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Abstract 

The reliability analysis of IESs (Integrated Energy Systems) is a complicated task because 

of the complex characteristics of different subsystems and the multi-scale dynamics that develop 

therein. To effectively address such problems, this paper proposes a systematic framework to 

analyse the reliability of energy supply in IESs, considering the dynamics of IESs and the inter-

relationships among uncertainties. First, based on the linepack-based performance analysis model 

of IES, a quasi-steady-state model is established to model the dynamic behaviours in IESs, 

properly accounting for practical engineering and operational strategies. Then, considering the 

inter-correlations among different uncertainty sources and time-dependent relationships of each 

variable, a model that combines the statistical structure of copula with the machine learning 

method of stacked autoencoder (CSML) is adopted to establish the timely multivariate joint 

distributions for variables. Monte Carlo simulation combined with Order Statistics is used for 

assessing supply reliability. Case studies are performed on a realistic IES that combines an IEEE-

15 power system with an 18-node natural gas pipeline network. The efficiency and accuracy of 

the quasi-steady-state model are validated. The reliability evaluation results show that the inter-

correlations among variables and time-dependent relationships of each variable have great effects 

on the system reliability assessment. The consideration of linepack can significantly improve the 

supply reliability of IES whereas the management strategy of linepack may lead to some risky 

points. 
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Nomenclature 

Abbreviations γ  temperature coefficient 

CHP combined heat and power γG specific gravity 

GPG Gas-fired power generation εmn absolute roughness of  

pipeline mn 

IESs Integrated Energy Systems ηGPG  energy efficiency of the  

power plant 

KDE Kernel Density Estimation ηP2G  energy efficiency of P2G 

LBPAM linepack-based performance  

analysis model 

ηpv  efficiency of PV 

OS Order statistics ηs  efficiency of the compressor 

P2G  Power to Gas Π parameter set 

SS-VTD steady-state variable transport  

delay 

Σ state set 

parameters  Φ function set 

D data set of gas demand Ω strategy set 

Dmn diameter of the pipeline mn variables  

Ep,mn pipeline efficiency C multivariate distribution  

function which is called  

copula associated with H 

fmn friction factor CC cumulative changes 

G, Gr  real and tested solar radiation H continuous multivariate  

cumulative distribution  

function with uniform  

marginal  

distribution functions 

gij, bij conductance and susceptance of 

nodal admittance matrix,  

respectively 

Cmn hydraulic resistance  

coefficient of pipeline mn 



- 4 - 
 

gsi, bsi conductance and susceptance to 

ground of node i,  

respectively 

pF −   generalised quantile  

functions of Fp 

I input set Fr,t  flow rate at time t 

IMs individual models HP power consumption by the 

compressor 

i number of subsystems Pg,wind  active power of the wind  

farm  

j number of individuals in each 

subsystem 

Pij, Qij active power and reactive  

power, respectively 

k stage of a hierarchical system Ppv generated power 

kv  specific heat ratio of natural  

gas 

Ppv,r  rated capacity of PV 

LHV lower heating value of gas Pr  rated power of wind turbine 

O output set Qd,GPG gas consumption of GPG  

for generating power 

SMs subsystem models Qgas, mn gas flow of pipeline mn 

Sup a data set of gas supply QP2G gas consumption of P2G for 

generating power 

Tb, Pb  gas temperature and pressure at 

base condition, respectively 

Vr, Vci, Vco  rated, cut-in and cut-out  

wind speeds, respectively 

Vk incidence matrix Vsk,t inventory capacity in  

pipeline k 

Za  average compressibility factor Δdemandk,t change of gas demand in  

the pipeline k from t-1 to t 

 

1. Introduction 

1.1 Background 

Integrated Energy Systems (IESs), consisting of natural gas pipeline networks, power grids and 

heating networks, are receiving increasing attention [1-3]. Besides, the term Smart Energy Systems 
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[4-6] or Sector Integration [7] have sometimes been used to define coherent future sustainable 

energy systems. In IESs, various types of energy systems can be integrated via different energy 

conversion technologies, including combined heat and power (CHP) and power to gas (P2G) [8]. 

The integration can improve renewable energy resources' utilisation efficiency and reduce marginal 

costs [2]. However, the multi-directional energy flows may present negative effects on the reliability 

of energy supply if not properly controlled. This is because disturbances in different subsystems can 

propagate to other systems and affect the whole system's reliability. Various works have focused on 

the evaluation of the attributes of economy, environment, planning [9] and energy performance [10, 

11], but the assessment of reliability for IES is often lacking. 

1.2 Literature review 

For decades, the penetration level of renewable energy resources has been increasing, in support 

of the energy transition forwards decarbonisation. In IESs, different types of advanced energy 

conversion technologies have been used. The volatility of renewable resources and the increasingly 

complex structure of the resulting IESs characterised by multi-scale time dynamics renders 

complicated the analysis of the reliability of energy supply.  

Recently, the issue has been investigated with result to IESs modelling [12] and reliability 

assessment [13-15]. System reliability assessment methods can be based on probability theory, 

combined with abstract network theory models, e.g. percolation theory, models of cascading failure 

[16], and Bayesian networks to capture the conditional degradation among components of the 

system [17]. However, for complex systems, such as natural gas pipeline networks [18] and power 

grids [19], abstract topological structures are not sufficient to describe the physical process 

occurring. Physical models must be associated to simulate and analyse the systems' performance.  

The aim of IESs modelling is to assist in the planning of IESs and different perspectives (not only 

technical but also social and political) may lead to different solutions and decisions [20]. In this 

work, we have focused on the simulation of system behaviour for reliability assessment to inform 

the technical side of the planning decision problem. 

IESs is a complex hierarchical system, including different subsystems through different kinds of 

links. The modelling must efficiently describe the complex physical interactions and synergies 

developing between the different energy resources in the system [1]. Currently, linear steady-state 

models are widely used. Liu et al. [21] proposed an electrical-hydraulic-thermal steady-state model, 
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which considered the roles of various coupling components, to analyse system performances. Zeng 

et al. [12] presented a harmonised integration to simulate energy flows in a bi-directional IES, which 

integrated power systems, natural gas pipeline networks and renewable resources. However, these 

models ignored the optimisation of energy flows. Then, other literature modelled the optimisation 

of system operation in linear steady-state models. For example, Wang et al. [22] proposed a linear 

physical model with simplified optimisation of energy flows to analyse the flexibility of IES. 

Qadrdan et al. [23] used successive linear programming to deal with the nonlinear problems in the 

modelling of IES. Lan et al. [24] proposed a state estimation framework for application to gas and 

electrical systems with equipped low redundancy, based on a steady-state model. 

The simplified models neglect the nonlinear characteristics of IESs ensuing from the dynamics 

and multi-modal behaviours of its subsystems. This deficiency may cause misrepresentations in the 

results of the analysis and lead to wrong decisions in the system's design and operation. In order to 

model the nonlinear characteristics of IES, some nonlinear steady-state models have been developed. 

Devlin et al. [25] combined an economic dispatch model and an energy flow model to investigate 

the interactions between electric systems and natural gas pipeline networks.  

However, these steady-state models, with their simplifications, can lead to deviations in the 

simulation results from reality, because different subsystems have specific network topologies and 

characteristics. For example, power systems can reach steady-state within seconds, whereas the 

hydraulic processes in natural gas pipeline networks last a few minutes [26], the flow dynamics in 

natural gas pipeline networks depend on the linepack, the volume of gas that can be 'stored' in a gas 

pipeline and this affects the supply reliability of natural gas pipeline networks.  

To analyse the dynamic process in IESs, researchers have developed some models. Generally, 

based on the nature of each subsystem, steady-state models are used to model power systems. Then, 

partial differential equations are used to model hydraulic systems. For example, in a multi-time 

period optimisation model of IESs, Chaudry et al. [27] used partial differential equations to model 

the transient hydraulic process. The linepack has been considered in natural gas pipeline networks. 

Fang et al. [28] combined a transient gas model and a DC power model to illustrate dynamic 

behaviours and simulate different response times of each subsystem. Xu et al. [29] developed a 

dynamic model, which described natural gas pipeline networks by partial differential equations and 

described power systems by differential-algebraic equations. This two time-scales dynamic system 



- 7 - 
 

model can analyse the interactions between subsystems.  

Although these physical models improve the realistic description of the characteristics of IESs, 

the computational burden can be unaffordable for realistically complex systems. Then, quasi-steady-

state models have been developed to deal with this problem. On the one hand, some researchers 

improved traditional methods to model the dynamic process efficiently. For instance, Qin et al. [30] 

developed a generalised quasi-steady-state IESs model by decomposing the model equations into 

small parts according to the physical characteristics of IESs. Partial differential equations can be 

transformed into nonlinear algebraic equations to formulate dynamic thermal systems. The problem 

of calculating complexity can be overcome. Based on the steady-state heat transfer model, Duquette 

et al. [31] developed a steady-state variable transport delay (SS-VTD) pipe model, which can 

describe the dynamic process of heating grids. The steady-state model allowed rapid computation, 

and the variable transport delay model can describe the hydraulic process. Pan et al. [32] used 

steady-state models to simulate the dynamic process of electricity and heating systems by dividing 

the interaction process into four quasi-steady-state stages. The model can describe the interactions 

between subsystems with time-scale characteristics of IESs. On the other hand, some advanced 

frameworks have been developed to model heterogeneous complex systems. Wang et al. [33] 

developed an agent-based model by decoupling heterogeneous complex systems into agents 

according to physical properties. This model can analyse complex dynamic behaviours with 

acceptable computational burden. 

As mentioned above, various IESs models are used to describe complex systems' behaviours. 

Steady-state models cannot describe many realistic characteristics of the subsystems of IESs. At the 

same time, the computational burden of dynamic models is too heavy. Besides, The quasi-steady-

state models mainly focus on electric-heat coupling IESs models. An effective and accurate quasi-

steady-state electric-gas coupling model is needed for reliability assessment. 

Specifically for the reliability assessment of IESs, the need to analyse the influence of 

uncertainties and disturbances on the response of the specific systems. Thus, the uncertain factors 

and disturbances must be modelled and their effects integrated with system models. Generally, 

uncertainties include stochastic energy demands, fluctuations of renewable energy production, 

system units' failure times, etc. [34]. These factors can be described by probability distributions [35] 

within multi-state models [36], and the system reliability can be assessed by Monte Carlo techniques 
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[37]. For example, Kou et al. used two-state models to describe the process of state transition of 

components and Weibull distributions to define the uncertain power output of wind turbines [38]. 

Zio et al. [35] used a probabilistic load modelling to describe the intrinsic variability of power load 

and assessed the system reliability by the Monte Carlo method. Sansavini et al. [39] used probability 

distributions to describe aleatory uncertainties including demand and wind speed in power systems. 

The first-order reliability method [14] and the second-order reliability method [40] have also been 

used to estimate the failure probability of IESs [13, 41, 42].  

However, these works used marginal probability distributions to describe the uncertainties of the 

problem, e.g. related to the energy demand and wind speed, thus neglecting possible dependence 

relationships between correlated sources of uncertainty [43], e.g. the correlations between energy 

demands and supplies, the dependence relationships between gas demand and electricity demand. 

Correlations have been considered in some reliability assessment frameworks. Su et al. [34] used a 

steady-state IESs model and considered dependent uncertainties within a systematic supply 

assessment framework. Correlations between energy demands and supplies were formulated by 

linear and nonlinear methods. Most of the works have not paid sufficient attention to the correlation 

between uncertain variables like energy consumption and renewable energy production. Generally, 

different uncertainties are inter-correlated in IESs. This kind of correlation can significantly 

influence the results of the reliability assessment [44]. The correlation between the stochastic 

variables describing the uncertainty source should be considered to increase the accuracy and 

availability of results of reliability assessments. Besides, although some literature has considered 

the issue, these methods neglected the time-dependent relationships of variables. Because the 

probability distribution functions of components are the same in different hours. For the steady-state 

model, the time-dependent relationships can be ignored. However, the time-dependent relationships 

of variables are quite important in terms of the linepack. Therefore, these models cannot consider 

the dynamics in reliability assessment [45]. To overcome the problem, time-series data [45-47] have 

been used in the reliability assessment. However, these methods also cannot consider the correlation 

between uncertain factors. 

On the one hand, the correlation of dependent variables can be modelled by joint probability 

distributions. For example, Wei et al. [48] proposed a probabilistic method combining the LHS and 

Nataf transformation. This model used multivariable normal distributions to consider correlations 
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between stochastic natural gas and power demands. Ren et al. [49] used a stochastic response surface 

method to model multiple correlations between photovoltaic generation, wind power, etc., following 

normal or non-normal distributions. Uncertainties in IESs usually show nonlinear behaviours and 

their inter-correlations are naturally complex. Traditional joint distributions such as normal, log-

normal, and gamma distributions, require the behaviours of each variable to be characterised by the 

same parametric group of univariate distributions [50]. The copula approach, which can describe 

complex dependent relationships between different correlated variables, can avoid this limitation 

[51]. For example, Fu et al. [52] proposed a copula-based model to describe the dependent structure 

of dependent generators in distribution networks. This information entropy approach can quantify 

the uncertainty of IESs effectively. Yu et al. [44] developed a copula-based flexible-stochastic 

programming method to plan energy systems. The copula function can express dependent 

relationships between multi-uncertainty sources which have different probability distributions. Mu 

et al. [53] used a copula function to construct the joint distribution of natural gas price and electricity 

price, accounting for their correlation.  

On the other hand, the time-dependent relationships of system variables can be described by some 

data-driven methods. Currently, Deep belief networks (DBNs), recurrent neural networks (RNNs), 

convolutional neural networks (CNNs), Stacked Autoencoders (SAEs), etc. have been proposed to 

handle high-dimensional data and mine their nonlinear hierarchical features. Therefore, prediction 

of time-related data such as gas demand and renewable generation [54-56] and system behaviour 

modelling [45] can be achieved through these data-driven methods. Therefore, in this paper, we 

used a data-driven method to describe the time-dependent relationships of system variables. 

 

1.3 Contributions of this work 

(1) Most of the aforementioned works used steady-state models and dynamic models to describe 

complex systems' behaviours of IESs, whereas quasi-steady-state models were mainly used to 

model electric-heat coupling systems as shown in Table 1. On the other hand, steady-state models 

cannot describe realistically all characteristics of the subsystems of IESs, the computational burden 

of dynamic models of IESs is too heavy, and quasi-steady-state models mainly focus on electric-

heat coupling systems. Hence, an effective and accurate quasi-steady-state electric-gas coupling 

model is needed for reliability assessment. 
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Table 1 IES modelling 

 IES model Subsystems Limitations 

Liu et al. [21] Steady-

state 

Electricity-

heating network 

Results are inaccurate as simplifications 

of network topologies and dynamic 

characteristics of different subsystems. 

Zeng et al. [12], 

Qadrdan et al. [23], 

Devlin et al. [25] 

Steady-

state 

Electricity-

natural gas 

networks 

Results are inaccurate due to 

simplifications of network topologies 

and dynamic characteristics of different 

subsystems. 

Chaudry et al. [27], 

Fang et al. [28], Xu 

et al. [29] 

Dynamic  Electricity-

natural gas 

networks 

The computational burden of the 

dynamic models is too heavy. 

Qin et al. [30], Pan 

et al. [32], Wang et 

al. [33] 

Quasi-

steady-

state 

Electricity-

heating network 

Main focus on electric-heat coupling 

systems. 

 

(2) Since the aforementioned models ignore the inter-relationships among uncertain factors and the 

time-dependent relationships in the uncertainty modelling for reliability assessment, as represented 

in Table 2, it is necessary to provide a framework to allow accounting for the inter-relationships and 

the time-dependent relationships of the system variables, because these relationships are important 

in the reliability assessment. 

 

Table 2 Uncertainty modelling 

 Inter-

relationships 

Time-dependent 

relationships 

Methods 

Zio et al. [35], 

Sansavini et al. [39]  

Ignored Ignored Marginal probability distributions 

Su et al. [34] Considered  Ignored Linear and nonlinear methods 
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References [45-47] Ignored  Considered Time-series 

 

To deal with such research gaps, we propose a systematic framework of the reliability assessment 

of IES. Firstly, a novel unified quasi-steady-state IES model is developed for the dynamic state 

analysis of IES with bi-directional energy conversion. The operational strategies of linepack 

utilisation are considered to meet the requirement of the contract pressure. Then, the correlations 

between different uncertain factors and the time-dependent relationships of system variables are 

considered by a statistics-machine learning-based model. A first case (Case 1) is conducted to 

demonstrate the feasibility of the proposed quasi-steady-state model. In Case 2, the efficiency of the 

statistics-machine learning-based method is studied and the influence of the available linepack on 

the reliability of IESs is investigated by the proposed framework in Case 3. 

The main contributions in the paper can be summarised as: 

(1) A unified quasi-steady-state electric-gas IES model with bi-directional energy conversion is 

proposed based on the linepack-based performance analysis method (LBPAM). LBPAM can 

consider pipelines' storage capacity and operational strategies, based on linepack for natural gas 

pipeline networks.  

(2) A model that combines the statistical structure of empirical copula with the machine learning 

method of the stacked autoencoder is developed. The correlations between different uncertain 

factors and the time-dependent relationships of system variables are considered in the model. 

(3) A reliability assessment framework is proposed for IES. The quasi-steady-state model, 

statistics-machine learning-based model and OS (Order statistics) are combined in the framework. 

Based on the framework, dynamic reliability can be analysed by using the sampled time series data. 

The influence of the available linepack, the requirement of contract pressure and the management 

strategy of linepack on the reliability of IESs are investigated. The results allow investigating the 

impact of linepack on practical operations for supply reliability. 

The remainder of this paper is organised as follows: Section 2 describes the quasi-steady-state 

IES model and the definition of the empirical copula and OS. In Section 3, realistic cases are 

simulated to verify the effectiveness of the proposed methods. Section 4 gives the conclusions of 

the work. 
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2 Methodology  

The framework for the supply reliability assessment includes IESs modelling and reliability 

evaluation. Firstly, based on the linepack-based performance analysis method (LBPAM), a unified 

quasi-steady-state IES model with bi-directional energy conversion is developed in such a way to 

take into account the multi-modal characteristics in IES especially the nature of linepack in natural 

gas pipeline networks. Secondly, the CSML method is used to structure the relationships between 

uncertainty factors, and the time-dependent relationships of each variable. Then, the Monte Carlo 

technique combined with Order Statistics is used to assess the supply reliability of the IESs, with 

reduced computational burden.  

The formulations of the AC power flow model, basic natural gas pipeline networks model, 

energy conversion modelling and renewables generation models are described in Appendix A. 

 

2.1 Systematic modelling of IESs 

Based on the steady-state IES model [41], the quasi-steady-state model is established combined 

with the linepack-based performance analysis method. In this model, we neglect the transient nature 

of power systems because they can reach steady-state within seconds. A unified formulation for the 

steady-state analysis of IES [12] is the basis of the physical model. Then, the LBPAM is used to 

improve the performance analysis of natural gas pipeline networks so that the dynamics can be 

considered in the model. 

In this work, IES includes electric power systems, natural gas pipeline networks, renewable 

resources productions, gas compressors, the power-to-gas and gas-fired power plants. 

2.2 Framework of the developed Linepack-based performance analysis method 

The linepack-based performance analysis method (LBPAM) is described in this subsection and 

its application for the analysis of IESs. 

The flowchart of the quasi-steady-state is shown in Fig. 1.  
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Fig. 1. Flowchart of the quasi-steady-state model  

Firstly, a physical model of an IES is used, which combines natural gas pipeline networks and 

power grids. The basic physical models are established including the AC model for the electricity 

system, the steady-state model and linepack model for natural gas pipeline networks. Then, the 

individual models (IMs) and subsystem models (SMs) are defined according to the natural gas 

pipeline networks model and the principle of LBPAM. The steps of the LBPAM is shown as follows 

(the structure is shown in Fig. 2). (1) Build the IMs and SMs. All pipelines are indicated by {IM1, 

IM2, …IMj}. Subsystems (or transmission pipelines) that include some pipelines in a specific zone 

are indicated as {SM1
1, SM1

2, …SM1
k, SM2

1, SM2
2, …SM2

k, …, SMk
k}. (2) Define the function set 

based on the linepack model and some practical strategies. (3) Integrate the LBPAM and AC power 

flow model to form the quasi-steady-state model. An initial condition is predefined so as to obtain 

the initial inventory (the initial natural gas stored in a specific pipeline) and system state. Input 
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parameters are set according to the time series of load demands, renewables generations, gas supply, 

etc. Then, the state of all IMs and SMs can be developed by the principles of LBPAM and the data 

information can be transferred to the next time step. Therefore, the dynamic behaviours of IESs can 

be calculated by updating the states of each iteration in time. 

 

Fig. 2. The structure of a simple hierarchical system 

 

2.2.1 Definition of LBPAM 

In order to categorise different layer objects effectively, the LBPAM consists of IM individual 

models and SM subsystem model. IM represents a single pipeline; SM represents the subsystem, 

including some pipelines or smaller subsystems in a specific area. Several individual elements can 

make up a subsystem, and several small subsystems can make up a bigger subsystem. The proposed 

LBPAM is composed of several layered objects; a simple structure of the hierarchical system is 

shown in Fig. 2. 

As shown in Fig. 2, natural gas pipeline networks can be described by some subsystems and 

elements. Each pipeline has individual inherent characteristics and parameters, such as lengths and 

diameters. The mathematical representation of the subsystem model is given by (Eq. 1): 
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where j is the number of individuals in each subsystem; k is the stage of the hierarchical system; i1, 

i2, …, ik represent the number of subsystems at each hierarchy, respectively; Vk is the incidence 

matrix to the connections between different elements and between subsystems.  

Each IM and SM can be described mathematically as (Eq. 2): 

 { }=IM Ω    ，， ，，，Ι Ο Π Φ Σ  (2) 

where IM is a six-tuple of the input set (I), the output set (O), the parameter set (Π), the function set 

(Φ), the state set (Σ), and the strategy set (Ω).  

The input matrix I is composed of the gas demand dk, t and the gas supply supk, t at time t of each 

node k and the state sk, t-1 at time t-1 of pipeline k. Assuming D is a data set of gas demand and Sup 

is a data set of gas supply, the input ik, t can be given as (Eq. 3): 

 ( ){ }, , , 1 , , ,, ,k t k t k t k t k t k ti d s sup d sup k t−= ∈ ∈ ∈ ∈， D,  Sup,  K  T  (3) 

where sk, t represents the state of pipeline k of time t, and it affects the decision-making on the 

operation of the system. The inventory of a pipeline is part of sk, t-1, which determines whether the 

gas stored in the pipeline is enough for the demand of the next time step t (Eq. 4). 

 { }, ,  k ts k t= ∈ ∈Σ K T  (4) 

Ok, t is the output of each element at time t, which can be described as (Eq. 5): 

 { }, ,  k to k t= ∈ ∈O K T  (5) 

The overall output, such as the system's functional state and delivery pressures, is updated at each 

time step during the simulation.  

The inherent characteristics of the elements Π, described by given parameters p, change as a 

function of time t. The mathematical description of Π is defined as (Eq. 6): 

 { }, ,  k tp k t= ∈ ∈Π K T  (6) 

Physically-based equations and rules in the function set are essential to describe the whole process. 

Depending on ik, t, sk, t, and pk, t, the function set, which describes the physical mechanism of an 
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element, maps { ik, t, sk, t-1, pk, t } to {sk, t, op, t }, as given in Eq. 7: 

 , , , , , , 1[ ,  , ,  , ]p t k t k t k t k t k tf F i p s o s −=  (7) 

It should be noted that the operational strategies (Ω) in this model make full use of the linepack 

explicit formulation, determining the valve opening of each station for gas supply. Based on 

variables, such as the capacity of the linepack of each natural gas pipeline and gas demand, Ω can 

be expressed as (Eq. 8): 
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Vs Vs demand
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−

≤

= + ∆

=

 (8) 

where Δdemandk,t is the change of gas demand in the pipeline k from t-1 to t; Vsk,t, Vsp, min and  

Vs p,max are the inventory, minimum inventory and maximum inventory capacities in pipeline k, 

respectively.  

 

2.3 The CSML model 

The CSML model, which can sample time-series data of variables, is proposed based on the 

empirical copula and stacked auto-encoder model. The empirical copula is used to establish the joint 

probability distribution of uncertainties whereas the stacked auto-encoder model can model the 

time-dependent relationships of each system variable. The realisations sampled by the empirical 

copula at time t and the realisations sampled at time t+1 are related, and this relationship can be 

established by the stacked auto-encoder model. The simple structure is shown in Fig. 3. 
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Fig. 3 The structure of the CSML model 

The formulations of the empirical copula and SAE model are shown in Appendix B. 

2.3.1 Static scenario generation based on empirical copula function 

In this work, we consider the relationships between natural gas demand Gdt and electricity 

demand Edt. Considering random variables Gdt and Edt that follow Pr( ) ( )t G G GGd p F p≤ =  and 

Pr( ) ( )t E E EEd p F p≤ = , respectively, the joint distribution function of the two random variables 

is named Pr( , ) ( , )t G t E G EGd p Ed p C p p≤ ≤ = , where C is the empirical copula function. The 

gas demand and electricity demand at time t are generated by: 

 
1

,nif ,nif

( , ) ( , )
[ , ] ~ [0,1] [0,1]

t t G E

G E G E

Gd Ed C U U
U U U U

− =
 ×

 (9) 

where Unif[0,1] is the uniform distribution in [0,1]; C presents the empirical copula function. The 

marginal distributions of random variables are presented as:  

 
1

1

( )
( )

t G G

t E E

Gd F U
Ed F U

−

−

 =


=
 (10) 

As the historical data of random variables, e.g. natural gas demand and electricity demand, are fitted 
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to obtain the joint distribution empirical copula function, the empirical copula function is discretized 

to generate the static scenario generation at time t based on Eq. 10 and Eq. B6. 

2.3.2 Time series data generation based on the SAE model 

As the static scenarios are generated by empirical copula functions, the time series data is 

generated in the combination of the SAE model.  

Given that the static scenarios are generated by empirical copula functions, the time series data 

is ,then, generated by combination with the SAE model.  

First, to model the stochasticity of the variables, we use the SAE model to mine from historical 

data the internal relationships of the time series data of the variables across time steps. We assume 

a multivariate random vector De=[De1, De2,…, Dem]T, where m is the time span. The correlation 

between Dei and Dej is characterized by the SAE model. Then, as the static scenarios [Det] are 

generated at time t, [Det] is input into the SAE model to get a reference scenario [De*t+1] at time 

t+1. Comparing the reference scenario and the scenario sampled by means of the empirical copula 

functions and calculating the different value Δ* of them, If 4( 1 10 )ε ε∗ ∗ ∗ −∆ ≤ = × , the generated 

scenario is retained. Otherwise, re-sampling of the scenario by the empirical copula functions is 

performed until the data meet the requirement. Then, the procedure moves to the next time step and 

by continuing the time series data is generated. 
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3 Case studies 

In this section, a realistic IES is used to verify the validity and effectiveness of the proposed 

systematic framework for supply reliability assessment. A bi-directional steady-state IES model, a 

dynamic IES model and a quasi-steady-state IES model based on LBPAM are developed to analyse 

the performance of the IES. The basic structure of the IES is shown in Fig. 3. 

The uncertainties in our model can be divided into two categories in relation to physical 

parameters and scenario parameters. For example, the electricity demand and gas demand are 

uncertain scenario parameters; the uncertain physical parameters are related to physical properties 

of materials, such as the density and heat capacity of walls, etc.  

In this work, a model that combines the statistical structure of uncertain parameters with a 

machine learning method is developed to define the time multivariate joint distributions for 

variables. For the application to IES, electricity demand and natural gas demand are most relevant 

uncertainties, to which, we paid most attention. We also considered the failure probabilities of 

components in the reliability assessment, e.g. compressor stations and gas-fired power generation 

stations. The failure probabilities of the components are taken from Ref. [45] 

In this work, an IES model combining an IEEE-15 power system with an 18-node natural gas 

pipeline network is considered to validate the proposed method, as shown in Fig. 4. The AC power 

flow model is used to simulate the behaviour of grids ( the related formulas are given in Appendix). 

Based on the unified energy flow formulation [12], the quasi-steady-state model of the natural gas 

and electric power system is obtained by combining the linepack-based performance analyses model 

and AC power flow model through links of the gas compressor, P2G and gas-fired power plants. 

The model allows describing the nodal balance and branch flow in IESs. Different from dynamic 

models, energy dispatch calculations are solved with the Newton–Raphson method in quasi-steady-

state simulation but the natural gas characteristics are taken into account. In our case, gas-fired 

generators, gas compressors and P2G are the links considered to connect the two systems. The 

interdependent data, e.g. gas consumption of gas-fired generators and gas compressors, and 

electricity consumption of P2G, are exchanged during the solution process. 
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Fig. 4. Structure of the IES 

The natural gas pipeline network is decomposed into several IMs and SMs. Different IMs and 

SMs can exchange information. In one time step, IMs are developed firstly; then, the results from 

IMs convert to SMs. As the whole process of LBPAM is finished, the simulation of the IES model 

at time t is completed. The results can be used to evaluate the performance of the IES at time t+1. 

At time t+1, the simulation proceeds, and the results at time t are converted to the time step t+1. 

As shown in Fig. 4, there are nine basic individuals (L1, L3, L5, L6, L10, L13, L16, L18, L19) 

and several subsystems. For instance, L17, L18 and L19 make up a subsystem. 

The initial state is at step 0 and the LBPAM has the original inventory of each pipeline. Then, at 

step 1, the changes in demand and supply of energy at N11 occur. Because these disturbances can 

affect the performance of IESs according to the principle of LBPAM, if the linepack capacity of the 

natural gas pipeline network can handle these disturbances within its scope in L18, the gas supply 

from N10 will not change for maintaining the operation stability. Suppose the linepack capacity of 

L18 cannot deal with these disturbances.The linepack of L17, the upstream of L18, will be 

considered to compensate for surplus load demand at N11. Then, the dynamic process can be 

effectively described through the changes of linepack.  
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A number of case studies were undertaken. In Case 1, simulation results from a traditional bi-

directional steady-state IES model, a dynamic model and the proposed quasi-steady-state model are 

analysed. In Case 2, supply reliability is analysed based on the proposed framework, to highlight 

the importance of accounting for the inter-correlations between uncertainty factors. In case 3, the 

effect of linepack in the IES is investigated.  

4 Simulation and results 

4.1 Case1: Comparison among IES models 

A. Discussion on the flow rate fluctuation 

As gas and power demands vary with time, terminal stations need to adjust the gas supply to 

maintain the customers' demands. As shown in Fig. 4 and Fig. 5, the flow rate of gas supply from 

upstream stations changes with time in different models. It can be observed that the frequency of 

changes in flow rates is lower in the proposed IES modelling framework than that in the steady-

state model. In the steady-state model, the gas supply from upstream must change every hour to 

satisfy the gas load variation (the mass flow rate changes every hour). However, the flow rate 

fluctuation from upstream can be reduced when the linepack and the related strategies are considered, 

like in the proposed model, as shown in Fig. 5. This allows the flow rate to be kept unchanged in 

some time intervals, to keep the stability of the IES. For example, the black line in Fig. 5 represents 

the gas supply from station N1 to pipeline L1. The flow rate (gas supply) has to change every hour 

to deal with the varying gas loads during the entire period in the steady-state model. In contrast, the 

flow rate can be kept constant within hours 4-9 and hours 9-23 in the quasi-steady-state model. 
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Fig. 5(a). The gas supply from inlets node in the steady-state IES model 

 

Fig. 5(b). The gas supply from inlet nodes in the proposed IES model 

 

To illustrate the volatility of flow rates quantitatively in the two models, standard deviation and 

cumulative changes (CC) (Eq. 28) during the period in each pipeline are calculated, and shown in 

Fig. 6: 
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CC F F −
=

−∑  (9) 

where Fr,t is the flow rate at time t and CC is the value of cumulative changes. 

As shown in Fig. 6, the standard deviation of the flow rate (the bars in the figure) in the proposed 

model is lower in almost all pipelines than that of the steady-state model. However, the results in 

other pipelines are different, such as for pipeline L1. This is because the standard deviation value 

only indicates how close the values are to the average value of the sample set. It cannot describe the 

stability of the data. Therefore, CC is defined as a complementary index to further assess the 

volatility of flow rates. Indeed, all values of CC are higher in the steady-state model, indicating 

frequent fluctuations in flow rates. 

 

Fig. 6. Standard deviation and cumulative changes of flow rates in each pipeline  

 

The fluctuation of flow rates in the steady-state model is more frequent than that of the proposed 

model because the steady-state model ignores the storage capability of natural gas pipeline networks. 

This allows that neglecting the storage capability of pipelines may lead to erroneous results. 

In the above cases, the time step is 1 hour. If the time step becomes smaller, such as 1 minute or 

even 1 second, the fluctuation of gas supply in the steady-state model will be even more frequent. 
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It may lead to requiring operators to adjust valves according to the time step, which is infeasible in 

practice. On the contrary, in the proposed model, the fluctuation of gas supply can remain unchanged 

for a long time even though the time step is 1 hour. The reason is that the linepack can keep the 

balance between demand and supply, under gas demand changes within an acceptable range. The 

system operational stability can be guaranteed. 

The dynamic models of natural gas pipeline networks can also describe the nature of linepack. 

We compare the proposed model and the dynamic model [28] in terms of the description of the 

linepack. The gas supply from N10 and the available linepack at L18 are shown in Fig. 7. In the 

dynamic models, the flow rate changes with the changes of demand. The changes in flow rates have 

a delay due to the compressibility of natural gas. This leads to changes in linepack that are different 

in some periods (hours 6-11). It should be noted that the available linepack in the dynamic model 

goes below zero at hours 19-24. The reason is that the model does not consider the constrictions of 

delivery pressure (the contract pressure). The proposed model, instead, can consider minimal 

contract pressure in the operational strategies set (Ω). 

 

 

Fig. 7. Gas supply from N10 and available linepack at L18 
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B. Discussion on the accuracy for reliability assessment 

As shown in Fig. 8, the simulation results derived from different models are different, although 

the input parameters are the same. In hours 7, 19 and 20, the balance between energy demand and 

energy supply can be kept by the quasi-steady-state model. In contrast, the traditional steady-state 

model cannot guarantee the reliability of supply. There is no difference between flow rates at the 

outlet and inlet of a pipeline in the steady-state model. Thus, the system will be regarded as failed 

once the gas supply is less than the gas demand at any time step. However, natural gas stored in 

pipelines can provide surplus natural gas to satisfy increased demand to a certain extent as accounted 

for in the proposed model.  

 

 

Fig. 8. Simulation results in different models 

 

In practice, gas supply from gas stations only changes once or twice per day. Small changes in 

gas demand can be handled by the linepack generally. Fig. 9 presents the changes of linepack in the 

quasi-steady-state model. The value of linepack changes in response to gas demand changes. As 

shown in Fig. 9, the tendency of the linepack is opposite to the trend of gas demand, precisely for 

mitigating the demand fluctuation. The increase of gas demand depletes natural gas stored in 

pipelines to ensure supply reliability, resulting in the reduction of the linepack. On the contrary, the 

reduction of gas demand leads to the surplus gas provided from upstream being stored in pipelines, 

and the linepack rises.  
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Fig. 9. Gas supply, gas demand and linepack during the period of one day 

 

In summary, using the LBPAM allows realistically describing the dynamic behaviour of IES, 

especially concerning the linepack effects in natural gas pipeline networks. The quasi-steady-state 

process allows analysing the dynamic behaviours of IESs, while the computational burden remains 

the same as that of the steady-state model. The linepack allows considering that the volume of gas 

injected into pipelines can be higher than the volume of natural gas withdrawn from upstream, and 

the surplus natural gas can be temporarily stored in the pipelines; then, natural gas supply can be 

provided in peak demand hours avoiding natural gas shortage. By accounting for this, the quasi-

steady-state can improve the accuracy of the supply reliability assessment of IES. 

4.2 Case 2: The impacts of the relationships between uncertainties 

In this case, to analyse the impacts of the relationships between the uncertain power and natural 

gas demands and the time-dependent relationships of system variables on the reliability assessment. 

KED and the CSML method are used. 

KED can provide the independent probability distribution functions of power demand and natural 

gas demand at each hour. For the CSML method, the empirical copula is, then, used to estimate the 

joint distribution, describing the inter-dependence structures existing between power demand and 

natural gas demand. The time-dependent relationships of the uncertain variables are constructed by 
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an SAE model.  

The Pearson correlation coefficients between power demand and natural gas demand, Pearson 

correlation coefficients between different continuous hours and failure probabilities of the IES in 

different scenarios are shown in Fig. 10. The correlation coefficients between different continuous 

hours are higher than 0.86. It means the degrees of variables between continuous hours have strong 

interdependences. As shown in Fig. 10 (C), the system can be 100% safe excluding hour 7. The 

reason is that the time-dependent relationships between T and T+1 are neglected. Therefore, the 

sample data can be different in each scenario. In the steady-state model, the impact of the value of 

variables at hour T can be ignored at hour T+n. However, in the dynamic simulation, the effects are 

very important in terms of the change of linepack. That is why the profiles of reliability in different 

scenarios are quite distinct (Fig. 10 (C)). 

The reliability in hours 1-5 and hours 11-17 are the same in two scenarios when the energy 

demands are relatively low. This is because the energy supply is sufficient to satisfy energy demand. 

The inter-relations and time-dependent effects can be neglected in this circumstance (correlation 

coefficients between demands are lower than 0.5). However, when demands increase sharply, 

reliability becomes different in different scenarios. In hour 7, the failure probability is lower as the 

correlations between power demand and natural gas demand are considered (the correlation 

coefficient is higher than 0.8). In hours 18-23, the value of reliability can be 1 when the probability 

distributions of different demands are estimated by KDE separately. On the contrary, the system is 

shown to suffer energy shortage when the proposed model is used to construct the joint distribution 

of different energy demands (correlation coefficients are higher than 0.5 at hours 18-21). Although 

correlation coefficients are lower than 0.5 at hours 22-23, the depletion of the linepack at hours 18-

21 may increase the probability of energy shortage at hours 22-23. 
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(A) Pearson correlation coefficients of variables between different hours 

 

 

(B) Pearson correlation coefficients between power demand and natural gas demand 
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(C) Reliability of the IES under different scenarios 

Fig. 10. The Pearson correlation coefficients and reliability of the IES  

 

4.3 Case 3: The importance of linepack and the management strategy of linepack 

In this case, the importance of linepack and the management strategy of linepack are investigated, 

considering the requirement of contract pressure. The management strategy of the linepack is shown 

in Eq. 8. 

In order to investigate the impact of contract pressure (the minimal pressure at the outlet), we 

considered a·P2min as the contract pressure, with a being a parameter with values in the range (0.5-

1.1), instead of the original contract pressure P2min. The lowest values of reliability with 95% 

confidence in different scenarios (a takes different values) are shown in Fig. 12. In most hours, the 

reliability of the system increases with the reduction of the contract pressure (a<1). It shows that the 

increase of available linepack can improve the reliability of the IES. However, at hour 7, the 

reliability decreases with reduced contract pressure. This result is opposite to that of other times. 

The available linepack is sufficient to satisfy natural gas demand increase at hours 1-6 and the 

natural gas supply from upstream keeps unchanged. But, the available linepack reduction at hours 

1-6 leads to having insufficient available linepack at hour 7. Then, when natural gas demand 

increases dramatically at hour 7, the failure probability increases. As shown in Fig. 13, the min and 

max values of reliability in different scenarios at hour 7 indicate that the reliability reduces while 
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the available linepack increases. Even for a value of a of 0.5, the reliability at hour 7 still decreases. 

This indicates that although reducing the contract pressure can increase the available natural gas 

stored in pipelines, however, the failure probability can still increase at some hours due to the 

difference between the available linepack and the increased natural gas demand of those hours. 

 

 
Fig. 12. Lowest reliability with 95% confidence in different scenarios 

(0.5,0.8,0.9,1,1.1 represent the value of a) 

 

 
Fig. 13. The range of reliability with 95% confidence at hour 7 in different scenarios 
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(0.5,0.8,0.9,1,1.1 represent the value of a) 

 

Increasing the maximum allowable pressure in natural gas pipeline networks can also increase 

the available linepack (we considered b·P1max as the maximum allowable pressure, with b taking 

values in the range (0.7-1.3) instead of the original maximum allowable pressure). As shown in Fig. 

14, the general tendency is that reliability can be improved by increasing the maximum permissible 

pressure. However, at hour 7, the reliability decreases even with the increase of maximum 

permissible pressure, up to b values of 1.3. The results are similar to the results in Fig. 12. When 

the maximum allowable pressure exceeds a specific value, the available linepack can be sufficient 

to satisfy the increase of natural gas demand. 

 
Fig. 14. Lowest reliability with 95% confidence in different scenarios 

(0.7,0.8,0.9,1,1.1,1.3 represent the value of b) 

 

In Fig. 15, we increase the maximum allowable pressure and reduce the contract pressure at the 

same time. It is shown that changing these two parameters can improve the reliability at hour 7, 

when a=0.8 and b=1.2. There is, then, a critical point in which the available pressure linepack is 

sufficient to meet the demand at hour 7.  
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Fig. 15. Lowest reliability with 95% confidence in different scenarios 

(Left numbers represent the value of b and right numbers represent the value of a) 

 

The linepack can improve the reliability of the IES, as discussed above. However, reliability can 

be reduced even with the increase of available linepack at some time instances and some risky points 

can occur. Depending on the strategies used in practice, the flow rate at the inlet of a pipeline can 

be constant, because the available linepack in the pipeline can meet the demand changes; then, the 

linepack may decrease at some time steps and be unavailable to satisfy demand changes at the next 

time step, which can cause a reduction of reliability.  
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5 Conclusions 

This paper proposes a novel framework for the assessment of supply reliability of IESs. In this 

framework, a quasi-steady-state model is used to realistically describe the dynamic process of IES 

with high calculation efficiency and accounting for the available linepack. A model that combines 

the statistical structure of the empirical copula with the machine learning method of SAE is proposed 

to generate time-series data for dynamic reliability assessment. The model allows describing the 

inter-correlations between uncertain factors and time-dependent relationships for each variable. 

Three case studies are considered for the application of the proposed framework and the main 

findings are as follows: 

(1) Compared to the simulation results from the dynamic model and steady-state model, the quasi-

steady-state model is capable of improving the accuracy of the supply reliability assessment of IES, 

as the requirement of the contract pressure of the system and the operational stability are guaranteed. 

(2) The relationships internal to the time series data are strong during the day whereas inter-

correlations between uncertain factors are strong during the peak hours. When inter-correlations 

between uncertain factors and the relationships in the time series data of the relevant process 

variables are strong, the impact on the accuracy of reliability estimation is significant.  

(3) The linepack in natural gas pipeline networks can contribute to improving the reliability of 

supply in IES, as the available linepack in the pipeline can help meeting the demand changes. 

However, some critical instances can occur in the management strategy of linepack operation, 

because the linepack might become unavailable to satisfy demand changes at the next time step. 

In future work, it is worthy of further study to consider the inter-correlation between renewable 

resources, different kinds of energy demand, and human behaviour in operation. Besides, the impact 

of demand-response management and storage devices on the reliability assessment will be analysed 

in more detail. 

 

Acknowledgement 

This work is supported by National Natural Science Foundation of China [grant number 

51904316], and the research fund provided by China University of Petroleum, Beijing [grant 

number 2462018YJRC038, 2462020YXZZ045]. We appreciate the contributions of the editors and 



- 34 - 
 

reviewers to the improvement of this work. 

 

  



- 35 - 
 

Appendix A  

A.1 AC electric power model 

An AC power flow model is used to simulate the electric power network operation [57], in which 

the active power Pij and reactive power Qij at branch ij are calculated as follows (Eq.A1): 

 
( ) cos sin

( ) cos sin
ij si ij ij i j ij ij i j ij

ij si ij ij i j ij ij i j ij

P g g g VV b VV
Q b b b VV g VV

θ θ

θ θ

= + − −

= − + + −
 (A1) 

where gij and bij are the conductance and susceptance of nodal admittance matrix, respectively; gsi 

and bsi are the conductance and susceptance to the ground of node i, respectively; θij=θi-θj, θ is the 

angle of voltage; V is bus voltage. 

 

A.2 Basic natural gas pipeline networks model 

A steady-state natural gas pipeline networks model is combined with the LBPAM to describe the 

gas flow dynamics with reduced computational burden.  

Assuming that the flow is isothermal and the pipeline has no elevation changes, the gas flow Qgas, 

mn of pipeline mn can be written as (Eq. A2) [12]: 

 2 2 2
,m n mn gas mnP P C Q− =  (A2) 

where Pm and Pn denote the pressure at nodes m and n; Cmn indicates the hydraulic resistance 

coefficient of pipeline mn, which can be calculated as (Eq. A3): 
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 (A3) 

  

where Dmn represents the diameter of the pipeline mn; Tb and Pb denote the gas temperature and 

pressure at base conditions, respectively; Lmn denotes the length of pipeline mn; γG is the specific 

gravity; Za represents the average compressibility factor; Ep,mn is the pipeline efficiency; the friction 

factor fmn can be obtained as (Eq. A4): 

 10
1 2 log

3.71
mn

mn mnf D
ε 

= −  
 

 (A4) 

where mnε donates the absolute roughness of pipeline mn. 
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The compressor is used to provide energy for achieving the gas transmission requirements, and 

its power consumption can be calculated as (Eq. A5): 
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 (A5) 

where Ts is the suction temperature of the compressor; kv is the specific heat ratio of natural gas; ηs 

is the efficiency of the compressor. 

Linepack refers to the volume of gas that can be stored in a gas pipeline. Due to the 

compressibility of gas, more gas can be compressed into a fixed volume. This means that the volume 

of gas injected into a pipeline can be higher than the volume of gas withdrawn from the upstream. 

The inventory capacities can be defined as (Eq. A6): 

 
max min2

0
max min

04
pj pj

mn
a a

P P TDVs Vs Vs L
P T Z

π −
= − =  (A6) 

where P0 and T0 are the pressure and temperature of natural gas at standard conditions, respectively; 

max
pjP  and min

pjP   are the maximum average pipeline pressure and minimum average pipeline 

pressure, which can be obtained as (Eq. A7): 
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 (A7) 

where P1min and P1max are the minimum and maximum pressure values at the inlet of the pipeline, 

respectively; P2min and P2max are the minimum and maximum pressure values at the outlet of the 

pipeline, respectively. 

 

A.3 Energy conversion modelling 

Gas-fired power generation (GPG) and Power to Gas (P2G) systems are installed for energy 

conversion between the natural gas pipeline networks and the power system.  

The gas consumption for generating power by GPG can be calculated as (Eq. A8): 
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where ηGPG is the energy efficiency of the power plant; LHV denotes the lower heating value of gas, 

ranging from 35.40 to 39.12 MJ/m3.  

The power to gas (P2G) system can convert power to natural gas, which can then be injected into 

the natural gas pipeline networks. The relationship between the power consumption PP2G and the 

gas generation QP2G can be defined as follows (Eq. A9): 

 P2G
P2G P2G

3600Q P
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 (A9) 

where ηP2G is the energy efficiency of P2G. 

2.1.4 Renewables generation 

The power generated by renewable resources such as wind and solar, can affect the operational 

reliability of IES. The output of the wind farm depends on the wind speed and can be calculated as 

(Eq. A10): 
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where Pg,wind is the active power of the wind farm at wind speed Vw; Pr denotes the rated power of 

the wind turbine; Vr , Vci and Vco represent the rated, the cut-in and cut-out wind speeds, respectively.  

The production of a PV can be defined as (Eq. A11): 

 ( ), ,1pv pv r pv c c r
r

GP P T T
G
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where Ppv is the generated power; Ppv,r denotes the rated capacity of PV; γ is the temperature 

coefficient; Tc,r and Tc are the tested and current temperatures, respectively; ηpv is the efficiency of 

PV; G and Gr are the real and tested solar radiation values, respectively.  
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Appendix B 

B1 Empirical copula 

Let H be a continuous multivariate cumulative distribution function with uniform marginal 

distribution functions. Base on the definition of copula, the joint distribution function H can be 

formed as follows (Eq. B1) [58]: 

 ( ) ( )1 1 1,  ...,  ( ),  ...,  ( )      p
p p p iH x x C F x F x x= ∈  (B1) 

where C is called the copula associated with H. C is a multivariate distribution function on [0, 1] p, 

whose marginals are standard uniform distributions on [0, 1]. Then, the copula C is unique, and the 

functions can be related by (Eq. B2): 

 ( ) ( ) ( )( )1 1 ,  ...,    [0,1]p
p pC H F u F u− −= ∈u u  (B2) 

where pF −   donates the generalised quantile functions of Fp. The generalised inverse can be 

defined as: 

 ( ) ( ){ }infp p pF u x F x u− = ∈ ≥  (B3) 

The density function h associated with H can be obtained (Eq. B4): 
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The empirical copula is a fundamental tool for statistical inference on copulas [59]. Based on H, 

we construct the empirical distribution function, which can be defined as (Eq. B5): 
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The related empirical copula is defined as (Eq. B6): 

 ( ) ( ) ( )( )1 1 ,  ...,    [0,1]p
n n n np npu u− −= ∈u u     (B6) 

Then the empirical copula process can be obtained (Eq. B7): 

 ( ) ( )( )( )n np C C= −u u u  (B7) 

B2 The stacked auto-encoder model 

The main idea of the model is to reconstruct the input at the end of the Autoencoder and this 

process can be conducted by encoding and decoding parts. Auto-encoder is a simple network for 

deep neural network pre-training and SAE is obtained by the successive stacking of autoencoders. 
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The encoder maps the inputs nx R∈  to the hidden layers and captures the features of the data. 

The decoder performs a self-reconstruction process from the hidden layer as shown in Eqs. (B8-B9) 

[55]: 

 ( , )E=z x θ  (B8) 

 ( , )D′ ′=x z θ  (B9) 

where n∈x R  and n′∈x R   are the input data and reconstructed output, respectively; z is the 

latent representation. E and D represent the activation functions depending on the parameter θ  

and ′θ , respectively, including weight matrix and bias vector. The loss function, which can recreate 

the compressed features, is mathematically expressed as (Eq. B10): 

  

 2( )L ′ ′= −x,x x x  (B10) 

Unlike the autoencoder, the numbers of input and output layers in SAE models are the same, 

and the number of input layers is greater than the number of hidden layers. Therefore, this model 

can generate new information by eliminating the noise and bring effective attributes with complex 

relationships. 
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