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Abstract
There is a growing interest in the neuroscience community on the advantages of multilayer functional brain networks. 
Researchers usually treated different frequencies separately at distinct functional brain networks. However, there is strong 
evidence that these networks share complementary information while their interdependencies could reveal novel findings. 
For this purpose, neuroscientists adopt multilayer networks, which can be described mathematically as an extension of  
trivial single-layer networks. Multilayer networks have become popular in neuroscience due to their advantage to integrate 
different sources of information. Here, Ι will focus on the multi-frequency multilayer functional connectivity analysis on 
resting-state fMRI (rs-fMRI) recordings. However, constructing a multilayer network depends on selecting multiple pre-
processing steps that can affect the final network topology. Here, I analyzed the rs-fMRI dataset from a single human per-
forming scanning over a period of 18 months (84 scans in total), and the rs-fMRI dataset containing 25 subjects with 3 repeat 
scans. I focused on assessing the reproducibility of multi-frequency multilayer topologies exploring the effect of two filtering 
methods for extracting frequencies from BOLD activity, three connectivity estimators, with or without a topological filter-
ing scheme, and two spatial scales. Finally, I untangled specific combinations of researchers’ choices that yield consistently 
brain networks with repeatable topologies, giving me the chance to recommend best practices over consistent topologies.

Keywords Functional connectivity · Network topologies · Brain connectivity · Multilayer networks · Test–retest study · 
Reproducibility · Topological filtering

Introduction

New developments in multimodal neuroimaging provide 
novel directions for measuring structural (anatomical) and 
functional connectivity (Tulay et al., 2019). These novel 
developments boost the emergence of brain connectivity 

(Sporns, 2011). An association exists between behavior 
and cognition and the brain's large-scale neuronal activity 
across spatially distributed brain areas (Alderson et al., 
2020; Mišić & Sporns, 2016). Structural and functional 
connections between spatially distributed brain areas 
are recognized as the key element of cognitive functions 
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and behavioral repertoire (Mišić & Sporns, 2016; Smith 
et al., 2015). Recent innovations in non-invasive imag-
ing techniques have assisted neuroscientists to construct 
comprehensive anatomical maps between neuronal ele-
ments (Sporns, 2014), and the simultaneous acquisition 
of dynamic functional brain activity patterns (Loued-
Khenissi et al., 2018). The brain is a complex system that 
can be described as a network (graph) where brain areas 
are the nodes and their links represent the functional and 
structural interactions between brain areas (Stam, 2014). 
The modeling of the brain as a network with any type 
of neuroimaging modality opens new avenues of graph-
theoretic approaches and methods in multiple research 
directions (Bassett & Sporns, 2017).

Network or graph theory has been successfully applied to 
any neuroimaging modality across many, for example, func-
tional magnetic resonance imaging (fMRI) (Lv et al., 2018), 
magnetoencephalography (MEG) (Pusil et al., 2019), elec-
troencephalography (EEG) (Maturana-Candelas et al., 2019), 
diffusion magnetic resonance imaging (dMRI) (Dimitriadis 
et al., 2017b; Messaritaki et al., 2019), and structural covari-
ance (Carmon et al., 2020). Network theory enables us to 
simultaneously characterize the spatial organization (network 
topology) and the strength of any type (either structural or 
functional) connections (Bertolero & Bassett, 2020). Various 
network metrics that describe nodal (local) and global net-
work characteristics like segregation, integration, (Rubinov & 
Sporns, 2010), and modularity (Sporns & Betzel, 2016) have 
demonstrated their ability to describe quantitatively brain net-
works in various scientific pathways like in brain diseases 
(Crossley et al., 2014) and to discriminate brain states while 
subjects performing cognitive tasks (Braun et al., 2015).

The success of complex network theory in uncovering the 
key mechanisms of the human brain organization is limited 
by the use of single-layer brain networks that capture only a 
single type of interaction (De Domenico, 2017). Functional 
neuroimaging modalities like MEG, EEG, and fMRI can 
capture brain activity across multiple frequencies and exper-
imental time and it is important to explore the full spectrum 
(De Domenico et al., 2016; Dimitriadis et al., 2018a; Naro 
et al., 2021). In contrast, structural neuroimaging modali-
ties such as diffusion-weighted imaging (DWI) measure the 
presence and strength of physical, and anatomical connec-
tions between the various brain areas (Garcés et al., 2016). 
The necessity of taking advantage of the increasing large 
multimodal open dataset repositories (Eickhoff et al., 2016) 
leads to the search for a new type of complex network that 
can encapsulate functional interactions across multiple fre-
quency scales (multi-frequency case), across experimen-
tal time (multi-layer dynamic case), and across modalities 
(multi-modal case). However, trivial complex networks can-
not provide neuroscientists with a mathematical framework 

to model all the existing interactions across frequencies, 
time, and modalities.

To present a solution to all the aforementioned challenges, 
recent research articles in network neuroscience have started 
to investigate the employment of multilayer networks. A 
multilayer network enables the integration of information 
from single-layer networks with the incorporation of inter-
connected layers that connect these networks (Joseph et al., 
2014). Into these current trends, recent research directions in 
network neuroscience have begun to investigate the employ-
ment of multilayer networks to model the multiplex asso-
ciations that traditional networks are not suited to capture 
(Boccaletti et al., 2014; De Domenico, 2017; Muldoon & 
Bassett, 2016; Van Mieghem, 2016). Last years, multilayer 
networks have been introduced to the network neuroscience 
field (Brookes et al., 2016; Buldú & Porter, 2018; Dimitriadis 
et al., 2018a; Tewarie et al., 2016; Yu et al., 2017), where 
different layers correspond to different frequency-dependent 
functional interactions or to networks derived from different 
modalities or to specific snapshots of a dynamic functional 
connectivity network (Battiston et al., 2017).

In the present study, I will focus on multi-frequency mul-
tilayer networks, and it is important to mention an important 
aspect of the construction of this type of multilayer network. 
Previous neuroimaging studies reported important findings 
based on multi-frequency multilayer networks. However, 
the inter-layer connections between frequency-dependent 
layers were defined as pseudo-links between homologous 
brain areas between the layers. This practically means 
that the inter-layer networks involve artificial links that 
interconnect each node with its representation across lay-
ers (Guillon et al., 2017; Yu et al., 2017). However, a true 
multi-frequency multilayer network should involve also 
inter-frequency layers that tabulate the cross-frequency 
interactions between the studying frequencies (Brookes 
et al., 2016; De Domenico et al., 2016; Dimitriadis et al., 
2018a; Tewarie et al., 2016; Williamson et al., 2021).

The spectral features of the resting-state BOLD fMRI 
(rs-fMRI) multi-ROI signal are of high significant inter-
est (Kalcher et al., 2014). Scientists discovered an align-
ment between the frequency spectrum within the bandwidth 
0—0.25 Hz with biological brain mechanisms (Golestani et al., 
2015; Hocke et al., 2016). Specific spectral content has been 
associated with both vascular and physiological processes 
(Golestani et al., 2015; Hocke et al., 2016; Mark et al., 2015) 
and also with derived brain-network connectivity measures 
(Nikolaou et al., 2016). A few studies attempted to decompose 
resting-state BOLD activity with either wavelet decomposition 
(Zhang et al., 2016) or adaptive filtering like empirical mode 
decomposition (EMD) (Yuen et al., 2019). Here, we will adopt 
both methods to decompose the rs-fMRI multi-ROI time series 
into its intrinsic brain frequencies in a data-driven manner.
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The construction of multi-frequency multilayer networks 
can assist researchers to understand better neurodegenera-
tive (Guillon et al., 2017) and psychiatric disorders (Gifford 
et al., 2020) and they can further design proper connectomic 
biomarkers. However, these multi-layer based connectomic 
biomarkers should be repeatable and subject-specific.

A tremendous amount of neuroimaging research articles 
adopted resting-state fMRI to define repeatable connectomic 
biomarkers for many brain disorders and diseases (Parkes 
et al., 2020). Research findings on multi-frequency multi-
layer networks at resting-state fMRI (rs-fMRI) are prelimi-
nary (De Domenico et al., 2016). To design repeatable con-
nectomic biomarkers from resting-state fMRI, a prerequisite 
is the test–retest repeatability of network topologies (Luppi 
& Stamatakis, 2021). The majority of rs-fMRI studies 
adopted multilayer networks to model dynamic functional 
connectivity interactions in many target disease groups 
attempting to design connectomic biomarkers of clinical 
importance (dynamic case; (Braun et al., 2015; Dimitriadis 
et al., 2021; Gifford et al., 2020; Muldoon & Bassett, 2016). 
Here, I analyze two open test–retest studies: the rs-fMRI 
dataset from a single human performing scanning with vari-
ous modalities over a period of 18 months, and the rs-fMRI  
dataset containing 25 subjects with 3 repeat scans. The appli-
cation of my analytic framework into two independent datasets 
with two time spans between scans and a high-frequent long-
term scanning of a single subject ensures the generalisability of  
my findings. My main goal is to assess the reproducibility of 
multi-frequency multilayer network topologies by investigat-
ing the effect of potential choices over a) the filtering method 
for extracting frequencies from BOLD activity (empirical  
mode decomposition (EMD) (Yuen et  al., 2019) versus 
wavelet decomposition (Zhang et al., 2016), b) the adopted 
functional connectivity estimator (Pearson’s correlation  
coefficient, mutual information, and distance correlation), 
 c) the topological layout of the derived functional brain net-
work (fully-weighted network versus a topological filtering  
scheme with orthogonal minimal spanning trees (OMST) 
approach) (Dimitriadis et al., 2017a, c), and d) the spatial 
scale of the functional brain network (the original based on 
the parcellation scheme versus a downsampled version based 
on well-known subnetworks). I adopted portrait divergence 
PDiV (Bagrow & Bollt, 2019) as a proper distance metric to 
quantify the network topology similarity between every pair 
of scans and across every set of the aforementioned preproc-
essing steps (2 × 3 × 2 × 2 = 24 distinct pipelines in total).

To ensure that the proposed multi-frequency multilayer 
network construction pipelines reduce spurious topologi-
cal differences, I adopted the following criteria: (i) low  
PDiV statistically supported compared to the rest of the 
pipelines, (ii) ability to detect smaller within-subject PDiV 
than between-subjects PDiV in at least 80% of subjects 
from the second dataset, and (iii) no significant correlation 

between PDiV and subject motion, in both datasets (Luppi 
et al., 2021).

The rest of the paper is organized as follows: Sect. 2 
describes the adopted dataset and the proposed preprocess-
ing framework across multiple levels of choices. Section 3 is 
devoted to the results of the present study and, finally, Sect. 4 
discusses our findings giving instructions to the researchers 
while presenting the limitations of the current study.

Materials and Methods

Test–retest Datasets

I analyzed two open test–retest datasets to evaluate the 
repeatability score of the proposed pipelines. The first data-
set involves recordings from one subject over a long period 
and the second one involves recordings from a group of sub-
jects with short-term and long-term retest periods.

Rs-fMRI was performed in 100 scans throughout the 
data collection period (89 in the production phase), using 
a multi-band EPI sequence (TR = 1.16 ms, TE = 30 ms, 
flip angle = 63 degrees (the Ernst angle for the grey mat-
ter), voxel size = 2.4 × 2.4 × 2 mm, distance factor = 20%, 
68 slices, oriented 30 degrees back from AC/PC, 96 × 96 
matrix, 230 mm FOV, MB factor = 4, 10:00 scan length). 
After session no.27, the number of slices was changed to 64 
due to an update to the multi-band sequence that increased 
the minimum TR beyond 1.16 for 68 slices. Finally, 84 ses-
sions were included in the analysis due to the low signal-
to-noise ratio (SNR) for 16 sessions (see Poldrack et al., 
2015 for further details). The dataset included ten 10-min 
runs of eyes-closed resting-state data and ten 10-min runs of 
eyes-open resting-state data. Here, I analyzed only the eyes-
open resting-state recordings. This famous dataset is called 
MyConnectome and one can test–retest the reproducibility 
over a long period that is absent in other test–retest studies.

The second open dataset involves the recordings from 
25 subjects (mean age 30.7 ± 8.8 years, 16 females) with no 
history of psychiatric or neurological illness. All participants 
provided written informed consent compensating for their 
participation while the study has been approved by review 
boards of the New York University (NYU dataset) within the 
School of Medicine. The study has been originally described 
in (Shehzad et al., 2009), and it is freely accessible from the 
International Neuroimaging Data-Sharing Initiative (INDI) 
(http:// www. nitrc. org/ proje cts/ nyu_ trt).

For every subject, 3 resting-state scans were acquired. 
The first scan was conducted as a baseline, while the second 
and third scans were conducted on average 11 months later 
than the first scan (range 5 – 16 months). The second and 
third scans were conducted on the same day 45 min apart. 
The contract between the second and third scans will be 

http://www.nitrc.org/projects/nyu_trt
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defined hereafter as a short-term dataset, while the contract 
between the first scan and the second-third scans will be said 
hereafter as a long-term dataset.

Scans 2 and 3 were conducted in a single scan session, 
45  min apart, which took place on average 11  months 
(range 5–16 months) after scan 1. Each scan was acquired 
using a 3 T Siemens (Allegra) scanner, and consisted of 
197 contiguous EPI functional volumes (TR = 2000 ms; 
TE = 25 ms; flip angle = 90°; 39 axial 163 slices; field of 
view (FOV) = 192 × 192 mm2; matrix = 64 × 64; acquisition 
voxel size = 3 × 3 164 × 3 mm3). Participants were instructed 
to relax and remain still with their eyes open during the scan. 
For spatial normalization and localization, a high-resolution 
T1-weighted magnetization prepared gradient echo sequence 
was also obtained (MPRAGE, TR = 2500 ms; TE = 4.35 ms; 
TI = 900 ms; flip angle = 8°; 176 slices, FOV = 256 mm).

Functional MRI Preprocessing

All fMRI data were preprocessed according to a pipeline 
developed at Washington University (Poldrack et al., 2015; 
see Sect. 1 in supp.material). The parcellation procedures 
lead to 630 parcels (ROIs). The same parcellation has been 
adopted also for the second dataset.

Construction of Multi‑frequency Multilayer 
Networks

Node Definition

Every ROI characterized by a specific frequency content is  
defined as a distinct node in the multi-frequency mul-
tilayer network. In this study, I decomposed every ROI- 
based brain activity into four basic frequencies (see next 
section). This practically means that the size of our multi-
layer network will be: {4 × 630} x {4 × 630} = 2520 × 2520. 
This multilayer network will tabulate both the within and 
between frequencies coupling across every pair of ROIs. In 
multi-frequency multilayer networks, a node is defined as a 
frequency-dependent brain activity of every ROI.

Extracting of Brain Frequencies

I extracted wavelet coefficients for the first four wavelet scales, 
which correspond to the frequency ranges 0.125∼0.25 Hz 
(Scale 1), 0.06∼0.125 Hz (Scale 2), 0.03∼0.06 Hz (Scale 
3), and 0.015∼0.03 Hz (Scale 4) (Zhang et al., 2016). Here, 
I adopted the maximum overlap discrete wavelet transform 
(MODWT), selecting the Daubechies family implemented with 
a wavelet length equal to 6.

Alternatively, I decomposed resting-state BOLD activity 
into the related intrinsic mode functions (IMFs) with the 

empirical mode decomposition (EMD) (Yuen et al., 2019). I 
estimated the mean frequency of the Hilbert spectrum across 
time per brain area and IMF across scans.

I followed both decomposition methods first on the extracted 
averaged time series per brain area for every scan across the 
630 ROIs for Pearson’s Correlation Coefficient (PC) and Mutual 
Information (MI) estimations, and secondly on the voxel time 
series within every ROI per scan for Distance Correlation (DC) 
estimations. Figure 1 illustrates the decomposition with the two 
adopted methods of mean representative time series across vox-
els from the first two ROIs as presented in the MyConnectome 
dataset. Figure 1A, B are dedicated to EMD and MODWT, 
respectively. I constructed multi-frequency multilayer networks 
using the 8 in total time series (2 ROIs × 4 frequency subbands) 
and adopted the three connectivity estimators. The estimated 
network topologies for both decomposition methods are shown 
on the right side of each sub-figure. Blocks of connectivity 
strength within the 4 time series per ROI are tabulated within 
the main diagonal. The off-diagonal blocks tabulate connectiv-
ity strengths between the two sets of four-time series. Both PC 
and MI are estimated on the representative time series per ROI 
(shown in red) derived from averaging the voxel-based time 
series (shown in blue). In contrast, DC is computed between 
two sets of voxel-based time series (shown in blue).

Functional Connectivity Estimators

In the present study, I adopted three connectivity estimators 
that are divided into two groups. The first group involves 
the Pearson’s Correlation Coefficient (PC), and the Mutual 
Information (MI). Both estimators can quantify the functional 
coupling strength between every pair of two frequency-
dependent time series derived as the ROI-averaged repre-
sentative time series. The second group involves the Distance 
Correlation (DC) metric that can quantify the correlation of 
two sets of frequency-dependent time series corresponding 
to the voxel-based time series of two ROIs.

I constructed a multilayer network whose  ijth elements 
are given by the three connectivity estimators with blocks 
in the main diagonal of size 630 × 630 corresponding to the 
four within-frequency functional connectivity networks and 
off-diagonal blocks of size 630 × 630 corresponding to every 
possible pair of the between-frequency functional connectiv-
ity networks (4 × 3/2 = 6 in total). The aforementioned pro-
cedure was followed for every single scan, filtering method, 
and connectivity estimator.

For each parcellation, the average denoised BOLD time 
series across all voxels belonging to a given ROI were 
extracted. I considered three alternative ways of quantifying 
the interactions between regional BOLD signal time series.

Below, I defined the mathematical descriptions of the 
adopted connectivity estimators.
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Pearson Linear Correlation

First, I used Pearson correlation, whereby for each pair of 
nodes i and j, their functional connectivity strength FCSij 
was given by the Pearson correlation coefficient between 
the time courses of i and j, over the full scanning length. 
I got the absolute Pearson’s correlation values that bound 
the range of FCS within [0,1].

Mutual Information (MI)

Second, I also used the mutual information I, which quan-
tifies the interdependence between two random variables 
X and Y, and is defined as the average reduction in uncer-
tainty about X when Y is given (or vice versa, since this 
quantity is symmetric):

(1)I(X;Y) = H(X) + H(Y) − H(X, Y) = H(X) − H(X|Y)

Fig. 1  Decomposition of BOLD activity in frequency subbands with 
EMD (A) and MODWT (B). I showed in blue the voxel-based time 
series for the first two ROIs of the 1st scan from the MyConnectome 
project using both decomposition methods. The averaged representa-
tive time series is shown in red. Network topologies tabulate the func-
tional connectivity strength across the 8 time series (2 ROIs × 4-time 

series) with the three adopted connectivity estimators. Blocks within 
the main diagonal are color-coded to underline the functional inter-
actions between the 4 time series per ROI. The off-diagonal blocks 
tabulate the functional connectivity strength of the two sets of 4-time 
series in a pair-wise fashion
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With H(X) being the Shannon entropy of a variable X. 
Unlike Pearson correlation, mutual information considers 
both linear and nonlinear relationships. I normalized mutual 
information (MI) values by dividing the maximum value in 
the matrix-bound within [0,1].

Distance Correlation

The multivariate distance correlation (DC) measure was 
introduced in the literature on functional network construc-
tion in general and specifically in rs-fMRI many years ago 
(Geerligs et al., 2016). However, it was introduced to con-
struct a single-layer functional network based on BOLD 
activity within a single frequency range. Here, I adopted for 
the very first time based on the authors’ knowledge distance 
correlation as a proper functional connectivity estimator for 
both within and between frequencies coupling in the multi-
frequency multilayer functional brain network construction. 
This new test is based on an unbiased estimator of distance 
covariance, and the resulting t-test is unbiased for large sam-
ple sizes (> 30) (Székely & Rizzo, 2013). The combined 
p-value can be estimated analytically. Here, I adopted dis-
tance correlation to estimate the functional connectivity 
strength between pairs of tuples of voxel-based time series 
between every pair of ROIs. DC can capture both linear and 
non-linear associations between two time series.

Surrogate Null Models: Statistical Topological Filtering

Since the ground truth of the presence of true functional 
connections cannot be defined, the construction of surro-
gate data as a statistical framework is inevitable (Pereda 
et al., 2005; Schreiber & Schmitz, 2000). Surrogate time 
series must preserve specific properties of the original time 
series to be useful. These properties are the auto‐covariance 
sequence, stationary cross-correlation, power spectral den-
sity, cross power spectral density, and amplitude distribution 
(Pereda et al., 2005; Schreiber & Schmitz, 2000; Zalesky 
et al., 2014). In the present study, I adopted two basic sur-
rogate data methods: the first one produces surrogate data 
adopting the notion of the multivariate phase randomiza-
tion (MVPR) (Prichard & Theiler, 1994), and the second 
is called multivariate autoregressive (MVAR) (Savva et al., 
2019; Zalesky et al., 2014).

The MVPR method is first described for generating  
surrogate time series (Prichard & Theiler, 1994). Below, I 
described briefly the steps of producing the surrogate time 
series. Let x =  [x1,x2,…,xn] denote the BOLD recordings 
from n = 630 parcels each of these time series is composed 
of 518 time points and X =  [X1,X2,…,Xn] denote their 
discrete Fourier transform. Then, I generated a uniformly 
distributed random phase (φ = [φ1,φ2,…,φΤ]), within the 
interval [0, 2π] and I further applied to each signal with 

the following equation:  Xk =  Xk
eiφ, k = 1,2,…,n. Practically, 

this transformation means that in the frequency domain, all 
our recorded signals are multiplied by the same uniformly 
random phase (Hindriks et al., 2016). Finally, I estimated 
the inverse Fourier transform and I got our first surrogate 
dataset. I repeated the same procedure 1,000 times produc-
ing 1,000 surrogate datasets for every scan.

MVAR models produce a set of signals described as a 
combination of both their own past and also the past of the 
entire set of signals in the multidimensional set (Prichard 
& Theiler, 1994). The polynomial order p defines the num-
ber of past signal values that are considered in the MVAR 
model. I selected the value of p based on the minimization 
of the Schwarz Bayesian Criterion (SBC) (Zalesky et al., 
2014). Again, a total number of 1,000 randomized copies 
were created for every time series (Hindriks et al., 2016; 
Zalesky et al., 2014).

I applied both MVPR and MVAR to the original BOLD 
time series. To validate the derived surrogate time series 
with both methods, I adopted the following properties that 
should be preserved: auto‐covariance sequence, station-
ary cross‐correlation, power spectral density, cross power 
spectral density, and amplitude distribution. For every ROI-
based time series and the estimated surrogates, we adopted 
the absolute value of the Pearson’s correlation coefficient 
(aPCC) and mutual information (MI) as quality measures 
of every property. For the auto-covariance sequence, I esti-
mated the aPCC between the auto-covariance sequence of 
the original time series with every surrogate. I also esti-
mated the cross-correlation between the original time series 
and every surrogate. For power spectral density (Welch’s 
power spectral density estimate using pwelch MATLAB’s 
function), I estimated the aPCC between the power spectral 
densities of the original time series and every surrogate. For 
cross power spectral density (cpsd MATLAB function), I 
estimated the aPCC between the cross power spectral density 
of the original time series with itself with the cross power 
spectral density between the original time series and every 
surrogate. Finally, the MI was used to quantify the amplitude 
distributions of the original time series and every surrogate. 
The whole analysis was repeated per ROI, and the final 
property values were averaged across the number of sur-
rogates. I repeated this analysis independently per subject, 
scan, and frequency sub-bands with both filtering methods 
either EMD or MODWT. For further details, see Sect. 2 in 
supp.material.

Surrogate Null Hypothesis

For every multi-frequency multilayer network, I generated 
1,000 surrogate multilayer networks based on both methods. 
Then, I assigned to every functional connection a p-value 
by estimating the proportion of surrogate connectivity 
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values that were higher than the observed values (Theiler 
et al., 1992). To correct the effects of multiple comparisons, 
p-values were adjusted using the false discovery rate (FDR) 
method (Benjamini & Hochberg, 1995; Dimitriadis et al., 
2015). A threshold of significance q was set such that the 
expected fraction of false positives was restricted to q ≤ 0.01 
(Dimitriadis, 2021; Dimitriadis et al., 2015). The whole pro-
cedure was repeated separately across filtering methods, con-
nectivity estimators, and scans. Statistical topological filtered 
versions of multi-frequency multilayer networks were then fed 
to our data-driven topological filtering scheme called OMST.

Data‑driven Topological Filtering Scheme

An important pre-processing step for brain networks is to 
topologically filter out the backbone of functional links 
across the whole network. Here, I adopted my data-driven 
technique called Orthogonal Minimal Spanning Trees 
(OMST) (Dimitriadis et al., 2017a, c) for the very first time 
to topologically filter a multilayer network.

OMST (Dimitriadis et al., 2017a, c) is a data-driven 
approach that optimizes the balance between global effi-
ciency and the global-cost efficiency of the network which 
is defined as the global efficiency minus the cost. The cost 
is defined as the ratio of the sum of functional strength of 
the selected functional links versus the total sum of func-
tional strength of all the pairs of functional links (fully-
weighted version of the network). OMST can be described 
with the following steps: (1) at the first stage, the original 
MST is extracted consisting of N-1 functional links (where 
N denotes the total number of nodes) that connect all the 
nodes while simultaneously minimizing the average wir-
ing cost. MST captures the main net of functional links 
where the major part of all pairs of shortest paths pass 
through. Global efficiency and global-cost efficiency are 
estimated for the 1st MST; (2) Then, the N-1 functional 
links were removed from the network, and we searched for 
the 2nd MST which is orthogonal to the first. We added the 
1st and 2nd MST to the network, and we again estimated 
the global efficiency and the global-cost efficiency; (3) We 
repeated the same procedure until a global maximum is 
detected on the plot of global-cost efficiency versus the 
total cost (Dimitriadis et al., 2017a, c). The OMST proce-
dure produces sparse functional networks but denser than 
using only the first MST. Moreover, the OMST method 
doesn’t impose a-priori selected sparsity level across a 
cohort, and it produces highly repeatable structural and 
functional networks compared to alternative topologi-
cal filtering schemes (Dimitriadis et al., 2017b, 2018b; 
Messaritaki et al., 2019). Here, I analyzed fully-weighted 
multilayer networks and topologically filtered multilayer 
networks with OMST.

Network Scales

In the present study, I constructed a multi-frequency mul-
tilayer network based on the parcellation scheme provided 
by the authors of the MyConnectome project (Poldrack 
et al., 2015). The total number of ROIs as was already 
aforementioned was 630. Here, I explored the within 
and between frequency interactions across every pair of 
ROI for a total of four frequency bands as extracted with 
MODWT and EMD methods. This practically means that 
the size of our multilayer network will be equal: {4 × 630} 
x {4 × 630} = 2520 × 2520. Figure 2 visualizes an example 
of a multi-frequency multilayer network constructed with 
the combination of EMD and PC. Figure 2A illustrates the 
fully-weighted multi-frequency multilayer network while 
the OMST version of the multilayer network is depicted in 
Fig. 2B. Simultaneously, as many researchers integrated 
their findings into well-known resting-state networks, I 
decided to create a subnetwork multilayer network as fol-
low: we computed the mean of pair-wise functional strength 
between ROIs that comprised each of the following thirteen 
cognitive networks as provided within the MyConnectome 
project (Poldrack et  al., 2015). These subnetworks are 
Default Mode Network, Somatomotor, Ventral_Attention, 
Frontoparietal_1, Frontoparietal 2, Visual_1, Visual_2, 
Medial_Parietal, Parieto_occipital, Cingulo_opercular, 
Salience, Dorsal_Attention, and a final subnetwork that 
includes ROIs that are not classified to the twelve subnet-
works. The final size of these subnetworks are equal to: 
{4 × 13} x {4 × 13} = 52 × 52. An example of a small-scale 
multilayer network is shown in Fig. 3 for the combination 
of EMD and PD as in Fig. 2.

Topological Distance as Portrait Divergence

To quantify the difference between network topologies, I 
used the recently developed Portrait Divergence (PDiV). The 
Portrait Divergence (PDiV) between two graphs G1 and G2 
is the Jensen-Shannon divergence between their “network 
portraits”, which encode the distribution of shortest paths of 
the two networks (Bagrow & Bollt, 2019). Specifically, the 
network portrait is a matrix B whose entry Blk, l = 0, 1, …, d 
(with d being the graph diameter), k = 0, 1, …, N − 1, is the 
number of nodes having k nodes at shortest-path distance l. 
For further details, an interested reader can read the original 
article describing this method (Bagrow & Bollt, 2019).

PDiV considers all the scales of the topology within the 
networks from motifs to large-scale connectivity patterns 
and is not restricted to a single network property (Bagrow 
& Bollt, 2019).

For each scan, I obtained one brain network follow-
ing each of the possible combinations of steps above ((2 



 Neuroinformatics

1 3

decomposition scheme: MODWT/EMD) x (3 connectiv-
ity estimators: PC/MI/DC) x (2 topological filtering: full/
OMST) x (2 scales: Atlas/Subnetwork) = 24 distinct pipe-
lines in total).

For each pipeline, I then computed the PDiV between 
multi-frequency multilayer brain network topologies 
obtained from the single subject at different time points 
(scans). This procedure resulted in the construction of 24 
similarity matrices of size 84 × 84 (scans x scans) for the 
first dataset. Every similarity matrix tabulated the PDiV 

distance of the multilayer brain network topologies related 
to every scan in a pair-wise fashion. I finally estimated 
the mean PDiV across every possible pair of 84 scans 
(84 × 83/2 = 3486 pairs) to characterize the quality of each 
of the 24 distinct pipelines. Figure 4 illustrates an example 
of scan-to-scan pair-wise PDiV distances between every 
pair of multi-frequency multi-layer networks. The column 
on the right shows the sum of every row in the distance 
D matrix called ΣPDiV. This vector of size equal to the 
number of scans expresses the (dis)similarity of every 

Fig. 2  An example of a full-resolution multi-frequency multilayer 
network from the 1st scan derived from the combination of the EMD 
filtering technique and PC as a proper functional connectivity estima-
tor. A A fully-weighted version of the multi-frequency multilayer net-
work. B The OMST version of the multi-frequency multilayer network 

shown in A. In-diagonal red blocks underline the intra-frequency func-
tional networks of size 630 × 630. Off-diagonal blocks refer to cross-
frequency (inter-frequency) functional networks of the same size (sub-
subband)

Fig. 3  An example of a low-resolution multi-frequency multilayer 
subnetwork from the 1st  scan derived from the combination of the 
EMD filtering technique and PC as a proper functional connectiv-
ity estimator. The size of this subnetwork is 52 × 52. A The fully-
weighted low-resolution multi-frequency multi-layer subnetwork. 

In-diagonal red blocks underline the intra-frequency functional sub-
networks of size 13 × 13. Off-diagonal blocks refer to cross-frequency 
(inter-frequency) functional subnetworks of the same size. B The 
OMST version of the low-resolution multi-frequency multi-layer sub-
network (sub—subband)
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single-scan multilayer network topology across the rest of 
the scan-related multilayer network topologies.

For the second dataset, I computed the PDiV between 
multi-frequency multilayer brain network topologies 
obtained from the 3 repeat scans. Specifically, I quanti-
fied the PDiV topological distance between the first and 
the second – third scans as long-term and the topological 
distance between the second – third scans as short-term. In 
the long-term scenario, I got the mean of the two derived 
PDiV values. The whole analysis is repeated indepen-
dently per subject and finally, I group-averaged the PDiV 
values for short-term and long-term across the 24 distinct 
pipelines.

Criteria for the Evaluation of Multi‑frequency 
Multilayer Network Construction Pipelines

To ensure that the proposed multi-frequency multilayer 
network construction pipelines reduce spurious topological 
differences, I adopted the following criteria across the three 
cases (the MyConnectome dataset and the two time spans 
from the NYU dataset). The same criteria were used in our 
previous study (Luppi et al., 2021):

 (i) low PDiV statistically supported compared to the rest 
of pipelines:

   I set up a criterion of PDiVthreshold
≤ meanPDiV

p
−

st.d.PDiV
p

(2) to characterize a pipeline p as repeatable. 
The mean and the standard deviation (st.d.) were esti-
mated across the 24 distinct pipelines independently 
for the first dataset, and the short-term and long-term 
scenarios.

 (ii) ability to detect smaller within-subject PDiV than 
between-subjects PDiV in at least 80% of subjects 
from the second dataset:

   Another criterion that can further evaluate the 
appropriateness of the pipelines is by direct compar-
ing PDiV values estimated within subjects (WS) (scan 
1 vs. scan 2 for subject 1, scan 1 vs. scan 2 for subject 
2, etc.…) and PDiV values estimated between subjects 
(BS) (subject 1 vs. subject 2, etc.…). The proportion of 
subjects that showed lower  WSPDiV values compared to  
 BSPDiV could be used as an additional quality criterion  
of the pipeline (Luppi et al., 2021). The rationale 
behind this criterion is that the individual’s multi-
frequency multilayer network topologies between two 
scans separated in time should differ less than it differs 
from the multi-frequency multilayer network topology 
of other individuals. This criterion has been applied to 
the second NYU dataset for both time spans.

 (iii) no significant correlation between PDiV and subject 
motion, in both datasets.

As a final criterion, I exclude pipelines whose PDiV 
value is significantly correlated with differences in subject 
motion using the mean framewise displacement (Luppi 
et al., 2021).

Statistical Analysis

First Quality Criterion

Scan-averaged PDiV for the MyConnectome study and 
subject-averaged PDiV for the NYU study were estimated 
for each of the potential 24 distinct pipelines. To explore the 

Fig. 4  An example of scan-
to-scan pairwise topological 
PDiV distances between pairs 
of multi-frequency multilayer 
networks derived from the 
combination of EMD filtering 
technique and PC as a proper 
functional connectivity estima-
tor. The column on the right 
shows the sum of every row in 
the distance D matrix called 
ΣPDiV. The size of this vector 
is equal to the number of scans
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effect of researcher choice at the four levels of preprocess-
ing steps on the repeatability of multi-frequency multilayer 
topology, I followed an n-way ANOVA (p < 0.05). I per-
formed two three-way ANOVA with repeated measures on 
three factors (filtering—connectivity estimator—topological 
layout), one in the atlas and one in the subnetworks space. 
As an input to the three-way ANOVA for the MyConnec-
tome study, I employed the 84 values produced by the sum 
of every row of the distance matrix as it was shown in Fig. 4. 
As an input to the three-way ANOVA for the NYU study, 
I employed the group-averaged PDiV values for both time-
sessions. The final p-values of every single pre-processing 
step and their interactions were adjusted for multiple com-
parisons in both cases.

Second Quality Criterion

I adopted a Wilcoxon Rank-Sum test to evaluate the pipe-
lines proposed by the first PDiV criterion compared to the 
rest if they showed a higher proportion of subjects with 
 WSPDiV values lower than  BSPDiV in both short-term and 
long-term time spans of the NYU dataset (p < 0.05).

Third Quality Criterion

I adopted Pearson’s correlation coefficient to estimate the 
correlation between the PDiV values and the mean frame-
wise displacement.

Evaluation of the Best Surrogate Null Model

I also adopted a Wilcoxon Rank-Sum test to compare for 
every ROI, frequency sub-band, and filtering method, the 
five properties between the two surrogate null-models 
(p < 0.05). In the case of the MyConnectome study, I used 
a vector of 84 values referring to the 84 scans to compare 
every property, for every ROI between the two surrogate 
null models. Finally, I reported the percentage of ROIs in 
both datasets that showed significant differences while I 

accounted for which surrogate null models demonstrated 
surrogates with properties closer to the original time series. 
The findings are reported in Sect. 2 in supp.material.

Results

Appropriate Surrogate Model for Statistical Filtering 
of Multilayer Networks

Produced surrogate time series must preserve specific prop-
erties of the original time series in order to be useful. Sur-
rogate BOLD time series produced by the MVPR model 
preserved better the adopted properties compared to the 
surrogates produced by the MVAR in a large percentage of 
ROIs across the two filtering methods and the four subbands 
(see Sect. 2 and STables 1–3 in supp.material).

Characteristic Intrinsic Frequency Modes 
for Resting‑state BOLD Activity Based on MODWT 
and EMD

I estimated characteristic frequency per representative ROI 
time series per scan. For the MODWT decomposition scheme, 
I adopted the pwelch method as provided by MATLAB. For 
the EMD decomposition scheme, I adopted the hht method 
as provided by MATLAB. I first averaged the characteristic 
frequency per ROI across scans and afterward, I got the mean 
and standard deviation across the number of ROIs. Table 1 
summarizes the whole-brain averaged characteristic intrinsic 
frequency modes for resting-state BOLD activity extracted 
with both filtering schemes from the MyConnectome dataset. 
The mean frequency of subbands between the two filtering 
methods doesn’t overlap. Similarly, I reported the whole-brain 
averaged characteristic intrinsic frequency modes for a resting-
state BOLD activity for the NYU dataset averaging first across 
the brain per subject and scan, then averaging across scans, and 
finally estimating the mean and standard deviation across the 
cohort (Table 2).

Table 1  Whole-brain averaged intrinsic frequency modes for both MODWT and EMD filtering schemes from the MyConnectome dataset

Subband 1 Subband 2 Subband 3 Subband 4

MODWT 0.21 ± 0.004 0.11 ± 0.004 0.049 ± 0.004 0.021 ± 0.004
EMD 0.27 ± 0.012 0.14 ± 0.011 0.072 ± 0.006 0.023 ± 0.003

Table 2  Whole-brain averaged intrinsic frequency modes for both MODWT and EMD filtering schemes from the NYU test–retest dataset

Subband 1 Subband 2 Subband 3 Subband 4

MODWT 0.20 ± 0.005 0.12 ± 0.005 0.051 ± 0.003 0.022 ± 0.003
EMD 0.26 ± 0.013 0.13 ± 0.013 0.068 ± 0.005 0.024 ± 0.003
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Researcher’s Free Choice Pre‑processing Paths 
may Affect the Repeatability of Multi‑frequency 
Multilayer Network Topologies

Results of three-way ANOVA with repeated measures on 
three factors (filtering—connectivity estimator—topological 
layout) in the atlas and subnetworks space revealed an effect 
on the repeatability of multi-frequency multilayer network 
topologies (p < 0.05; corrected for multiple comparisons). 
Tables 3 and 4 tabulate the findings from the three-way 
ANOVA for the atlas and subnetworks level, correspond-
ingly for the MyConnectome study. Similarly, STables 4–5 
and 6–7 tabulate the reports of three-way ANOVA for the 
short-term and long-term repeat scan sessions, correspond-
ingly for the NYU study. In simple words, the interpretation 
of the findings from the three ANOVA is that every choice 
across the three factors has a significant effect on the final 
multi-frequency multilayer network topology.

PDiV Reveals Important Topological Differences 
Across Pipelines

Figure 5 illustrates the across-scans PDiV values averaged 
and the relevant standard deviations per pipeline for the 
MyConnectome study. Figures 6 and 7 illustrate the across-
subjects PDiV values averaged and the relevant standard 
deviations per pipeline for the short-term and long-term 
repeat scan sessions for the NYU study. Below, I reported 

the repeatable pipelines for every case after applying the 
adopted statistical threshold of ( PDiVp ≤ PDiVthreshold):

where 1 denotes the first left pipeline as reported in Figs. 5, 
6 and 7 (leftmost) while 24 is the last one (rightmost). The 
common pipelines across the three cases are the following six:

1- ATLAS-SPACE-EMD-PC-FULLY-WEIGHTED
2- ATLAS-SPACE-EMD-PC-OMST
6- ATLAS-SPACE-EMD-DC-OMST
12- SUBNETWORKS-EMD-DC-OMST
21-  SUBNET WORKS-MODW T-MI-FULLY-
WEIGHTED
22- SUBNETWORKS-MODWT-MI-OMST

Evaluation of Pipelines Based on the within‑ vs 
Between‑subject PDiV Criterion

My findings suggest that the proposed six pipelines based 
on the PDiV showed systematically a higher proportion 
of subjects with  WSPDiV values lower than  BSPDiV in both 
short-term and long-term time spans of the NYU data-
set. Specifically, for the short-term time span, the aver-
age number of subjects with  WSPDiV values lower than  

[1 2 5 6 11 12 20 21 22 24] MyConnectome

[1 2 6 12 21 22] short-term NYU

[1 2 5 6 12 21 22] long-term NYU

Table 3  Three-way analysis of 
variance with repeated measures 
on three factors (within-factors) 
based on full network resolution 
analysis for MyConnectome 
study (p < 0.05; corrected for 
multiple comparisons)

With a given significance level of: 0.05
The results are significant (S) or not significant (NS)
FiltM: filtering method (MODTW or EMD)
FCE: functional connectivity estimator (PC,MI,DC)
NT: Network topology (fully-weighted network vs OMST)

SOV
Conclusion

SS df MS F P

Between -Factors 0.278 83
Within-Factors
FiltM
Error (FiltM)

22.618
0.038
0.343

924
1
83

0.038
0.004

9.197 0.032 S

FCE
Error (FCE)

12.944
0.555

2
166

6.472
0.003

1936.404 0.0000 S

NT
Error(NT)

1.462
0.306

1
83

1.462
0.004

396.851 0.0000 S

FiltMxFCE
Error(FiltM-FCE)

1.645
0.663

2
166

0.822
0.004

205.859 0.0000 S

FiltMxNT
Error(FiltM-NT)

0.148
0.323

1
83

0.148
0.004

37.936 0.0000 S

FCExNT
Error(FCE-NT)

2.296
0.471

2
166

1.148
0.003

404.146 0.0000 S

FiltMxFCExNT
Error(FiltM-FCE-NT)

0.723
0.555

2
166

0.362
0.003

108.238 0.0000 S

Total 22.749 1007
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 BSPDiV for the six suggested pipelines was 23.33 ± 0.81 
subjects and 13.16 ± 0.75 for the rest of the pipelines 
(p = 0.000311). For the long-term time-span, the average 
number of subjects with  WSPDiV values lower than  BSPDiV 
for the six suggested pipelines was 22.66 ± 0.81 subjects 
and 11.66 ± 0.88 for the rest of the pipelines (p = 0.000432).

Relationships Between PDIVs and Subject Motion

For the NYU short-term and long-term datasets, the six pro-
posed pipelines from the first criterion showed no significant 
correlation between PDiV values and subject motion. The 
rest of the 18 pipelines exhibited a significant correlation 

Table 4  Three-Way Analysis 
of Variance With Repeated 
Measures on Three Factors 
(Within-Factors) based on 
Subnetwork Resolution 
Analysis for MyConnectome 
study (p < 0.05; corrected for 
multiple comparisons)

With a given significance level of: 0.05
The results are significant (S) or not significant (NS)
FiltM: filtering method (MODTW or EMD)
FCE: functional connectivity estimator (PC,MI,DC)
NT: Network topology (fully-weighted network vs OMST)

SOV
Conclusion

SS df MS F P

Between -Factors 0.077 83
Within-Factors
FiltM
Error (FiltM)

8.999
0.009
0.052

924
1
83

0.009
0.001

13.738 0.0004 S

FCE
Error (FCE)

0.603
0.075

2
166

0.302
0.000

671.013 0.0000 S

NT
Error(NT)

3.023
0.095

1
83

3.023
0.001

2645.330 0.0000 S

FiltMxFCE
Error(FiltM-FCE)

0.340
0.059

2
166

0.170
0.000

481.421 0.0000 S

FiltMxNT
Error(FiltM-NT)

0.288
0.057

1
83

0.288
0.001

420.998 0.0000 S

FCExNT
Error(FCE-NT)

3.037
0.076

2
166

1.519
0.000

3318.529 0.0000 S

FiltMxFCExNT
Error(FiltM-FCE-NT)

0.928
0.070

2
166

0.464
0.000

1104.304 0.0000 S

Total 8.788 1007

Fig. 5  Repeatability of Multi-Frequency Multilayer Brain Network 
Topologies across distinct pipelines. PDiV scan-averaged values 
across every possible pipeline (24 in total) among the four factors 

explored in the MyConnectome dataset. The red line denotes the 
PDiVthreshold

≤ meanPDiV
p

− st.d.PDiV
p
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between PDiV value and motion with a magnitude rang-
ing between 0.29 and 0.37 for the short-term dataset, and 
between 0.27 and 0.39 for the long-term dataset.

Overall Recommendations for Adequate 
Multi‑frequency Multilayer Network Construction 
Pipelines

Based on the three adopted criteria, I final recommend the 
six pipelines as were detected from the first criterion and 
further evaluated by the other two. It is important to mention 
here that repeatability is preserved in both the atlas and sub-
networks spatial layout. A significant outcome of my study 

is that EMD produces repeatable multi-frequency multilayer 
network topologies in both spatial scales, while MODWT is 
only for the subnetworks level. In four out of six pipelines, 
OMST data-driven topological filtering method is part of 
the best pipelines compared to two for the fully-weighted 
networks. For the adopted connectivity estimators, DC is 
the only estimator that participates in the best pipelines in 
both spatial scales but only in collaboration with EMD, PC 
is spatially connected to the atlas level and EMD filtering 
method, and MI is spatially connected to the subnetworks 
level and MODWT filtering method.

To further illustrate the (dis)similarity of multi-frequency 
multilayer topologies between the good and bad pipelines, 

Fig. 6  Repeatability of Multi-Frequency Multilayer Brain Network 
Topologies across distinct pipelines. PDiV scan-averaged values 
across every possible pipeline (24 in total) among the four factors 

explored in the short-term repeatability session of the NYU dataset. 
The red line denotes the PDiVthreshold

≤ meanPDiV
p

− st.d.PDiV
p

Fig. 7  Repeatability of Multi-Frequency Multilayer Brain Network 
Topologies across distinct pipelines. PDiV scan-averaged values 
across every possible pipeline (24 in total) among the four factors 

explored in the long-term repeatability session of the NYU dataset. 
The red line denotes the PDiVthreshold

≤ meanPDiV
p

− st.d.PDiV
p
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I estimated their PDiV similarity in a pair-wise fashion, 
and then I projected these associations into a 3D space (see 
Sect. 4 in supp.material). Interestingly, the good and bad 
pipelines form a cluster distant from each other that further 
support the whole analysis and the adopted criteria. The 
good pipelines produce similar topologies under the PDiV 
framework while simultaneously these network topologies 
are distant from the ones produced from the bad pipelines.

Discussion

A large amount of current neuroimaging research with fMRI 
is focused on harnessing repeatable brain network-based 
connectomic biomarkers related to both normal and abnor-
mal brain function. However, this investigation involves a 
combination of arbitrary pre-processing choices (Korhonen 
et al., 2021). Test–retest repeatability is a prerequisite to the 
definition of repeatable connectomic biomarkers (Fornito 
et al., 2015; Hallquist & Hillary, 2019). Here, I explored for 
the very first time in the literature how different research-
ers’ choices may affect the repeatability of multi-frequency 
multilayer network topologies. I systematically investigated 
24 unique pipelines from resting-state fMRI recordings 
acquired for 84 scans of a single subject (MyConnectome 
dataset;(Poldrack et al., 2015)) and 25 subjects with 3 repeat 
scan sessions in both short-term and long-term periods 
(NYU dataset; Shehzad et al., 2009). In the present study as 
in a previous one (Luppi & Stamatakis, 2021), I adopted the 
PDiV metric as a proper way to evaluate the pipelines based 
on a multi-scale network topological comparison compared  
to trivial network metrics. I also adopted three main  
criteria to uncover the pipelines that reproduce consistent 
brain network topologies. My findings suggest that the syn-
ergy of preprocessing steps produces repeatable brain net-
work topologies and not just a single choice in any of them.

Test–retest studies of resting-state fMRI single-layer 
brain networks focused on the repeatability of graph met-
rics in various cohorts and both short and long-term periods 
between scans (Andellini et al., 2015; Noble et al., 2017, 
2019; Shah et al., 2016; Somandepalli et al., 2015; Song 
et al., 2012; Termenon et al., 2016; Wang et al., 2017). How-
ever, the estimation of graph metrics derived from the net-
work topology and the conclusion regarding the repeatability 
of these network metrics might differ from study to study 
due to the researcher's choice of which to represent and also 
due to their different nature. For that reason, I adopted the 
PDiV metric as a proper measure to quantify brain network 
topology similarities in data acquired from the same subject 
across short (minutes), medium (weeks), and long (month) 
time periods in two open independent datasets.

In summary, my findings untangle large and medium 
systematic differences in the adopted pipelines in terms of 

constructing similar multi-frequency multilayer network 
topologies from two or more scans acquired for the same 
subject. Importantly, my findings were consistent across 
short, medium, and long-term time-periods between scan 
sessions, in two independent rs-fMRI datasets. Remarkably 
that an inappropriate choice of the pipeline can impair the 
repeatability of network topology even for scans acquired 
less than 45 min apart up to a tenfold increase in network 
topological dissimilarity (PDiV) compared to the best pipe-
lines (Fig. 6). The best performing pipelines can construct 
a repeatable multi-frequency multilayer network topol-
ogy for the same subject, even at a time distance of many 
months (less than a year; Fig. 7), and more than a year 
(Fig. 5).

These findings propose that an inappropriate choice of 
a multi-frequency multilayer network construction pipe-
line may have significant effects on brain network proper-
ties and conclusions in longitudinal studies (Zhang et al., 
2021). Repeatability of multi-frequency multilayer net-
work topologies from two scan sessions of the same sub-
ject is of paramount importance when a researcher wants 
to associate network properties with behavioral traits 
(Smith et al., 2013) or with clinical groups like schizo-
phrenia, autism, or Alzheimer’s disease (Gifford et al., 
2020; Nichols et al., 2017; Wei et al., 2022). Group com-
parison of network metrics derived from multi-frequency 
multilayer networks derived from magnetoencephalo-
graphic resting-state recordings has been also introduced 
(Mandke et al., 2018). The detection of repeatable multi-
frequency multilayer network construction pipelines con-
stitutes also a prerequisite for network exploratory analysis 
(Nichols et al., 2017) and clinical translation (Chen et al., 
2018).

Hopefully, my analysis untangled six out of twenty-four 
multi-frequency multilayer network construction pipelines 
with consistent findings in two datasets (MyConnectome and 
NYU) and across different time spans. As I mentioned in the 
results section, I adopted MVPR as our unique algorithmic 
choice for the surrogate analysis and statistical topological 
filtering of the multi-frequency multilayer networks. My 
analysis showed repeatable network patterns to be preserved 
in both the atlas and subnetworks spatial layout. A signifi-
cant outcome of our study is that EMD produces repeatable 
multi-frequency multilayer network topologies in both spa-
tial scales, while MODWT produces repeatable topologies only 
for the subnetworks level. In four out of six pipelines, OMST 
data-driven topological filtering method is part of the best pipe-
lines compared to two for the fully-weighted networks. For the 
adopted connectivity estimators, DC is the only estimator that 
participates in the best pipelines in both spatial scales but only in 
collaboration with EMD, while PC is spatially connected to the 
atlas level and EMD filtering method, and MI is spatially con-
nected to the subnetworks level and MODWT filtering method.
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In the present study, I decided to decompose the BOLD 
signal with a well-known technique, the MODWT (Zhang 
et al., 2016) vs an adaptive filtering technique called EMD 
(Yuen et al., 2019). I intended to demonstrate how different 
filtering techniques of the BOLD signal can lead to repeat-
able multi-frequency multilayer topologies as part of a com-
mon pre-processing pipeline. The mean frequency across 
the ROIs and scans of every frequency subband with both 
methods didn’t overlap. This finding could be evidence of 
the complementary information encapsulated by the ROI-
based time series extracted from both filtering methods. This 
is a statement that deserves further consideration in a multi-
subject test–retest study.

It is important to mention that repeatability is a signifi-
cant criterion that neuroscientists should consider for their 
choice of the multi-frequency multilayer network construc-
tion pipeline. However, the adopted pipelines should also 
demonstrate to a large number of participants that the within-
subjects (WS) PDiV is smaller than between-subjects (BS). 
In addition, the recommended pipelines should not show a  
significant correlation of the PDiV values with the subject’s  
motion (Luppi et  al., 2021). The constructed networks 
should also be linked to neurobiologically supportive  
results (Noble et al., 2019; Shirer et al., 2015). Complemen-
tary to the aforementioned three criteria, it is significant 
to reveal network changes due to interventions (cognitive, 
physical training, both of them, and others), neuromodula-
tions (task and arousal changes), pharmacological substances 
(caffeine, propofol, drugs, etc.), and behavioral history (cog-
nition fatigue during the working day, sleep, etc.). Current 
work should extend the validation of the proposed pipelines 
to detect associations of the multi-frequency multilayer net-
work topologies to personality traits (Smith et al., 2015), and 
also to what extent they can increase the performance of a 
connectomic biomarker with the main aim to discriminate 
healthy individuals from various brain disorders (Chen et al.,  
2018).

Limitations

In particular, I did not explore potential differences between 
resting-state conditions (eyes-open vs eyes-closed vs natu-
ralistic viewing) (Van Dijk et al., 2010; Wang et al., 2011), 
or the impact of scan duration and arousal state (Laumann 
et al., 2017). Similarly, I did not consider a wide number of 
alternative parcellation schemes in existence but I adopted 
the parcellation scheme proposed by the authors provided 
for free in the MyConnectome dataset (Arslan et al., 2018; 
Eickhoff et al., 2018). Test–retest studies are the first step of 
a systematic evaluation of how alternative network process-
ing steps can affect the repeatability of network topologies. 
Further investigation of the adequacy of the proposed pipe-
lines should include their sensitivity to detect topological 

changes due to tasks, to pharmacological substances e.g. 
anesthesia (Luppi & Stamatakis, 2021), and various brain 
diseases. I hope that the proposed network topology con-
struction framework will lead to more consistent analytic 
practices in the human network neuroscience of functional 
neuroimaging data.

Conclusions

In conclusion, my study provides an exploratory framework 
searching for the best multi-frequency multilayer network 
construction pipelines across 24 candidates, to recover a 
repeatable brain network topology. My findings support that 
only the combination of several specific processing steps 
can guarantee the repeatability of multi-frequency multilayer 
network topologies. I untangled that every choice across the 
adopted processing steps matters and specific pipelines can 
produce similar network topologies over time-periods that 
span from minutes to several months evaluated in two inde-
pendent datasets. Interestingly, alternative pipelines produce 
repeatable multi-frequency multilayer networks leading to 
the assumption that they share complementary information.
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