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We study the mechanics of Hayward’s trapping horizons, taking isolated horizons as equilibrium
states. Zeroth and second laws of dynamic horizon mechanics come from the isolated and trapping
horizon formalisms, respectively. We derive a dynamical first law by introducing a new perturbative
formulation for dynamic horizons in which “slowly evolving” trapping horizons may be viewed as

perturbatively nonisolated.
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The laws of black hole mechanics are one of the most
remarkable results to emerge from classical general rela-
tivity. Recently, they have been generalized to locally
defined isolated horizons [1]. However, since no matter
or radiation can cross an isolated horizon, the first and
second laws cannot be treated in full generality. Instead,
the first law arises as a relation on the phase space of
isolated horizons rather than as a truly dynamical rela-
tionship. Even existing physical process versions of the
first law [2,3] consider transitions between infinitesimally
separated isolated (or Killing) horizons. In this Letter, we
introduce a framework which allows us to extend the first
law to all slowly evolving horizons, even those whose
initial and final states are not infinitesimally separated.
Additionally, we provide a simple characterization of
how close a horizon is to equilibrium, which will be
useful in the final stages of numerical simulations of
black hole collisions. To obtain such a law, we first need
a local dynamical definition of a black hole horizon.
Hayward has introduced future outer trapping horizons
(FOTHs) for exactly this purpose. Furthermore, he has
shown that they necessarily satisfy the second law—their
area cannot decrease in time [4].

In this Letter, we will show that both the zeroth and first
laws are also applicable to FOTHs. In order to do so, we
introduce dynamical notions of surface gravity and an-
gular momentum which are applicable to all such hori-
zons. It follows immediately that the surface gravity is
necessarily constant if the horizon is in equilibrium (i.e.,
isolated). Next, we introduce the notion of a slowly evolv-
ing horizon, for which the gravitational and matter fields
are slowly changing. It is only in this limited context that
we expect to obtain the dynamical first law. We will show
that this is indeed the case.

Let us begin by recalling Hayward’s definition.

Future outer trapping horizon.—A future outer trap-
ping horizon (FOTH) is a smooth three-dimensional
submanifold H of space-time which is foliated by a
preferred family of spacelike two-sphere cross sections
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H,, with future-directed null normals € and n. The ex-
pansion 6, of the null normal € vanishes. Further, both
the expansion 6, of n and L 6, are negative.

This definition captures the local conditions by which
we would hope to distinguish a black hole. Specifically,
the expansion of the outgoing light rays is zero on the
horizon, positive outside, and negative inside. Addition-
ally, the ingoing null rays are converging. As we will see,
these horizons can be spacelike or null and include both
equilibrium and nonequilibrium states—an important
feature for our perturbative study. By comparison, if
one is interested only in the dynamical phase, the space-
like dynamical horizons recently introduced by Ashtekar
and Krishnan [5] are more relevant. However, such hori-
zons are always expanding and thus not so suitable for
studying transitions to and from equilibrium.

Hayward [4] has extensively studied the properties of
FOTHs. Here, we summarize only those of his results
which are important for our work. First, consider the
quantities associated with the null vector fields € and n,
which we normalize so that £ - n = —1. We denote their
relative expansions 6 and 6,. Their twists are zero
since they are normal to the H, cross sections of the
horizon. Finally, we write their shears as a'ifh) and a’fﬁ).

Next, for each choice of the fields £ and n, there exists a
scalar field C on H so that

Va=¢*—Cn* and 7,=4,+ Cn, (1)

are, respectively, tangent and normal to the horizon. Note
that V-V =—7-7=2C. Hayward [4] has shown that,
if the null energy condition holds, then

cC=0 ()

on a FOTH. Thus, the horizon must be either spacelike or
null, and the second law of trapping horizon mechanics
follows quite easily. If g, is the two metric on the cross
sections, and /g is the corresponding area element, then

LG = —Co,/g. 3)
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By definition, 6, is negative and we have just seen that C
is non-negative. Hence, we obtain the local second law: If
the null energy condition holds, then the area element /g
of a FOTH is nondecreasing along the horizon [4].
Clearly, on integration, the same law applies to the total
area of the horizon. It is nondecreasing and remains
constant if and only if the horizon is null.

To further restrict the rescaling freedom of the null
vectors, we require that L vv =1, where v is the folia-
tion parameter labeling the cross sections. Thus, choosing
the foliation parameter fixes the length of Vea 14 and the
null vectors. However, at this stage, we are still free to
change the foliation labeling and, by doing so, rescale V¢
and the null vectors by functions of v. From the isolated
horizon perspective, the normalization we have chosen is
very natural, as in that case Va4 = ¢4 and it is customary
to choose the foliation parameter v, so that n = —duv.

Physical characterization of trapping horizons.—The
laws of black hole mechanics are given in terms of
physical quantities such as energy, angular momentum,
surface gravity, and area. One of the advances of the
isolated horizon formalism was to provide definitions of
all these quantities at the horizon, without reference to
spacelike infinity or the space-time in which the horizon
is embedded [1,2]. In generalizing these definitions to
FOTHs, we will be motivated by two requirements: (i) the
new definitions should match the old ones when trapping
horizons are isolated and (ii) the new definitions should
depend only on quantities that are intrinsic to the horizon,
and as such truly be properties of the horizon itself. That
said, the ultimate justification for these expressions will
be found in their utility in the calculations that follow.

For isolated horizons, both surface gravity and angular
momentum were defined with respect to a one-form w,

1

877G

f P, LG + ¥ Ly (Ga,)] = f P JFIT,, X0 7] +
H, H,

which can be written as

w0, = —n,V € 4)

where the arrow signifies that the derivative is pulled back
to the horizon. Then, the isolated horizon surface gravity
is given by x, = €“w, while angular momentum infor-
mation is contained in the other components of w,.

Now, w, written in this form [Eq. (4)] continues to be
an intrinsically well-defined quantity for trapping hori-
zons. Then, an obvious generalization is to define

Ky = Vew, (= —n, V°V, V")

1 =
Jy = 877[}% dzx\/ago @,

and

(&)

where ¢“ is any vector field tangent to the horizon cross
sections, and @, is the projection of w, into the two-
surface H,. In the case where ¢ is divergence free, J,, is
independent of the normalization of € and equal to other
popular expressions for angular momentum (such as the
Komar, Brown-York [6], or Ashtekar-Krishnan [5] defi-
nitions). It is clear that both the surface gravity «, and
angular momentum J, expressions reduce to their iso-
lated horizon values if the horizon is null.

The constraint law.—Consider the set of vector fields in
H that generate one-parameter families of diffeomor-
phisms that map two-dimensional cross sections H, of
the horizon into each other. Any such vector field may be
written in the form X¢ = x, V¢ + ¥, for some function
xo(v) and vector field ¥ that is everywhere tangent to an
appropriate cross section. Then, by integrating the 7¢X?
component of the Einstein equations over H,, we obtain
the following relationship:

[ P30 1 CoabY( L)
H

v

167G

1 — =
*romg | PMRCVELxb) + COu( LD ©)
167G H,
A full derivation of this result will be given in [7], and in |
another paper we will see that this relation plays a crucial JE = TdS + work terms %)

role in the Hamiltonian formulation of general relativity
on manifolds with FOTHs as boundaries [8]. Here, we
show that in certain restricted situations Eq. (6) becomes
a first law for dynamical black holes.

Quasistationary horizons.—At first glance, one might
think that (6) is already the dynamical first law of black
hole mechanics. After all, it relates rates of change of area
and angular momentum to fluxes across the horizon.
However, there are several reasons why this is not so.
The first and most important is that we should not expect
the standard xa form of the first law to hold in all
dynamical situations. In thermodynamics, it is only in
the quasistatic case that it is possible to write the energy
balance equation as

011102-2

Furthermore, in the general case, there is no clear inter-
pretation of the right-hand side of (6) as a flux of energy
through the horizon. Instead, we will require the horizon
to be “quasistationary” and then obtain a first law.
Heuristically, it is clear that the properties of a quasi-
stationary horizon, such as the area and surface gravity,
should be slowly varying. However, since there is a re-
scaling freedom in the vector field V, requiring
(Lv+/q)/\/G to be small is not a meaningful condi-
tion—it can be satisfied on any trapping horizon by
suitably rescaling V. Furthermore, we cannot fix the
norm of 'V (or its average) to unity since we are interested
in the limit as 'V becomes null. Instead, we introduce the
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one-form y, := d,v satisfying V - y = 1, and require
(Lv+/3)(L,+/q)/§ to be small compared to the charac-
teristic scale of the horizon. This condition is invariant
under rescalings, and the expression vanishes whenever
the horizon is null On a spacelike horizon,
(LyVD(L G = QCG(zn) and so is closely related to
the expansion of the surface [see Eq. (3)]. By evaluating
this expression, we can invariantly determine the expan-
sion rate of the horizon and choose the foliation accord-
ingly. Then, we require other fields to be slowly varying
with respect to this foliation.

Slowly evolving horizon—A region of a future outer
trapping horizon H with v € [v}, v,] is slowly evolving
(at a rate €) if there exists a parameter € << 1 such that (i)
on every cross section H, with v € [v, v,],

| exEEO V)@ o = €,

(ii) The foliation parameter v is chosen so that | V| =
V2C ~ €, and its rates of change are similarly small over
the horizon. (iii) The one-form @, and expansion 6, are
slowly evolving: | L+, @, = €/r}, and | L+, 0| = €/r},
where ry is the area radius of the horizon, ay = 47Tl"%_1.
(iv) IR, lol?, |e™|?, and T,,n*n® ~ 1/r3 or smaller.

The first condition gives an invariant characterization
of slow expansion. The second condition restricts the
foliation to guarantee that the area is slowly evolving
with respect to V¢, specifically (L~ ry) ~ €2. The third
requires other geometric quantities to also be slowly
evolving, while the fourth fixes a reasonable horizon
geometry and demands that conditions in the surrounding
space-time not be too extreme; here R is the Ricci scalar
of the two surfaces H,. An immediate consequence of our
definition is that isolated horizons are examples of slowly
evolving horizons with € = C = 0 [provided condition
(iv) is satisfied].

Let us now consider the implications of this definition.
Here, we will simply state the consequences; a more
complete discussion will be given in [7]. For concreteness,
we restrict the allowed matter to be scalar and/or electro-
magnetic fields. From a projection of the Einstein equa-
tions and condition 2, we can show that

oDl ~ ¢ and T, 04" ~ € (8)

(Here and in the following, we choose to focus on the €
factors. The powers of ry required to make the equations
dimensionally correct are omitted.) Then, the allowed
form of the matter fields forces T7,,¢°%" ~ € and
L~/(T,,€%n’) ~ €. Further application of the Einstein
equations and Bianchi identities gives the Weyl compo-
nents Wy, ¥, ~ € and £ R ~ €. On an isolated hori-
zon, each of these quantities would be zero. Lastly,
condition (iii) is sufficient to guarantee that

|Lyk,|~€e and [3,'V,k,|~ € 9)
Therefore, on a slowly evolving horizon, the surface
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gravity is a slowly varying function and we can write

K, = k9 + ex, (10)

where «© is a constant. Recall that an isolated horizon
corresponds to € = 0. Hence, we immediately obtain the
zeroth law: The surface gravity of a FOTH is constant if
the horizon is isolated.

The dynamical first law.—We can now derive the first
law for slowly evolving horizons. First, we consider evo-
lution with respect to V¢, an appropriate evolution vector
for a horizon with no obvious axis of symmetry—a
nonrotating horizon. Setting ¥* = 0 and xo = 1 in the
constraint law (6) and expanding in powers of €, we
find that all terms vanish at zeroth and first order. Then,
to O(€?), the first law for a slowly evolving horizon reads

1 R
0,
—kVay =F
887G " :

- 2 il T €a€b+ (()2:|
[, B Tt 0O |
(11

where the dot signifies a derivative with respect to v. It
says that the surface gravity multiplied by the change in
area is equal to a flux of energy through the horizon. This
flux is comprised of two terms, both of which are positive.
The first is the flux of matter through the horizon and is
familiar from standard physical process versions of the
first law [3]. The second term is a flux of gravitational
shear through the horizon—which would naturally be
interpreted as a flux of gravitational radiation. A similar
term has been obtained previously by Hawking [9] when
considering perturbations of an event horizon.

We would like to “integrate’” (11) in order to obtain an
expression for the energy of the horizon. To this end, we
further restrict the choice of V¢ by requiring that

K0 = L (12)

2ry

Note that while we cannot prove that this rescaling is
possible on every slowly evolving horizon, we can show
that, if the horizon satisfies a certain genericity condition,
it will be. In particular, perturbations to Schwarzschild
and nonextremal Kerr horizons will satisfy the condition.
Since x© is a function of r alone, we can integrate the
ka term in (11) to obtain the usual expression for the
energy

TH

E G (13)
Rotating horizons.—Next, consider rotating horizons.
In (5), we gave a definition for the angular momentum.
However, this quantity only has a physical significance if
the vector field ¢ is an (approximate) symmetry of the

horizon. Hence, we define the following.
Approximately symmetric horizon—The vector field
@“ is an approximate symmetry of a trapping horizon if
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(i) ¢“ is tangent to the cross sections of the horizon,
generates a family of closed integral curves, and is nor-
malized so that those curves have affine parameter length
27. (ii) ¢“ is Lie dragged up the horizon by V¢, i.e.,
L+, 9% = 0. (iii) ¢* is an approximate symmetry of the
horizon geometry and matter fields: |G°°V,¢,| < €,
| L oG] < e1L,0, <€ ]L,00)] <e and|T,,e" " <
€. (These conditions are analogous to those satisfied by
V¢ on a slowly evolving horizon.)

For a slowly evolving horizon which is approximately
symmetric, the angular momentum J, is a meaningful
quantity. Going back to the constraint law and setting
Xxo = 0and ¥ = ¢“, we find its time rate of change. As in
the nonrotating case, Eq. (6) will vanish at zeroth and first
orders in €. To second order, we have

- 1
Ly, = ./1-1 dzx\/a[TabT‘%pb + 6rG

a“mbquah)}
(14)

Thus, the rate of change of angular momentum of the
horizon depends upon the flux of matter and gravitational
fields through the horizon.

To get a general first law, we would like to combine the
rate of change of angular momentum with the first law for
nonrotating horizons (11). To do this, we again fix the
average value of the surface gravity as well as an angular
velocity () (we are following a similar strategy to that
taken in [5], though with the caveat that here only the
average value of the surface gravity is fixed). We do this
by requiring that both take the same values as in a Kerr
space-time with the same J, and ay:

4 _ 4o
Q= %l 4 o ThH4C
ru\ry + 4G22 2ryn[rh + 4G22
(15)

With area and angular momentum slowly changing up the
horizon, the angular velocity is also slowly varying.

Finally, we consider the full constraint law (6) with the
evolution vector field X chosen as

1=V + Qo (16)

Then, we can once again expand out the constraint law
(6) to order €* and this time obtain

. 1 .

E= mx(o)d +QJ,, where -
. 1
E:= ]HU d%ﬁ[Tabﬂrb t 6G o-“)ab(ﬁ,qa,,)}

Since «© and Q are specific functions of only r; and J o>
it is once again possible to integrate the left-hand side of
the equation to obtain as an expression for the energy

A\ + 4G22
=Y _"""¢ (18)

 2Gry
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This E is equal to the energy of a rotating isolated horizon
with the preferred choice of normalization for €, and, in
particular, is the mass of a Kerr black hole with parame-
ters ay and J,,.

The notion of a slowly evolving horizon provides a
bridge between the equilibrium of isolated horizons and
the fully dynamical horizons of [5]. In particular, our first
law (17) bears a striking resemblance to the dynamical
horizon energy balance formula. There are, however,
several important differences. First, we restrict to slowly
evolving horizons, which are near to equilibrium. Doing
so enables us to provide a locally defined surface gravity
k, which is shown to be slowly varying over the horizon.
This surface gravity maintains its usual interpretation as
the acceleration of a vector field, V¢, along the horizon.
Second, we do not obtain an equivalent of the |/|?> term of
[5], which is likely related to angular momentum.
However, we expect that term would vanish at the order
of perturbation theory which we are considering. In the
future, we plan to examine the connection between these
two formulations in more detail and determine in what
precise sense our first law can be seen as a perturbative
form of the dynamical horizon energy balance formula.

In summary, we have examined conditions for which a
slowly evolving FOTH may be said to be “perturbatively
nonisolated.” This has allowed us to obtain a truly dy-
namical version of the first law of black hole mechanics.
However, we expect that the notion of a slowly evolving
horizon will also find application in numerical studies of
how horizons settle down to equilibrium. Specifically,
one could track the approach of the parameter € to zero.
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