fine-grained labels where regression help improve precision.
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Recent work on using regression for geo-referencing social media data experimented

with transformer-based models for building multivariate regression approaches. Thus

Scherrer et al. [2020], adapt BERT sentence classification architecture for the regres-

sion task in order to predict coordinates for social media posts. The datasets used in

that study are a generic Twitter dataset and two Jodel datasets collected in different

languages. They perform experiments with various pre-trained language models and

hyper parameter settings. In particular, they perform experiments with three BERT

language models — a BERT model trained on the task training data, a pre-trained mul-

tilingual BERT model, and language specific pre-trained BERT models. Results show

that using language-specific BERT model which is then fine-tuned for multivariate

regression leads to significant improvements over the other language models and a tra-

ditional machine learning approach based on Support Vector Regression (SVR) with

TF-IDF character n-grams. Scherrer et al. [2021] build on this research where they

compare the regression BERT model (geoBERT) to classification models and exper-

iment with two different vocabulary sizes. Results confirmed findings from Scherrer

et al. [2020] where regression-based model outperformed language models.

2.4.5 Summary

Geo-referencing social media posts is a widely researched area where most approaches

use language modeling where data points with similar coordinates are grouped into dis-

crete set of classes. Most of the available work is based on using large amounts of train-

ing data (millions of training instances). Further, language modelling require an addi-

tional step for inferring coordinates based on the predicted region for a given instance.

Further, choosing the most optimal way of clustering training data is a challenging

task. Another group of work, based on regression, tackles these problems by creating

models which can predict coordinates for a given instance without the need to split

a given region into distinct areas. However, regression-based approaches are not fully

explored in literature. Further, the majority of research in geo-referencing social media
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data is based on using classical machine learning algorithms or early neural networks.

Despite the state-of-the-art performance of transformer-based models for various text

analysis tasks, these models have not been well explored in ecology-related studies or

for geo-referencing social media posts. We aim to explore further the potential of such

models for georeferencing wildlife-related Tweets. Finally, hybrid approaches based

on gazetteers and language modelling methods have been successfully used in previ-

ous research. However, such methods have not been explored in combination with

regression. The aforementioned research gaps are addressed by research question RQ

3.

2.5 Identification of Movement Patterns Over Time and

Space

Object tracking finds applications in many research problems. For example, when mak-

ing inferences concerning future weather conditions, it is necessary to track weather

phenomena such as a snow storm [Atluri et al., 2018, Corcoran and Jones, 2018]. Large

volumes of spatio-temporal data are increasingly collected and studied in diverse do-

mains, including climate science, social sciences, neuroscience, epidemiology, trans-

portation, mobile health, and Earth sciences [Atluri et al., 2018]. Another application is

tracking migration data and identifying migration patterns of wildlife, as well as study-

ing swarm behaviour where a swarm is defined as a set of agents (animals, people,

robots) moving in close spatial proximity to each other. However, a big challenge

of tracking objects with dynamic topology is that the object’s topological properties

can change over time. For instance, splitting an object into multiple objects or the

merging of multiple objects into a single object [Corcoran and Jones, 2018]. There-

fore, identifying movement patterns of objects can be a challenging task. Many of the

existing works on tracking objects focus on modelling topological relations between

regions and detecting changes in topological features. However, these approaches do
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not compute when components first appeared and subsequently disappeared. It also

does not determine if the connected components at different times are in fact the same

or different connected components. The research presented by Corcoran and Jones

[2017] addresses these limitations using spatio-temporal analysis to keep track of the

appearance and disappearance of individual objects. The model presented by Corcoran

and Jones [2017] encodes the spatio-temporal characteristics of topological features of

objects, such as holes and connected components. The authors identify objects that

persist between successive time slices and records the start and end duration of each

object across the times slices. The persistence of topological features with respect to

time is computed using zig-zag persistent homology. Zig-zag homology gives a set

of intervals representing the periods of existence of the topological features in ques-

tion [Carlsson and De Silva, 2010]. In order to facilitate statistical and data mining

techniques the set of intervals are converted into a persistence landscape. A persist-

ence landscape is a vector space representation of topological features, which makes

it easy to be combined with statistical and machine learning tools [Bubenik, 2015].

Bubenik introduces a set of different algorithms for calculating persistence landscapes

in Bubenik and Dłotko [2017]. A limitation of the standard method employed for com-

puting these persistence intervals is that it is only capable of inferring the appearance

and subsequent disappearance of objects but does not maintain their identities relat-

ive to their respective regions (components) in the source image. Corcoran and Jones

[2018] extend these persistent homology methods to attach unique identifiers to ob-

jects with dynamic topology, from their creation to disappearance, keeping track of the

image locations of the objects. When one object is merged with another, one of the

objects will lose their original identity, while, when an object splits, one or more separ-

ate identities will be attached to the newly spawned objects (depending on how many

there are). It may be noted that earlier work that implemented methods for tracking

topological change, notably [Worboys and Duckham, 2006], employed a rule-based

approach that was acknowledged as not being complete with regard to all possible

change situations.
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The approach by Corcoran and Jones [2017] and further developed in [Corcoran and

Jones, 2018] provides a novel tracking model capable of tracking objects whose topolo-

gical properties change over time. It has been successfully used for identifying moving

objects related to animals (fish) and environmental phenomena (cloud movement). The

methods also facilitate the application of statistical and data mining techniques. It is

demonstrated that the proposed model can be used to perform retrieval and clustering

of swarm behaviour in terms of topological features. This makes these methods suit-

able to be further used for trajectory extraction for moving objects. However, this area

has not been explored yet.

2.5.1 Data Mining Techniques for Extracting Trajectories of Move-

ment

A trajectory is a sequence of geo-locations with corresponding timestamps in spatio-

temporal space [Feng and Zhu, 2016]. Analyzing the trajectories of moving objects is

of interest in many fields in order to understand the dynamics and behavior of those

objects [Izakian et al., 2020]. Some examples of applications for extracting and ana-

lysing trajectory data include path optimization of logistics companies, improvement

in public security management, personalized location-based services, or the migration

patterns of animals traveling for better access to food, water, and shelter [Farine et al.,

2016, Su et al., 2020].

The widespread use of location-aware devices has led to an increasing availability of

trajectory data. As a result, researchers have devoted efforts to developing method-

ologies including different data mining methods for trajectories [Yuan et al., 2017,

Mazimpaka and Timpf, 2016]. Representative works include the design of effective

trajectory indexing structures [Su et al., 2020], built to manage trajectories and sup-

port high-performance trajectory queries [Su et al., 2020]. Data mining methods are

applied to trajectories to detect points of interest (POI), find popular routes from a

source to a destination, predict traffic conditions, discover significant patterns, and
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perform data compression [Su et al., 2020]. Data mining techniques depend on the

type of objects whose trajectory is in focus (e.g. people, animals, weather data) and

the application (e.g. hot-spot discovery, extraction of mobility profile, discovery of

interaction between animals) [Mazimpaka and Timpf, 2016]. Main types of analysis

are classification, clustering, frequent pattern mining and group pattern mining [Mazi-

mpaka and Timpf, 2016]. Clustering is a popular method for analyzing trajectories

because it provides useful insight into data without the need for a training set [Mazi-

mpaka and Timpf, 2016, Ansari et al., 2020, Wang et al., 2021]. Trajectory clustering

aims at finding trajectories that are of the same (or similar) pattern, or distinguishing

some undesired behaviours, such as outliers [Yuan et al., 2017, Ansari et al., 2020,

Wang et al., 2021]. A main challenge with trajectory clustering is that algorithms need

to account for spatial and temporal characteristics of the data where data points need to

be processed in a sequential manner (where each point represent the object at a given

time). Therefore, predominant algorithms such as DBSCAN [Ester et al., 1996] or K-

means [Von Luxburg, 2007] are unsuitable for trajectory data. A drawback of K-means

is its tendency to form spherical clusters, which is inappropriate for clustering stream-

line data [Blazquez-Herranz et al., 2021]. A widely used clustering algorithm for

spatio-temporal data, such as trajectories is ST-DBSCAN [Birant and Kut, 2007]. ST-

DBSCAN is a density-based clustering algorithm, which originated from DBSCAN.

In contrast to the existing density-based clustering algorithms, ST-DBSCAN algorithm

has the ability of discovering clusters according to non-spatial, spatial or temporal val-

ues of the objects. The algorithm has been applied mainly to road-based data.

2.5.2 Summary

Spatio-temporal analysis based on zig-zag homology helps identify the persistence of

objects over time for case studies of swarms and weather imagery data. These methods

also facilitate the application of statistical and data mining techniques which makes

them suitable for further studies into identifying trajectories of movement patterns.
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However, such studies have not been conducted yet. Further, existing work on tra-

jectory data mining is mainly concerned with using pre-processing, classifying and

clustering methods related to road optimisation problems. However, there is a lack

of research into data mining methods suitable for studying movement patterns related

to weather phenomena. Further, suitable algorithms need to be explored for traject-

ory clustering which takes into account both spatial and temporal characteristics of the

data. We address these research gaps with our final research question RQ 4.

2.6 Conclusions

The motivation for the research questions declared in the previous chapter lies in the

need for developing methodologies which enable the use of untapped social media data

for ecology studies and to help enrich official citizen science data portals.

Relevant research on assessing the value of social media data as a supplement to cit-

izen science data collections has been conducted on a very small scale (including only

few species) where data verification is performed manually or semi-automatically. Fur-

ther, these studies lack broad analyses on how social media data can facilitate official

data portals considering only statistical or spatial measures, and excluding temporal

analyses.

An important aspect of preparing social media data for use in ecology studies is identi-

fying posts related to genuine wildlife observations. Most of the existing verifica-

tion approaches are based on using domain-trained image recognition tools or involve

manual processing. However, obtaining large volumes of training data for training the

image recognition tools might be unfeasible. Further, most of the research is limited in

scale and it is applicable to only certain species or taxonomic groups.

Verification for text-based messages can be performed using text classification al-

gorithms which have been extensively used for various purposes in social media min-

ing. Most of the existing classification approaches are based on neural network models
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such as CNN, RNN, and the most recently developed transformer-based models such

as BERT. However, most of the research presents big data solutions assuming large

amounts of training data. Further, there is lack of comparison between different classi-

fication algorithms and analysis into how different feature extraction methods affect the

performance of classifiers. Further, using text classification for verifying social media

posts relevant to wildlife observations can be challenging because of the more spe-

cialised language used (species Latin names and other biology-related terminology).

However, this is an unexplored area of research.

Another important step of preparing social media data for use in ecology studies is to

ensure posts are geo-referenced to support object tracking and learning of movement

patterns. The majority of geo-referencing methods for social media data are based on

language modelling where data points are clustered into location-specific regions and

classification is applied to identify regions for unseen data points. Further, language

modelling requires an additional step for inferring coordinates based on the predicted

region for a given instance. Also, splitting regions within clusters or grid cells can be a

challenging and data-specific task which requires large amounts of data, even for fine-

grained locations. Regression models partially resolve some of the problems associated

with language modelling methods as they do not require clustering or additional steps

for inferring coordinates. Instead, regression algorithms assign coordinates directly

to data points. However, these methods are understudied, especially in combination

with state-of-the-art neural network models and transfer learning techniques. Most

of the available research is using classical machine learning algorithms and do not

provide extensive analysis on strategies suitable for building less data consuming geo-

referencing models.

Finally, in order to enable studies of movement patterns, there is a need to establish

techniques for extracting trajectories of objects. Recently developed spatio-temporal

analysis based on zig-zag homology has been successful in identifying object locations

that persist over time. These methods also facilitate the use of data mining techniques.



2.6 Conclusions 53

However, there is no further investigation into how these methodologies can be used to

facilitate trajectory extraction.

The research gaps summarised above provided a motivation for large scale study, in-

volving statistical, topological and temporal analysis looking at the potential of social

media data to be used as a supplement to citizen science datasets (addressed by RQ 1).

Further, two approaches for verifying image-based and text-based social media posts

have been proposed, both being suitable for validating large and diverse collections,

regardless of the species considered at hand (addressed by RQ 2). We perform ex-

tensive analysis into the use of state-of-the-art transformer models, transfer learning

techniques, and regression for building less data-consuming geo-referencing models

suitable for wildlife-related posts. We also research two hybrid approaches combining

rule-based approaches and transformer-based multivariate regression in order to build

more precise geo-referencing models (addressed by RQ 3). Finally, we show how

zig-zag homology methods can be used to support trajectory extraction where traject-

ories are further normalised using clustering in order to identify movement patterns

(addressed by RQ 4).

In the following chapter, we present extensive analysis into the potential of social me-

dia data to be used to enhance citizen science data portals. This work helps identify

what are the benefits of using social media data for studying wildlife, for what types

of species and what patterns (spatial or temporal) social media data is useful. Further,

we present a novel verification method for image-based data which is suitable for large

and diverse data collections.



Chapter 3

Suitability of Image-based Social

Media as a Supplement to Citizen

Science Portals

In this chapter, we present a large scale study exploring the potential of social media

datasets to supplement species distribution data, and in doing so to serve as a form of

passive citizen science. We assess the value of species distribution data gathered from

the Flickr photo-sharing website relative to existing content on the public source of

biodiversity data, UK National Biodiversity Network (NBN) portal. As described in

Section 2.1.1, NBN Atlas1 portal holds the most extensive collection of biodiversity

information within the UK with over 220 million species occurrences. NBN datasets

have previously proved useful in studying distribution patterns of UK species [Leives-

ley et al., 2021, Blight et al., 2009]. We focus specifically on Flickr for collecting

species distribution data as it hosts one of the most extensive and easily accessible

collections of geo-referenced photos of its kind and, because it is photo-based, it en-

ables the possibility to validate observations by comparing the asserted species name,

as provided in a tag or caption, with the content of the image. We conducted analyses

with two case studies, one being the 1500 species that were most frequently recorded

on NBN and the other being invasive species in the UK that have records on NBN.

Studying invasive species can help understand if Flickr is suitable for real time iden-

1https://nbn.org.uk
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tification of any sudden changes in the habitat of these species and thus help establish

on-time protection mechanisms for the native species and for the balance of the eco-

system.

As described in Section 2.2.3, there are several limitations of previous research on

using social media to augment traditional biodiversity portals in that the analyses have

been performed on very small numbers of species, the methods for accessing the social

media are either manual or only partly automated, and the results are limited in the

degree of verification (Daume [2016], ElQadi et al. [2017], Barve [2014]). Recent work

by August et al. [2020] investigates whether an image classifier for identifying plants

could facilitate the discovery of unexploited biodiversity data from Flickr. However,

this approach is focused purely on species occurrence on Flickr and thus does not

provide a clear evaluation of the role of social sites observations compared to more

traditional approaches.

In this chapter, we address these gaps by performing a large scale study evaluating

Flickr as a resource of wildlife data against the NBN collection. In comparing species

distributions from Flickr with those of the NBN we quantify the value of social media

acquired distribution data on the largest number of species considered to date in such

studies. This research addresses question RQ 1: Can social media data serve as a

useful supplement to citizen science data portals in representing the spatial and

temporal distribution of bio-diversity data? from the research questions presented

in Section 1.2. More specifically contributions include extensive comparison between

the image-sharing social media platform and the citizen science data portal. We have

performed statistical, spatial, and temporal analysis considering different spatial and

temporal settings. Furthermore, we develop a novel method of validating Flickr species

images with the Google Cloud Vision API based on automatic matching of the assigned

categories to the content of a hierarchical species taxonomy.

Our validation approach is similar to that used in ElQadi et al. [2017] to verify Flickr

data using image content recognition with the Google Reverse Image Search. The au-
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thors use the Google Reverse Image Search in order to return labels per photo which

best describe the content of the given photo. All labels per species are ordered in des-

cending order of frequency. Then, the species-relevant tags and species-irrelevant tags

are manually identified among the most frequent ones which indicate that the given

photo is a true representation of the given species. This manual selection of relevant

tags per species we considered an ‘exact match’ between the specific species and what

would be the most relevant tags for this specific species. Despite the benefits of such

approach especially when photos need to be evaluated only for a couple of species,

we consider it unsuitable for larger collections where the manual upload of photos and

manual selection of relevant tags per species can be a time-consuming process. There-

fore, we propose a fully automated image verification approach suitable for verifying

large and diverse species collections. Specifically, we deploy Google Cloud Vision

API which allows fully automatic image verification. Further, we reduce the incidence

of missed matches by employing a species taxonomy that supports matching between

alternative names for a species as well as generic matches between terms in the relevant

species hierarchy that were not used in the Flickr tags.

The structure of this chapter is as follows. Section 3.1 explains the methods used for

performing the analyses and developing our image validation approach. Section 3.1.1

explains the data collection process and describes the Flickr and NBN datasets used

for performing analysis. Section 3.2 presents the results while Section 3.3 discusses

the findings from this chapter and Section 3.4 concludes it.

3.1 Methods

We perform three types of analysis to compare species occurrence between the NBN

and Flickr, consisting of a summary statistical analysis and spatial and temporal ana-

lyses. The statistical analysis compares the frequency of occurrence of species between

the two data collections, performed on different taxonomic levels of species and class.
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The spatial analysis determines whether Flickr species observations match by location

the NBN species observations. Because many species have variable distributions and

abundances throughout the year we also use a temporal analysis to compare the time

patterns of the NBN and Flickr data collections. We compared the locations of data

occurrences for the two data sources for a time span of 3 months, 6 months and 12

months. We verify Flickr species identification through an image content verification

approach using the Google Cloud Vision API to identify objects that appear in a given

photo. The Google Cloud Vision API labels images with multiple taxonomic categor-

ies (i.e. labels) ranging from general to specific. Our image validation approach is

based on coarse matching between all species names following down from the class

of a species and the labels returned by Google Cloud API. In this way, we avoid a

potentially high number of false negatives for less common species that are less likely

to be identified on the API at the species level but might be identified at higher taxo-

nomic levels. An outline of the methodology is depicted in Figure 3.1 and each step is

detailed below.

3.1.1 Data Collection

NBN Data Collection The NBN was selected as the biodiversity data portal for our

study because it holds the most extensive collection of biodiversity information within

the UK. We collected the names and the number of occurrences for the top 1500 species

on NBN using the NBN Atlas Occurrence Facet Search. We performed our search over

all collections within the NBN and limited it for the territory of the UK.

For each of the species retrieved from the NBN we obtained, via a search on the NBN,

all the alternative names associated with the species (scientific name and common

names), the NBN species ID, and its taxonomic classification hierarchy. The names

associated with each of the species were used for downloading data from Flickr. The

taxonomic classification hierarchy is used for the verification of the Flickr data col-

lection in combination with the Google Cloud Vision API. The NBN service does not
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Figure 3.1: A diagram of the proposed methodology which contains three steps

support exact match between a given search term and the species name given to a re-

cord. Instead, the NBN service does partial matching between the search term and the

species record names. For instance, the search term ‘brown squirrel’ can return res-

ults for other types of squirrels such as red squirrels, because there is a partial match

between the search term ‘brown squirrel’ and the record name ‘red squirrel’, i.e, the

word ‘squirrel’. Thus, downloaded records can sometimes include species which are

irrelevant to the search term. To resolve this problem, we remove the species records

irrelevant to the search term. We perform this by automatically matching the search

term to the species names given in the NBN records. If there is no match, records are

considered irrelevant and thus are filtered out.
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Further to that, some records are incomplete, lacking temporal or geo-information. To

address this we filtered out records with missing information. For inclusion in our

dataset each record constituted record ID, geo-coordinates of the occurrence, date of

the occurrence, NBN species ID.

Flickr Data Collection Using the Flickr API interface we used both the scientific

and common names, and limited our search to geo-tagged posts within the UK. Our

search was therefore based on downloading posts with tags matching at least one of

the alternative names given for a species in NBN. We downloaded the following types

of information from Flickr: image coordinates, ‘taken date’ and ‘posted date’ of the

post, post id, the image associated with the post, title, and all the tags associated with

the post. ‘Taken date’ refers to the time at which the photo was taken while ‘posted

date’ represents the time at which the photo was uploaded to Flickr. For performing

the temporal analysis, we use the ‘taken date’. However, early observations showed

that ‘posted date’ and ‘taken date’ do not differ more than 3 months for the majority

of Flickr posts. Additionally, we consider only posts where coordinates are extracted

from a GPS-enabled device which is either the device used to upload the photo, or the

device used to take the photo. Manual observation of the collected records shows that

in most cases it is a single device used for taking and uploading the photo. We ignore

posts associated only with user-provided locations.

3.1.2 Flickr Data Validation

For describing the image validation method we heavily rely on three notions, clarified

in Table 3.1. Flickr images needed to be validated because the content of the photos up-

loaded with associated tags might not match the species name tags given by the Flickr

users. However, existing image verification approaches lack the ability to scale to large

collections of species and they often need manual or semi-automatic verification. Fur-

ther, a common limitation of automated image verification methods is the inability to
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Concept Description

Flickr Tags The tags Flickr users have given to the photos

they have uploaded on Flickr

Google Cloud Vision API labels These are the labels returned by the image re-

cognition API for the objects recognized in

each Flickr photo. We use the Google Cloud

Vision API to verify whether the species on

the Flickr photos represent the given species

NBN species names The list of species names extracted from NBN

species classification taxonomy

Table 3.1: Main concepts used to describe the image verification method

accurately distinguish between species with similar visual characteristics. Therefore,

performing an exact match between species names and image recognition model labels

could result in many possible valid photos being regarded as invalid representation of

the species, which limits the coverage of methods. We aim to address this issue and

provide an approach for verifying large and diverse image-related species data fully

automatically by using a Bag-of-Words (BOW) approach. Specifically, we use Google

Cloud Vision API to coarse match between all names following down from NBN spe-

cies taxonomic class and the labels returned by Google Cloud Vision API. A potential

problem of the BOW approach is that on lower levels it might not be able to distin-

guish between species belonging to the same class such as two different types of grass.

However, we hypothesise that for diverse species collections such coarse match-based

approach will help improve the coverage of automated image verification methods (re-

call measure) without significantly affecting their accuracy and precision. We perform

an evaluation and error analysis for the BOW approach against a fully automated ‘ex-

act match’ approach inspired by ElQadi et al. [2017] where matching between Google

Cloud Vision API labels and species names is performed on species-level. The ‘exact

match approach’ has the potential to be more accurate and precise. Further, we expand

on the analysis by performing evaluation at the genus-level. In this way, we compare
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three approaches for evaluating species-related image data, i.e. exact match, class-level

match, and genus-level match. This comparison allows us to verify which approach is

the most suitable for verifying large collections of species.

The main steps involved in our image verification approach are illustrated in Figure

3.2. The methodology consists of the following steps: First, for each Flickr image, we

download all species names from NBN following down from the species taxonomic

class (for class-level match) or genus (for genus-level match). We perform image veri-

fication using the Google Cloud Vision API model and store the labels returned by

the model. Then, we apply a coarse match between the NBN species names and the

Google Cloud Vision API labels. If there is a match between the labels returned by

the image verification model and the NBN species-related names, then the image is

considered a correct representation of the species given by the Flickr user.

Google Cloud Vision API is however not trained on wildlife data and thus some of

the less well-known species names might not be returned as labels, for instance, 10-

spot Ladybird (Adalia decempunctata) and 22-spot Ladybird (Psyllobora vigintiduo-

punctata). Also, species belonging to the same class (e.g. ‘cuckoo’ and ‘sparrow-

hawk’) might have very similar visual appearance and thus the Google Cloud Vision

API cannot be assumed to distinguish between the two species. Therefore, using exact

matching between species names and Google labels will lead to a high number of false

negatives.

An example of a Google Cloud Vision API result for a single photo correctly tagged on

Flickr as Adder, gives the following categories: Reptile (98%), Snake (98%), Scaled

reptile (93%), Viper (91%), Serpent (89%), Terrestrial Animal (87%), Rattle Snake

(84%), Sidewinder (70%), Adaptation (67%), Colubridae (65%), Eastern Diamond-

back Rattlesnake (56%), Elapidae (53%). The higher the score, the more confident the

assignment of the category is for the given image, where the score is given in brackets

next to the tags.

The photo labels returned by Google Cloud Vision API can be organised as a taxonomy
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Figure 3.2: Image Validation Approach Overview

that matches the species taxonomy returned by NBN.

Figure 3.3 displays the NBN classification for Adder and the labels returned by Google

Cloud Vision API for this photo. We use the NBN taxonomic classification for the spe-

cies to choose relevant species names to match the labels returned by Google Cloud

Vision API. A BOW approach is adopted where we treat the names in the classifica-

tion hierarchy for a species as a list of names ignoring the hierarchical and semantic

relations between these names. We consider all names in the classification hierarchy

following down from class, and we match these terms to the labels given by Google

Cloud API. In the example, given in Figure 3.3, the use of the classification finds an

exact match between the species name ‘Viper’ (an alternative name for ‘Adder’) and

the Google Cloud Vision API term ‘Viper’. Using exact matching on the Flickr label of
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Adder would not have found any match, resulting in a false negative for this observa-

tion. Another example is for species Phleum pratense (Timothy Grass), which is from

class Magnoliopsida and family Poacae (Grass). Google Cloud Vision API returns for

images with this species the label ‘grass’, rather than ‘timothy grass’ and thus coarse

match would be successful in this case.

Note that we use both scientific and common names for matching, as both can occur

within the NBN derived taxonomy and the labels returned by the Google Cloud Vision

API. We performed manual verification of the Google results for 50 randomly selected

species where we randomly select 40 images per species. We used these 2000 images

to evaluate the performance of our image verification method.

Figure 3.3: Google Cloud Vision API label taxonomy and NBN classification for

Adder.

3.1.3 Data Analysis

The data analyses are based on two case studies: the 1500 most frequently recorded

species on NBN and the invasive species in the UK that appear in both data collections.

Spatial comparison between the NBN and Flickr datasets was performed using spatial

grid modelling, in which geographic space is divided into regular grid cells. The cells
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were classified according to whether they contained observations from one or other

or both of the two sources. The classification was further refined according to time

windows to support both a spatial and a temporal analysis. By varying grid cell sizes,

and cell aggregation (i.e. one by one vs three by three), as well as the time window, we

performed a number of scale-variant spatio-temporal analyses.

There were two main methods of performing spatial analysis:

1. One by one cell comparison: We compare Flickr and NBN species occurrence

data per 10km, 20km, and 40km grid square. We performed experiments with

these cell sizes because we are interested in identifying the most fine-grained

level for which there is a high number of matches between species observation

on Flickr and NBN without affecting the precision of the method. We regarded

cell sizes beyond this size of 40km as being of more limited value for studying

species distribution and migration We calculate a confusion matrix, which is

used to describe the performance of a classifier on a test data set for which the

true values are known, where Flickr is the test data set and NBN the ground truth

values. The cells of the confusion matrix are defined as follows:

• ‘True Positive’ (TP): a cell has both NBN and Flickr data points for the

species

• ‘True Negative’ (TN): a cell does not have occurrences from either of the

sources

• ‘False Negative’ (FN): a cell has no Flickr data for the species, but it does

have NBN data for the species

• ‘False Positive’ (FP): a cell has Flickr data for the species but no NBN data

2. Three by three cell comparison: We compare Flickr and NBN using a three by

three analysis centred on every cell. In this approach, we count a true positive

if there is a Flickr posting in a cell and if there are NBN records within either

the cell itself or in any of the adjacent eight cells. A false negative would be
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declared if a set of nine cells had at least one NBN record but no Flickr record.

A false positive indicates if there is a Flickr posting in a cell, but there are no

NBN records within either the cell itself or in any of the adjacent eight cells. A

’True Negative’ would be no Flickr postings and no NBN records in any of the

nine cells.

Based on the measures above we compute precision, recall, and F1-measure.

We look at temporal accuracy of Flickr on seasonal (3 months), half yearly (6 months)

and yearly patterns (12 months). The 3 and 6 month-based analysis are performed

ignoring the year. This allows identification of seasonal patterns that are usually unaf-

fected by yearly changes such as seasonal migrations.

3.2 Results

3.2.1 Statistical Analysis

NBN and Flickr Datasets Comparison

Across the 1500 most numerous species on NBN Atlas, 90% were found on Flickr

and 100% of species in the Flickr dataset were found on NBN Atlas. The NBN Atlas

records, as expected, far outnumber those on Flickr, being 93,656,179 and 791,059

respectively. It is worth noting that NBN data used here covers the entire collection

period; 1800-2018 while Flickr data covers only 2006-2018. It was found that 35% of

the species counted on Flickr have more than 100 occurrences. Table 3.2 lists the top 10

most frequently recorded species on Flickr (mostly with more than 10000 occurrences).

The best represented species on Flickr (see Table 3.2,can be split into three main cat-

egories: pretty, i.e. photogenic, flowers (Bluebell, Daisy, Dandelion), sessile green

plant species (Ivy, Beech, Bracken) and garden and aquatic birds, which are also di-

urnal (Continental Robin, Mallard). Notably all are easily accessible. These same
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patterns were mirrored at the class level with the highest number of returns for Flickr

being Magnoliopsida, a class of flowering plants, and the second highest was Aves.

Phleum pratense (Timothy Grass) as a well documented species in Flickr is an interest-

ing observation as, compared to the other commonly observed species (see Table 3.2),

it is not a well known species that is readily identified, suggesting that it was incid-

ental in many images and Flickr may be good at picking up species that appear as a

background in a photo. Another example of such a species is Hedera helix (Ivy). NBN

Scientific name Common name Flickr count NBN count

Hyacinthoides non-scripta Bluebell 20,940 54,893

Bellis perennis Daisy 20,656 28,748

Erithacus rubecula Continental Robin 19,248 3,938,616

Morus bassanus Gannet 17985 14252

Fagus sylvatica Beech 15,842 24,973

Hedera helix Ivy 14,474 27,211

Anas platyrhynchos Mallard 13,500 834,039

Taraxacum officinale agg. Dandelion 13,443 27,269

Pteridium aquilinum Bracken 12,708 30,741

Phleum pratense Timothy Grass 9,000 11,903

Table 3.2: The top 10 species on Flickr with the highest number of records

and Flickr datasets are similar in the diversity of classes they represent with the ten

best represented classes in both collections being the same , with the same three most

common classes of Insecta (Insects), Magnoliopsida (plants), and Aves (birds). Both

data collections are representing species from a small number of classes. This suggests

that the same observer bias in photos also occurs in NBN data collections.

The top 10 species on NBN are garden birds (see Table 3.3), and they are represented

well in the Flickr dataset with occurrences in most cases above a thousand.
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Scientific name Common name NBN count Flickr count

Turdus merula Blackbird 4,609,821 3,234

Cyanistes caeruleus Blue Tit 4,164,338 3,491

Erithacus rubecula Continental Robin 3,938,616 19,248

Columba palumbus Woodpigeon 3,584,436 1,660

Prunella modularis Dunnock 3,513,651 2,179

Parus major Great Tit 3,507,350 2,670

Fringilla coelebs Chaffinch 3,444,776 3,474

Passer domesticus House Sparrow 3,184,175 2,312

Streptopelia decaocto Collared Dove 3,094,475 929

Chloris chloris Greenfinch 2,900,214 2,030

Table 3.3: The top 10 species on NBN with the highest number of records

NBN and Flickr Datasets Comparison for Invasive Species in the UK

There are 82 invasive species for UK that also have occurrence records on NBN. The

total count of records of invasive species on NBN is 1,485,744. The total number of

Flickr posts for the invasive species that are also recorded on NBN is 27,187. The num-

ber of species with occurrences above 100 for both NBN and Flickr data collections is

19 (of 82), which is 23% of the number of invasive species on NBN. The invasive spe-

cies with more than 100 occurrences for both NBN and Flickr are diurnal mammals,

birds (more than 50%) along with a few ‘pretty’ flower species (see Table 3.4).

The best represented invasive species on Flickr are Branta canadensis (Canada Goose),

Scirurus carolinensis (Grey Squirrel), Gallinago gallinago (Snipe), Oryctolagus cu-

niculus (Rabbit), Rhododenron ponticum (Rhododendron), Aix galericulata (Mandarin

Duck), and Cygnus atratus (Black Swan). The species for which NBN and Flickr have

a similar number of records are Sus scrofa (Wild boar) and Bubo bubo (Eurasian Eagle
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Owl).

Scientific name Common name NBN species count Flickr species count

Branta canadensis Canada Goose 377,111 3,328

Sciurus carolinensis Grey squirrel 350,113 3,249

Gallinago gallinago Snipe 325,210 1,619

Oryctolagus cuniculus Rabbit 96,093 7,994

Alopochen aegyptiacus Egyptian Goose 31,591 862

Rhododenron ponticum Rhododendron 30,803 3,489

Branta leucopsis Barnacle Goose 24,269 289

Aix galericulata Mandarin Duck 19,693 1,500

Muntiacus reevesi Reeve’s muntjac 16,428 489

Cygnus atratus Black Swan 8,761 1,148

Buddleja davidii Buddleia 5,654 443

Heracleum mantegazzianum Giant Hogweed 5,348 190

Anser caerulescens Snow Goose 5,085 177

Anser indicus Bar-Headed Goose 3475 164

Aix sponsa Wood Duck 2,688 290

Cervus nippon Sika Deer 2,442 226

Chrysolophus pictus Golden Pheasant 1,745 167

Sus scrofa Wild boar 441 373

Bubo bubo Eurasian Eagle Owl 395 537

Table 3.4: Species occurrences for NBN and Flickr for invasive species with num-

ber of occurrences above 100.

3.2.2 Flickr Data Verification

In initial exploratory work, we performed tests with the tags returned by the Google

Cloud Vision API. We found that the tags with a score above 60% are more likely

to imply the correct species displayed on the photos. The tags with a score lower

than 60% usually describe either less relevant objects of the photo, e.g. parts of the

background (‘leaf’), characteristics of the animal (‘fawn’), or are names of species that
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are irrelevant to the photo (‘Diamondback Rattlesnake’ when the species is Adder).

Therefore, we used only tags with a score higher than 60%.

In the rest of the section, we evaluate our image verification approach (class level

BOW approach) against two other image verification approaches. The first one is a

fully automated ‘exact match’ approach, inspired by ElQadi et al. [2017] where we

perform an exact match between the NBN species names associated with a given spe-

cies and the Flickr posts names. The second approach is a genus level BOW approach

where we consider names following down from the genus of the species. Evaluating

approaches considering different levels of coarse match (species-level, genus-level, and

class -level) allows us to judge which approach is more suitable for evaluating diverse

collections of species without affecting the precision.

The average results, presented in Table 3.5, show that class-level BOW approach out-

performs the other two evaluation approaches by a significant margin with F1 = 0.79

versus F1 (baseline) = 0.20 and F1 (BOW (genus level)) = 0.27. Specifically, the class-

level BOW method achieves best results, compared to the other approaches, for 45 out

of the 50 species. For 14 of these species, the class-level BOW method has equal or

slightly lower precision than the other two methods, however the recall is much higher

in these cases leading to a better performance overall. For instance, for ‘Passer domes-

ticus (House Sparrow)’, the baseline and BOW (genus level) approach have a higher

precision of 1.0 while BOW (class level) has a precision of 0.97, however the recall

(0.85) is more than double compared to the recall of the other approaches. This shows

that class-level BOW method is a more suitable for evaluating wider range of species

than the other two approaches without significantly affecting the precision.

However, the presence of some species for which none of the approaches were suc-

cessful, i.e., ‘Erica cinerea (Bell Heather)’, ‘Stachys officinalis (Betony)’, ‘Solanum

dulcamara (Bittersweet)’, ‘Hyacinthoides non-scripta (Bluebell)’, and ‘Acer campestre

(Field Maple)’, shows that there are species for which BOW approach is unsuitable and

other methods need to be considered such as the inclusion of species characteristics
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(color, shape), attributes (feather, beak, etc.) combined with a higher taxonomy level

for the species (i.e. family).

The most common causes of false positives for BOW are photos that include an arti-

ficial representation of a species, such as a boat with a figure of a goose (Figure 3.4),

and hence do not represent a living species. Common cases of false negatives for BOW

are photos which include the species but the focus of display is another object. In the

example given in Figure 3.4, the main object in the photo is a building, and thus Google

Cloud Vision API returns labels associated with the building and the characteristics of

the building, rather than the plant (i.e. Hedera helix (Ivy)).

Figure 3.4: Common cases of false positive and false negative: False Positive for

Marus bassanus (Gannet)(left) tags: bird, goose, vehicle, tall ship and False Neg-

ative for Hedera helix (Ivy) (right): tags: property, house, home, building, resid-

ential area, cottage, real estate, neighbourhood.
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species
baseline BOW (genus level) BOW (class level)

p r F1 p r F1 p r F1

Coccinella septempunctata (7-spot Ladybird) 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.95 0.96

Propylea quattuordecimpunctata (14-spot Ladybird) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Vipera berus (Adder) 1.00 0.65 0.79 1.00 0.65 0.79 1.00 0.76 0.87

Tyto alba (Barn Owl) 0.00 0.00 0.00 0.00 0.00 0.00 0.89 0.50 0.64

Ophrys apifera (Bee Orchid) 0.00 0.00 0.00 1.00 0.82 0.90 1.00 0.83 0.90

Erica cinerea (Bell Heather) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Stachys officinalis (Betony) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Solanum dulcamara (Bittersweet) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Turdus merula (Blackbird) 0.96 0.76 0.85 0.95 0.75 0.84 0.91 1.00 0.95

Hygrocybe conica (Blackening Waxcap) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.60 0.75

Cyanistes caeruleus (Blue Tit) 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.89 0.93

Hyacinthoides non-scripta (Bluebell) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Buteo buteo (Buzzard) 1.00 0.52 0.68 1.00 0.52 0.68 1.00 0.81 0.89

Corvus corone (Carrion Crow) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.95 0.97

Fringilla coelebs (Chaffinch) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.89 0.95

Periparus ater (Coal Tit) 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.92 0.95

Streptopelia decaocto (Collared Dove) 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.92 0.92

Bombus pascuorum (Common Carder Bee) 0.00 0.00 0.00 1.00 0.75 0.85 1.00 0.87 0.93

Zootoca vivipara (Common Lizard) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.93 0.96

Erithacus rubecula (Continental Robin) 1.00 0.82 0.90 1.00 0.82 0.90 1.00 0.98 0.99

Anthriscus sylvestris (Cow Parsley) 1.00 0.27 0.43 1.00 0.27 0.43 1.00 0.28 0.44

Prunella modularis (Dunnock) 0.00 0.00 0.00 0.00 0.00 0.00 0.95 1.00 0.97

Acer campestre (Field Maple) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Carduelis carduelis (Goldfinch) 1.00 0.27 0.43 1.00 0.27 0.43 0.92 0.92 0.92

Dendrocopos major (Great Spotted Woodpecker) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.97 0.99

Parus major(Great Tit) 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.97 0.97

Chloris chloris (Greenfinch) 0.00 0.00 0.00 0.00 0.00 0.00 0.95 1.00 0.97

Passer domesticus (House Sparrow) 1.00 0.35 0.52 1.00 0.43 0.60 0.97 0.85 0.90

Corvus monedula (Jackdaw) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.94 0.97

Pyrrhosoma nymphula (Large Red Damselfly) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.95 0.97

Aegithalos caudatus (Long-Tailed Tit) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.95 0.97

Pica pica (Magpie) 1.00 0.44 0.61 1.00 0.44 0.61 0.88 0.85 0.87

Phoxinus phoxinus (Minnow) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Lutra lutra (Otter) 1.00 0.84 0.91 1.00 0.84 0.91 0.97 0.90 0.93

Boloria euphrosyne (Pearl Bordered Fritillary) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Alca torda (Razorbill) 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.76 0.84

Riparia riparia (Sand Martin) 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.69 0.78

Argynnis paphia (Silver-Washed Fritillary) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

Turdus philomelos (Song Thrush) 0.00 0.00 0.00 1.00 0.02 0.05 0.94 0.94 0.94

Sturnus vulgaris (Starling) 1.00 0.08 0.15 1.00 0.08 0.15 0.97 0.86 0.91

Passer montanus (Tree Sparrow) 0.00 0.00 0.00 0.96 0.71 0.82 0.97 0.92 0.95

Bombus lucorum (White-Tailed Bumble Bee) 0.00 0.00 0.00 1.00 0.79 0.88 1.00 0.89 0.95

Columba palumbus (Woodpigeon) 0.00 0.00 0.00 0.00 0.00 0.00 0.90 0.91 0.94

Troglodytes troglodytes (Wren) 1.00 0.78 0.88 1.00 0.78 0.88 1.00 0.95 0.97

Hedera helix (Ivy) 1.00 0.18 0.31 1.00 0.18 0.31 1.00 0.18 0.31

Sciurus carolinensis (Grey Squirrel) 1.00 0.81 0.89 1.00 0.83 0.91 1.00 0.92 0.96

Amanita rubescens (Blusher) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.94 0.97

Cygnus atratus (Black Swan) 1.00 0.77 0.87 0.96 0.84 0.89 0.90 0.90 0.90

Morus bassanus (Gannet) 1.00 0.69 0.82 1.00 0.69 0.82 0.97 0.94 0.95

Branta leucopsis (Barnacle Goose) 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00

AVERAGE 0.29 0.16 0.20 0.39 0.23 0.27 0.86 0.76 0.79

Table 3.5: Comparison between class-level and genus-level BOW image verifica-

tion approaches and the baseline approach, based on exact-match approach.
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3.2.3 Spatial and Temporal Analysis

The Top 1500 Species on NBN

The average precision and recall across all species for each type of spatial and temporal

constraint for one by one grid cell analysis is 0.38 (38%) for precision and 0.20 (20%)

for recall. The recall score shows that on average 20% of all NBN data was also

reflected by the Flickr data. The precision score shows that on average 38% of the

Flickr cell-based identifications of a species were also reflected in the NBN data (see

Figure 3.5).

The average precision and recall across all species for each type of spatial and temporal

constraint for three by three analysis is 0.60 (60%) for precision and 0.10 (10%) for

recall (see Figure 3.5). In comparison to one by one analysis, the average precision for

three by three analysis is higher ranging from 0.27 (27%) to 0.78 (78%) for the different

cell sizes while recall tends to be lower and does not vary much for the different cell

sizes. The number of false negatives is significantly higher for analysis performed

using a grid of size 3 by 3 and thus the recall value is lower. The reason for this can

be attributed to the wider range of species recorded within the NBN in comparison to

the Flickr records. Furthermore, according to the conditions for three by three analysis

comparisons, false negatives occur when a set of nine cells have at least one NBN

record in the absence of any Flickr record for the given species. Therefore, for species

where the number of NBN records is high and the number of Flickr records is low it is

very likely that cells with no Flickr occurrences will be associated with cells containing

NBN records (note however that for species that are well represented on Flickr this is

less likely to be the case).

The highest precision and recall scores across both types of analysis are achieved for

experiments performed with cell size 40km and no temporal constraints. The lowest

results are achieved for experiments performed with a time constraint of twelve months

which we attribute to lack of data on Flickr.



3.2 Results 73

Precision tends to be higher than recall. This higher precision reflects the fact that

most locations with Flickr occurrences also contain NBN occurrences. The low re-

call indicates that there are many locations with NBN observations but with no Flickr

observations, leading as indicated above to false negatives. However, the recall value

increases significantly as the cell size increases. Also, precision increases for bigger

cell sizes for the converse reason of taking account of NBN occurrences over a wider

region relative to a Flickr observation. This indicates that a grid split, consisting of

40km cells provides a better balance between precision and recall measures and thus

can be regarded as more suitable for validating social network observations.

Figure 3.5: Average Precision and Recall comparison per cell size and temporal

restriction: One by one analysis (left), Three by three analysis (right) where ’P’

refers to precision and ’R’ refer to recall. In the figure ’no constraints’ refers to

the analyses performed with no temporal constraints.

We calculated the best, worst and average F1 performance (see Figure 3.6), where best

and worst were based on the average F1 scores for individual species for a particular

cell size, while average F1 performance was across all species for the particular cell

size. The average F1 measurement does not exceed 0.50. Best performing species have

poorer F1 scores for cell sizes 10km and 20km and F1 score of 0.70 for the analysis

performed on cell size 40km. F1-measure on average is higher when the analysis is

performed with no temporal constraints. Further, the average F1 scores for the analysis

conducted using a 12-month window are the lowest.

The results (see Figure 3.5 and Figure 3.6) show that the Flickr dataset best reflects
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Figure 3.6: Comparison of average, best, worst F1 measure values per temporal

restriction and cell size: One by One analysis (left),Three by three analysis(right).

the NBN dataset on a purely spatial analysis with no time constraints. The comparison

with a constraint that observations are within 12 months of each other gives the lowest

results on all measures.

As indicated above, the overall comparison between the two datasets is notable for the

highly unbalanced precision and recall scores. As these scores are averaged across all

considered species, we investigated those species with precision and recall both being

above 0.50, and we found 134 distinct such species. We found the average F1 score for

the top 10 of these species with a 40km grid size to be 0.68 (see Table 3.6). As before

the best results were obtained with no temporal constraints, though with a couple of

exceptions for a 6 month temporal window. The best represented species on Flickr in

comparison to NBN as represented in Table 3.6 are, with one exception, birds, most

but not all of which are diurnal.
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Species name Analysis type Cell size Precision Recall F1-measure

Thymelicus sylvestris (Small Skipper) no constraints 40 0.64 0.77 0.70

Strix aluco (Tawny Owl) no constraints 40 0.65 0.76 0.70

Sitta europaea (Nuthatch) no constraints 40 0.6 0.82 0.69

Primula veris (Cowslip) no constraints 40 0.61 0.79 0.69

Aegithalos caudatus (Long-Tailed Tit) no constraints 40 0.56 0.88 0.68

Botaurus stellaris( Bittern) no constraints 40 0.61 0.76 0.68

Libellula depressa (Broad-Bodied Chaser) no constraints 40 0.63 0.73 0.68

Sitta europaea (Nuthatch) 6 months 40 0.62 0.74 0.68

Aegithalos caudatus (Long-Tailed Tit) 6 months 40 0.59 0.78 0.67

Certhia familiaris (Treecreeper) no constraints 40 0.56 0.83 0.67

Table 3.6: The top ten results with the highest F1-measure across all species

Invasive Species for UK

The average results for the invasive species demonstrate the same spatial and temporal

patterns as the average results for the top 1500 species, presented in the previous sec-

tion, i.e. best performance is for spatial analysis performed with 40 km grid cell size

with no time constraints (Figures 3.7 and 3.8).

The average precision and recall across all species for each type of spatial and temporal

constraint for one by one analysis is 0.40 (40%) for precision and 0.20 (20%) for recall

(see Figure 3.7). The average precision and recall across all species for each type of

spatial and temporal constraint for three by three analysis is 0.60 (60%) for precision

and 0.10 (1%) for recall (see Figure 3.7).

The best represented invasive species on Flickr in comparison to NBN, with preci-

sion and recall both being above 0.50, are given in Table 3.7. Results are promising

for these species as the F1-measure is on average 61.2%, specifically for representing

spatial patterns on 40km cell size with no time constraints (see Table 3.7). There are

six distinct species with the best performance among the invasive species (note that in

Table 3.7 some species have multiple rows with different conditions of analysis). The

species - Branta canadensis (Canada Goose) and Sciurus carolinensis (Grey squirrel)
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Figure 3.7: Average Precision and Recall comparison per cell size and temporal

restriction for invasive species: One by one analysis on the left, three by three

analysis on the right, where ’P’ refers to precision and ’R’ refers to recall. ’no

constraints’ refers to analyses performed with no temporal constraints.

Figure 3.8: Comparison of average, best, worst F1 measure values per temporal

restriction and cell size for invasive species: The one by one analysis is on the left,

the three by three analysis on the right.

appear across the multiple categories of no temporal constraints, three months con-

straints and six months constraints. They are the best performing species in terms of

having both precision and recall above 0.50 for multiple spatial and temporal restric-

tions and are the only species which have both precision and recall above 0.50 for cell

size 20km. The best performance in terms of highest precision and highest F1 measure

has been achieved for Bubo bubo (Eurasian Eagle Owl) with F1 = 0.71 and precision =
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0.64 (with recall 0.79). These results are achieved with 40km cell size and no temporal

constraints. Similarly to the results for all 1500 species, the best results for the invas-

ive species are achieved for purely spatial analysis with cell size 40km and diurnal bird

species. An exception is the mammal Sciurus carolinensis (Grey squirrel).

Species name Analysis type Cell size Precision Recall F1-measure

Branta canadensis (Canada Goose) no constraints 40km 0.55 0.80 0.65

Branta canadensis (Canada Goose) no constraints 20km 0.55 0.53 0.54

Cygnus atratus (Black Swan) no constraints 40km 0.59 0.79 0.68

Sciurus carolinensis (Grey squirrel) no constraints 20km 0.57 0.58 0.58

Sciurus carolinensis (Grey squirrel) no constraints 40km 0.59 0.80 0.68

Buddleja davidii (Buddleia) no constraints 40km 0.51 0.51 0.51

Bubo bubo ( Eurasian Eagle Owl) no constraints 40km 0.64 0.79 0.71

Aix galericulata (Mandarin Duck) no constraints 40km 0.51 0.60 0.55

Cygnus atratus (Black Swan) 3 months 40km 0.55 0.54 0.55

Branta canadensis (Canada Goose) 3 months 40km 0.62 0.62 0.62

Sciurus carolinensis (Grey squirrel) 3 months 40km 0.59 0.63 0.62

Cygnus atratus (Black Swan) 6 months 40km 0.59 0.71 0.65

Branta canadensis (Canada Goose) 6 months 40km 0.59 0.69 0.64

Sciurus carolinensis (Grey squirrel) 6 months 40km 0.60 0.73 0.66

Bubo bubo (Eurasian Eagle Owl) 6 months 40km 0.55 0.75 0.64

Aix galericulata (Mandarin Duck) 6 months 40km 0.54 0.50 0.52

Table 3.7: Results for the invasive species where precision and recall are both

above 0.5.

3.3 Discussion

3.3.1 Data Analysis and Image Verification Approach

We conducted analyses using two case studies, one being the 1500 species that were

most frequently recorded on NBN and the other being invasive species in the UK that

have records on NBN. Further, we performed three types of analysis:



3.3 Discussion 78

1. Statistical analysis — We focus on comparing the frequency of occurrence of

species between the two data collections, performed on different taxonomic

levels of species and class. This helps identify trends in the type of species

that are best/worst represented on Flickr compared to NBN collection.

2. Spatial analysis — This analysis determines whether the Flickr and NBN spe-

cies observations match by location. We perform analysis using a grid-based

approach where we conducted experiments using 10 km, 20 km, and 40 km cell

size.

3. Temporal Analysis — We compare the time patterns of the NBN and Flickr data

collections using time spans of 3 months, 6 months, and 12 months. This helps

identify how well Flickr dataset represent the seasonal, half yearly, and yearly

patterns for the species on NBN.

The large data collection and extensive analysis make the research presented in this

chapter the most extensive work conducted to date on the suitability of social media

platforms to supplement citizen science data collections, to the best of our knowledge.

Related research [August et al., 2020, Daume, 2016, ElQadi et al., 2017, Barve, 2014]

is limited in scale and type of analysis performed.

We also proposed a fully automated image verification approach suitable for verifying

large and diverse species collections. We used Google Cloud Vision API which allows

fully automatic image verification. The approach is based on coarse matching between

all species names following down from the class of a species and the labels returned by

Google Cloud API. In this way, we avoid a potentially high number of false negatives

for less common species that are less likely to be identified on the API at the species

level but might be identified at higher taxonomic levels. We evaluated our approach

using 50 randomly chosen species, each associated with 40 images which gives us

in total 2000 images. Additionally, we compared the proposed approach (i.e., class-

level BOW approach) against two other image verification approaches, i.e., species-

level BOW and genus-level BOW. This helps identify which method is more suitable
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for evaluating diverse collections of species without affecting the precision. Previous

image verification methods are suitable for smaller species collections, and usually in-

volve manual or semi-automatic verification [Daume, 2016, ElQadi et al., 2017, Barve,

2014], or require large amounts of labelled images for training image classifiers [Skreta

et al., 2020].

3.3.2 Findings

Below we present a summary of main findings from this chapter:

1. Of the top 1500 most numerous species on NBN 90% were also found on Flickr,

confirming that social media data can represent a wide range of species. An over-

all comparison between the NBN and Flickr datasets indicates that they mostly

represent the same classes of species. The best represented classes in both col-

lections are the same with the top three being Insecta (Insects), Magnoliopsida

(Plant class), and Aves (birds). Flickr has a good representation of flowering

plants and garden and sea birds. Many Flickr uploads represent species that

look attractive on photos and are easier to photograph (i.e. they are diurnal,

and/or are sessile) as well as being relatively common species. Examples of

well represented species on Flickr include invasive species such as Sciurus car-

olinensis (Grey squirrel) and Branta canadensis (Canada Goose), and the birds

Thymelicus sylvestris (Small Skipper), Strix aluco (Tawny Owl), Sitta europaea

(Nuthatch).

2. Our image verification approach proved to work well on a large collection of spe-

cies. The approach by ElQadi et al. [2017] of exact match between the Google

tags and species names may work for a small collection of well-known species

for which the Google species labels tend to be more reliable, but not for a more

extensive collection, including less well-known species, for which the Google

label is liable to be more generic (i.e. providing the class or genus rather than
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the actual species name). In our approach, we use the taxonomy structure of

the species to select relevant tags. Thus we verify images as genuine wildlife

by matching the provided Flickr species name against the Google-provided class

or the genus of the image content and all the tags lower down the classification

hierarchy.

3. The spatial and temporal analyses for both case studies show that the Flickr

dataset reflects the NBN dataset patterns best for experiments performed with

cell size 40 km with no temporal constraints. The poorer results from the ana-

lysis performed with temporal constraints suggest that the Flickr dataset does not

represent the temporal patterns for the species on NBN well. This is especially

true for the yearly comparison between the two datasets (i.e. 12 month window).

4. The results of the precision calculations showed that there are 93 species for

which precision is higher than 60%, for cell sizes 20km and 40km. This obser-

vation suggests that Flickr posts do present a potentially useful source of wildlife

observations. However, the low recall value indicates that the Flickr data collec-

tion is less able to represent the full range of wildlife species in comparison to

NBN. This is emphasised in the three by three analysis that gives the highest pre-

cision values, but provides the poorest recall. It should be remarked here that our

scores for precision depend upon the quality of the NBN ground data, a dataset

collected through citizen science campaigns by non-professionals (as discussed

in ‘Introduction’). Therefore, it is quite possible that some of the Flickr observa-

tions classed here as false positive could actually be correct due to the absence

of existing citizen science observations at the respective location.

3.3.3 Limitations

A main limitation of this research is the lack of analysis on diverse set of social media

platforms. It will be beneficial to conduct a similar larger scale study of the potential
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(beyond the relatively limited studies conducted to date) of other social networks such

as Twitter to determine whether they can also supplement traditional biodiversity data

sources.

Another problem that has not been addressed in this work is that collecting social net-

work data on a larger scale is a challenging task because most of the networks have

restrictions on data access with thresholds on the amount of data that can be down-

loaded. A solution to this might be to look at how data from multiple social network

sources can be combined for extracting wildlife data. It is also a strong motivation to

apply and if possible improve upon methods for geocoding the many accessible social

media posts that do not have GPS coordinates [Stock, 2018a] (we address this problem

in Chapter 5).

The image verification method can also be improved by looking at using a combina-

tion of inclusive and exclusive tags (i.e. tags used to consider a photo irrelevant) and

through the development of more sophisticated computer vision methods for automated

identification of individual species.

Despite these limitations, our analysis was conclusive in that Flick can serve as a source

of wildlife observational data for some species. Further, the image verification ap-

proach proved suitable for validating large and diverse wildlife-related collections of

images.

3.4 Conclusions

This chapter presented a large scale study exploring the potential of social media data

to supplement citizen science datasets. In particular, we evaluated species distributions

on Flickr relative to those submitted to the largest citizen science portal for the UK,

the National Biodiversity Network (NBN) Atlas. Our study included the 1500 best

represented species on NBN, and common invasive species within UK.
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We performed three types of analysis comparing the statistical, spatial, and temporal

distribution of species on Flickr compared to NBN. Question RQ 2 from the initial

hypothesis presented in Section 1.2 has been answered in order to show that social

network related data could offer a rich source of observation data for certain taxonomic

groups, and/or as a repository for dedicated projects. In particular, spatial and temporal

analysis suggest that the Flickr dataset best reflects the NBN dataset when considering

a purely spatial distribution with no time constraints. The best represented species on

Flickr in comparison to NBN are diurnal garden birds, as around 70% of the Flickr

posts for them are valid observations relative to the NBN. Additionally, we presented a

fully automated image verification method for identifying genuine species observations

on Flickr, suitable for verifying large and diverse collections of species. The approach

is based on the Google Cloud Vision API in combination with species taxonomic data

to determine the likelihood that a mention of a species on Flickr represents a given

species.

In this chapter, we focused on developing verification methods suitable for image-

based social network platforms. However, many widely used social network platforms

such as Twitter are text-based which requires the development of verification meth-

ods suitable for text data. Therefore, we focus on developing automated text-based

verification methods suitable in Chapter 4.



Chapter 4

Text Classification for Verifying Social

Media Relevant to Wildlife

In the previous chapter, we presented an automated verification approach suitable for

verifying images tags related to wildlife. While image verification techniques are un-

doubtedly very useful, there are many social media posts (i.e., Tweets) mentioning spe-

cies names that do not include images. Further, an image-based verification approach

does not in itself provide a fine-grained distinction between wildlife-related posts and

posts that are actual wildlife observations. In this chapter, we present an automated

verification method for identifying Tweets (text-based posts) related to wildlife obser-

vations using text classification approaches.

A problem with using social media such as Twitter to identify wildlife is that postings

frequently use the common names of wildlife species in contexts that are totally unre-

lated to making a wildlife observation. For example, the keyword ‘bluebird’ can refer

to a species but it can also refer to a rugby team, as in the Tweet ‘Come on blue birds

#bluebirds’. Another example is the keyword ‘snipe’ which can refer to the bird Snipe

but it can also be used in the sense of shooting, and is widely used terminology in video

games, e.g. ‘Im LIVE right now come watch me trying to snipe !...’. Common names

of wildlife species can also be used to refer to a restaurant or a brand, such as ‘The

Swan’. A further issue with data quality arises with regard to the reliability of species

identification in those message postings that are intentional observations. An associ-

ated challenge is that of distinguishing between wildlife-related Tweets that are direct

83
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observations and Tweets that mention wildlife but are not observations. For instance,

the Tweet ‘Unfortunately predators invasive alien species IAS like grey squirrels con-

tributing decline native #wildlife red squirrels #ias like must also controlled’ discusses

a wildlife topic rather than being indicative for the presence of species. In comparison,

the Tweet ‘Mine always big fans coolest greylag #goose never forget spotted #bird

question observing #mandarin #duck taking stroll park #greylaggoose #mandarinduck

#aixgalericulata #anser’, indicates observations of a duck and a goose. In this regard,

literature is sparse in presenting solutions for validating social media postings that may

be useful biodiversity observations.

Sections 2.3.5 and 2.3.6 of the Background chapter presented text classification meth-

ods for social media and wildlife data, respectively. In summary, related research to

wildlife data [Stringham et al., 2021, Monkman et al., 2018, Jeawak et al., 2018, 2020,

Leung and Newsam, 2012] is limited in scale and involves the need for manual work.

Additionally, studied classification approaches are mainly based on using statistical

classification models, without fully exploring different feature selection and classifica-

tion methods. Recent research [Al-Garadi et al., 2021, Guo et al., 2020, Liu et al., 2021,

Lopez-Lopez et al., 2021] on text classification for social media is using transformer-

based deep learning methods. However, most of the approaches assume a large num-

ber of training instances, and lack detailed comparison between different feature ex-

traction and feature integration approaches and consideration of how these affect the

performance of classifiers. Additionally, transformer-based models have not been fully

explored in ecology-related studies.

We address these gaps by proposing a text classification-based solution for identifying

Tweets which include posts for genuine wildlife observations regardless of the species

observed. Three classification approaches are compared, in particular logistic regres-

sion classification with various forms of input features; the word embeddings based

fastText pipeline; and the contextual word embedding model of BERT. We perform ex-

periments with pre-trained and corpus-trained embeddings as well as different methods
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for building feature vectors. Species distribution data were obtained from Twitter, be-

cause of its wide usage and its real-time nature. The data we have obtained relate to 37

species, including invasive species in the UK. We also look at language in the Tweets

(including specific hashtags and other text) that is indicative for wildlife occurrences.

This can help the creation of targeted campaigns that influence social media trends in

order to produce higher quality data.

The remainder of this chapter addresses question RQ 2: What are the most efficient

text classification approaches for verifying that social media postings are genuine

wildlife observations? from the research questions identified in Section 1.2. More

specifically, contributions include:

1. A fully automated text classification approach for identifying genuine wildlife

observations on Twitter - not restricted to species types or geo-tagged Tweets.

Our approach takes a Tweet as an input and produces a class label for this Tweet

with no human interaction.

2. An analysis of the relative effectiveness of different approaches to extracting and

integrating features (i.e. data items) that serve as the input to several alternative

forms of text classification, given a relatively small corpus of data for training

the classifiers.

3. An investigation into the specific components of Tweets, including hashtags and

URL links, that are indicative for genuine wildlife observations on social media

The rest of the chapter is structured as follows. Section 4.1 describes the methods we

use for feature extraction and integration as well as the classification approaches we

compare. We further explain the method of collecting and pre-processing the Tweets in

order to be used in the classification pipeline. Section 4.2 presents classification results,

findings from an analysis on the features indicative for wildlife, and error analysis.

Section 4.3 reflects on the methods used and the findings, while Section 4.4 concludes

the chapter.
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4.1 Methods

In this section, we explain the development of a text classifier model, for identifying

wildlife observations on social media sites. The methodology we follow consists of five

main steps, Tweets collection, Pre-processing, Feature Extraction, Feature Integration,

and finally training a Wildlife Observation Classifier.

Figure 4.1: Overview of the methodology followed to build a classifier includ-

ing main steps (‘Tweets collection’, ‘Tweets pre-processing’, ‘Feature Extraction’,

‘Feature Integration’, ‘Wildlife Observation Classifier’) as well as the different

methods we experimented with during each of these steps.

See Figure 4.1 for overall flow of the methodology and Figure 4.2 for an example of a

Tweet being processed using the classification methodology. During the collection and

pre-processing steps (see Sections 4.1.1 and 4.1.2) we gather Tweets related to wildlife,

from which stop words are removed, tokens normalised, and duplicates are removed.

During Feature Extraction (see Section 4.1.3) we build word feature vectors for the
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Figure 4.2: Step by step guide of the methodology using the example of a Tweet

(left side — describes steps while right side — gives a relevant Tweet representa-

tion for each step).

corpus using techniques based on the feature representation approaches, described in

Section 2.3.3. In the Feature Integration step, we combine word feature vectors, using

dimensionality reduction techniques, into a single feature vector representing the entire

Tweet (see Section 4.1.4). Finally, we experiment with three classification algorithms

for building a Wildlife Observation Classifier (Section 4.1.5). These are based on the

three main types of supervised machine learning approaches explained in Section 2.3.2.

4.1.1 Tweets collection

We collected Tweets using search phrases of common and scientific species names, to

create a dataset for the invasive species in the UK with occurrences on the NBN data
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portal, as well as the ten most numerous species on NBN, and the ten most numerous

species on Flickr, some of which overlap. We used the species names of the most

numerous species on Flickr and NBN (obtained from analysis presented in Chapter 3)

as search terms for collecting data from Twitter. This facilitates future comparisons

between Twitter and Flickr for wildlife observation studies. Further, numerous species

on Flickr can also have a higher number of records on Twitter. We searched Twitter for

38 species and found posts for 37 species in total (we provide more information on data

distribution per species in Section 4.1.6, Table 4.6). The Tweets have been collected

regardless of whether they are geo-tagged. The reason for this is that the majority of

Tweets are not geo-tagged, even though some of these could be geo-tagged if they

contain geographic references. It is also the case that for some of the UK invasive

species the number of geo-tagged Tweets is relatively low. We collect Tweets for the

period 2007 – 2019 using the historic Twitter API. For each Tweet, we downloaded

the following information: date when the Tweet was posted, username, any hashtags,

mentions (i.e. Twitter usernames preceded by the @ symbol), and links associated

with the Tweet. Additionally, we only downloaded Tweets written in English. The

collection of Tweets is used for training a text classifier.

4.1.2 Tweets Pre-processing

Cleaning Tweets Stanford NLP Core [Manning et al., 2014] is used for pre-processing

the dataset, in particular for POS tagging. Stanford NLP Core is a set of tools for

performing various NLP tasks such as tokenisation, POS tagging, sentiment analysis,

NER, etc. The library has been used in various research achieving satisfactory res-

ults. Stop words were removed using the Natural Language Toolkit (NLTK) [Bird

et al., 2009] stop word list. NLTK is a python library for performing NLP analysis.

Following tokenisation of the Tweets we identify hashtags, mentions, external links,

and pictures within the Tweets text. External links within the Tweets were norm-

alised in order to identify the main website source and disregard other parameters
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associated with the link such as queries and fragments. For example, the url ’ht-

tps://youtube/uJZh5Ou1WNUa0’ after normalisation is ’youtube’.

Entity Extraction We extract named entities in order to identify noun phrases using

Stanford NLP Core. We use the noun phrases and named entities to identify terms (e.g.

’blue tit’, ’audiology house’) that could assist in classification. These terms are used

to build feature representations with the BOW approach rather than only using tokens

(single words).

Removal of Similar Tweets A problem with the Tweets collection is the high num-

ber of duplicates, some of which are Re-Tweets, due to one person Tweeting an exist-

ing Tweet. Duplicate Tweets and Re-Tweets have identical or very similar vocabulary

to the original Tweets. The presence of high numbers of duplicates causes uniform-

ity of the dataset vocabulary and thus classifiers may overfit to the given duplicates

and fail to give accurate predictions when Tweets with diverse language are given.

To avoid overfitting, we remove duplicates using Levenshtein distance [Levenshtein,

1966]. Levenshtein distance is a string metric for measuring the difference between

two word sequences where the distance between two words is the minimum num-

ber of single-character edits (insertions, deletions or substitutions) required to change

one word into the other. A threshold of 0.97 similarity was defined for Tweets to be

considered duplicates. The selected threshold was found following experiments with

different values of the threshold (0.65, 0.80, 0.90, 0.97, 0.99). A higher value did not

capture insignificant differences, such as misspellings and single character insertions

between the Tweets, while a lower threshold was inappropriate as it returns Tweets

that are not duplicates. Re-Tweets were removed using regular expression matching

for Tweets starting with ’rt’. We also removed single word Tweets.

The collection also contains a large number of similar Tweets, many of which are pro-

duced by spam accounts. Examples of such Tweets are: ’#Forkknife #Snipe #blackout

#Ps4 #Callofduty #Ttv #Live #Twitch #Share #funko #Rage #Supportsmallstreamers
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live at ...’ and ’#Callofduty #blackout #Ps4 #Supportsmallstreamers #Snipe #Support

#Live #funko #Forkknife #wack #Share live at ...’. They share ten tokens ’#snipe’, ’live’,

’#forkknife’, ’#blackout’, ’#callofduty’, ’#share’, ’#supportsmallstreamers’, ’#funko’,

’#ps4’, ’#live’, which is the majority of the tokens in both Tweets. Thus, we consider

these similar. The method we use for removing similar Tweets is based on finding the

number of tokens that appear in both Tweets and it is performed in the following steps:

1. Convert Tweets to BOW representations

2. Given two Tweets, intersect their BOWs to find their common tokens:

3. If the length of the list containing the common tokens is above the threshold

of 90% of the number of tokens contained in a Tweet, for one of the Tweets,

then the two Tweets are considered similar and the Tweet with the flagged up

threshold is removed.

4.1.3 Feature Extraction

We performed experiments with three main types of feature extraction techniques, as

described in Table 4.1. They are reflective of the main existing approaches for building

feature representations, identified in Section 2.3.3, i.e. simple n-gram representation,

word embedding models, and language models. In particular, the n-grams are a com-

bination of the 1-grams and 2-grams in the Tweet texts. The research presented in Sec-

tion 2.3.3 showed that the two most efficient and well established approaches for build-

ing word embedding models are CBOW and skip-gram. Further, Word2Vec [Mikolov

et al., 2013a] and fastText [Bojanowski et al., 2017] are the word embedding models

based on these methods and have been successfully applied in many domains. There-

fore, we have performed experiments with fastText and Word2Vec pre-trained word

embedding models. A limitation of Word2Vec is that it ignores the morphology of

words by assigning a distinct vector to each word. This Word2Vec limitation is ad-

dressed in the fastText approach [Bojanowski et al., 2017] where each word is repres-
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ented as a bag of character n-grams which enables the construction of vectors for rare

or misspelled words. Additionally, we use the GloVe word embedding model which

uses a matrix of the co-occurrence of pairs of words to build word representations (ex-

plained in Section 2.3.3). We have included Glove pre-trained embeddings as it has

been trained on Twitter data. In addition to the pre-trained fastText embeddings we

use the wildlife-related Tweets collection to train a corpus-specific word embedding

model using the fastText architecture. This uses the skip-gram method to build word

embeddings with 300 dimensions.

Finally, we also perform experiments with the language model BERT [Devlin et al.,

2019] introduced in Section 2.3.3. As explained in Section 2.3.3, BERT takes into ac-

count the context of each word and hence offers an advantage over word embedding

models where words have fixed representations regardless of the context within which

the word appears. In this chapter, we take an advantage of both steps in the BERT

architecture (see Section 2.3.3):pre-training and fine-tuning. In this initial step of the

methodology, we use the base pre-trained BERT model to create a sentence encoding

(see next section) that will be used as input to a Logistic Regression classifier, before

using the fine-trained version, with BERT’s built-in classifier, in subsequent experi-

ments.
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Approach Approach Description Model Model Description

n-grams A continuous sequence of n

tokens from a given text

1,2-grams Represent Tweet as a sequence of 1 and 2 grams

Word Embeddings

Neural models that use uni-

directional approach for learning

word representations and thus

they produce single vector of a

word irrespective of the context

in which it appears

Word2Vec

pre-

trained [Miko-

lov et al.,

2013a]

A two-layer neural model that uses skip-gram to learn

word embeddings from raw text.

fastText pre-

trained [Bojanowski

et al., 2017]

Vector representations are generated for each charac-

ter n-gram and words are represented as the sum of

these representations.

Glove pre-

trained [Pen-

nington et al.,

2014]

A matrix of the co-occurrence of pairs of words is

used to learn embeddings for which the dot product of

pairs of word embeddings is equivalent to the log of

the probability of the co-occurrence of the respective

words.

fastText

corpus-based

We use Tweets to train a corpus-specific word embed-

ding model using fastText. The skip-gram method is

used to create word embeddings with 300 dimensions.

Language Model Pre-train deep bidirectional rep-

resentations by jointly condi-

tioning on both left and right

context in all layers.

base BERT

[Devlin et al.,

2019]

We use the base pre-trained BERT language model,

which has been trained on Books Corpus and English

Wikipedia

Table 4.1: Feature Extraction Step — A summary of main methods deployed

during this step.

4.1.4 Feature Integration

In this step, we generate Tweet classification feature vectors using the three main ap-

proaches outlined for building feature vectors in Section 2.3.4 from Chapter 2. One

is simply based on the statistics of the n-gram occurrences, specifically the counts of

the 1-grams and 2-grams in the Tweet text. As an alternative to counts of word oc-

currences we experimented with using tf-idf values of words but this did not provide

an improvement in performance. This can be regarded as BOW method. The second

approach uses various combinations of word embeddings as features, one being the av-

erage of the embeddings of the words in a tweet and the other being a tf-idf weighted

average of the embeddings where the tf-idf values are those of the respective words.
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The third approach is based on sentence encoding methods. The first of these uses the

uSIF (unsupervised smoothed inverse frequency) method of [Ethayarajh, 2018] that

creates a weighted average of word embeddings where a lower weight is placed on

more frequent words. The method introduces a weighting scheme that improves on the

approach of [Arora et al., 2017]. To form a sentence embedding they subtract from

the weighted average a weighted projection of the weighted average onto the first m

principal components of all weighted average sentence embeddings, i.e. the common

discourse vectors (where m equals 5 rather than only subtracting the first principal

component as in Arora et al. [2017]). This is referred to as piecewise common com-

ponent removal. The second sentence encoding method uses the pre-trained BERT

base language model to extract the embedding of the token called [CLS], i.e. for clas-

sification, from the last hidden layer of the BERT neural network representation. The

output corresponding to that token can be considered as an embedding for the entire

input sentence. Note that the input to the first layer of the BERT model is a sequence

of the embeddings of each word of the sentence where those initial pre-trained em-

beddings are modified in subsequent layers to adapt to their context. A summary of

Feature Integration techniques is given in Table 4.2.
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Approach Approach Description Model Model Description

statistical approach statistic-based approach for rep-

resenting words in a sentence

count We assign frequency weights to the 1,2 grams in a

given Tweet

Combination

of Word

Embeddings

It uses simple average or tf-idf

weighting of word embeddings

in the sentence

Mean Average the embeddings of each word in a Tweet

along each dimension

TF-IDF We assign TF-IDF weights to the words in a Tweet,

and calculate the weighted average of the word em-

beddings along each dimension (where the contribu-

tion of a word is proportional to its TF-IDF weight)

Sentence Encoders
It employs more specialised sen-

tence encoding to adapt the word

embeddings

uSIF [Ethaya-

rajh, 2018]

Based on calculating the weighted average of word

embeddings, with a lower weight placed on more fre-

quent words. From each weighted average vector is

subtracted the projection on their first principal com-

ponents.

BERT sen-

tence encoder

A sentence embedding is represented by the embed-

ding of the “classification” token [CLS] extracted

from the last hidden layer of the BERT representa-

tion.

Table 4.2: Feature Integration Step — A summary of main methods deployed

during this step.

4.1.5 Wildlife Observation Classifier

We use three types of classifier where each classifier represents one of the main text

classification methods outlined in Section 2.3.2. In this way we want to ensure a cov-

erage of the main existing approaches including the state-of-the-art. These are clas-

sical machine learning models, the fastText pipeline, and fine-tuned BERT. We exper-

imented with a classical machine learning model based on frequency-based features

and a suite of classification algorithms available in the Scikit-Learn library [Pedregosa

et al., 2011], namely Gaussian Naive Bayes (GNB), Logistic Regression and Support

Vector Machines (SVM). Of the three, the best results were achieved using Logistic

Regression. We use Logistic Regression for the n-gram baseline and for the classifiers

in which the features were those described above in the previous section. Thus these

features include sentence representations based on average pre-trained Word2Vec, fast-

Text and GloVe embeddings, corpus-trained fastText embeddings, as well as the uSIF
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and base BERT sentence representations. In addition to using pre-trained fastText em-

beddings with Logistic Regression, we used the fastText pipeline which has its own

classifier. Our final form of classifier was the fine-tuned BERT model where an addi-

tional final layer of the model serves as a binary classifier. A summary of classification

techniques is given in Table 4.3

Approach Approach Description Model Model Description

linear model
It can represent linear relation-

ships

Logistic

Regression

(LG)

A strong baseline for many text classification tasks

[Joachims, 1998]; [McCallum et al., 1998]; [Fan

et al., 2008], even more recently on noisy cor-

pora such as social media text [Mohammad et al.,

2018, Çöltekin and Rama, 2018]; however it tends

to struggle with OOV words, fine-grained distinctions

and unbalanced datasets

fastText

pipeline

[Joulin et al.,

2017]

It partially addresses issues associated with LG by in-

tegrating a linear model with a rank constraint, allow-

ing sharing parameters among features and classes,

and integrates word embeddings that are then aver-

aged into a text representation

Neural Model can learn non-linear and com-

plex relationships

fine-tuned

BERT [Devlin

et al., 2019]

We use pre-trained BERT word representation model

and add a final sequence classification layer

Table 4.3: Wildlife Observation Classifier — A summary of classification ap-

proaches used to build a classification model.

4.1.6 Dataset

We selected a subset of the initial Tweets collected using search phrases of common

and scientific species names (introduced in Section 4.1.1). The subset was chosen ran-

domly to ensure the subset is representative of the distribution of all Tweets among

the different species search names. We manually annotated Tweets as either a genuine

wildlife observation or a false wildlife observation. The main annotation was done by

a single annotator. To verify the quality of the annotation two other people annotated a

sample of 100 Tweets. In both cases a high level of agreement was found with the first
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annotation, with a Cohen-kappa value of 0.98 in both cases. Note that the annotation

process involved following links within Tweets and examining the content of images,

and paying attention to the nature of hashtags, where genuine wildlife Tweets were

characterised by the common use of photos of the observation and of wildlife com-

munity tags, or of Latin names of species, thus allowing for the possibility of fairly

reliable manual tagging as was found here (see Section 4.2.3 for a discussion of in-

dicative features of genuine wildlife observations). Further, we balance the datasets

among the two classes (genuine wildlife observation versus no wildlife observation).

After removing Re-Tweets and similar Tweets, we were left with 2798 manually an-

notated Tweets.

We used all collected Tweets (i.e. 1,769,384) for producing the corpus-trained word

embedding model excluding the Tweets which we manually annotated and are used

for classification. The main features and statistics of the dataset used for training the

word embedding model are summarized in Table 4.4.1. An overview of the manually

#Tweets 1769384

#Tokens 31780390

Avg Length 18

Table 4.4: Twitter collection used for building corpus-trained word embeddings,

consisting of unlabeled data. ‘#Tweets’ refers to the number of Tweets used for

training the model, ‘#Tokens’ refers to the number of tokens within the collection,

‘Avg Length’ refers to the average number of tokens per Tweet.

labelled subset of the Tweets collection which was used for training the classifier is

presented in Table 4.5.

Analysis into the distribution of Tweets per species (see Table 4.6) showed that the best

represented species on Twitter can be split into three main categories: pretty, i.e. pho-

togenic flowers (Bluebell, Daisy, Dandelion), sessile green plant species (Ivy, Beech,

Bracken) and garden and aquatic birds, which are also diurnal (Blue Tit, Great Tit,

1# Split (e.g. # Tweets) in the table indicates the number of instances in the given dataset.
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Verified as True

(wildlife occur-

rence

Verified as False

(no wildlife occur-

rence)

Total

#Tweets 1,257 1541 2,798

#Tweets with hashtags 679 693 1,372

#Tweets with mentions 247 452 699

#Tweets with pictures 323 322 645

#Tweets with links 976 1,369 2,345

Table 4.5: A subset of the Twitter collection, manually labelled and used for train-

ing classification models (‘#Tweets’ refers to the number of Tweets labelled per

class, i.e. verified as true wildlife observation or false wildlife observation).

Mallard).

Scientific Name Common Name #Tweets

Fagus sylvatica Beech 298,542

Gallinago gallinago Snipe 239,719

Parus major Great Tit 132,798

Pteridium aquilinum Bracken 116,591

Cyanistes caeruleus Blue Tit 110,780

Hedera helix Ivy 91,383

Bellis perennis Daisy 87,471

Turdus merula Blackbird 74,857

Scirurus carolinensis Grey squirrel 65,300

Fringilla coelebs Chaffinch 57,960

Passer domesticus House Sparrow 43,135

Anas platyrhynchos Mallard 46,135

Columba palumbus Woodpigeon 44,851

Chloris chloris Greenfinch 37,839

Prunella modularis Dunnock 32,791

Taraxacum officinale agg. Dandelion 31,948

Heracleum mantegazzianum Giant Hogweed 31,570

Hyacinthoides non-scripta Bluebell 30,282

Branta canadensis Canada Goose 27,094

Aix sponsa Wood Duck 27,403

Table 4.6: Tweets distribution per species — limited to the 20 best represented

species on Twitter (‘#Tweets’ refers to number of Tweets per species).
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4.2 Results

4.2.1 Evaluation Experiments

As mentioned in Section 4.1, our evaluation is focused on a mix of features, mostly

employing various forms of word embeddings along with Logistic Regression, fast-

Text [Bojanowski et al., 2017] and BERT [Devlin et al., 2019] classifiers. In addition

to embedding-based features we include a Logistic Regression classifier based on fre-

quencies of n-grams reflected by their counts of words as a baseline. We used the

1000 most frequent n-grams to form feature vectors for the baseline classifier (i.e. a

bag-of-words approach).

The pre-trained and application corpus-trained word embeddings were fed as input to a

fastText pipeline where we used default parameters and ‘softmax’ as the loss function.

However, for the fastText classifier we present only results based on corpus-trained

embeddings due to the poorer results produced with pre-trained embeddings. For the

BERT classifier, we fine-tuned it for the classification task using a sequence classifier, a

learning rate of 2e-5 and 4 epochs. In particular, we made use of the BERT’s Hugging

Face default transformers implementation for classifying sentences [Wolf et al., 2019].

The results of the classifier experiments were quantified with precision, recall, F1-

measure and accuracy. We also used 10-fold cross validation. This helps to avoid any

bias in the test and training sets with regard to particular species.

4.2.2 Classification Results
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Classifier Feature Extraction Feature Integration p r F1 Accuracy

Logistic Regres-

sion

baseline

1,2 grams count 93.33%

(2.08%)

95.07%

(2.43%)

94.16%

(1.56%)

94.71%

(1.41%)

LogisticRegression

terms count 93.52%

(1.75%)

94.59%

(2.16%)

94.02%

(1.19%)

94.60%

(1.06%)

Word2Vec pre-trained

mean 93.14%

(1.85%)

90.79%

(2.16%)

91.93%

(1.39%)

92.85%

(1.22%)

TF-IDF 86.50%

(2.36%)

69.42%

(3.55%)

77.00%

(2.97%)

81.43%

(2.17%)

uSIF 94.34%

(2.10%)

91.57%

(3.31%)

92.88%

(1.63%)

93.71%

(1.38%)

fastText pre-trained

mean 92.44%

(2.12%)

82.57%

(2.78%)

87.19%

(1.82%)

89.14%

(1.46%)

TF-IDF 91.61%

(2.94%)

61.87%

(5.07%)

73.75%

(4.06%)

80.35%

(2.53%)

uSIF 91.53%

(2.47%)

91.81%

(3.05%)

91.62%

(1.66%)

92.46%

(1.46%)

Glove pre-trained

mean 77.51%

(6.46%)

87.96%

(5.91%)

82.33%

(5.73%)

76.34%

(7.72%)

TF-IDF 70.48%

(3.61%)

92.13%

(3.89%)

79.80%

(3.09%)

70.85%

(4.76%)

uSIF 63.31%

(1.25%)

95.81%

(2.72%)

76.23%

(1.37%)

62.67%

(2.17%)

fastText corpus-based
mean 92.57%

(2.69%)

94.91%

(3.17%)

93.67%

(2.03%)

94.24%

(1.86%)

uSIF 92.27%

(2.24%)

94.35%

(2.83%)

93.27%

(1.86%)

93.89%

(1.68%)

base BERT BERT sentence encoder 92.31%

(1.06%)

95.39%

(1.58%)

93.82%

(1.03%)

94.35%

(0.93%)

fastText pipeline fastText pipeline fastText pipeline 93.44%

(1.37%)

96.10%

(2.15%)

94.74%

(1.38%)

95.21%

(1.23%)

fine-tune BERT base BERT BERT sentence encoder 96.0%

(1.03%)

96.1%

(1.45%)

96.0%

(1.23%)

96.0%

(1.84%)

Table 4.7: Results per classification approach (‘p’ refers to precision, ‘r’ refers to

recall).

The baseline classifier based on frequency scores of n-grams as features provided re-

markably good precision 93.33% and recall 95.07% (see Table 4.7). The feature extrac-
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tion method based on noun phrase and named entity terms rather than 2-gram repres-

entation does not lead to significant improvement over the baseline. The classification

model based on using Word2Vec pre-trained word embeddings is the best performing

model using pre-trained embeddings. It performs better than classification models us-

ing Glove pre-trained embeddings. A potential reason for Glove to perform worse,

even though it was trained with Twitter data, is that wildlife Tweets include a lot of

common and Latin names for species which are not widely used in general Tweets.

The use of fastText corpus-trained embeddings led to further improvements over the

pre-trained models with a 1% increase in F1-measure. Further to that, a simple lin-

ear classifier model coupled with corpus-trained fastText embeddings performed quite

similarly to a linear (logistic regression) classifier coupled with the BERT sentence en-

coding resulting from the [CLS] token of the base BERT language model. The use of

the uSIF sentence encoding method was usually found to be better than alternatives of

a simple mean of word embeddings or a tf-idf weighted mean, but in some cases the

improvement was relatively minor and in the case of the GloVe pre-trained embeddings

it was inferior to the simpler alternatives.

Notably the fine-tuned BERT model gives the best results with precision, recall, F1-

measure and accuracy all being 96%. The fastText pipeline is the second best perform-

ing classifier with precision 93.44%, recall 96.10% and an F1-score of 94.70%.

4.2.3 Indicative Features Analysis

We performed analysis on the features indicative for wildlife using the manually an-

notated Tweets. The results in Figures 4.3-4.5 show that there are trends across the

usage of hashtags, mentions, and links distinguishable between the genuine wildlife

Tweets and the non-genuine wildlife Tweets. For instance, the majority of the genuine

wildlife Tweets have hashtags related to birds and wildlife, mentions of wildlife and

nature groups such as ’@bbcspringwatch’ and ’wildlife uk’. Further, the genuine wild-
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life observations include more links to pictures. In contrast, the false wildlife Tweets

contain hashtags and mentions related to gaming groups.

Figure 4.3: The ten most frequent hashtags per class label, Tweets with genuine

wildlife observations (left), Tweets with false wildlife Tweets (right).

Figure 4.4: The ten most frequent mentions per class label, Tweets with genuine

wildlife observations (left), Tweets with false wildlife Tweets (right).

Figure 4.5: The ten most frequent URL links class label, Tweets with genuine

wildlife observations (left), Tweets with false wildlife Tweets(right).

In order to identify whether hashtags, mentions, and URLs can be used as a way of

distinguishing the genuine wildlife species we performed a statistical analysis look-

ing at the number of non-genuine wildlife Tweets containing the most indicative fea-

tures, displayed in Figures 4.3 to 4.5. Experiments showed that none of the top 5
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most frequent wildlife-related mentions are present in the non-genuine wildlife Tweets.

There are two false wildlife Tweets including wildlife indicative hashtags, i.e., ‘#bird’

and ‘#wildlife’ with examples respectively, ‘Blue Tit Bird Painting Blue Yellow White

http://dld.bz/fj5W5 #birds #wildlife #painting’ and ‘Unfortunately predators invasive

alien species IAS like grey squirrels contributing decline native #wildlife red squirrels

#ias like must also controlled’. The first Tweet is about a painting of a bird rather than

an actual wildlife observation and while the second example is relevant to wildlife it is

not about a wildlife observation. There is a single false wildlife Tweet with a wildlife

indicative URL (i.e., ‘instagram’).

The main conclusions from this analysis are:

1. The presence of mentions such as ‘@bbcspringwatch’, ‘@rspb_nescotland’,

‘@natures_voice’, ‘@wildlife_uk’, ‘@bbcearth’ are strong indications that a

Tweet is a true wildlife observation since they are mentions of official campaigns

for wildlife observations. However, these kind of mentions appear in less than a

100 Tweets. This suggests that crowdsourcing of wildlife observations could be

improved by promoting such groups.

2. Hashtags such as ‘#wildlife’ and ‘#bird’ can be used for distinguishing between

wildlife-related and false wildlife Tweets, but they are not indicative of Tweets

with genuine wildlife observations. Photography related hashtags (‘flickr’, ‘pho-

tography’) and nature-related tags have however been used exclusively in genu-

ine wildlife observation Tweets. This suggests that there is a trend towards the

usage of wildlife hashtags in Twitter wildlife observations that are not related to

official campaigns. It might also explain why the baseline that uses only n-grams

rather than embeddings as features, performs very well, albeit not as well as the

BERT model.
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4.2.4 Error Analysis

We compare the performance of the two best performing classifiers — fine-tuned

BERT and fastText pipeline using a test set of 559 Tweets from the 2798 manually

annotated Tweets, which corresponds to one test fold from the 10 fold cross validation

(described in Section 4.2.1). A confusion matrix of the performance of the classifica-

tion models is given in Table 4.8.

‘Wildlife’ ‘Not Wildlife’

Predicted as

‘Wildlife’

239 15

Predicted as not

‘Wildlife’

8 297

‘Wildlife’ ‘Not Wildlife’

Predicted as

‘Wildlife’

233 17

Predicted as not

‘Wildlife’

14 295

Table 4.8: Confusion matrix for fine-tuned BERT classification model (left) and

fastText classification pipeline (right), where ‘Wildlife’ signifies genuine wildlife

observation and ‘Not Wildlife’ signifies Tweets that are not genuine wildlife ob-

servations.

Error Analysis comparing the false positives and false negatives between the two clas-

sifiers showed that BERT performs better for Tweets which mention species name

in a different context than wildlife. An example of false positive for fastText where

BERT correctly classifies the Tweet as ‘not Wildlife’ is ’looking buyer 8 woodduck

#littleeggharbor #nj #realestate http://tour.circlepix.com/’. This Tweet is about buy-

ing property with the name 8 woodduck rather than talking about the species. BERT

also performs better for Tweets containing the Latin names of the species. A false

negative example of the latter for fastText, where BERT correctly classifies the Tweet

as ‘Wildlife’ observation, is: ’spotted branta canadensis canada goose in our garden

pic.twitter.com/’.

Experiments comparing the best performing classifiers for different Tweets lengths

showed that BERT performs better than the baseline for any length. Further, fine-tuned

BERT gives better results than fastText pipeline and the baseline for shorter Tweets.
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For long sentences fine-tuned BERT and fastText pipeline have very similar perform-

ance with a difference less than 1% (see Figure 4.6). BERT outperforms fastText for

sequences shorter than 10 tokens while for longer sentences, especially when contain-

ing more than 20 tokens, the performance between the two classifiers is very similar.

This shows that BERT is the most suitable model for classifying shorter sequences

such as social media posts compared to fastText and the Naive Bayes classifier.

Figure 4.6: Comparison between the performance of baseline, fastText, and

BERT classifiers for different length of Tweets.

4.3 Discussion

4.3.1 Classification Methodology

In order to perform a thorough analysis into existing classification techniques, includ-

ing state-of-the-art, we used multiple approaches for each main stage of the text clas-

sification process - feature extraction, feature integration, and classification algorithm,

as illustrated in Figure 2.3, part of Section 2.3.1. We performed experiments with three

classifiers, representative of the main types of classification algorithms: a classical (lin-

ear) Logistic Regression, the fastText pipeline and the fine-tuned BERT transformer-
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based model classifier. These methods were used variously in association with features

that consisted of simply counts of the actual words (as 1- and 2-grams) in the Tweets,

which was treated as a baseline, and various forms of embeddings of the sequence of

words in a Tweet. These latter sentence embedding methods included simple and tf-

idf weighted averaging of the embeddings of each word, along with the uSIF sentence

embedding method and the sentence embedding obtained from the CLS token of the

last layer of the basic BERT language model. Various word embedding methods were

employed, namely pre-trained GloVe, Word2Vec and fastText, corpus trained fastText

embeddings, along with the contextually generated BERT embeddings.

Developing this classification methodology extends on related work, presented in Sec-

tions 2.3.5 and 2.3.6 by providing in-depth analysis of existing feature extraction,

feature integration, and classification techniques. This helped identify algorithms for

building automated verification models suitable for diverse wildlife-related textual data

even when the labelled corpus is limited.

4.3.2 Findings

The main findings from this chapter are:

1. Classification results and error analysis presented in Sections 4.2.2 and 4.2.4

showed that, despite the relatively small amount of labelled data, features based

on the corpus-trained embeddings from fastText produced better results than pre-

trained embedding models including the GloVe embedding model, trained on

generic Twitter data. The latter performance advantage can be attributed to the

fact that genuine wildlife observations can use Latin species names which might

be relatively insignificant in use in the pre-trained GloVe embeddings. It is this

occurrence of distinctive vocabulary that might also explain why the baseline

Logistic Regression classifier, in which the features were either simply the count

of words or of n-grams, outperformed all other classifiers except the fastText
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pipeline and the fine-tuned BERT classifier. Regarding the specialised sentence

embedding method of uSIF, in the case of pre-trained Word2Vec and fastText

embeddings it was found to be superior to mean and tf-idf weighted methods,

but for GloVe the opposite was the case. Also for fastText corpus-trained em-

beddings uSIF was slightly inferior to using the mean. These findings indicate

that pre-trained embedding models, trained on large but generic corpora are less

beneficial for classification of text with more specialised terminology (i.e. the

species-related data), compared to corpus-trained word embeddings which are

trained on a smaller but more task-specific dataset. Notably the BERT sentence

encoding method with its contextually adaptive embeddings achieved a similar

performance to the fastText corpus trained method. In contrast, fine-tuning the

BERT sentence encoding model for the classification task outperforms fastText

classifier and the same BERT sentence encoding method coupled with Logistic

Regression. This shows that fine-tuning the transformer-based models to the

task is highly beneficial for the performance of the models versus using the pre-

trained models as an input the statistical classification algorithms.

2. The best performing fine-tuned BERT classifier performed well even for Tweets

with more specialised language (i.e. Latin names, use of non-English words).

Further, it correctly classified non-genuine wildlife observations Tweets that

used the common names of wildlife species in contexts that are totally unrelated

to making a wildlife observation. This indicates that deep learning transformer

models can perform well even for small amounts of labelled data, especially

when more contextual knowledge is needed. Further, this BERT model per-

formed better than linear models for very short Tweets while for longer Tweets,

deep learning performed similarly to linear models. The high performance of

the fine-tuned BERT classifier (i.e., 96% accuracy) shows the potential of state-

of-the-art deep learning models to be used for developing automated tools for

identifying valuable ecology data among informal social network sources auto-

matically and on a larger scale, independent of the species observed at hand.



4.3 Discussion 107

Therefore, this research addresses many of the gaps associated with previous

work on text classification for wildlife data, presented in Section 2.3.5 where

some solutions involve manual processing, the use of linear classification mod-

els or analysis limited to a few species. Additionally, our analyses address the

suitability of different classification approaches for smaller wildlife-related data-

sets, compared to previous research presented in Section 2.3.5

3. Analysis on the use of hashtags and mentions across genuine wildlife observa-

tion Tweets showed that hashtags such as ‘#wildlife’ and ‘#bird’ can be used for

distinguishing between wildlife-related and false wildlife Tweets, however, they

are not indicative of Tweets with genuine wildlife observations. Photography

related hashtags (‘flickr’, ‘photography’) and nature-related tags have however

been used exclusively in genuine wildlife observation Tweets. This suggests that

there is a trend towards the consistent usage of hashtags related to wildlife ob-

servations which are not related to official campaigns. In future, such hashtags

could be used by informal social network campaigns to encourage people to in-

dicate when they are posting about wildlife. However, the presence of some

of these hashtags cannot be alone considered adequate in itself for identifying

wildlife observations. A reason for this is that the list of indicative features may

expand as new species names are used or Tweets are collected for different time

spans, regions, and languages. Additionally, Tweets often contain misspellings

which can affect the representation of indicative features. The use of more soph-

isticated methods such as language models with contextual word embeddings

allows us to identify semantic relationships between terminology used and the

given class. More specifically, terms with similar meaning will have similar rep-

resentations which can help accurate classification despite the diverse spelling or

diversity of terminology. Therefore, classification models can be improved by

creating feature selection techniques which assign higher importance to such in-

dicative features. This would allow these methods to be applied to a wider range

of species, geographical regions and even different languages.



4.3 Discussion 108

4. The statistical analysis, presented in Table 4.6 show trends in the best repres-

ented species on Twitter, which can be split into three categories, i.e. pretty

(photogenic) flowers, sessile green plant species, and garden and aquatic birds.

Similar species distributions have been found in Flickr, presented in Chapter 3,

which suggests that there are common trends among different social networks

on the type of species they represent well. A more detailed analysis into the

value of Twitter for collecting species-specific data is outside the scope of this

Chapter. Instead, we are interested in providing tools for identifying genuine

wildlife-related data which can be applied to studying any kind of species. How-

ever, in future, the developed classification pipeline can be used to filter genuine

wildlife observations which can then be used to perform more detailed analysis

of spatial and temporal distribution of specific species.

4.3.3 Limitations

The work presented in this chapter could be extended by using larger transformer-based

models such as RoBERTa and performing experiments with corpus-trained language

models as well as experimenting with classifiers using earlier neural networks such as

CNN. Despite this limitation, our analyses were conclusive in that transformer-based

models when fine-tuned to the classification task can be very valuable in verifying

wildlife-related observations on social network platforms without the need to collect

large training corpus. Considering the small volume of data, we have performed evalu-

ation using 10-fold cross validation to ensure that the model does not overfit the dataset.

The results show a standard deviation less than 1.8%. In future, it would be of interest

to experiment with a larger dataset and to include a wider range of species with a view

to making the validation method more generally applicable. This will allow us to ex-

tend the quantitative analysis presented in Chapter 3 including Twitter datasets as well.

The presented validation method can be regarded as limited in that it is generic, being

with regard to wildlife in general. It would be of interest to develop validation methods
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that applied to individual species.

4.4 Conclusion

In this chapter, we have explored the problem of identifying genuine wildlife obser-

vations on Twitter using text classification approaches. This is a significant challenge

as Tweets commonly mention species names without being actual observations of the

named species. In preparation for developing a machine learning classifier to identify

genuine observations we created a dataset of Tweets that were manually annotated ac-

cording to whether or not they were classed as genuine wildlife observations. Question

RQ 2 from the hypothesis presented in Section 1.2 has been answered in order to show

that a state-of-the-art language model such as BERT, when fine-tuned for classification,

is valuable in classifying correctly instances with more specialised terminology even

when a training set of less than 3000 instances is provided. This shows the potential of

state-of-the-art neural network transfer learning techniques to facilitate the discovery

of valuable wildlife related data on social networks without the need of human verific-

ation steps or officially organised citizen science campaigns. Analysis into the usage

of hashtags, mentions, and URL links throughout the genuine wildlife related Tweets

suggested trends into the use of hashtags that are unrelated to official citizen science

campaigns. Such hashtags can therefore be exploited in automated feature selection

techniques for improving classification performance, as well as used as part of more

informal campaigns encouraging people to use these hashtags when wildlife observa-

tions are posted. We provided a broad analysis of the suitability of various text clas-

sification and feature extraction methods for identifying genuine wildlife observations

on social media. In doing so we address the need for devising automated strategies

which facilitate the discovery of valuable ecology-related data from informal online

sources which can be used to expand and enrich existing citizen science data portals.

In this and the previous chapter, we focused on the problem of developing verification
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techniques suitable for validating social media posts related to wildlife suitable for

large and diverse species data collections. In the next chapter, we focus on the problem

of geo-referencing text posts in order to facilitate further the use of social media data

in wildlife-related studies such as movement patterns identification.



Chapter 5

Geo-referencing Social Media Data

Related to Wildlife Observations

As explained in Section 2.4 from Chapter 2 and found in our analysis presented in Sec-

tion 4.1.1 from Chapter 4, it is hard to obtain geo-referenced Tweets, especially when

search is limited to a certain topic or region. However, geo-referenced datasets obtained

from social networks sites have the potential to facilitate studies of wildlife distribution

patterns which in turn are increasingly important for alerting rapid ecosystem changes

such as climate change, diseases spread, and invasive species occurrences [Amano

et al., 2016, Barve, 2014] (discussed in Section 2.4, Chapter 2). Therefore, in this

chapter, we address the problem of geo-referencing social media posts. Similarly to

the previous chapter, we use Twitter for performing experiments as it has the potential

to serve as a source of valuable wildlife-related data.

We opted for using a regression-based approach for assigning coordinates versus the

more widely explored language modelling approach as regression algorithms do not

require additional steps for assigning coordinates and also do not involve partitioning

of the training data into clusters or grids which can be data-specific and data consuming

task (discussed in Section 2.4).Geo-parsing in combination with geocoding is another

method which achieves high precision for georeferencing especially when there is a

limited amount of annotated data as it does not require any training data. However, as

discussed in Section 2.4 this approach works only when the social media posts mention

location names which are also present in the gazetteer and by itself will often fail to

111
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resolve ambiguity correctly when the same place name can refer to multiple locations.

Scherrer et al. [2021, 2020] showed that the regression approach, especially when

combined with a transformer-based model (contextualised neural network word rep-

resentation model) led to significant improvements over classification approaches for

geo-referencing social media posts. However, there is still a lack of extensive research

on how neural network models and transfer learning techniques can be utilised for

predicting coordinates of social media, especially in settings with a relatively small

training set (less than 150,000 training instances) and wildlife specialised posts. Previ-

ous research has also indicated the benefit of a hybrid approach that combines language

models with geo-parsing [DeLozier et al., 2015]. A benefit of using regression mod-

els is that it always returns coordinate values for a given test instance independent of

whether the instance include a place name or not. A benefit of geo-parsing methods is

that it does not require annotated data and it can predict coordinates with high accuracy

but only for instances which mention place names. Thus, the two approaches can be

complementary to each other. However, regression has not previously been used in

combination with geo-parsing or other rule-based methods in previous research.

In this chapter, we address these gaps by adopting a hybrid approach in our case apply-

ing state-of-the-art neural network models to the regression task with support for mul-

tivariate regression in order to predict latitude and longitude values for Twitter posts, in

combination with gazetteers where place names are present. We perform experiments

with various transfer learning techniques showing that transformer-based word repres-

entation models trained on the domain, and on training data enriched with multiple so-

cial media sources, leads to significant improvements in georeferencing Twitter posts.

Further, investigation into two strategies for improving precision of regression models

showed that a location names extraction method based on using Named Entity Recog-

nition (NER) and gazetteers enhances the precision of geo-referencing approaches.

In the rest of the chapter, we address research question RQ 3: Can deep learning

transformer regression models provide an effective means of geo-referencing so-
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cial media posts? from Section 1.2. The contributions of this research are:

• A geo-referencing model based on state-of-the-art neural network word repres-

entations which has been adapted to multi-output regression — The model out-

performs regression models based on statistical machine learning algorithms

• A domain trained neural network-based word representation which when ad-

apted to multi-output regression does lead to improvements in geo-referencing

Tweets over the publicly available pre-trained models

• A transfer learning method for enhancing regression models for geo-referencing

Tweets by enriching training sets with Flickr geo-referenced posts

• Analysis of the effectiveness of two hybrid approaches, involving regression for

improving the precision of geo-referencing models.

• Providing the largest collection of geo-referenced wildlife-related Twitter data,

to the best of our knowledge

The rest of the chapter is structured as follows: Section 5.1 describes the methods

we used and the methodologies for building the regression model and the hybrid ap-

proaches. In Sections 5.2 and 5.3 we present the results and discussion. Finally, Sec-

tion 5.4 concludes the paper and presents future directions.

5.1 Methods

We focus on geo-referencing Tweets relevant to wildlife observations within the UK.

For these purposes, we use a transformer-based model (RoBERTa language model),

which we adapted for the regression task, similarly to geoBERT [Scherrer et al., 2021].

The methodology for building the regression model for predicting coordinates consists

of two main steps (see Figure 5.1). In the first step, we pre-train the RoBERTa language
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model to obtain word representations. In the second step, we fine-tune the language

model to the regression task in order to assign coordinate values to Tweets. Addi-

tionally, we perform experiments with two approaches for improving the precision of

the geo-referencing models (see Sections 5.1.3 and 5.1.4). We compare the developed

methods to a statistical regression model and BERT language model, fine-tuned for

the regression task. Furthermore, we address the problem of having a small volume

of training data by combining Twitter posts with text-based Flickr posts. We provide

more detail in Section 5.1.5.

Figure 5.1: Methodology for building RoBERTa-based regression model for pre-

dicting coordinates of Tweets.
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5.1.1 Pre-training Language Model

We perform experiments with two RoBERTa language models:

• Generic base RoBERTa model [Liu et al., 2019a] — The base RoBERTa model

has been trained using generic English datasets. The model is case sensitive.

• Domain-trained RoBERTa model — We have fine-tuned the base RoBERTa

model to our domain, i.e. wildlife Tweets. For these purposes we used the

wildlife-related Tweets, described in Section 5.1.5, that are not associated with

coordinates. We used the masked language modeling (MLM) technique for fine-

tuning RoBERTa where, given a sentence, the model randomly masks 15% of

the words in the input before predicting the masked words [Liu et al., 2019b].

This technique enables learning more contextually rich sentence representations,

compared to earlier neural network models (see Section 2.3.2). Notably, the

MLM technique has also been used for pre-training the base RobERTa model.

The model was fine-tuned for three epochs using the Hugging Face library [Wolf

et al., 2019] implementation for MLM.

As one of our baselines, we use the BERT language model pre-trained using large

generic unlabelled corpora from various sources. We used the large uncased BERT

model available from the Hugging Face library.

5.1.2 Regression Models

We develop a regression model by adapting RoBERTa to multivariate regression in

order to be able to assign latitude and longitude values to each unlabelled Tweet. Cur-

rently, the RoBERTa architecture supports the regression task for single values using

Mean Square Loss function. We adapt RoBERTa to multivariate regression (for both

latitude and longitude prediction), calculating Mean Square Loss function per label.
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For these purposes, we used the implementation of RoBERTa for multi-label classific-

ation provided by the Huggingface Simple Transformers library [Wolf et al., 2019]. In

order to train our regression model, we used 10 epochs, a batch size of 32 and we also

save only the model which performs the best for the development set.

As our baselines, we have used two other regression approaches. We used the Support

Vector Regression (SVR) [Awad and Khanna, 2015] algorithm which has been used in

previous research on geo-referencing social media data and is known to generalise well

to unseen data with good accuracy. Our implementation used the Scikit-Learn library

version of the SVR algorithm [Pedregosa et al., 2011]. It was adapted to multiple-

output regression using a simple strategy consisting of fitting one regressor per target

(latitude and longitude values). As input features, we used TF-IDF-weighted n-grams

consisting of characters with length 3-10. We performed experiments with other char-

acter lengths, however, 3-10 led to the highest results. We have also compared the

RoBERTa regression model to the BERT model fine-tuned for regression following

implementation methods explained in Scherrer et al. [2021].

In the rest of this section, we will describe the hybrid approaches we used for improving

the precision of geo-referencing methods. They make use of the regression models

developed in the paper and techniques that require less training data, which makes

them suitable for small datasets.

5.1.3 Hybrid Approach based on Location Names Extraction and

Regression

We have implemented a hybrid approach that combines a location names extraction

method, based on NER and geocoding, with the RoBERTa regression model (see Fig-

ure 5.2). The location names extraction approach, exploits the presence of place names

within the Tweets where location names are first extracted from the Tweets and mapped

to their coordinates. Location disambiguation is performed at two stages of the ap-
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proach. We use the RoBERTa regression model coordinates when no location names

are found in a Tweet, and for performing disambiguation when an ambiguous place

name is detected with the gazetteer. The approach consists of the following steps, as

shown in Figure 5.2.

Location Names Extraction: We identify location names within the Tweets using

two named entity recognition (NER) methods. An entity is regarded as a potential place

name is it has one of the following NER labels: ‘GPE’, ‘FAC’, ‘LOC’ and ‘ORG’. To

improve precision of the NER process, we apply voting between the methods where

a place name is considered genuine if both methods have identified it as a location

using one of the above labels. Our first NER method uses the spaCy library [Honni-

bal and Montani, 2017] which has been successfully used for NER for short texts in

previous research. We use the transformers pre-trained NER model, part of the lib-

rary. We have also used the Flert NER model [Schweter and Akbik, 2020] trained on

a large English language corpus, available from https://huggingface.co/flair/

ner-english-large. In an initial analysis, we also used the BERT model fine-tuned

for Named Entity Recognition (NER) [Devlin et al., 2018], trained on the CoNLL-2003

English news articles dataset [Tjong Kim Sang and De Meulder, 2003]. However, the

results showed that the latter model does not perform well for the given dataset.

Map Locations to Coordinates: We obtain the coordinates for each location name,

identified in the first step by using the geocoding library Nominatim1. Nominatim uses

OpenStreetMap data to find the coordinates for given location names. We have limited

the geocoded results to be UK-based because we analyse only wildlife observations

within the UK.

Location Names Disambiguation: We perform location names disambiguation at

two stages of the approach, also described in Algorithm 5.1:

1Nominatim: https://nominatim.org

https://huggingface.co/flair/ner-english-large
https://huggingface.co/flair/ner-english-large
https://nominatim.org
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Algorithm 5.1: Location Name Disambiguation Heuristic

Input: Tweet

Output: lat,lon

if loc ∈ Tweet then

if len(loc) > 1 then

return finest grain location object

if geocoding returns multiple instances loc(lat, lon)) then

return loc(lat, lon) closest to regression(lat, lon)

else

return regression(lat, lon)

• If a Tweet contains more than one location, we select the location which refers

to the finer grained geographic object.

• If more than one location has the target place name, we select the location with

coordinates closest to the coordinates returned by the regression model, calcu-

lating distance with the Harversine formula.

• If a Tweet does not contain location names, then we use the coordinates returned

by the regression model
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Figure 5.2: Description of Hybrid Approach based on Location Names Extraction

and RoBERTa-based regression.

5.1.4 Hybrid Approach based on Semantic Similarities and Re-

gression

Semantic similarity-based methods are commonly used in combination with language

modelling approaches in which having selected a predicted region, usually a grid cell

or a spatial cluster, the aim is to find the most similar item from the training data that is

also located in the same target cell or cluster as that predicted, and use the coordinate

of the training item as the prediction. We adapt this approach by using radial distances

from the regression prediction coordinates to represent the predicted region. The steps

of the approach, illustrated in Figure 5.3, are as follows:

Step 1: Define Regions: For each unlabelled instance, we find the training instances

which are within a given radial distance from the given unlabelled Tweet based on

the coordinates predicted by the RoBERTa-based regression model. We performed

experiments with three radial distances, i.e. 5km, 10km, 20km.
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Step 2: Find the most similar training instance: We find the most similar train-

ing instance to each unlabelled Tweet using neural network models for building sen-

tence embedding representations of the Tweets and then calculating the cosine sim-

ilarity between the embedding vectors. For each unlabelled instance, we select the

most similar training Tweet within the region of the given instance. In order to obtain

embedding representations for the Tweets, we experimented with two neural network

architectures. We used the sentence transformer model, Sentence-BERT (SBERT) [Re-

imers and Gurevych, 2019] which is a modification of the pre-trained BERT network

that uses siamese and triplet network structures to derive sentence embeddings that can

be compared using cosine similarity. We used a pre-trained SBERT model which has

been trained on a large and diverse dataset of over 1 billion training pairs, available

from Hugging Face library at https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2. We also performed experiments with corpus-trained embeddings

obtained with fastText architecture [Bojanowski et al., 2017]. However, the results

were unsatisfactory.

Step 3: Re-assign coordinates to unlabelled Tweets: Finally, we give each test

instance the coordinates of the most similar training Tweet that is within the region of

the test instance.

Step 4: Average Coordinates: We average the coordinates obtained using the two

methods, i.e., regression and semantic similarity approach. We performed experiments

with and without this final step.

5.1.5 Datasets

We collected Twitter and Flickr datasets limited to UK boundaries and related to wild-

life observations. For these purposes, we used search phrases relevant to common and

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 5.3: Description of Hybrid Approach based on Semantic Similarities and

RoBERTa-based Regression.

scientific names of various species within the UK. The Tweets were collected regard-

less of whether they are geo-tagged. We collected Tweets for the period 2007 – 2019

using the historic Twitter API. We are interested in predicting coordinates referred to

by the Tweet text rather than the user profile location and therefore we downloaded

only the Tweet information. We do not use the user profile location information be-

cause it might not match the location at which the Tweet has been created. This is

especially true for species related posts where users often travel to different locations

and take a note of wildlife observations that they have encountered during their travels.

Specifically, for each Tweet we downloaded the post, any hashtags, mentions, and links

associated with the Tweet. We used the labelled instances (i.e., instances with coordin-

ates) for training prediction models while the unlabelled instances (instances with no

coordinates) were used for pre-training the BERT language model which is later fine-

tuned for the regression task (see Table 5.1). We further discuss the different language

models that we built in Section 5.1.1.

We downloaded Flickr data using the Flickr API interface for the period 2007 – 2019
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Twitter dataset Flickr dataset

#Instances (labelled) #Instances (unlabelled) Avg Length #Instances (labelled) Avg Length

Train 118,786 1,582,928 - 14,658 -

Dev 13,199 19,063 - - -

Test 14,666 - - - -

Total 146,651 1,601,991 16 14,658 23

Table 5.1: Overview of the social media datasets: Average number of tokens per

instance (Avg Length) Number of instances with associated coordinates used for

training prediction model (#Instances (labelled)), Number of instances used to

train language model without associated coordinates (#Instances (unlabelled)).

inclusive. We limited search to geo-referenced Flickr posts because we use Flickr data

only as a supplement to the fine-tuning stage where data with labelled coordinates is

required. Additionally, we downloaded only the text-related data (title, description,

tags) because we want to augment the Twitter dataset with additional text data, with no

exploitation of associated images. We added the text data from Flickr (title, description,

tags) with associated coordinates to the training set of Twitter data without any further

pre-processing steps.

Training and testing data: An overview of the datasets used for training language

models and regression models is given in Figure 5.1 where the ‘labelled’ instances

are instances which are associated with coordinates and they are used as a training

set for the regression models while the ‘unlabelled’ instances are used for pre-training

the RoBERTa domain-specific language model. For evaluation purposes we used a

stratified split (80/10/10) for the Twitter dataset. We have obtained in total 146,651

labelled wildlife-related Tweets which is, to the best of our knowledge, the largest

collection of geo-referenced wildlife-related Twitter data available.
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5.1.6 Coordinates Normalization for performing regression

Neural networks do not perform well for numerical training labels that are unequally

distributed [Scherrer et al., 2021]. Therefore, coordinate values need to be normalised

before being used as an input to the neural network-based regression models [Scherrer

et al., 2021]. For these purposes, we use the method proposed in [Scherrer et al., 2021]

where authors use joint scaling and MAE loss function for normalising the coordinate

values. The advantage of this method is that standard deviation is performed jointly on

both latitude and longitude values, rather than independently for the two dimensions

which can lead to data distortions.

5.1.7 Evaluation Metrics

We evaluate our models using standard measures used in previous related research on

predicting coordinates for social media data [Zheng et al., 2018, Gritta et al., 2019].

These are Median Error Distance (MedianED) and Mean Error Distance (MeanED).

The measures are defined in terms of the Distance Error DE(m). For each tweet m, with

a known actual location locr(m), DE(m), is defined as either the Haversine distance

or Euclidean distance d between locr(m) and the inferred location, loc(m): DE(m) =

d(loc(m), locr(m)). The MeanED is defined as the average DE for each tweet while

the MedianED is the median of DE for each Tweet.

5.2 Results

5.2.1 Evaluation Experiments

As mentioned in Section 2, our evaluation is focused on comparing a regression model

based on the RoBERTa language model with two other regression models employed



5.2 Results 124

in previous research on geo-referencing social media data, one based on statistical ma-

chine learning algorithm (Support Vector Regression) and a regression model based on

BERT. We have performed experiments with the pre-trained RoBERTa model, trained

on a generic dataset and a RoBERTa model which has been fine-tuned to the Twit-

ter domain using the Tweets we have collected related to wildlife observations (see

Table 5.1). The baseline SVR classifier is based on TF-IDF frequencies on character

grams of length 3-10. The other baseline based on BERT uses a pre-trained BERT

language model, trained on the generic dataset and then fine-tuned for the regression

task. Further, we present two approaches for improving the precision of georeferencing

models based on location name extraction and semantic similarity between training and

unlabelled instances. The development (‘dev’) set is used for identifying and saving

the best performing model on the development set which is then used for assigning

coordinates to the test instances. As mentioned in Section 5.1.7 we use MedianED and

MeanED for evaluating the approaches.

5.2.2 Regression Results

Results from the performance of the regression models (see Table 5.2) showed that

transformer-based models can have a significant advantage over traditional machine

learning models for geo-referencing social media content. Both, the median error dis-

tance and the mean error distance are much lower even for the baseline BERT-based

regression model when compared to Linear SVR model by a margin of more than

50km for the test set (MedianED (BERT) = 94.90 km versus MedianED (linear SVR)

= 156.54 km and the MeanED (BERT) = 121.37 km versus MeanED (SVR) = 181.32

km). Further, the transformer-based regression models perform very similarly for both

the dev and test set. This shows that the models generalise well for unseen datasets

while the performance of the Linear SVR model drops significantly for the test set.

For instance, for the best performing Linear SVR, the MedianED of the dev set is

98.60 km versus MedianED of the test set is 156.82 km which is 50 km increase in the
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distance error space. In contrast, the differences in the BERT and RoBERTa models’

MedianED and MeanED values for the dev set and the test set is not more than 3 km.

Results also show that using RoBERTa for building regression models for geo-referencing

Tweets is more beneficial than using BERT (see Table 5.2). Even when the generic

RoBERTa model is used, it still outperforms the BERT regression model where both

the MedianED and the MeanED are 20 km lower for the RoBERTa model than for

BERT regression model. The reason for the better performance of RoBERTa versus

BERT is that the RoBERTa model has been trained using a much larger training set

than BERT. This shows that using larger transformer models for regression, even when

trained on generic datasets, is highly beneficial for the performance of regression mod-

els especially when the labelled dataset is sparse.

The use of a RoBERTa word representation model fine-tuned to the domain data has

led to further improvements over the pre-trained RoBERTa model with 1-2 kilomet-

ers decrease in MedianED and MeanED (‘RoBERTa generic’ versus ‘RoBERTa wild-

life’, Table 5.2). In Table 5.2, ‘generic’ refers to a pre-trained publicly available lan-

guage model which has been trained using generic online datasets, ‘wildlife Tweets’

refers to language model which has been fine-tuned to the domain data (wildlife-related

Tweets), ‘wildlife Tweets+combined training set’ refers to a regression model which

is using a RoBERTa model, fine-tuned to the domain and a training set, consisting of

Twitter and Flickr data, ‘NER + RoBERTa-based regression’ refers to the hybrid ap-

proach consisting of location name extraction and regression, ‘semantic similarity +

RoBERTa-based regression’ refers to the hybrid approach consisting of semantic sim-

ilarities and regression, ‘best single NER model’ refers to using a single, i.e., the best

performing NER model (spaCy library) for location extraction as part of the hybrid

approach, ‘voting mechanism’ refers to the voting approach where we perform voting

between results obtained with both spaCy NER library and Flert NER model. Not-

ably the best performing regression model is using a RoBERTa model fine-tuned to

the domain and also a training set consisting of Twitter and Flickr posts, resulting in
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Regression Model Method Dev Set Test Set

MedianED MeanED MedianED MeanED

Linear SVR TF-IDF 98.60 km 127.03 km 156.82 km 181.32 km

BERT generic 93.63 km 119.34 km 94.90 km 121.37 km

RoBERTa

generic 38.30 km 102.09 km 40.96 km 101.35 km

wildlife Tweets 37.99 km 101.50 km 39.84 km 100.89 km

wildlife Tweets+combined training set 36.81 km 101.05 km 38.04 km 100.44 km

semantic similarity + RoBERTa-based regression

5 km - - 38.24 km 100.36 km

10 km - - 38.16 km 100.17 km

20 km - - 38.78 km 100.26 km

NER + RoBERTa-based regression
best single NER model - - 36.68 km 98.91 km

voting mechanism - - 36.47 km 98.22 km

Table 5.2: Results from regression models performance

MedianED = 38.04 km and MeanED = 100.36 km for the test set. This indicates that

augmenting the training corpus with labelled instances from diverse social network

sites can be beneficial for building more accurate geo-referencing models for Twitter.

5.2.3 Analysis on hybrid approaches

As mentioned in Section 2, we developed two approaches for improving the precision

of regression models for geo-referencing Tweets.

The approach based on radial distances and semantic similarity (described in Sec-

tion 5.1.4) does lead to slightly lower MeanED values compared to the best performing

regression model, when 10 km radial distance is used (see Figure 5.4 and Table 5.2),

though there is no improvement in MedianED. However, as illustrated in Figure 5.5,

the hybrid approach based on semantic similarity is notable for performing particularly

well when compared to the RoBERTa-based regression model at the highest locational

accuracy band in which the error is less than 5 km.

In contrast, the hybrid location name extraction method that uses the RoBERTa regres-

sion method for disambiguation (described in Section 5.1.3) leads to marked overall

improvement in performance relative to the best performing RoBERTa-based regres-

sion model, achieving MedianED = 36.68 km and MeanED = 98.91 km when a single
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Figure 5.4: The effect of the radial distances over the performance of the Semantic

Similarity+RoBERTa-based regression where the best performing RoBERTa-

based regression model is used as a baseline.

NER model is used for location name extraction. In this case, the spaCy NER model

was used as it led to better geo-referencing results than the Flert NER method when

combined with RoBERTa-based regression. Further, a voting procedure between the

two location names extraction methods, spaCy NER library and Flert NER model, led

to even further improvements with MedianED = 36.47 km and MeanED = 98.22 km.

The error distribution results, presented in Figure 5.5, illustrate the fact that while the

hybrid approach based on location name extraction and regression increases the pre-

cision of geo-referencing models significantly for all error distances up to 95km, the

improvement is most marked within distances of 5km. Additionally, a comparison

between the NER voting-based approach (which uses a gazetteer to obtain coordin-

ates) and the RoBERTa-based regression model (see Table 5.3) showed that, just for

those posts in which place names can be detected, the NER/gazetteer method using

RoBERTa-based regression for location disambiguation (‘NER+regression-based dis-

ambiguation’) outperforms the purely transformer-based regression models and purely

location name extraction method (‘NER+Nominatim-based disambiguation’) for geo-

referencing social media posts, obtaining a median ED of 1.32 km. In Table 5.3

‘NER+regression-based disambiguation’ refers to using the RoBERTa-based regres-

sion model for performing location disambiguation, ‘NER+Nominatim-based disam-

biguation’ refers to using the top ranked location returned by Nominatim for a given

place name, ‘NER+Nominatim-based disambiguation with UK context’ refers to us-

ing the top ranked location returned by Nominatim but limiting the search to UK-
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based locations, and ‘RoBERTa-based Regression’ refers to using only regression for

inferring the coordinates for the Tweets. In contrast, the regression-based disambig-

uation method does not lead to improvement over the disambiguation method based

on restricting the Nominatim search to a specific region, i.e. UK (‘NER+Nominatim-

based disambiguation with UK context’). This shows that combining location name

extraction and regression approaches is beneficial for geo-referencing Tweets, espe-

cially when location searches cannot be limited to a specific context. However, using

only the NER method with gazetteers coordinates has a major limitation for data sets

such as the one employed here as only about 5% of the Tweets contain detectable place

names (see Table 5.4). Our hybrid approach that uses coordinates both from gazetteers

and predicted from regression is therefore clearly advantageous for such datasets.

Figure 5.5: Distribution of error results showing proportion of results within 5

km, 10 km, etc for the approaches RoBERTa-based regression, NER+RoBERTa-

based regression, and Semantic Similiarity + RoBERTa-based regression.
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Method MedianED MeanED

NER+regression-based disambiguation 1.32 km 39.22 km

NER+Nominatim-based disambiguation 1.85 km 50.27 km

NER+Nominatim-based disambiguation with UK context 0.86 km 39.28 km

RoBERTa-based regression 14.95 km 59.83 km

Table 5.3: A comparison between different location name disambiguation tech-

niques for the location name extraction approach just for those 872 Tweets in

which place names could be detected.

Approach #Tweets

Locations Names Extraction
Tweets with detected location names 872

Tweets with no detected location names 13,794

Semantic Similarities
training instances within region (10 km) 14,308

no training instances within region (10 km) 358

Total number of Tweets 14,666

Table 5.4: Data distribution for the two hybrid approaches, i.e., semantic similar-

ity approach , ‘#Tweets’ refers to number of Tweets.

5.3 Discussion

5.3.1 Geo-referencing Methodology

The main stage of this research is the development of a multivariate regression model

for predicting latitude and longitude values for a given unlabelled Tweet. For these pur-

poses, we used the language model RoBERTa which has achieved state-of-the-art per-

formance for many NLP-related tasks. RoBERTa’s architecture already supports fine-

tuning on regression, however it allows predictions only for a single value. Thus, we

extended the implementation of RoBERTa’s model, provided in Huggingface Simple

Transformers library, to support multivariate regression by calculating Mean Square
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Loss (MSL) function for each label (i.e., latitude and longitude) separately. In sim-

ilar work by Scherrer et al. [2021], the authors adapt BERT to multivariate regression.

We extend on this work by performing experiments with RoBERTa which is a bigger

and newer language model and also outperforms BERT for many tasks. Additionally,

we performed analysis with different transfer learning techniques to identify strategies

suitable for geo-referencing Tweets when there is a limited amount of labelled data.

These are: 1) a comparison between domain-trained and pre-trained language models

over the performance of regression and 2) augmenting the training corpus using Flickr

data.

We proposed two hybrid approaches, both incorporating RoBERTa-based regression

model which help improve precision of geo-referencing Tweets. These approaches are

based on 1) location name extraction and 2) semantic similarity and radial distances

between the training and test instances.

We evaluated the proposed approaches using two baselines — a widely used statistical

regression model (SVR) and a regression model based on BERT.

The multi-output regression model based on RoBERTa and the hybrid approaches in-

corporating regression have not been used in previous research and represent a novel

approach for geo-referencing Tweets. Additionally, the domain-trained RoBERTa model

proved valuable for building geo-referencing models and can be re-used for future work

on classification and regression for wildlife and Twitter-related research.

5.3.2 Findings

1. Analyses presented in Sections 5.2.2 and 5.2.3 showed that transformer-based

models adapted for multivariate regression have a significant advantage over a

conventional SVR statistical regression model for assigning coordinate values

to social media posts. Further, a comparison between two (generic) pre-trained

transformer-based models, BERT and RoBERTa, showed a significant advantage
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of the RoBERTa model for geo-referencing Tweets, indicating that using larger

pre-trained models for geo-referencing is beneficial when the domain-specific

training dataset is relatively small.

2. Analysis on transfer learning techniques showed that fine-tuning language mod-

els to the domain and then to the task helps improve the performance when com-

pared with generic trained models even when the corpus used for fine-tuning

is relatively small. Further, the domain-trained RoBERTa language model de-

veloped in this work can be used in future research on regression and classific-

ation tasks for Twitter and in wildlife-related studies. A related work by Scher-

rer et al. [2021] presented the geoBERT model, where BERT was adapted to

the regression task for geo-referencing social media posts. In contrast, we per-

form analysis with the more recent and bigger language model RoBERTa, which

we have adapted for multivariate regression. We also experiment with different

transfer learning techniques and hybrid methods combining a rule-based NER

and gazetteer approach with regression strategies to improve the precision of

geo-referencing approaches. We compared our model to the BERT-based regres-

sion model which is a state-of-the-art geo-referencing approach, i.e., geo-BERT

Scherrer et al. [2021]. The results presented in Table 5.2 shows a clear advant-

age of the RoBERTa-based model over geoBERT. Furthermore, the RoBERTa

model trained on wildlife Tweets can be used for future research in georeferen-

cing and analysing wildlife-related social media posts. A recent deep learning

method that claims to be state of art and emphasises the issue of disambiguation

(which is relevant here) Yan et al. [2021] reported significantly poorer median

distance performance compared to our approach (97km vs 34km). The only

published method that we are aware of that has better performance for georefer-

encing Twitter Di Rocco et al. [2021] obtains that performance by restricting the

problem to a specific local geographic region and is entirely dependent upon the

presence of place names in the postings, neither of which are appropriate for the

problem addressed here.
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3. The approach for augmenting small training sets using additional social media

sources proved beneficial for training geo-referencing models. This work can be

expanded in future by considering a larger number of social media platforms and

using these diverse data sources for pre-training the language models. Related

work by De Rouck et al. [2011], Laere et al. [2014a], analysing the benefits of

using language models built with Flickr and Twitter datasets for the prediction

of Wikipedia page location, used statistical machine learning methods. Their

approach required a pre-processing step to normalise feature vectors used by

the statistical algorithms, in contrast to our neural network-based georeferencing

model for which no such pre-processing is required.

4. The hybrid approaches presented in Sections 5.1.3, 5.3 and 5.2.3 showed that

using either semantic similarities or location name extraction combined with re-

gression, which is used for disambiguation of place names when present and in

isolation when they are not, can be beneficial for improving the precision of geo-

referencing models. Specifically, the approach based on location name extrac-

tion and RoBERTa-based regression leads to the best results on geo-referencing

Tweets and it helps enhance precision particularly in obtaining distance errors

less than 5 km. A significant drawback of the NER/gazetteer approach when

used in isolation is that only a small portion of Tweets include place names. In

contrast, the transformer language model-based regression methods always as-

sign coordinate values to the Tweets. An investigation of the Tweets for which

NER did not return location names showed that 32% of them were predicted

within 15km by the regression model and 51% were predicted within 55 km.

Examples of Tweets that were geo-referenced by the regression method but

not by the location name extraction method are given in Table 5.5. An obvi-

ous characteristic of Tweets that cannot be geo-referenced with NER and gaz-

etteers is that there are no detectable place names. Examples include: ‘This

Herring gull was harassing returning guillemots to give up their catch. #wild-

life... https://t.co/TFm1Whtc03’, ‘@BBCSpringwatch saw a jackdaw this

https://t.co/TFm1Whtc03'
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evening eating seeds at our bird feeders. This is a first for us. Is this normal

behaviour?’, and ‘Down side to lots of #Clover in your lawn? Bee sting in

your foot, that’s what #ouch’. They often include fine-grained locations using

generic place words such as ‘our bird feeders’ and ‘lawn’ which cannot be as-

sociated with coordinates using gazetteer methods. Such descriptions are also a

challenge for the language model methods but in some cases surprisingly good

results can be obtained (as in the second example in Table 5.5) which can be

attributed to the locations being learnt from similar language in the training ex-

amples. There are other situations in which Tweets include actual locations that

have been miss-classified by the NER approaches, for example because of ad-

jectives attached to the proper location names, as in Lovely #daffodils @ Sunny

Adlington https://t.co/p5dqjjBYVU , where the NER methods have labelled

the phrase ‘Sunny Adlington’ as a person. Another reason for failure of the

NER/gazetteer methods is when Tweets are associated with locations that have

not been identified by the pre-trained NER methods and are not present in the

gazetteer, such as "Uttoxeter Quarry" in the Table 5.5 example ‘@Staffsbirdnews

Uttoxeter Quarry: Common Tern,Common Sand, 4 Green Sand, 4 Snipe, 3 Pin-

tail, 19Wigeon, 4 Pochard and 2 Blue Snow Geese’. In future, it is possible to

envisage that such false negatives for the NER/gazetteer method could be re-

duced by improved training of the NER methods with location-rich Twitter data,

as well as access to richer gazetteer resources. The significant advantage of the

regression model is that it is able to assign coordinates to such Tweets (especially

those that do not mention gazetteered place names) based on learned trends from

the training set. The error analysis presented in Table 5.5 shows the benefits of

using regression in combination with NER methods which help improve preci-

sion with less than 5 km error in some cases. Such a hybrid approach can be very

beneficial for georeferencing diverse collections of social media posts, independ-

ent of the observed species, even those that do not mention place names. Finally,

the comparison between different location disambiguation methods presented in

https://t.co/p5dqjjBYVU
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Table 5.3, shows that using regression and NER instead of the other more widely

used methods for location disambiguation can be highly beneficial for building

georeferencing models.
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Tweet Dist. Error(km)

13 spoonbills and one with a avocet sitting on ones head @RSPBtitch-

wellmarsh http://t.co/asCe6L8UEP

4.00km

Morning all. Yes indeed, it’s a marshmallow world again round here.

Deep joy. And pity me poor Robin; Blackbird on their nests!

2.69km

Great Black Backed Gull spotted on 09-Jul-2013. Sent from Birds of

Britain HD app by @CleverMatrix https://t.co/BBa2zrtR86

2.71km

@Staffsbirdnews Uttoxeter Quarry: Common Tern, Common Sand, 4

Green Sand, 4 Snipe, 3 Pintail, 19 Wigeon, 4 Pochard and 2 Blue Snow

Geese

3.89km

What beauty, Buddleja and a Peacock butterfly! #buddleja #buddleia

#butterflybush #peacockbutterfly #beauty #nature #garden #betwsycoed

4.72km

@Staffsbirdnews Uttoxeter Quarry: Redstart, Black-tailed Godwit, 3

Green Sand, 6 Common Sand, 5 LRP, Willow Tit

1.18km

Tiny bee type thingy on my pink daisy #beetypething #tinybee #pink-

daisy #daisy #pink #gardening #gardensofinstagram #lbloggers #lblog-

gersuk #instagarden #growyourown #plants #plantsofinstagram #gblog-

gersuk https://t.co/IofJdMOyUa

3.26 km

discovered today that there’s a #wren pair #nesting in our #compost

bin! #eye_spy_birds @Natures_Voice @GWmag @bbcspringwatch

birdsofinstaqram best_birds_of_world @chesterelements #wren

3.56km

#wmbirdclub #Belvide 12/10: 68 Golden; 3 Ringed Plover, Ruff, 8

Dunlin, 40 Gadwall, 27 Shoveler, 14 Wigeon, 163 Teal; 55 Pochard.

0.43km

Table 5.5: Examples of Tweets for which the regression model performed well,

but the NER/gazetteer location extraction-based approach failed.

https://t.co/IofJdMOyUa
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5.3.3 Limitations

The research presented in this chapter can be extended by performing further analysis

using transfer learning techniques. We want to analyse whether the use of language

models trained using diverse social media datasets (such as Flickr) can further improve

the performance of geo-referencing Tweets.

5.4 Conclusions

This chapter presented novel work on adapting state-of-the-art transformer-based mod-

els such as RoBERTa to multivariate regression for creating geo-referencing models for

social media posts. We performed analysis with various transfer learning techniques

for improving the performance of regression models focusing on scenarios with a small

training corpus. Question RQ 3 from the hypothesis presented in Section 1.2 has been

answered showing that domain-trained transformer models, fine-tuned for multivari-

ate regression and using diverse social media sources for augmenting the training set

with additional labelled data improve precision of geo-referencing models. Further, we

provide the largest collection of geo-referenced wildlife Tweets and a domain-trained

RoBERTa model which can be used in future research on geo-referencing and identi-

fying wildlife observations on social media. Finally, we proposed a hybrid approach

based on location name extraction and RoBERTa-based multivariate regression which

help significantly improve the precision of geo-referencing social media posts. The

work in this chapter provided useful insight into how state-of-the-art neural network

models, transfer learning techniques and simpler rule-based approaches can be com-

bined to provide less data consuming geo-referencing models.



Chapter 6

Extracting Geometric Representations

Of Trajectories

In the previous chapter, we addressed the need for developing less data consuming geo-

referencing models for assigning coordinates to social media posts. In this chapter, we

build on this research by focusing on trajectory extraction for objects whose location

has already been identified. The method presented in this chapter can be applied to ex-

tract trajectory information of individual species observations from social media data-

sets that have been verified as genuine wildlife observations and have had coordinates

attached using the methods presented in Chapters 3 and 4.

As discussed in Section 2.5, identifying patterns of movement finds applications in

many domains such as climate science and studying species migration patterns. How-

ever, a main challenge of tracking objects is that their topological characteristics can

change over time, such as splitting an object into multiple objects or the merging of

multiple objects. The authors of Corcoran and Jones [2017, 2018] address this prob-

lem using spatio-temporal analysis based on zig-zag homology and persistence land-

scapes (discussed further in Section 2.5). The proposed approach helps identify mov-

ing objects over time and it has been used successfully for identifying fish swarms and

cloud movement. Further, the approach facilitates the use of statistical and data min-

ing techniques for the identified objects. This makes them suitable for further studies

into identifying trajectories of movement patterns. However, such studies have not

been conducted. This is also our motivation to build on the approaches presented by
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Corcoran and Jones [2018] and illustrate how the topological data analysis methods

can be used to extract trajectories of the identified objects. We create trajectories by

calculating centroids of object’s regions at each time slice and then connecting the

centroids. We also perform trajectory clustering and normalisation to identify similar

trajectories and facilitate the discovery of movement patterns for future work. Current

research on trajectory clustering is limited at exploring algorithms (described further

in Section 2.5.1) which do not take into account both spatial and temporal character-

istics of the data. We address this research gap by exploring the QuickBundle (QB)

algorithm [Garyfallidis et al., 2012] which has not been studied before in trajectory

mining. However, it can be easily adapted to trajectory data and supports comparison

for sequences, i.e., takes into account the order of the data points.

In the rest of the chapter, the final question RQ 4: Do zig zag persistent homology

methods have good potential for extracting trajectories of spatio-temporal ob-

jects? in Section 1.2 has been answered. Contributions made as part of this research

include a methodology for extracting and normalising geometric representations of tra-

jectories for tracking spatio-temporal phenomena, and analysis into a less explored but

potentially promising algorithm for clustering trajectories.

6.1 Dataset

We apply the methods to weather data, specifically tracking rainfall in radar imagery.

We use the same dataset obtained by Corcoran and Jones [2018]. The images are

gathered from the UK Meteorological (Met) Office1. The Met Office provides this data

at 15 minute intervals. For a given time, the image data in question categorises the

rainfall level at each location in a 500x500 regular grid over Ireland and UK. Given

this data, we consider the problem of tracking objects corresponding to spatially close

path-connected components of R2 with a rainfall level greater than a given threshold

1UK Met Office https://www.metoffice.gov.uk/

https://www.metoffice.gov.uk/
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[Corcoran and Jones, 2018].

6.2 Methodology

The methodology uses the objects’ locations produced by the application of Corcoran

and Jones [2018] as an input. It consists of 2D array representations of cloud images,

where the two indices represent the x and y pixel coordinates while the value of each

array element is the unique identifier of the respective pixel at that location. All pixels

that belong to the same object (i.e. cloud region) will have the same unique identifier,

where that identifier serves simply to distinguish the objects from each other. Each

object persists across a consecutive sequence of time slices starting at time slice T1 and

finishing at time slice Tn. These persistence intervals are provided as output from the

zig-zag persistent homology procedure. An overview of the methodology is given in

Figure 6.1. The methodology consists of 5 main steps. In Step 1 we identify objects

present for each time slice. We do this by finding all the pixels that belong to the same

object for a given time slice. We also remove pixels with no objects in them (i.e., they

have value equals ’0’). At the end of this step, each object id is associated with a list of

all the x and y coordinates of the pixels that belong to this object for a given time slice.

In Step 2 we identify the location of each object for a given time slice. We approximate

the location of the objects by finding their centroids. Each object is a finite set R of

n elements. Thus, the centroid is the mean of the elements in the set R (see Equation

1). At the end of this step, we have each object associated with the x and y coordinates

of the centroids of this object for each time slice. In Step 3 we accumulate an object’s

locations across its time slices. Specifically, we accumulate the sequence of centroid

coordinates for each unique object across its time slices. In Step 4 we produce a set of

trajectories and visualize them.

In Step 5 we perform clustering of the object trajectories. Our goal is to create clusters

containing similar trajectories in order to identify movement patterns. We perform
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trajectory clustering by adapting the QuickBundle (QB) algorithm [Garyfallidis et al.,

2012], originally created for use in magnetic resonance imaging to cluster white matter

fibres. Each QB cluster can be represented by a single centroid streamline, which is a

sequence of points. We selected this algorithm for the following reasons:

1. The algorithm has been specifically created for data from 3D imagery of white

tissues, which resembles the structure of trajectories. The algorithm was created

for simplifying tractography data of white tissues where tractography data is a

dataset composed of streamlines.

2. QuickBundle uses a symmetric distance function called minimum average direct-

flip (MDF) distance [Garyfallidis et al., 2010, Visser et al., 2011] which takes

into account the sequential nature of streamlines. This makes the algorithm suit-

able for clustering trajectory data where each point represents an object location

at a given time and it is important to preserve the time sequence of the objects.

In contrast, other distance measures, incorporated by widely used clustering al-

gorithms such as DBSCAN and K-centroid treat streamlines as a bag of points

where every point on the first streamline is to be compared with every point on

the second streamline, and vice versa.

3. The algorithm has been created to deal with large datasets and return results fast

which makes it efficient for analysing large volumes of ecology-related data in

real time.

The number of clusters produced depends on adjusting a threshold value. High threshold

values will produce less clusters with more trajectories in them while a small threshold

value will produce smaller clusters. Before clustering, we defined a distance func-

tion between the trajectories using Euclidean distance [Danielsson, 1980]. We chose

Euclidean distance because of its suitability for measuring distances between objects,

simplicity, and lack of a threshold that needs adjusting. The MDF measure requires
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trajectories to have the same length. Therefore, we re-sample the trajectories to have

the same number of points. This is achieved using linear interpolation.

Figure 6.1: Overview of Trajectory Extraction Method

Object[centroid] =

n∑
i=1

Ri

n
Equation 1
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6.3 Results

As mentioned in Section 6.1, the methods were applied to meteorological data collec-

ted over a 12 hour period. Cloud images were recorded at 15 minute intervals, thus

we have 48 time slices. After extracting the objects from these images with respect

to time, we obtained six objects. We identify objects, as indicated above, using the

unique identifier of the pixels that belong to the same objects from processed imagery

data. In Table 6.1 we give summary statistics of the existence of the objects over time.

Object ID Start time End time

Object 1 0 47

Object 2 0 47

Object 3 0 47

Object 4 11 37

Object 5 11 46

Object 6 22 22

Table 6.1: Summary statistics of objects existence over time

Object 6 appears in only one time slice (see Table 6.1). Thus, it is not visible in

Figure 6.2 and Figure 6.3 except as a dot. Objects 1 - 3 persist over all 48 time slices

while Objects 4 and 5 were formed at time slice 11 and are destroyed at time slices 37

and 46.

6.3.1 Trajectories representation

Figures 6.2 and 6.3 represent the trajectories of the moving objects, where Figure 6.2

provides linear representation and Figure 6.3 shows trajectory changes over time.

The trajectories of the objects (see Figure 6.3) appear to be subject to some very sud-

den changes of location which is unusual for weather data. This occurs here as a

consequence of objects merging and splitting between time slices.
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Figure 6.2: Cloud movement trajectories representation — Line representation

Figure 6.3: Cloud movement trajectories representation — Space time cube rep-

resentation.

This is demonstrated in Figure 6.5 where we display object movements over three time

slices. When large objects become connected it results in a dramatic change in the

centroid of the merged object. Figure 6.5 demonstrates this with the dark purple and

orange objects which merge in time slice 38. Once an object is merged into another

object or it disappears in a time slice, it is destroyed. An object cannot re-appear

once it has been destroyed, according to the persistence homology approach used for

identifying objects over time. These sudden changes in the objects movement patterns

are also illustrated in their trajectories (see Figure 6.4) where the trajectory of Object

4 (orange) has a sudden change of a direction (when it merges with the purple object)
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while the trajectories of Objects 1 and 2 follow almost a straight line as they do not

experience drastic changes.

Figure 6.4: Cloud movement trajectories representation

Figure 6.5: Objects movement per time slice — Time slice 36, Time slice 37, Time

slice 38.

6.3.2 Trajectories clusters

In order to limit the noise in the data and identify similar movement patterns, we per-

formed clustering of the object’s trajectories (see Figure 6.6) using the QuickBundle

(QB) algorithm, presented in Section 6.2. We performed experiments with different

number of clusters, i.e., 2, 3, 4, and 5. However, results showed that 3 is the most op-

timal number of clusters for the dataset. A summary of the grouped trajectories is given
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in Table 6.2 and Figure 6.6 where all object trajectories that belong to the same cluster

have the same colour. The cluster analysis helped identify that Objects 3, 4, 5, and 6

have similar movement patterns in contrast to Objects 1 and 2 which can be considered

outliers. This analysis can help identify different types of weather phenomena.

Cluster ID Trajectory ID

1 1

2 2

3 3,4,5,6

Table 6.2: Summary statistics of objects existence over time

Figure 6.6: Cloud movement trajectories represented with a space time cube

Normalising Trajectories As discussed in Section 6.3.1, sudden merges or splits of

the objects result in drastic changes in the trajectory locations. This can potentially

cause problems when trajectories need to be used to identify direction of movements

for the given objects. In order to resolve this problem, we have performed normalisa-

tion of the trajectories.

Figure 6.7 represents the normalised trajectory of Object 1 while Figure 6.8 presents

the normalised trajectories for all objects. These facilitate easier identification of dir-

ection of movement which can find applications in various research in invasive species

and weather phenomena tracking.
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Figure 6.7: Normalized trajectory for Object 1 with original scatter points

Figure 6.8: Normalized trajectory for all objects

6.4 Discussion

6.4.1 Trajectory Extraction Methodology

We developed a trajectory extraction methodology which extends on previous work

for object location identification based on zig-zag homology. We create trajectories

by calculating centroids of object’s regions at each time slice and then connecting

the centroids. The methodology also encompasses clustering and smoothing of the

trajectories in order to facilitate observation of movement patterns and identification of
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direction of movement.

The work presents an extension to the methods built by Corcoran and Jones [2018]

for identifying moving objects over time by showing how these methods can be incor-

porated in further analysis to support object tracking and identification of movement

patterns.

The trajectory extraction and clustering methods have been evaluated for the case study

of tracking rain clouds in imagery data.

6.4.2 Findings

The main findings from this chapter are summarised below:

1. Spatio-temporal methods based on zig-zag homology for identifying objects per-

sistent over time can be extended to support trajectory extraction. The proposed

trajectory extraction method can be valuable in observing and discovering ob-

ject’s movement patterns.

2. The clustering algorithm, QuickBundle, which was created for data from 3D

imagery of white tissues is suitable for normalising trajectory data. It did help

reduce noise and identify similar trajectories of movement between the objects.

Similar movement patterns can suggest similar characteristics between the ob-

served objects.

3. Trajectories from weather-related data include sudden changes in location due to

splitting and merging of objects. This may introduce noise in trajectory data and

require the use of smoothing techniques to help identify patterns and direction

of movement.
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6.5 Conclusions

This chapter presented a methodology for trajectory extraction which builds on existing

topological data analysis methods for identifying objects with dynamic topology. We

also performed trajectory clustering to identify similar trajectories and facilitate the

discovery of movement patterns. Specifically, we explored the clustering algorithm

QuickBundle which has not been used for trajectory data. However, it proved beneficial

for trajectory data, even though it has been created for different purposes.

The final research question RQ 4 from the initial hypothesis was answered in order to

show that a trajectory extraction method which uses as input object location inform-

ation derived from spatio-temporal analysis based on zig-zag homology can facilitate

accurate depiction of objects movement patterns.

The analysis presented in this chapter has been performed for tracking rainfall in radar

imagery. In future, we want to extend the work for different case studies. For instance,

we want to apply the described methods to the wildlife-related social media datasets

collected for the previous chapters of the thesis. Additionally, a natural step after per-

forming normalisation of trajectories, would be to build on the developed methods in

this chapter to support identification of direction of movement for the observed ob-

jects.



Chapter 7

Conclusions and Future Work

In this thesis, our aim was to identify social media mining methods that facilitate the

usage of social media datasets as an unofficial source of wildlife observational data. We

used Flickr and Twitter as exemplary social media platforms due to their wide usage

and relatively open access for research. Further, the two social media sites differ in the

nature of the data shared (i.e. images versus short texts) which gives a platform for

more extensive analysis on verification methods. We provide the largest collections of

geo-referenced wildlife-related Tweets and Flickr posts to the best of our knowledge.

These can be used in further studies related to social media mining and wildlife. In

addition, we used the NBN citizen science data portal as a gold standard for our initial

analysis.

In the initial chapters, we investigated the potential of social media datasets to supple-

ment official citizen science data portals. This study involved statistical, spatial, and

temporal analysis which revealed the potential of image-sharing platforms to provide

valuable wildlife data related to certain species taxonomic groups. Additionally, we

presented two verification approaches for identifying genuine wildlife observations,

one suitable for verifying images and the other, text. The image-based verification ap-

proach consisted of using an image recognition tool and the species taxonomic data

to identify whether a species name given on Flickr represents a given species. Ana-

lysis showed that a class-level coarse match (between all species names following

down from the species class and the labels returned by the image recognition tool

for a given image) can be highly beneficial for identifying large and diverse species

149
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collections without affecting the precision of the method. Regarding the text-based

verification, we analysed three text classification approaches and various statistical

and neural network-based feature extraction and feature integration techniques in or-

der to identify the methods which are most suitable for verifying social media posts

(for example Tweets) related to wildlife observations. This research showed the po-

tential of transformer-based models to be used for text classification tasks even when

there is a limited amount of training data. In the next stage of the work, we focused

on exploring geo-referencing strategies which can support accurate assignment of co-

ordinates to social media posts even when there is a limited amount of training data.

In this way, we want to support the use of social media datasets in wildlife observa-

tional studies. Motivated by the results from the text verification approach, we used

transformer-based models, fine-tuned for multivariate regression to assign coordinate

values to given unlabelled social media posts. Specifically, we performed analysis with

state-of-the-art contextual word representations, transfer learning techniques, and rule-

based methods, in order to build less data consuming georeferencing models. Find-

ings from this research showed that adapting transformer models to the domain and

then fine-tuning them for regression help improve the performance of geo-referencing

models, especially when the training set has been augmented using labelled instances

from multiple social media networks. Additionally, a hybrid approach, consisting of

location name extraction and the neural network-based regression model led to signi-

ficant improvements in the precision of geo-referencing approaches. In a later chapter,

we proposed a methodology for trajectory extraction and normalisation which extends

on spatio-temporal methods using zig zag homology for identifying objects locations

which persist over time.

In the rest of this chapter we provide an overview and assessment of the work conduc-

ted in this thesis. We also discuss how the research presented in the thesis can be taken

further in potential future projects. Finally, an overview of the thesis in terms of its

contributions is described.



7.1 Analysis of Research and Results 151

7.1 Analysis of Research and Results

In this thesis, the research behind establishing methodologies for analysing, verifying,

and preparing social media data to be used to support wildlife-related studies has been

described. In the following sections, we analyse the research that was carried out in

the primary chapters of this thesis.

7.1.1 Suitability of Social Media as a Supplement to Citizen Sci-

ence Portals

We conducted large scale and extensive analysis on the suitability of social media data

to supplement official citizen science data portal collections. This work helped es-

tablish potential usages of social media networks for providing observational data for

wildlife- and ecology- related studies. Specifically, we evaluated the species distribu-

tions on the image-sharing platform Flickr compared to the largest UK citizen science

portal NBN, including the 1500 best represented species on NBN and invasive spe-

cies, common for UK. This makes the research the most extensive work on suitability

of social media resource for providing wildlife observational data conducted to date.

We performed three types of analysis, statistical, spatial, and temporal considering

different experimental settings. The analysis showed that Flickr can be a rich source

of species observational data for certain taxonomic groups (diurnal garden birds and

pretty flowers) and as a data source for dedicated projects. The results from the tem-

poral analysis showed that Flickr might not be suitable for performing studies using

historical data on yearly, half-yearly or seasonal species movement patterns. However,

they do indicate that Flickr can be highly beneficial for providing real time analyses of

movements, especially for observing invasive species.

The highlight of this work was the creation of a fully automated image verification

method suitable for verifying large and diverse collections of images related to wild-

life. The approach is based on using the Google Cloud Vision API in combination
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with the species taxonomic data to identify the likelihood that a species name on Flickr

represents a given species. Specifically, the approach consists of coarse matching

between all species names following down from the species class and the labels re-

turned by Google Cloud API for a given image. The coarse match helps avoid high

numbers of false negatives for less known species or similar species (12-spot and 7-

spot ladybird). We compare the class-level matching approach with species-level and

genus-level based approaches to identify what method is suitable for verifying large

and diverse collections of image data without affecting the precision of the method. In

contrast, previous image verification approaches for wildlife data [August et al., 2020,

Daume, 2016, ElQadi et al., 2017, Barve, 2014, Skreta et al., 2020] involve manual

or semi-automatic analysis, limited to verification of a small range of species or taxo-

nomic groups, or require large amounts of labelled wildlife-related images in order to

train an image classifier.

7.1.2 Text Classification for Verifying Social Media Relevant to

Wildlife

After creating a methodology for verifying images related to wildlife, we focused on

building a fully automated text classification model for identifying genuine wildlife

observations on Twitter. We chose to focus on Twitter for this work as that platform

remains very widely used, much more so than Flickr, and therefore has great potential

(alongside Flickr) for recording wildlife observations in a timely manner. This is a

challenging problem however, as often postings use the common names of species in

contexts very different from wildlife observations, and Tweets, unlike Flickr postings,

frequently use very informal language. Further, the literature survey on text classific-

ation for social media and wildlife-related data revealed a lack of extensive analysis

into suitability of classification approaches for small collections of training data that is

also related to wildlife observations and thus can have more specialised terminology.

Additionally, state-of-the-art transformer-based models have not been fully explored
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in wildlife-related studies.

Three classification approaches are compared reflecting on some of the main types

of existing machine learning algorithms. These are: logistic regression classification

coupled with various forms of input features; the word embeddings based fastText

pipeline; and the transformer-based model of BERT. We performed experiments with

pre-trained and corpus-trained embeddings as well as different methods for building

feature vectors. This research provided wider understanding of the type of feature ex-

traction, feature integration, and machine learning algorithms suitable for building veri-

fication models for Twitter in the presence of limited amount of training data. Findings

showed that the BERT model fine-tuned to the task and adding a sequence classifica-

tion layer is suitable for building verification models for Twitter even in the presence of

limited amounts of labelled instances. The high performance of the fine-tuned BERT

classifier shows the potential of state-of-the-art deep learning models to be used for

identifying valuable ecology data among informal social network sources automatic-

ally and on a larger scale, independent of the species observed at hand. Finally, analysis

into the use of hashtags, mentions, and URL links in wildlife-related Tweets showed

that there is a trend in the usage of hashtags related to wildlife which are unrelated to

official campaigns for gathering wildlife data. In future, such hashtags could be used

by informal social network campaigns to encourage people to indicate when they are

posting about wildlife.

7.1.3 Geo-referencing Social Media Data Related to Wildlife Ob-

servations

After developing verification methods for identifying wildlife observations on Flickr

and Twitter, we focus on the problem of geo-referencing Twitter posts because wildlife-

and ecology-related studies require the presence of coordinate data to support study

of species distribution. The development of effective georeferencing methods for so-

cial media wildlife observations is of considerable significance as the great majority
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of postings have no useful coordinates, but coordinates are essential for purposes of

monitoring species occurrences. Our aim was the identification of strategies which

can facilitate more accurate coordinate prediction even when training data is scarce.

Thus, the conclusions from the work on verification techniques motivated further ana-

lysis into using transformer-based models and transfer learning techniques for geo-

referencing Tweets. For these purposes, we adapted the transformer-based model of

RoBERTa for multivariate regression for predicting latitude and longitude values. We

performed experiments with various transfer learning techniques showing that adapt-

ing contextualised word models to the domain and then fine-tuning them for regression

help improve the performance of geo-referencing models. Further, augmenting train-

ing data, consisting of Tweets, with Flickr textual data proved beneficial for the better

performance of geo-referencing approaches. This method is similar to the one presen-

ted by Laere et al. [2014b], De Rouck et al. [2011] where the authors augment training

datasets for geo-referencing models using multiple social media networks. However,

they used classical machine learning algorithms which require pre-processing of the

heterogeneous data sources. Instead, we use a transformer-based model which does not

require pre-processing. Additionally, we proposed two hybrid approaches for improv-

ing the precision of geo-referencing models. The first approach is based on location

name extraction based on NER methods and it uses the RoBERTa-based regression

model to perform location name disambiguation. The second approach is based on

semantic similarity-based methods where we select the most similar training instance

which is within a radial distance to a given test instance based on the coordinates given

by the RoBERTa regression model. Then, the test instance is given the coordinates of

the most similar training post. Both approaches showed improvements in precision for

geo-referencing Tweets. However, location name extraction combined with regression

led to the best results on geo-referencing social media posts and it helped enhance pre-

cision for distances shorter than 5km. Additionally, a comparison between the NER-

based approach (which uses a gazetteer to obtain coordinates) and the RoBERTa-based

regression model (see Table 3) showed that, just for those posts in which place names
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can be detected, the NER/gazetteer method using RoBERTa-based regression for loc-

ation disambiguation outperforms the purely transformer-based regression models and

the purely location name extraction method for geo-referencing social media posts.

This shows that combining location name extraction and regression approaches is be-

neficial for geo-referencing Tweets.

We evaluated the proposed approaches using two baselines, a widely used statistical

regression model (SVR) and a regression model based on BERT, similar to the one

presented by Scherrer et al. [2021]. The approaches proposed in this work outper-

formed the baselines by a significant margin.

Previous work on geo-referencing social media posts is mainly limited at presenting

data consuming approaches or using statistical machine learning algorithms. Most of

the research is also focused on using location-specific language models which tend

to be data-specific and require extra steps for assigning actual coordinates to the test

instances. We address these issues by using regression-based approach which do not

require partitioning of the data into regions and do not require additional steps for

assigning coordinates. Further, we perform extensive analysis with state-of-the-art

contextual models, transfer learning techniques, and rule-based approaches in order to

build less data consuming georeferencing models. The studies in this chapter showed

that combining regression with NER methods can be highly beneficial for improving

the precision of geo-referencing models when we have a limited amount of training

data. The two approaches complement each other well. The regression models always

return a pair of coordinates for a given Tweet, even when it does not contain a location

name while the NER approach is very precise for Tweets including place names. The

results achieved with the georeferencing model presented in Chapter 5 are comparable

to other published work Scherrer et al. [2021]. However, we develop our methods using

a small amount of training data which is an unexplored problem in georeferencing. All

this shows that combining state-of-the-art transformer-based models with rule-based

methods is a promising research avenue which is worth exploring further especially
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for geo-referencing wildlife-related Tweets.

Our work is similar to the work presented by Scherrer et al. [2021] which adapted

BERT for multivariate regression and explored the effect of various pre-trained and

domain-trained BERT models over the prediction task. We build on this research by

using a newer and more efficient language model in combination with the techniques

described above. We also perform a more extensive analysis.

7.1.4 Extracting Geometric Representations Of Trajectories

After establishing verification and geo-referencing approaches suitable for wildlife-

related social media data, we focused on establishing methodologies for trajectory ex-

traction and clustering to support tracking of spatio-temporal phenomena. We build

on methods developed by Corcoran and Jones [2018] that used zig-zag homology for

identifying moving objects over time. Our trajectory extraction method takes as an

input the locations of objects obtained using the methods described in Corcoran and

Jones [2018]. Then, we created trajectories by calculating centroids of object’s regions

at each time slice before connecting the centroids. We also performed clustering to

support the easier identification of movement patterns. For these purposes, we used

QuickBundle algorithm which was created initially for data from 3D imagery of white

tissues. The algorithm has not been applied to trajectory data before, though traject-

ory data resemble the structure of white tissues. Further, the algorithm is based on

a minimum average direct-flip (MDF) distance function which takes into account the

sequential nature of streamlines. This makes the algorithm suitable for trajectory data

where the sequence in which data points are processed is important as they represent

locations of objects at given times. We used cloud imagery data for performing the

analysis. However, the methodology can be applied to different types of datasets.
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7.2 Contributions

Throughout the earlier chapters of this thesis, work has been conducted towards an-

swering the questions posed in Section 1.2 in the Introduction.

In particular, the questions are now answered more formally.

• RQ 1: Can social media data serve as a useful supplement to citizen sci-

ence data portals in representing the spatial and temporal distribution of

bio-diversity data? — Social media data, such as the image sharing platform

Flickr, can serve as a useful source of species observation data for certain taxo-

nomic groups, and/or as a repository for dedicated projects. Spatial and temporal

analysis suggest that the Flickr dataset best reflects the NBN dataset when con-

sidering a purely spatial distribution with no time constraints. The best represen-

ted species on Flickr in comparison to NBN are diurnal garden birds, as around

70% of the Flickr posts for them are valid observations relative to the NBN.

Further, a fully automated image verification approach for identifying genuine

wildlife observations on Flickr facilitates the verification of large and diverse

species collections.

• RQ 2: What are the most efficient text classification approaches for veri-

fying that social media postings are genuine wildlife observations? — The

transformer-based contextualised word representation model, BERT, fine-tuned

to the classification task by using a sequential classification layer, performed bet-

ter than linear classifiers such as Logistic Regression and fastText classification

pipeline for identifying genuine wildlife observations on Twitter. Specifically,

the BERT model fine-tuned to classification, performed well even for very short

Tweets and Tweets with more specialised language (including mentions of Latin

species names). This shows the potential of transformer-based models to be

used for identifying valuable wildlife-related data among informal social net-

work sources automatically and on a larger scale, independent of the species ob-
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served at hand, even when a small training corpus is provided. Further, analysis

on the language used in Tweets showed trends in the usage of hashtags related

to wildlife observations which are not related to official campaigns. This finding

can be used to improve classification models by creating feature selection tech-

niques which assign higher importance to such indicative features. Additionally,

such hashtags could be used by informal social network campaigns to encourage

people to indicate when they are posting about wildlife.

• RQ 3: Can deep learning transformer regression models provide an effect-

ive means of geo-referencing social media posts? — The use of a state-of-

the-art transformer-based model, RoBERTa trained on the domain and then ad-

apted for multivariate regression proved beneficial for geo-referencing Twitter

data when compared to a statistical regression model, BERT model fine-tuned

for regression, and the same RoBERTa model trained on a generic dataset. Ad-

ditionally, enriching the Twitter training set with Flickr labelled data leads to fur-

ther improvements in the performance of the geo-referencing model. This shows

that using large state-of-the-art transformer-based models that have been adap-

ted to the domain and enriching the training corpus with diverse social media

datasets are suitable techniques for building geo-referencing models. Further, a

hybrid approach based on location name extraction and using RoBERTa regres-

sion model for location disambiguation helps further improve the precision of

geo-referencing models for social media posts.

• RQ 4: Do zig zag persistent homology methods have good potential for ex-

tracting trajectories of spatio-temporal objects? — A methodology for ex-

tracting, clustering and normalising object trajectories using objects’ locations

produced by zig-zag homology methods proved efficient and valuable for identi-

fying similar trajectories and patterns of movement for cloud data.
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7.3 Future Work

In this section, we discuss ways in which the research in this thesis can be extended in

future.

Analysis of a Wider Range of Social Media Datasets The analysis presented in

Chapter 3 can be extended by performing comparison between a wider range of social

media platforms (such as Twitter and Instagram) and the NBN citizen science data

portal. This will provide a better understanding of the the type of social media sites

that are suitable to supplement wildlife-related research. While we have performed

evaluation for Flickr using NBN dataset as a gold standard, it should be noted that

NBN observations are collected by non-professionals. Therefore, it is possible that

Flickr observations marked as false positives might be correct due to the absence of

NBN observations on that location. In future, analysis can be extended to investigate

this problem further. In particular, the use of multiple social media sites can help

identify spatial and temporal features of species which are represented better on social

networks than official citizen science portals.

Enhance Image and Text Verification Models The image verification approach

proposed in Chapter 3 can be improved further by using a combination of inclusive

and exclusive tags (i.e. tags used to consider a photo irrelevant) and through the devel-

opment of more sophisticated computer vision methods for automated identification of

individual species.

The text-based verification method, presented in Chapter 4, can also be improved by

using larger and newer transformer-based models such as the one we used for geo-

referencing Tweets, i.e., RoBERTa. Further, we plan on using the findings on features

that are indicative for wildlife observations in order to build feature selection tech-

niques which assign higher importance to such indicative features. This might help
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improve the accuracy of text classification models especially for scenarios with limited

amount of training data.

Enhance Geo-referencing models for Twitter data The use of transformer-based

models and transfer learning techniques proved very beneficial for building geo-referencing

models. Therefore, we want to expand on these methods by using diverse social media

sources, not only for enhancing the training set but also for building language models

which are used for performing multivariate regression. Additionally, we want to further

improve the precision of the hybrid approach based on location name extraction and

regression by training the NER models used for extracting location names to the do-

main. Finally, considering the wide popularity of location-specific language modelling

approaches, we want to expand our experiments with a hybrid approach combining

both regression and language modelling methods.

Identification of Movement Patterns Throughout this thesis we focused on the

problem of verifying and preparing social media datasets to facilitate its use in research

related to wildlife observation and object tracking. Next steps will involve building on

the trajectory extraction method by extending it for wildlife observational data and

providing visualisation tools for displaying objects movement on a map. We want to

focus on using spatio-temporal analysis for normalising trajectory data and identifying

direction and patterns of movement for wildlife.

7.4 Summary

The work in this thesis was carried out with the aim of providing methods which can

support the use of social media platforms as an unofficial data source of wildlife obser-

vations. Initially, we performed a large scale and extensive study, including the conduct

of statistical, spatial, and temporal analysis on the suitability of image-sharing plat-



7.4 Summary 161

forms to supplement citizen science data portals. We also presented a fully automated

image verification approach. This showed that image recognition tools combined with

a class-level coarse match between species names and tags returned by the tool can

support the verification of large and diverse datasets without affecting the precision. In

the next chapters of the thesis, we focused on incorporating the less explored state-of-

the-art transformer-based models and transfer learning techniques within social media

mining approaches for verifying and geo-referencing text-based social media posts re-

lated to wildlife observations. We particularly focused on evaluating the suitability of

techniques for low resource settings as labelled data related to wildlife-based social

media posts is usually limited. We performed extensive comparison between different

classification algorithms and feature extraction and integration methods which showed

that contextualised word representations, adapted for the classification task are suitable

for identifying wildlife observations on social media, even when more wildlife-specific

terminology is used such as species Latin names. Additionally, domain-trained contex-

tualised word representations, fine-tuned for multivariate regression can be very bene-

ficial for geo-referencing social media posts, especially when combined with location

name extraction approaches.

This thesis shows that social media can be a rich source of wildlife observational data

but it also requires the creation of verification and preparation techniques to support its

usage in ecology-related studies. We showed that combining transformer-based mod-

els, transfer learning techniques, and/or rule-based approaches can facilitate the veri-

fication and geo-referencing of social media datasets even in the presence of more spe-

cialised language and a limited amount of labelled data. Further, investigation into tra-

jectory extraction and normalisation methods based on spatio-temporal analysis opens

up interesting research avenues for combining social media mining techniques and

spatio-temporal analysis for building applications which use social media as a source

of species observational data.

Throughout the thesis we used Flickr and Twitter as exemplary representatives of some
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of the most widely used social media sites which also allow data access for research.

Additionally, the two social media sites differ in the nature of the data shared (i.e. im-

ages versus short texts) which provides a platform for experimenting with verification

methodologies suitable for images and text-based posts. The research presented in this

thesis can be applied to other social media platforms. It can also be developed fur-

ther towards applications integrating social media datasets for identifying and tracking

wildlife observations.
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Ecology: A place for humans in nature. Annals of the New York Academy of Sciences,

1469(1):52–64, 2020.

Ali Ahani and Mehrbakhsh Nilashi. Coronavirus outbreak and its impacts on global

economy: The role of social network sites. Journal of Soft Computing and Decision

Support Systems, 7(2):19–22, 2020.

Mohammed Ali Al-Garadi, Yuan-Chi Yang, Haitao Cai, Yucheng Ruan, Karen

O’Connor, Gonzalez-Hernandez Graciela, Jeanmarie Perrone, and Abeed Sarker.

Text classification models for the automatic detection of nonmedical prescription

medication use from social media. BMC medical informatics and decision making,

21(1):1–13, 2021.

Tatsuya Amano, James DL Lamming, and William J Sutherland. Spatial gaps in

global biodiversity information and the role of citizen science. Bioscience, 66(5):

393–400, 2016.

Mohd Yousuf Ansari, Amir Ahmad, Shehroz S Khan, Gopal Bhushan, et al. Spa-

tiotemporal clustering: A review. Artificial Intelligence Review, 53(4):2381–2423,

2020.

Vyron Antoniou, Cidália Costa Fonte, Linda See, Jacinto Estima, Jamal Jokar Arsan-

jani, Flavio Lupia, Marco Minghini, Giles Foody, and Steffen Fritz. Investigating

163



Bibliography 164

the feasibility of geo-tagged photographs as sources of land cover input data. ISPRS

International Journal of Geo-Information, 5(5):64, 2016.

Lucy M Aplin, Richard E Major, Adrian Davis, and John M Martin. A citizen sci-

ence approach reveals long-term social network structure in an urban parrot, Cacatua

galerita. Journal of Animal Ecology, 90(1):222–232, 2021.

Maria Aristeidou, Christothea Herodotou, Heidi L Ballard, Alison N Young, An-

nie E Miller, Lila Higgins, and Rebecca F Johnson. Exploring the participation of

young citizen scientists in scientific research: The case of iNaturalist. Plos one, 16

(1):e0245682, 2021.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A Simple but Tough-to-Beat Baseline

for Sentence Embeddings. In 5th International Conference on Learning Representa-

tions, ICLR 2017, page 16, 2017.

Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. Spatio-Temporal Data Mining:

A Survey of Problems and Methods. ACM Comput. Surv., 51(4), aug 2018. ISSN

0360-0300. doi: 10.1145/3161602. URL https://doi.org/10.1145/3161602.

Tom A August, Oliver L Pescott, Alexis Joly, and Pierre Bonnet. AI Naturalists Might

Hold the Key to Unlocking Biodiversity Data in Social Media Imagery. Patterns, 1

(7):100116, 2020.

Mariette Awad and Rahul Khanna. Efficient Learning Machines: Theories, Concepts,

and Applications for Engineers and System Designers, chapter Support Vector Re-

gression, pages 67–80. Apress, Berkeley, CA, 2015.

Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can: Improving

geographical prediction with social and spatial proximity. In Proceedings of the 19th

international conference on World wide web, pages 61–70, 2010.

Katherine Bailey and Sunny Chopra. Few-shot text classification with pre-trained

word embeddings and a human in the loop. arXiv preprint arXiv:1804.02063, 2018.

https://doi.org/10.1145/3161602


Bibliography 165

Vijay Barve. Discovering and developing primary biodiversity data from social net-

working sites: A novel approach. Ecological Informatics, 24:194–199, 2014.

Jonathan Bassi, Sukanya Manna, and Yu Sun. Construction of a geo-location service

utilizing microblogging platforms. In 2016 IEEE Tenth International Conference on

Semantic Computing (ICSC), pages 162–165. IEEE, 2016.

Derya Birant and Alp Kut. ST-DBSCAN: An algorithm for clustering spatial–

temporal data. Data & knowledge engineering, 60(1):208–221, 2007.

Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Py-

thon: analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

Alberto Blazquez-Herranz, Juan-Ignacio Caballero-Garzon, Albert Zilverberg, Chris-

tian Wolff, Alejandro Rodríguez-Gonzalez, and Ernestina Menasalvas. Clustering

Moving Object Trajectories: Integration in CROSS-CPP Analytic Toolbox. Applied

Sciences, 11(8):3693, 2021.

Andrew J Blight, A Louise Allcock, Christine A Maggs, and Mark P Johnson. In-

tertidal molluscan and algal species richness around the UK coast. Marine ecology

progress series, 396:235–243, 2009.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching

word vectors with subword information. Transactions of the Association for Compu-

tational Linguistics, 5:135–146, 2017.

Rick Bonney, Caren B Cooper, Janis Dickinson, Steve Kelling, Tina Phillips, Ken-

neth V Rosenberg, and Jennifer Shirk. Citizen science: A developing tool for expand-

ing science knowledge and scientific literacy. BioScience, 59(11):977–984, 2009.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-

putational learning theory, pages 144–152, 1992.



Bibliography 166

Mondher Bouazizi and Tomoaki Ohtsuki. Multi-class sentiment analysis on twitter:

Classification performance and challenges. Big Data Mining and Analytics, 2(3):

181–194, 2019. doi: 10.26599/BDMA.2019.9020002.

Danah Boyd and Nicole Ellison. Social network sites: Definition, history, and schol-

arship. IEEE Engineering Management Review, 3(38):16–31, 2010.

Peter Bridgewater, Sandra Knapp, Christian Prip, and M MacDavette. GBIF Review

2009. From Prototype to full operation: Managing expectations. Copenhagen, 39,

2010.

Eleanor D Brown and Byron K Williams. The potential for citizen science to produce

reliable and useful information in ecology. Conservation Biology, 33(3):561–569,

2019.

Peter Bubenik. Statistical topological data analysis using persistence landscapes. The

Journal of Machine Learning Research, 16(1):77–102, 2015.

Peter Bubenik and Paweł Dłotko. A persistence landscapes toolbox for topological

statistics. Journal of Symbolic Computation, 78:91–114, 2017.

Sergio G. Burdisso, Marcelo Errecalde, and Manuel Montes y Gomez. A text clas-

sification framework for simple and effective early depression detection over social

media streams. Expert Systems with Applications, 133:182–197, 2019.

Pete Burnap, Rachel Gibson, Luke Sloan, Rosalynd Southern, and Matthew Willi-

ams. 140 characters to victory?: Using Twitter to predict the UK 2015 General Elec-

tion. Electoral Studies, 41:230–233, 2016. ISSN 0261-3794. doi: https://doi.org/10.

1016/j.electstud.2015.11.017. URL https://www.sciencedirect.com/science/

article/pii/S0261379415002243.

David Camacho, Ángel Panizo-LLedot, Gema Bello-Orgaz, Antonio Gonzalez-

Pardo, and Erik Cambria. The four dimensions of social network analysis: An over-

https://www.sciencedirect.com/science/article/pii/S0261379415002243
https://www.sciencedirect.com/science/article/pii/S0261379415002243


Bibliography 167

view of research methods, applications, and software tools. Information Fusion, 63:

88–120, 2020.

Gunnar Carlsson and Vin De Silva. Zigzag persistence. Foundations of computational

mathematics, 10(4):367–405, 2010.

Carlos Castillo. Big crisis data: Social media in disasters and time-critical situations.

Cambridge University Press, 2016.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.

John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-Hsuan

Sung, Brian Strope, and Ray Kurzweil. Universal Sentence Encoder. CoRR,

abs/1803.11175, 2018. URL http://arxiv.org/abs/1803.11175.

Francine Chen, Dhiraj Joshi, Yasuhide Miura, and Tomoko Ohkuma. Social media-

based profiling of business locations. In Proceedings of the 3rd ACM Multimedia

Workshop on Geotagging and Its Applications in Multimedia, pages 1–6, 2014.

Jindong Chen, Yizhou Hu, Jingping Liu, Yanghua Xiao, and Haiyun Jiang. Deep

short text classification with knowledge powered attention. In Proceedings of the

AAAI Conference on Artificial Intelligence, volume 33, pages 6252–6259, 2019.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee. You are where you Tweet: a

content-based approach to geo-locating Twitter users. In Proceedings of the 19th

ACM international conference on Information and knowledge management, pages

759–768, 2010.

Jeffrey P Cohn. Citizen science: Can volunteers do real research? BioScience, 58(3):

192–197, 2008.
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