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ABSTRACT
Topological Data Analysis (TDA) is an emerging field of research which considers
the application of topology to data analysis. Recently, these methods have been
successfully applied to research problems in the field of Geographical Information
Science (GIS) and there is much potential for future applications. In this article,
we provide an introduction to the fundamentals of TDA for GIS researchers and
practitioners and highlight specific benefits that TDA methods provide relative to
some conventional methods. We focus on the method of persistent homology which
is the most commonly used TDA method. We describe how persistent homology can
be applied to data types commonly encountered in the GIScience domain, namely
sets of points, networks and sequences of images. We also describe the application
of persistent homology to two specific GIS problems, which are the point pattern
analysis of UK city pubs and the analysis of UK rainfall radar imagery. In each case
we stress the specific benefits of TDA methods that include, for example, generating
an output signature in a form that can be subject to subsequent analyses; identifi-
cation of void regions in point patterns; and providing a relatively simple method
to track objects in spatio-temporal images.
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1. Introduction

Geographical information science (GIS1) is a research field concerned with solving
geographical or spatial problems. On the other hand, topology is a research field of
mathematics that broadly speaking is concerned with modelling properties which are
preserved under continuous deformations such as stretching and twisting. Such prop-
erties relate to the nature of connectivity and include the properties that one object
is contained inside another or that two objects touch. Many useful geographical facts
can be modelled using topology. For example, the fact that a school is located in a
particular geographical region or the fact that there exists a walking route between
someone’s home and a shop is naturally modelled using topology. Given this, concepts
and techniques from the field of topology are considered fundamental to the field of
GIS (Worboys and Duckham 2004).

CONTACT P. Corcoran. Email: corcoranp@cardiff.ac.uk
1We use the acronym here in this sense as opposed to geographical information systems to which it commonly

also refers.



The importance of topology in spatial information science led to the development of
qualitative spatial reasoning (QSR) models, notably the 9-intersection model (Egen-
hofer and Franzosa 1991) and the region connection calculus (RCC) (Randell et al.
1992), that model topological spatial relations between pairs of objects. Such models
have been important in supporting the development of GIS applications for identify-
ing and querying topological relations between geometry objects of regions, lines and
points. Complementary to developments in QSR, the concept of topology is invoked
in GIS in the form of topologically structured data, where the term topology refers
to the explicit recording of connectivity between point, line and polygon geometry
objects. In contrast to this focus on well defined objects, there has in recent decades
been a growing interest in the field of Topological Data Analysis (TDA) that applies
principles of topology to the analysis of less precise and often noisy data such as point
clouds and network structures. TDA differs from the concepts of topology exploited in
QSR models in applying neighbourhood relations of topology that enable connectivity
to be defined with respect to distances from points, and hence supports the definition
of connected components consisting of points within some distance of each other. This
might be regarded as analogous to familiar GIS methods of kernel density estimation
and density based clustering, but TDA introduces concepts of the persistence of con-
nectivity across scales (ranges of distance), as well as the explicit representation of
voids or holes, which are empty regions of space surrounded by a connected compo-
nent. This support for analysis of holes in space is a remarkable and potentially very
useful aspect of persistent homology methods, with the need for identifying spatial
voids occurring in geospatial studies relating for example to cell net coverage (Menon
and Joe Prathap 2016), detection of silence (Meyer 2021), and gap analysis in ecology
(Jennings 2000). The output of TDA methods, particularly persistent homology, can
be treated as a form of signature of a dataset, and is particularly valuable in providing
representations that can easily be input to other forms of analysis such as similarity
measurement and machine learning classifiers.

Research in the field of TDA has led to the development of several novel and useful
methods for data analysis, including persistent homology (Zomorodian and Carlsson
2005) and the mapper algorithm (Singh et al. 2007). These methods are general and
have been successfully applied to many different types of data in many different re-
search fields. De De Silva and Ghrist (2007) used persistent homology to automatically
detect holes in sensor network coverage. Bendich et al. (2016) demonstrated that per-
sistent homology applied to the tree structure of blood vessels in the brain can distin-
guish between the factors of age and sex. Jakubowski et al. (2020) applied persistent
homology in natural language processing to detect polysemous words, i.e. words with
multiple meanings. In the context of social networks analysis, Carstens and Horadam
(2013) demonstrated that persistent homology can characterise social dynamics such
as collaboration. In an application to shape analysis, Turner et al. (2014) used persis-
tent homology to define a measure of shape similarity and used it to determine object
similarity. Nicolau et al. (2011) used the mapper algorithm to identify a new subgroup
of breast cancers with unique properties.

In the field of GIS, TDA methods have also been successfully applied to several
research problems. For example, TDA methods have been used to compare the con-
nectivity structures of different street networks (Ahmed et al. 2014) and to generalise
digital elevation models (Corcoran 2019a). This success can be attributed to the fact
that TDA methods have a number of attributes which make them useful for solving
practical problems involving real data in the domain of GIS. Notably, TDA methods
are robust to noise whereby small changes in the input do not result in a significant
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change in the results of the analysis. These methods also offer the ability to perform
statistical inferences, such as performing a hypothesis test (Bubenik et al. 2015), with
respect to topological features exhibited by the data. Like almost all types of data,
geographical data can exhibit uncertainty or noise (Longley et al. 2015). Therefore,
the ability to process such data in a robust manner and to perform statistical in-
ferences is very useful. Finally, as indicated above, TDA methods also facilitate the
application of machine learning methods with respect to topological features. Given
the ever-growing interest in and capabilities of machine learning methods, this is of
particular importance.

To demonstrate the above attributes of TDA methods, let us briefly consider the
GIS problem of point pattern analysis which broadly speaking concerns the problem
of automatically detecting patterns in sets of points representing some spatial phe-
nomenon. Figure 1 displays two sets of points representing the set of pub locations for
the cities of Cardiff and Manchester in the UK. Persistent homology is a method for
computing the existence and persistence of connected components and holes across
different scales2. In the context of this application, connected components correspond
to spatially distinct or separated clusters of pubs while holes correspond to void re-
gions where there are no pubs. A visual inspection of Figure 1 reveals that Cardiff city
has a number of significant connected components and Manchester has a number of
significant holes. Persistent homology can detect the existence of these features across
different scales in a robust manner whereby we have some confidence that their detec-
tion is the consequence of a significant or meaningful pattern in the data. Furthermore,
persistent homology can be used as a platform to perform subsequent statistical in-
ferences and machine learning. For example, we could compute a mean representation
which describes the mean pattern of connected components and holes across a number
of different cities. We could also perform clustering of cities to determine those cities
with similar patterns of connected components and holes. Finally, we could perform
a statistical test to determine if the difference in patterns of connected components
and holes for the cities of Cardiff and Manchester is statistically significant. As will be
discussed later in this article, performing the above types of analysis would be very
challenging to do using traditional methods for point pattern analysis such as kernel
density estimation (KDE) and density-based spatial clustering.

TDA is a relatively new tool in the field of GIS which, as discussed above, has many
useful attributes and in turn potential applications. In this article we aim to provide
an introduction to the fundamentals of TDA for the GIS community. In doing so we
demonstrate how TDA methods provide solutions to a number of fundamental GIS
problems, such as point pattern analysis introduced above, where the TDA methods
have specific benefits that make them attractive relative to some conventional methods
such as point density estimation and clustering.

We address the following three research problems:

(1) For which types of spatial and geographic analysis is TDA applicable and why?
(2) What are the benefits of persistent homology for purposes of point pattern anal-

ysis when compared with widely used point density estimation and clustering
methods?

(3) What is the benefit of applying persistent homology methods to the spatio-
temporal analysis of remote-sensed images?

We also aim to highlight possible future applications of TDA to the field. As an area

2The term homology broadly speaking refers to the study of connected components and holes.

3



(a) (b)

Figure 1. The set of Cardiff and Manchester city pub locations are displayed using red dots in (a) and (b)

respectively. In both cases, the city street network in question is also represented in the background to provide
context.

of applied mathematics, on some levels TDA can become very technical. Therefore to
make this article suitable for a more general audience, we do not venture too deeply
into the corresponding underlying mathematics. We instead provide a slightly higher
level abstraction of TDA which includes references to more in-depth information. We
hope that this approach will have the effect of generating greater interest in TDA from
the GIS community, and motivate those in the community to learn more about the
field and to gain benefits in applying it to their research problems. At this point, it is
worthwhile mentioning that one does not necessarily need to be a mathematician to
apply TDA to a given problem. Many TDA methods have existing implementations
that can be used like a black box, requiring only an understanding of the inputs and
outputs of the method in question. Although there exist a number of other articles
which provide an introduction to TDA, none of these works specifically considers
the GIS domain. They instead consider alternative domains, such as neuroscience
(Sizemore et al. 2019), network science (Aktas et al. 2019, Serrano et al. 2020) and
the very general domain of data science (Chazal and Michel 2021). Feng et al. (2022)
discuss some applications of TDA to spatial systems but do not provide a detailed
introduction to the topic.

While TDA is a broad field with many different methods, in this paper we focus
almost exclusively on the method of persistent homology which is the most commonly
used method by a large margin. However, in the conclusion of this article, we highlight
some other methods and give corresponding references for the interested reader.

The remainder of this article is structured as follows. In Section 2 we describe the
most commonly used workflow for applying persistent homology to a given problem.
In doing so, we describe how to apply this workflow to the three types of data. Namely,
sets of points, networks and temporal sequences of images. In Section 3 we demon-
strate the application of this workflow to two specific GIS problems. Namely, the point
pattern analysis of UK city pubs and the analysis of UK rainfall radar imagery. Finally,
in Section 4 we draw conclusions and discuss possible directions for future research.
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2. The persistent homology workflow

When applying persistent homology to a given problem, the most commonly used
workflow contains the following three steps. In the first step of this workflow, the data
in question is modelled using a filtration. A filtration is a sequence of triangulations
of the data with some additional structure which models connectivity between data
elements. In a standard filtration the sequence is nested and hence forms a hierarchy
where each (possibly partial) triangulation is associated with a distance-based scale
parameter that determines whether neighbouring elements are connected.

In the second step of the workflow, the persistent homology of the filtration is
computed. Broadly speaking, this computation models information relating to the
existence and persistence across parameter values (representing a measure of distance)
of connected components and holes of different dimensions present in the filtration and
in turn the data. Thus progression between levels of the filtration is associated with
the appearance and disappearance of these features as the distance parameter changes
in value. Outputs of the persistent homology computation are a set of persistence
diagrams that record the ranges of persistence (existence) of connected components
and holes across particular range values of the parameter. As we will see later these
methods can be applied such that the persistence is across time ranges rather than
scale values.

In the final step of the workflow, analysis, data mining or machine learning is applied
to the result of the persistent homology computation. Note that, this step may involve a
preprocessing step which converts the persistent homology output into a representation
more amenable to subsequent analysis.

In the following subsections we describe each of these three workflow steps in turn.
In doing so, we describe how three types of data commonly encountered in GIS can be
modelled using a filtration, which in turn allows the workflow to be applied to these
types of data.

2.1. Filtration construction

A filtration is a sequence of simplicial complexes that equate geometrically to partial or
complete triangulations of the data with some additional structure which models con-
nectivity between data elements. In the context of persistent homology, a triangulation
corresponds to a simplicial complex model of the data where a simplicial complex is a
higher dimensional generalisation of a network. More formally, a simplicial complex K
is a finite set of sets such that for each σ ∈ K all subsets of σ are also contained in K.
An example of a simplicial complex is the set of sets {{a} , {b} , {c} , {d} , {a, b} , {c, d}}.
Each element σ of a given simplicial complex is called a simplex or more specifically a
k-simplex where k = |σ|−1 is the dimension of the simplex. Thus in the triangulation
representation, a vertex is a 0-simplex, an edge is 1-simplex and a face is 2-simplex.
A simplicial complex K′ is a subcomplex of simplicial complex K, denoted K′ ⊆ K, if
and only if K′ is a subset of K.

A simplicial k-complex K is a simplicial complex where the largest dimension of
any simplex in K equals k. A simplicial 0-complex is equivalent to a set of points. A
simplicial 1-complex is equivalent to a network containing sets of nodes and arcs (or
vertices and edges). A simplicial 2-complex is equivalent to a network containing sets
of nodes and arcs (or vertices and edges) plus a set of two-dimensional faces.

As discussed above, a filtration is a sequence of simplicial complexes which model a
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(a) (b) (c) (d)

Figure 2. A sequence of four simplicial complexes which form a standard filtration are displayed. In these

figures 0-simplices are represented by red circles, 1-simplices are represented by blue lines and 2-simplices are
represented by green triangles.

given data with some additional structure. There are a few different structures one can
consider. The most appropriate depends on the problem and data in question. Here we
describe two filtrations which have distinct structures. We refer to the first filtration as
the standard filtration since it is the one most used in practice. A standard filtration is
a sequence of m simplicial complexes K1,K2, . . . Km, such that each simplicial complex
is a subset of the next in the sequence, and hence they satisfy the following condition:

K1 ⊆ K2 ⊆ · · · ⊆ Km (1)

Figure 2 illustrates an example standard filtration containing four simplicial com-
plexes. We can see that the simplicial complex in Figure 2(a) is a subset of the simplicial
complex in Figure 2(b) and so on.

A standard filtration requires that each simplicial complex is a subset of the next
in the sequence. A given sequence of simplicial complexes that are derived from real
data, such as a temporal sequence of raster images, may not satisfy this requirement
and in such cases, a standard filtration cannot be constructed. A zig-zag filtration
relaxes this requirement by introducing an intermediate simplicial complex between
each pair of consecutive simplicial complexes in the original sequence such that each
simplicial complex in the new sequence is a subset of the next or previous in the
sequence (Carlsson and De Silva 2010). Given a sequence of m simplicial complexes
K1,K2, . . . Km, one can construct a zig-zag filtration by constructing the sequence
K1,K1 ∪ K2,K2,K2 ∪ K3, . . . ,Km. Since a simplicial complex will always be a subset
of a simplicial complex formed through the union with another simplicial complex,
this sequence satisfies the following subset relations and therefore is a valid zig-zag
filtration:

K1 ⊆ K1 ∪ K2 ⊇ K2 ⊆ K2 ∪ K3 . . . Km (2)

That is, each simplicial complex is a subset of the next or previous in the sequence.
Note that, one can also construct an alternative zig-zag filtration by replacing each
union operation with an intersection operation and reversing the directions of the sub-
set operations. However, computing the persistent homology of both zig-zag filtrations
will return the same result (Carlsson and De Silva 2010).

Figure 3 illustrates an example sequence of four simplicial complexes. This sequence
does not satisfy the subset relation necessary to be a standard filtration. For example,
the simplicial complex in Figure 3(a) is not a subset of that in Figure 3(b). Figure 4
displays the zig-zag filtration constructed from the above sequence. In this figure the
simplicial complex in Figure 4(b) is union of those in Figures 4(a) and 4(c), and the
simplicial complex in Figure 4(d) is union of those in Figures 4(c) and 4(e) and so on.
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(a) (b) (c) (d)

Figure 3. A sequence of four simplicial complexes which do not form a standard filtration are displayed.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4. A sequence of seven simplicial complexes which form a zig-zag filtration are displayed.

There exist a number of methods for modelling a given dataset using a filtration.
The most appropriate method depends on the data and problem being addressed. In
the following subsections we describe methods for modelling a set of points using a
standard filtration, modelling a network using a standard filtration and modelling a
sequence of images using a zig-zag filtration. Note that, for each type of data there
exist potentially many approaches to performing the modelling in question. In this
work we only present one possible approach for each data type and this approach may
not be the most appropriate for a given problem. To mitigate this lack of coverage, we
provide references to relevant works where more information can be found.

2.1.1. Standard filtration of a set of points

In this section we consider the case where the data equals a set of n-dimensional points
S ⊆ Rn. Many spatial datasets, such as the locations of facilities or services, are com-
monly modelled using methods of spatial point pattern analysis. There are many such
methods, some of which focus on detecting whether a set of points has a non-random
clustered data distribution and others based for example on detecting individual clus-
ters or dense regions. The point-based filtration methods that we present here, along
with the associated outputs of persistent homology analyses, differ somewhat from
other point pattern analysis methods in characterising the structure of patterns with
measures of the strength and number of clusters (connected components) as well as
detecting other structure in the data, particularly void regions (holes) surrounded by
a connected component.

To support the procedure for computing a standard filtration of a set of points we
start by introducing the Vietoris-Rips complex (VR complex), where each individual
complex is characterised by the fact that its geometric elements are all within some
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(0,0) (2,0)

(2,3)

(a)

(b) (c) (d) (e)

Figure 5. A set of three points S ⊆ R2 plus corresponding coordinate values are displayed in (a). The VR

complexes Vr(S) for r equal to 0.0, 2.0, 3.0 and 3.6 are displayed in (b), (c), (d) and (e) respectively. Note
that in the case of (e) for example the longest edge between a pair of points has a length of 3.6 which is its

corresponding r value.

specified distance of each other. The VR complex of S is parameterized by r ∈ R and
is denoted Vr(S) and defined as follows where d is the Euclidean distance metric:

Vr(S) = {σ ⊆ S : d(i, j) ≤ r, ∀ i, j ∈ σ} (3)

A subset of k elements in S corresponds to a k − 1-simplex in Vr(S) if and only
if each pair of elements in this subset is less than or equal to r distance apart. To
illustrate the VR complex, consider the set S ⊆ R2 containing three points displayed
in Figure 5(a). The corresponding VR complexes Vr(S) for r equal to 0.0, 2.0, 3.0 and
3.6 are displayed in Figures 5(b), 5(c), 5(d) and 5(e) respectively. We can see from
these figures that, as the value of r increases, additional simplices are added to the
simplicial complex.

We construct a standard filtration by considering the sublevel sets of a VR com-
plex with respect to the parameter r. By continuously increasing the value of this
parameter, we get a parametrized family of distinct VR complexes. Each of these is
a subcomplex of the VR complex V∞(S); that is, the simplicial complex containing
the finite set of all subsets of S. Therefore, there exists a finite sequence of m VR
complexes Vr1(S), Vr2(S), . . . , Vrm(S) where Vri−ε(S) ̸= Vri(S) for ε > 0. That is, ri
equals the parameter value when Vri−1

(S) changes to Vri(S). This sequence satisfies
the following subset relations and therefore is a valid standard filtration.

Vr1(S) ⊆ Vr2(S) ⊆ · · · ⊆ Vrm(S) (4)

Given a set of points S, we refer to the above standard filtration as the VR filtration
of S. Consider again the set of points S ⊆ R2 displayed in Figure 5(a). The VR
filtration of this set corresponds to the sequence of four VR complexes Vr(S) with r
equal to 0.0, 2.0, 3.0 and 3.6. As indicated above, these VR complexes are displayed
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in Figures 5(b), 5(c), 5(d) and 5(e) respectively.
Apart from the VR filtration, there exist other methods for modelling a set of n-

dimensional points using a standard filtration including the Ĉech complex filtration
and the Alpha Complex filtration (Edelsbrunner and Harer 2010). In the Ĉech complex,
the elements of an individual simplex are defined as connected on the basis of the
intersection of balls of specified radius that surround the points.

2.1.2. Standard filtration of a network

In this section we consider the case where the data takes the form of a network. Many
spatial datasets, such as streets and air transportation, are commonly modelled as
networks. A network or graph is a tuple (V,E) where V is a set of elements called
nodes or vertices and E is a set of pairs of elements of V called edges or arcs. If these
pairs are unordered, the network is called undirected. On the other hand, if the pairs
are ordered, the network is called directed. If a network G = (V,E) has an associated
map w : V → R which maps each vertex to a real value, the network is called a
vertex-weighted network. If a network G = (V,E) has an associated map w : E → R,
the network is called an edge-weighted network.

There exists a large array of methods for constructing filtrations of networks. A
review of these methods can be found in Aktas et al. (2019). The most appropriate
method to use depends on the context. In this subsection we describe a method for
constructing a filtration of an undirected vertex-weighted network and a method for
constructing a filtration of an undirected edge-weighted network. In both cases, to
construct a filtration we first model the network as a simplicial 1-complex K. This is
achieved by modelling each vertex as a corresponding 0-simplex and modelling each
edge as a corresponding 1-simplex. For example, consider the network G = (V,E)
where V = {a, b, c} and E = {(a, b), (b, c)}. This network is modelled by the sim-
plicial 1-complex K = {{a} , {b} , {c} , {a, b} , {b, c}}. Given K, we next define a map
f : K → R which maps each simplex σ to a real value. This map models the signifi-
cance of each simplex with respect to a given property. For example, consider the case
where the network in question represents a street network where vertices correspond
to intersections and edges correspond to street segments. In this case, the map f could
model the traffic congestion at each vertex and edge.

How best to define the map f will be application dependent. In the case of an
edge-weighted network with associated map w : E → R, the map f can be defined as
follows:

f(σ) = min{w(β) : |β| = 2, σ ⊂ β} (5)

This map diffuses values defined on 1-simplices (graph edges) to values defined on
0-simplices (graph vertices). For a given vertex σ, it assigns a weight equal to the
minimum weight assigned to an adjacent edge which is represented by β in the equa-
tion. The cardinality constraint specifies that β must be a 1-simplex. To illustrate the
definition of this map, consider again the network G = (V,E) where V = {a, b, c} and
E = {(a, b), (b, c)}. Also consider an associated map w : E → R where w((a, b)) = 1
and w((b, c)) = 2. In this case the result of the map f is that f({a}) = 1, f({b}) = 1,
f({c}) = 2, f({a, b}) = 1 and f({b, c}) = 2. The above approach to defining the map
f may be useful in the context of modelling street network traffic congestion where
congestion levels are only measured at edges which correspond to street segments.

Given a simplicial 1-complex K and a map f : K → R, we can define a new simplicial
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(a) (b)

Figure 6. An edge-weighted network is displayed in (a) where the values assigned to each edge by the map

w are represented. The simplicial 1-complex corresponding to this network is displayed in (b) where the values
assigned to each simplex by the map f are represented.

1-complex Kr which is parameterized by r ∈ R and is a sub-complex of K:

Kr = {σ ∈ K : f(σ) ≤ r} (6)

In a similar vein to the VR filtration described above, we construct a standard
filtration by considering the sublevel sets of K with respect to the parameter r. By
continuously increasing the value of this parameter, we get a parametrized family of
distinct simplicial 1-complexes. Each of these is a subcomplex of K∞ which equals K.
Therefore, there exists a finite sequence of m simplicial 1-complexes Kr1 ,Kr2 , . . . ,Krm

where Kri−ε ̸= Kri for ε > 0. This sequence satisfies the following subset relations and
therefore is a valid standard filtration.

Kr1 ⊆ Kr2 ⊆ · · · ⊆ Krm (7)

To illustrate the above process for constructing a standard filtration of a network,
consider the edge-weighted network displayed in Figure 6(a). The simplicial 1-complex
corresponding to this network is displayed in Figure 6(b) where the map f that as-
signs a value to each simplex is defined using Equation 5. The standard filtration
corresponding to this simplicial complex equals the sequence of four simplicial com-
plexes K1, K2, K3 and K4. This sequence is displayed in Figures 7(a), 7(b), 7(c) and
7(d) respectively.

2.1.3. Zig-zag filtration of an image sequence

In this section we consider the case where the data equals a sequence or time series
of m images I1, I2, . . . , Im. Spatio-temporal datasets, such as land-use and land-cover
classifications, are commonly modelled as a sequence of images. We assume each image
Ii in the sequence is an element of the space {0, 1}p×q. That is, a matrix or grid of size
p× q where each element of the matrix takes a value in the set {0, 1}.

We model the sequence of images I1, I2, . . . , Im using a corresponding sequence of
simplicial 2-complexes K1,K2, . . . Km. Each image Ii is modelled as a simplicial 2-
complex using the following approach which is known as a Freudenthal triangulation.
For each cell in Ii we define a corresponding 0-complex in Ki if the cell has a value
equal to 1. For each pair of cells in the Ii which are vertically, horizontally or main
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(a) (b) (c) (d)

Figure 7. A standard filtration corresponding to the simplicial complex in Figure 6(b) is displayed.

(a) (b)

Figure 8. For an image Ii ∈ {0, 1}4×4 displayed in (a), the corresponding simplicial 2-complex Ki is displayed

in (b).

diagonally adjacent, we define a corresponding 1-complex in Ki if both cells have a
value equal to 1. For each triple of cells where all pairs are vertically, horizontally
or main diagonally adjacent, we define a corresponding 2-complex in Ki if all three
cells have a value equal to 1. To illustrate this modelling, consider the example image
Ii ∈ {0, 1}4×4 displayed in Figure 8(a). The simplicial 2-complex Ki corresponding to
this image is displayed in Figure 8(b).

Given the above sequence of m simplicial complexes K1,K2, . . . Km, we construct
a corresponding zig-zag filtration by constructing the sequence K1,K1 ∪ K2,K2,K2 ∪
K3, . . . ,Km.

2.2. Persistent homology computation

Persistent homology is a method which takes as input a filtration and returns infor-
mation relating to the existence and persistence of connected components and holes
of different dimensions in the filtration. The actual computation varies depending on
whether the filtration is a standard (Zomorodian and Carlsson 2005) or a zig-zag
filtration (Carlsson et al. 2009). In this work we refer to these computations as stan-
dard and zig-zag persistent homology respectively. Note that, both computations are
quite mathematically technical requiring a working knowledge of algebraic topology to
understand. We do not present this material here and instead describe persistent ho-
mology in terms of the corresponding method inputs and outputs. An interested reader
seeking a more in-depth description should consult the articles referenced above or the
textbook by Edelsbrunner and Harer (2010).

Given an input filtration K1,K2, . . . Km, the output from persistent homology is
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a set of mathematical objects called persistence diagrams that, as indicated earlier,
record the ranges of existence (with respect to the distance parameter) of either con-
nected components or of holes depending on the dimension of the diagram. A persis-
tence diagram is a multiset of elements in the space {(p, q) ∈ R2| p < q} where p and q
are values of the distance parameter (Edelsbrunner and Harer 2010). Each persistence
diagram has an associated dimension indicating the specific information it models. An
element (p, q) in the zero-dimensional persistence diagram models that a connected
component appeared and subsequently disappeared in simplicial complexes Kp and
Kq respectively. An element (p, q) in the one-dimensional persistence diagram models
that a one-dimensional hole appeared in simplicial complex Kp and subsequently dis-
appeared in simplicial complex Kq. Finally, an element (p, q) in the two-dimensional
persistence diagram models that a two-dimensional hole or void appeared and sub-
sequently disappeared in simplicial complexes Kp and Kq respectively. To compute
persistence diagrams, persistent homology implicitly matches connected components
and holes between consecutive simplicial complexes in the filtration. This matching
can be reduced to determining if the connected components and holes in question
intersect between consecutive simplicial complexes in the filtration.

If a connected component or hole appears in a given filtration at simplicial complex
Kp but does not subsequently disappear, it is modelled by an element (p,∞) in the
corresponding persistence diagram. The value q−p corresponding to an element (p, q)
in a given persistence diagram is known as the persistence of the element in question3.
Note that, to compute a persistence diagram of a given dimension, one only needs
to consider a filtration containing simplicial complexes of one dimension higher. For
example, to compute a zero-dimensional persistence diagram one only needs to consider
a filtration containing simplicial 1-complexes.

Consider the sequence of four simplicial complexes displayed in Figures 2(a), 2(b),
2(c) and 2(d) that we denote K1, K2, K3 and K4 respectively. This sequence forms
a standard filtration and therefore we can compute the corresponding persistence di-
agrams by applying standard persistent homology. The zero-dimensional persistence
diagram corresponding to this sequence equals the set {(2, 3), (1,∞)}. The element
(1,∞) corresponds to the connected component which appears in K1 and never dis-
appears. Note that, the set of simplices corresponding to this connected component
increases in size during the sequence as additional simplices are added to it. The
element (2, 3) corresponds to the connected component consisting of a single point
which appears in K2 and disappears in K3 when it becomes connected to the previous
connected component. The one-dimensional persistence diagram corresponding to this
sequence equals the set {(2, 4)}. The element (2, 4) corresponds to the one-dimensional
hole which appears in K2 and disappears in K4 when it becomes filled in by a 2-simplex.
Illustrations of these persistence diagrams (corresponding to Figure 2) are shown in
Figures 9(a) and 9(b) and further explanation of such diagrams is provided in Section
2.3.1.

Next consider the sequence of four simplicial complexes displayed in Figures 3(a),
3(b), 3(c) and 3(d) that we denote K1, K2, K3 and K4 respectively. This sequence
does not form a standard filtration because, for example, a 2-simplex is removed from
K1 to form K2. Therefore we can compute the corresponding persistence diagrams
by constructing a zig-zag filtration and applying zig-zag persistent homology. The
zero-dimensional persistence diagram corresponding to this sequence equals the set

3There is an alternative form of output to a persistence diagram, known as a bar code consisting of a stack

of horizontal lines the length of each or which represents the value of persistence.

12



{(2, 3), (1,∞)}. The element (1,∞) corresponds to the connected component which
appears in K1 and never disappears. Note that, the set of simplices corresponding
to this connected component changes during the sequence as additional simplices are
added to it while others are removed. The element (2, 3) corresponds to the connected
component which appears in K2 and disappears in K3 when it becomes connected to
the previous connected component. The one-dimensional persistence diagram corre-
sponding to this sequence equals the set {(2, 4)}. The element (2, 4) corresponds to
the one-dimensional hole which appears in K2 and disappears in K4 when a 1-simplex
on its boundary is removed.

When multiple connected components or holes merge, a single connected component
or hole respectively will persist and all others will disappear. For example, consider
again the sequence of simplicial complexes in Figure 2, where one connected component
disappears when it becomes connected to another connected component. When such
a merger happens, it must be decided which connected component or hole persists.
Many implementations of standard and zig-zag persistent homology use a solution
known as the elder rule whereby the connected component or hole which appeared
first in the filtration is the one which persists (Otter et al. 2017). Alternatively, one
can use a solution where the largest connected component or hole is the one which
persists (Corcoran 2019b).

Finally, it is worthwhile to briefly consider the relationship between persistent ho-
mology and Betti numbers which is an alternative model of topological features. The
Betti numbers equal the number of connected components and holes of different di-
mensions in a single given simplicial complex. They do not consider the persistence of
connected components and holes across a sequence of simplicial complexes. Therefore,
persistent homology can be considered a richer model of topological features.

2.3. Persistent homology analysis

The output from both standard and zig-zag persistent homology is a set of persistence
diagrams. As described at the beginning of this section, the next step in the persistent
homology workflow is to perform an analysis of this output.

In recent years there has been a lot of research in the development of new methods
to assist in performing this analysis. Consequently, there exist a large number of such
methods and we, unfortunately, cannot review them all here. Hence in this section
we only describe those methods which we consider to be fundamental or particularly
useful. A reader seeking a more in-depth review can consult the following review ar-
ticles (Pun et al. 2018, Hensel et al. 2021). We have structured our description of
methods into the following two parts. In Section 2.3.1 we describe methods which use
visualisation and manual interpretation. Subsequently, in Section 2.3.2 we describe
more automated methods which use data science and machine learning methods. Ul-
timately, the suitability of a given method for performing analysis will depend on the
data of interest, how the persistent homology of this data is computed and the specific
research question one is attempting to answer.

2.3.1. Visualisation and manual interpretation

It is common practice to visualise persistence diagrams using two-dimensional figures.
In these figures, each element in a given persistence diagram is represented as a point
in the corresponding figure where the appearance and disappearance values are rep-
resented by the x- and y-axis respectively. For example, Figures 9(a) and 9(b) display
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(a) (b)

Figure 9. The persistence diagrams {(2, 3), (1,∞)} and {(2, 4)} are displayed in (a) and (b) respectively.
Points (p,∞) which have infinite persistence are represented using arrows at the corresponding locations (p, 4.3).

two such figures corresponding to the persistence diagrams {(2, 3), (1,∞)} and {(2, 4)}
respectively. Note that, in this type of visualisation all points will lie above the diag-
onal and points with smaller corresponding persistence will be located closer to the
diagonal.

How to interpret a given persistence diagram depends on the data being modelled
and how the corresponding filtration was constructed. We now demonstrate this by
considering the VR filtration of a set of points and the zig-zag filtration of an image
time series. First, consider the set of two-dimensional points displayed in Figure 10(a)
which contains three compact clusters. The zero and one-dimensional persistence di-
agrams corresponding to the VR filtration of this set of points are displayed in Fig-
ures 10(b) and 10(c) respectively. The zero-dimensional persistence diagram contains
many elements with small persistence and three elements with significant persistence
where two of these elements have finite persistence and one has infinite persistence.
The elements with small persistence correspond to the connected components formed
by each individual data point. The three elements with significant persistence indicate
that the data contains three significant clusters. Of these three elements, the persis-
tence of the two elements with finite persistence equals the distance between the two
clusters closer together and the distance between these two clusters and the third
cluster (these distances being the ‘resolution’ parameter values at which the respec-
tive pairs of clusters would merge). The one-dimensional persistence diagram contains
many elements with small persistence and no elements with significant persistence.
This indicates that the data does not contain any significant one-dimensional holes.
A real-world example of the application of persistent homology to sets of points is
presented in Section 3.2.

Next consider the set of two-dimensional points displayed in Figure 10(d) which con-
tains a single compact cluster in the form of a figure of eight which in turn contains
two holes. The zero and one-dimensional persistence diagrams corresponding to the
VR filtration of this set of points are displayed in Figures 10(e) and 10(f) respectively.
The zero-dimensional persistence diagram contains a single element of significant per-
sistence reflecting the fact that the data contains a single cluster as indicated above.
The one-dimensional persistence diagram contains two elements of significant persis-
tence indicating that the data contains two significant one-dimensional holes. The
persistence of these elements, which are both finite values, equals the diameter of the
holes in question. It is important to note that although we have considered sets of
two-dimensional points above, the analysis generalises to higher dimensional data. In
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(a) (b) (c)

(d) (e) (f)

Figure 10. The zero- and one-dimensional persistence diagrams corresponding to the VR filtration of the set

of points in (a) are displayed in (b) and (c) respectively. The zero- and one-dimensional persistence diagrams
corresponding to the VR filtration of the set of points in (d) are displayed in (e) and (f) respectively.

such cases, persistent homology provides a means of inferring topological information
which cannot easily be inferred by data visualisation.

Finally, consider the zig-zag filtration of the sequence of images described in Sec-
tion 2.1.3. Let us assume that the image sequence is a time series where the time
interval between images is β. In this case an element (p, q) in the zero-dimensional
persistence diagram represents the fact that a connected component appeared at time
pβ, persisted for (q − p)β time and disappeared at time qβ. A similar interpretation
can be applied to a one-dimensional persistence diagram. The application of zig-zag
filtration and persistence diagrams to a real dataset is described in Section 3.3.

2.3.2. Data science and machine learning methods

In this section we describe data science and machine learning methods for the analysis
of persistence diagrams. Given a single persistence diagram, one can perform an anal-
ysis by computing and interpreting summary statistics describing the elements in the
diagram. Such statistics include the number of elements and the mean and variance
of these elements’ persistence. Similarly, given a set of persistence diagrams, one can
perform an analysis by computing and interpreting summary statistics describing this
set. Such statistics include the mean number of elements in the set of diagrams. Which
statistics to compute will depend on the specific research question one is attempting
to answer. In the following sections we explain some of these statistics and provide
specific examples of their application to particular research challenges.

Many data science and machine learning methods require a distance measure or
metric to be defined on the input space. For example, the k-nearest neighbours and
k-means clustering algorithms perform classification and clustering using a distance
measure. Two popular metrics defined on the space of persistence diagrams are the
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bottleneck distance and the p-th Wasserstein distance. Recall that a persistence dia-
gram is a multiset of elements in the space {(p, q) ∈ R2| p < q}. Before defining the
above distances, we first define a distance between two given elements x = (x1, x2)
and y = (y1, y2) as ∥x − y∥∞ = max{|x1 − y1|, |x2 − y2|}. We also assume that each
persistence diagram also contains the additional elements {(p, q) ∈ R2| p = q} of which
there is an infinite number. If we consider the persistence diagram visualisations in
Figure 9, these additional elements lie on the diagonal of the figures. Given two persis-
tence diagrams X and Y , let η : X → Y be a bijection from X to Y . The bottleneck
distance between X and Y is then defined as follows (Edelsbrunner and Harer 2010):

W∞(X,Y ) = inf
η:X→Y

sup
x∈X

∥x− η(x)∥∞ (8)

This metric determines the bijection which minimizes the maximum distance be-
tween corresponding elements in X and Y where the function η(x) finds those corre-
sponding elements. Note that, if X and Y contain a different number of elements, all
bijections will map some elements in X to elements in the set {(p, q) ∈ R2| p = q}
or some elements in the set {(p, q) ∈ R2| p = q} to elements in Y . Broadly speaking,
the bottleneck distance will assign smaller distances to pairs of persistence diagrams
where a bijection exists mapping elements in X to elements in Y in similar locations.
If an element in X is not mapped to an element in Y or vice versa, it will instead be
mapped to an element in the set {(p, q) ∈ R2| p = q}. Therefore, the further these
unmapped elements are from this set the greater the bottleneck distance. This models
the fact that the further elements are from the set {(p, q) ∈ R2| p = q}, the greater
their corresponding persistence and in turn their significance.

The bottleneck distance considers the maximum distance between corresponding
elements in X and Y . This makes it sensitive to outliers in the set of distance values.
To overcome this, the p-th Wasserstein distance considers the sum, instead of the
maximum, of all p-th powers of distances and is defined as follows:

Wp(X,Y ) =

 inf
η:X→Y

∑
x∈X

∥x− η(x)∥p∞

1/p

(9)

The standard and zig-zag persistent homology are both stable with respect to the
bottleneck and p-th Wasserstein distance measures (Botnan and Lesnick 2018, Skraba
and Turner 2020). Thus if you change the input to persistent homology slightly, the
change in the output persistence diagrams as measured by the bottleneck and p-th
Wasserstein distance measures will be small. This is an important property because
if persistent homology was not stable, one could not determine if the persistence di-
agrams obtained were a function of the actual structure in the input data or noise.
Finally, it is important to note that computing the bottleneck and p-th Wasserstein
distance measures is computationally expensive because both measures require an op-
timisation procedure to compute the bijections between persistence diagrams (Kerber
et al. 2017).

As discussed above persistent homology returns a set of persistence diagrams which
are multisets of elements. Many popular machine learning methods assume their in-
puts are elements in a vector space. Such methods include the support vector machine,
the random forest and the multilayer perceptron (MLP). There do exist some machine
learning methods which can be applied to sets but these methods are difficult to ap-
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ply in practice (Zaheer et al. 2017). The desire to combine machine learning with
persistent homology has led to the development of an array of methods for trans-
forming persistence diagrams into a representation which is an element in a vector
space (Chevyrev et al. 2018). Two popular such methods are persistence landscapes
(Bubenik et al. 2015) and persistence images (Adams et al. 2017). For an example of
the application of persistence landscapes to analysis of swarm behaviour see Corcoran
and Jones (2017).

3. Applications of persistent homology in GIS

Persistent homology has many potential applications to problems in the GIS domain.
In Section 3.1 we present an overview of existing applications previously published in
the literature. In Sections 3.2 and 3.3 we consider in more detail the two applications
of point pattern analysis of UK city pub (public house/bar) locations and the analysis
of UK rainfall radar data. In doing so we describe existing solutions to each problem
and highlight the relative benefits of the proposed persistent homology solutions.

3.1. Overview of applications

Feng and Porter (2020) propose a method for analysing the topological properties of
street networks using persistent homology. The authors construct a standard filtration
based on a parameter that measures the distance to the nearest street before com-
puting the standard persistent homology of this filtration. This method models the
number, size and shape of regions enclosed or surrounded by streets. In subsequent
work, Feng et al. (2022) propose a method for analysing the topological properties of
COVID-19 infections. The authors construct a standard filtration with a function that
measures the density of infections. Using the corresponding persistent homology they
demonstrate that this method can detect infection hotspots. Feng and Porter (2021)
propose a method for analysing the topological properties of election voting patterns.
A standard filtration is constructed with a function defined on geographical regions
measuring voting preference, before computing the persistent homology. The method
is demonstrated to identify regions with voting patterns different from surrounding
regions. In related work, Duchin et al. (2021) propose a method for analysing the
topological properties of election gerrymandering.

Corcoran and Jones (2021) propose a method for analysing the connectivity of street
networks. The authors construct a standard filtration with a function that measures
the degree of connectivity provided by different street types, before computing the
persistent homology of this filtration. The method is demonstrated to identify regions
of poor and good connectivity. They also demonstrated that clustering based on 2-th
Wasserstein distance can identify cities with similar connectivity properties. Wu et al.
(2017) analyse traffic congestion in street networks using persistent homology. They
employ a standard filtration with a function that measures the speed of traffic which is
proportional to the level of congestion. By computing the standard persistent homol-
ogy of this filtration the authors demonstrate that this method can identify regions
experiencing traffic congestion. Carmody and Sowers (2021) extended the method of
Wu et al. (2017) to consider street networks where the speed of travel along a street
can vary depending on the direction of travel.

Ahmed et al. (2014) propose a model for determining local differences between
street networks. They construct a standard filtration with a function that measures
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the distance to the nearest street, before computing the standard persistent homology
of this filtration. Specifically, they use a version of standard persistent homology which
considers local instead of global topological features. The method is shown to recognize
changes in street networks over time and assess the quality of street networks inferred
from GPS data.

Corcoran (2019a) proposes a method for performing generalisation or simplifica-
tion of images representing digital elevation models. The authors construct a standard
filtration with a function based on height. They compute the standard persistent ho-
mology of this filtration and optimise a function defined with respect to the persistent
homology.

Corcoran and Jones (2016, 2017) propose a method for analysing the topological
properties of swarm behaviour exhibited by a set of agents. The author constructs a
zig-zag filtration that uses kernel density estimation of agent locations. They compute
the zig-zag persistent homology of this filtration and convert the persistence diagrams
to persistent landscape representations. The authors demonstrate that clustering based
on 2-th Wasserstein distance can identify the common swarm behaviours of flock, torus,
and disorder in a school of fish.

3.2. Point pattern analysis of UK city pubs

Point pattern analysis concerns the problem of analysing the spatial patterns of sets
of points. There exist a large array of methods for performing this task. Many of these
methods involve computing descriptive statistics such as the minimum bounding box,
the mean or centre location of the points, the mean distance between pairs of points,
measures of point density and measures of point distribution randomness based on
quadrat counts (Baddeley et al. 2015). More advanced methods include kernel density
estimation (KDE) and spatial clustering using methods such as DBSCAN. Persistent
homology is most similar to these latter methods in the sense that all methods are
commonly used to analyse clustering structures. In this section we consider the problem
of performing point pattern analysis of sets of points corresponding to UK city pub
locations. In doing so we highlight the benefits that persistent homology offers relative
to KDE or spatial clustering. Robins and Turner (2016) previously considered the
application of persistent homology to point pattern analysis but did not consider
applications in the GIS domain.

The UK contains 70 cities. To define the boundaries of these cities, we used the Ur-
ban Centre Database (UCD), which is a project supported by the European Commis-
sion’s Joint Research Centre and Directorate-General for Regional and Urban Policy
(Florczyk et al. 2019). This database contains the geographical boundaries for most
major urban areas in the world which are derived from a fusion of census population
and remotely sensed image data. Some of the UK’s cities are very small urban areas
and therefore are not represented in the UCD. For example, the city of Armagh has
a population of less than 15 thousand and is not represented. Furthermore, in some
cases, a set of spatially close UK cities are represented as a single urban area in the
UCD. For example, the cities of Wolverhampton and Birmingham are represented as
a single urban area entitled Birmingham. In this work, we only considered those UK
cities represented in the UCD which corresponded to 48 distinct urban areas. For each
city we extracted the locations of all pubs located inside its corresponding boundary
using OpenStreetMap (OSM) (Corcoran and Mooney 2013). We defined a pub to be
any OSM feature with the tag amenity=bar or amenity=pub. These tags were deter-
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City Area No. Pubs City Area No. Pubs
Aberdeen 57 100 Lancaster 37 77
Bangor 20 13 Leeds 472 842
Bath 22 73 Leicester 122 162
Belfast 163 78 Lincoln 38 65
Birmingham 668 1048 Liverpool 418 565
Brighton 108 280 London 1865 3669
Bristol 169 382 Manchester 674 1021
Cambridge 37 78 Newcastle 241 510
Canterbury 15 42 Newport 57 60
Cardiff 109 152 Norwich 55 109
Carlisle 17 31 Nottingham 170 295
Chelmsford 31 49 Oxford 46 104
Chester 27 80 Peterborough 58 44
Coventry 126 186 Plymouth 88 131
Derby 83 112 Portsmouth 166 237
Derry 28 31 Preston 79 102
Dundee 62 87 Sheffield 247 400
Durham 99 142 Southampton 144 145
Edinburgh 123 325 Southend-on-Sea 75 43
Exeter 31 63 St Albans 27 48
Glasgow 306 354 Stoke-on-Trent 118 159
Gloucester 45 69 Sunderland 59 85
Hereford 17 31 Swansea 60 75
Hull 102 204 Worcester 30 59

Table 1. This table displays the names of the 48 UK cities considered plus the corresponding geographical

area (measured in km2) and the number of pubs.

mined to be appropriate after studying the OSM wiki which defines the meaning of
different tags4. Table 1 displays for each city the corresponding geographical area and
number of pubs.

For each city, we constructed a VR filtration of the corresponding set of pub loca-
tions as described in Section 2.1.1. We subsequently computed the standard persistent
homology of this filtration as described in Section 2.2. Figures 1(a) and 1(b) display
the set of pub locations corresponding to Cardiff and Manchester city respectively. The
zero-dimensional persistence diagrams corresponding to these sets are displayed in Fig-
ures 11(a) and 11(c) respectively. Recall that zero-dimensional persistence diagrams
model the existence of connected components or clusters. The persistence diagram
corresponding to Cardiff city contains more elements of greater persistence than that
corresponding to Manchester city. This is a consequence of the fact that Cardiff city
contains clusters of pubs spatially separated from other pubs. For example, if we exam-
ine the Cardiff city pub locations in Figure 1(a) we can see such clusters in the centre,
the south, the west and the north east. On the other hand, the spatial distribution
of pubs in Manchester city is more uniform and any clusters of pubs are not spatially
separated from other pubs.

The one-dimensional persistence diagrams corresponding to the sets of Cardiff and
Manchester pub locations are displayed in Figures 11(b) and 11(d) respectively. Recall
that, one-dimensional persistence diagrams model the existence of holes. The persis-

4https://wiki.openstreetmap.org/wiki/Map_features#Amenity
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(a) (b)

(c) (d)

Figure 11. The zero- and one-dimensional persistence diagrams corresponding to the set of Cardiff city

pub locations are displayed in (a) and (b) respectively. The zero- and one-dimensional persistence diagrams
corresponding to the set of Manchester city pub locations are displayed in (c) and (d) respectively.

tence diagram corresponding to Manchester city contains more elements of greater
persistence than that corresponding to Cardiff city. This is a consequence of the fact
that Manchester city contains more larger regions containing no pubs which are sur-
rounded by pubs. For example, if we examine the Manchester city pub locations in
Figure 1(b) we can see such regions in the north west and north east.

To analyse the entire set of UK cities, for each pair of cities we computed the
2-nd Wasserstein distance between the corresponding pair of zero-dimensional persis-
tence diagrams and the 2-nd Wasserstein distance between the corresponding pair of
one-dimensional persistence diagrams. This computation gives a zero-dimensional per-
sistence diagram distance matrix and a one-dimensional persistence diagram distance
matrix. For each distance matrix we computed a corresponding representation of each
city as a point in R2 using the t-SNE manifold learning technique (Maaten and Hin-
ton 2008). These representations are displayed in Figures 12(a) and 12(b) respectively.
Examining these figures we can see the formation of clusters in both representations.
For example, in both representations London city is a member of a distinct cluster.
In the case of the zero-dimensional persistence diagrams, the cluster in question also
contains the cities of Leicester and Birmingham. On the other hand, in the case of the
one-dimensional persistence diagrams, the cluster in question only contains the city of
London. Other patterns evident in these diagrams include the fact that both the zero-
and one-dimensional persistence diagrams corresponding to Cardiff and Manchester
are relatively dissimilar. The reasons for this difference were discussed previously.

To further examine this clustering behaviour, we performed hierarchical single-
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(a) (b)

Figure 12. A representation of each UK city as a point in R2 computed by applying t-SNE to the pairwise
2-th Wasserstein distances between the zero- and one-dimensional persistence diagrams are displayed in (a)

and (b) respectively.

linkage clustering using distance matrices to obtain dendrogram representations
(Everitt et al. 2011). The dendrogram representations corresponding to the zero- and
one-dimensional persistence diagrams are displayed in Figures 13(a) and 13(b) re-
spectively. In both dendrograms we can again see that London city is a member of a
distinct cluster. To understand the reasons for this, note from Table 1 that London
city contains a larger number of pubs relative to other cities. Furthermore, consider the
zero- and one-dimensional persistence diagrams corresponding to London city which
are displayed in Figures 14(a) and 14(b) respectively. Relative to the persistence dia-
grams corresponding to Cardiff and Manchester displayed in Figure 11, both diagrams
contain a larger number of elements of smaller persistence. This can be attributed to
the higher density of pubs in London that results in a larger number of spatially close
clusters and a larger number of smaller regions surrounded by pubs.

As discussed above, persistent homology has similarities to the methods of KDE and
spatial clustering for point pattern analysis. We now discuss the benefits that persis-
tent homology offers relative to these methods. KDE and spatial clustering methods
such as DBSCAN (Schubert et al. 2017) are the most commonly used methods for
detecting clusters in sets of points. In KDE clusters are detected by visual inspection
of the density function or by thresholding the density function followed by spatial
clustering. In DBSCAN clusters are detected by grouping points that are sufficiently
spatially close to each other. Both KDE and DBSCAN have a scale parameter which
must be selected and both methods are not stable with respect to the choice of these
parameters. Specifically, the choice of the KDE kernel bandwidth parameter and the
DBSCAN maximum distance parameter can significantly affect the number and shape
of the clusters detected. Persistent homology does not suffer from this undesirable
sensitivity to scale parameter selection. Persistent homology instead considers the ex-
istence of connected components and holes across all scales simultaneously. In fact, as
indicated previously, persistent homology has a stability property that ensures a small
change in the input data results in at most a small change in the output (Cohen-Steiner
et al. 2007).

Although KDE and density-based clustering methods can infer the existence of
clusters, these methods do not compute any information relating to the scale of these
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(a) (b)

Figure 13. Dendrograms for UK cities computed by applying single linkage clustering to the pairwise 2-th

Wasserstein distances between the zero- and one-dimensional persistence diagrams are displayed in (a) and (b)
respectively.

(a) (b)

Figure 14. The zero- and one-dimensional persistence diagrams corresponding to the set of London city pub
locations are displayed in (a) and (b) respectively.
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clusters. On the other hand, as well as inferring the existence of clusters, persistent
homology also measures the persistence of these clusters across particular scale (or
another parameter) values. Recall from the illustrative example in Figure 10, that in
this context persistence models how separated and hence how distinct the clusters are.
Persistent homology can also infer the existence and scale of void regions modelled as
holes. Being able to detect holes has many potential applications in point pattern
analysis. For example, if the points correspond to instances of a service or facility, the
existence of a hole indicates a lack of availability in that region. To date, there has
been little research on the topic of detecting holes in point pattern analysis. Finally,
the outputs from persistent homology facilitate the application of many downstream
data mining and machine learning tasks. This is because metrics have been defined
with respect to these outputs. Furthermore, these outputs can be transformed into
a vector space representation. On the other hand, defining a metric on the space of
KDE and density-based clusterings, or transforming these clusterings into a vector
space representation is not straightforward.

3.3. Spatio-temporal analysis of UK rainfall radar imagery

The tracking of objects in geographical data is a fundamental problem in the field of
GIS with many applications (Worboys and Duckham 2006). For example, in order to
make a weather forecast is it necessary to track weather features or objects such as
a storm. Successful object tracking requires that correspondences between the same
object existing at different discrete times can be determined. In many cases, object
properties will change over time making it challenging to correctly infer these cor-
respondences. The topological properties of many objects in geographical data will
change over time. For example, in the case of a weather storm, changes in topological
properties include the formation of holes plus the splitting into and merging of mul-
tiple connected components. For this reason, many researchers in the domain of GIS
have considered the development of methods for object tracking in geographical data
(Jiang and Worboys 2009).

In this section we demonstrate how persistent homology can be used to analyse the
topological patterns of UK rainfall radar images. A significant contribution of persis-
tent homology here is the use of zig-zag homology methods for tracking individually
identifiable weather features between successive time frames. This analysis applies the
methods presented in Corcoran and Jones (2018), Corcoran (2019b). Rainfall radar
images were obtained from the UK Meteorological (Met) Office which provides an
image time series where the interval between consecutive images is 15 minutes. Each
image represents the level of rainfall at each location in a 500x500 regular grid over
Ireland and the UK. Specifically, the level of rainfall is represented as lying in one of
8 intervals of rainfall levels measured in terms of the number of millimetres (mm) of
rainfall per hour.

We obtained a time series of images between 11:45 on 6 December 2021 and 7:45
on 12 December 2021. This time series contains a total of 1,041 images. The start of
this time series corresponds to the time period during which a significant storm called
Storm Barra passed over Ireland and the UK. The end of this time series corresponds
to a period of less rainfall after the storm had passed. For this work, we converted
the original images into binary images where values of 0 and 1 represent less than and
greater than or equal to 0.01mm of rainfall per hour respectively. The threshold value
of 0.01mm was chosen because the Met Office considers levels of rainfall less than this
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(a) (b)

(c) (d)

Figure 15. Four consecutive images in the rainfall radar image time series are displayed (a), (b), (c) and (d).

In each image the existence of rainfall is represented by the colour blue.

value as no rainfall. Figure 15 displays a subset of the above time series containing
four consecutive images.

In our analysis we study the topological evolution of connected components in the
radar images which correspond to rain clouds. This evolution may involve the events
of rain clouds appearing, disappearing, merging and splitting. For this analysis we
only need to consider the zero-dimensional persistence diagram. If we were to study
the evolution of holes with connected components we would need to consider the
one-dimensional persistence diagram. The radar images can sometimes contain many
small connected components. We consider these to be topology noise and therefore
preprocessed the images to remove all connected components less than 50 pixels in
size.

For the image time series we constructed a zig-zag filtration as described in Sec-
tion 2.1.3. We subsequently computed the zig-zag persistent homology of this filtration
as described in Section 2.2. Note that we used a more advanced implementation of
zig-zag persistent homology than that described above adopting the method presented
in Corcoran (2019b) in which they consider spatially close connected components to
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(a) (b)

(c) (d)

Figure 16. A cartographic (as opposed to diagrammatic) representation of the zero-dimensional persistence

diagram {(1,∞), (1,∞), (1,∞), (1,∞), (1,∞), (1,∞), (1, 2), (2,∞), (3, 4), (4,∞), (4,∞), (4,∞)} corresponding

to the time series in Figure 15 is illustrated. Each coloured weather feature is a connected component and cor-
responds to an element in the persistence diagram. Note that the prominent blue and cyan features correspond
to persistence diagram elements with coordinates (1,∞).

be the same connected component.
Consider again the time series containing four consecutive images displayed in Fig-

ure 15. Applying the above methodology to this time series gives the zero-dimensional
persistence diagram {(1,∞), (1,∞), (1,∞), (1,∞), (1,∞), (1,∞), (1, 2), (2,∞), (3, 4),
(4,∞), (4,∞), (4,∞)}. A cartographic representation of this persistence diagram is
displayed in Figure 16 where each rainfall feature is a connected component corre-
sponding to an individual element and is represented using a unique colour. For exam-
ple, one of the elements with value (1,∞) corresponds to the large dark blue coloured
connected component in the east. This connected component persists across all time
four steps 1 to 4 inclusive, hence does not disappear and has infinite persistence. Simi-
larly, the element (2,∞) corresponds to the smaller connected component in the centre
which persists across the three steps 2 to 4 inclusive and is represented by a yellow
colour.
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Figure 17. The zero-dimensional persistence diagram corresponding to the time series of 1,041 rainfall radar
images is displayed.

Figure 17 displays the zero-dimensional persistence diagram corresponding to the
full time series containing 1,041 images instead of the smaller time series containing
only 4 images considered above. Let us denote this persistence diagram as D. The total
number of elements in D is 773. To interpret the temporal behaviour of D, for each
time i we computed the following two statistics which measure the number of elements
that persist during time i and the sum of their persistence values respectively.

|{(p, q) ∈ D : p ≤ i ≤ q}| (10)

∑
{(p,q)∈D:p≤i≤q}

q − p (11)

Plots of the above statistics versus time are displayed in Figures 18(a) and 18(b)
respectively. From these plots we see that both statistics have larger values at the
start and smaller values at the end of the time series. In fact, both statistics have
a value of 0 at the very end of the time series. This indicates that the number of
connected components and the persistence of these connected components decreased
over the course of the time series. This reflects the fact that the start of the time series
corresponds to the time period during which a storm passed over the region while
the end of the time series corresponds to a period of less rainfall after the storm had
passed.

Several models for tracking objects with changing topological properties have been
previously proposed. Liu and Schneider (2010, 2011) proposed a model which consid-
ers objects corresponding to multiple connected components. However, this model is
conceptual in nature and no corresponding computational model is proposed. Wor-
boys and Duckham (2006) and Jiang and Worboys (2009) proposed models for using
a sensor network to track topological changes in objects. However, again these models
are mostly conceptual in nature and cannot directly be applied to real data without
further development. For example, both models assume a continuous representation of
change in topology which does not exist in real data where changes occur at discrete
time steps. Consequently, the authors limited their evaluation to simulated continuous
data. The inability of the above models to be applied to real data can be attributed in
part to the fact they are formulated in terms of logic which is not suitable for modelling
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(a) (b)

Figure 18. The number of elements that persist at each time and the sum of their persistence are plotted

in (a) and (b) respectively. In both plots time is represented by the x axis while the statistic in question is
represented by the y axis.

noisy data with uncertainty. On the other hand, persistent homology is fundamentally
designed to model data with these properties.

Another advantage of the proposed model for object tracking is that the outputs
from persistent homology facilitate the application of many downstream data mining
and machine learning tasks. Although we do not explore this research direction in
this paper, it has previously been considered. For example, Corcoran and Jones (2016,
2017) demonstrated that clustering the persistence diagrams of swarm behaviour can
discover the swarm behaviours of flock, torus, and disordered.

4. Conclusions

This article aims to provide an introduction to topological data analysis for GIS re-
searchers and practitioners. In doing so we have provided multiple examples of how
TDA methods can be of benefit in working with geospatial data, addressing our first
research question. With regard to the second and third research questions that focus
on the benefits of persistent homology methods for the analysis of point patterns and
remotely sensed spatio-temporal data, we have enumerated specific benefits in com-
bination with a detailed description of two case studies of the application of these
methods. Given that some of the methods described for point pattern analysis might
be regarded as analogous to well-known GIS methods such as kernel density estima-
tion and density-based clustering, we have stressed the distinctive advantages of the
presented TDA methods with regard, for example, to avoiding the need for parame-
ter selection; the generation of outputs that characterise the scale and the numbers
of features; the output of signatures of the analysed patterns of data that facilitate
analysis such as similarity measurement, machine learning and trajectory computa-
tion; and the fact that the methods can detect and analyse void regions, in addition
to reporting on clusters of objects.

TDA has grown into a very large research field in recent years and it would not be
possible to consider all aspects and methods in a single article. Therefore, we instead
considered those aspects and methods we believe to be most necessary and useful.
For example, although zig-zag persistent homology might be considered a relatively
advanced topic for an introductory article, we have chosen to include it here as it
has proven to be particularly useful in spatio-temporal applications that work with
sequences of time-stamped data sets.
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Due to its prominence in the field of TDA, in this article, we have almost exclusively
focused on the method of persistent homology. However, the field of TDA contains
many other methods which are also potentially very applicable to problems in the
GIS domain. Such methods include the mapper algorithm (Singh et al. 2007), contour
trees (Carr et al. 2003), Reeb graphs (Biasotti et al. 2008) and discrete Morse the-
ory (De Floriani et al. 2015). To date, there have only been a handful of works which
have considered the application of these methods to GIS problems. For example, Dey
et al. (2017) proposes a method for inferring a street network from GPS data using
discrete Morse theory. We expect the application of TDA methods to GIS problems
to continue to grow in the future and in turn the application of these other methods
to do so also.

In our coverage of persistent homology we described how persistent homology can
be applied to three different types of data commonly encountered in GIS. Namely, sets
of points, networks and sequences of images. However, there are other types of data
also commonly encountered in GIS which we did not consider. This includes sets of
lines and polygons which may share boundaries. This type of data was only recently
considered by Feng and Porter (2021) and it appears to remain an open question
as to how persistent homology can best be applied to such data. In our case study
of the application of persistent homology to analyse the spatial distribution of pubs,
we highlighted that these methods help us to understand the characteristics of not
just the regions of space that are occupied (the connected components) but also the
empty or void regions that are represented as holes in the analysis. Numerous fruitful
geospatial applications of the analysis of holes or voids can be envisaged, including the
detection of regions of isolation or voidness in building density, cell net coverage, noise
pollution, different types of vegetation and fauna, and demographic and socio-economic
characteristics. Detection of these voids with persistent homology methods could be
accompanied by various forms of analysis to understand or explain their presence with
regard to the occurrence of other geographic phenomena, whether physical or social.

It is clear that there are many interesting challenges in the application of TDA
to geospatial data, but we hope that this summary and review of some of the main
methods will help to realise what we believe to be the considerable potential of TDA
to advance the state of the geospatial data and information sciences.

5. Data and codes availability statement

The Python code used to perform the analyses presented in Sections 3.2 and 3.3
is openly available in the figshare repository at https://doi.org/10.6084/m9.

figshare.19521760.
The city pub location data used in the analysis of Section 3.2 was obtained from

OpenStreetMap. The code used to obtain this data is available in the above figshare
repository.

The sequence of rainfall radar images used in the analysis of Section 3.3 was
obtained from the UK Meteorological (Met) Office using their DataPoint service
(https://www.metoffice.gov.uk/datapoint). The sequence in question is available
in the above figshare repository.

Further information regarding the code and data is contained in the description of
the above figshare repository.
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Serrano, D.H., Hernández-Serrano, J., and Gómez, D.S., 2020. Simplicial degree in complex
networks. applications of topological data analysis to network science. Chaos, Solitons &
Fractals, 137, 109839.

Singh, G., et al., 2007. Topological methods for the analysis of high dimensional data sets and
3d object recognition. PBG@ Eurographics, 2.

Sizemore, A.E., et al., 2019. The importance of the whole: topological data analysis for the
network neuroscientist. Network Neuroscience, 3 (3), 656–673.

Skraba, P. and Turner, K., 2020. Wasserstein stability for persistence diagrams. arXiv preprint
arXiv:2006.16824.

Turner, K., Mukherjee, S., and Boyer, D.M., 2014. Persistent homology transform for modeling
shapes and surfaces. Information and Inference: A Journal of the IMA, 3 (4), 310–344.
Available from: https://doi.org/10.1093/imaiai/iau011.

Worboys, M.F. and Duckham, M., 2004. Gis: a computing perspective. CRC press.
Worboys, M. and Duckham, M., 2006. Monitoring qualitative spatiotemporal change for

31



geosensor networks. International Journal of Geographical Information Science, 20 (10),
1087–1108.

Wu, Y., et al., 2017. Congestion barcodes: Exploring the topology of urban congestion us-
ing persistent homology. In: IEEE International Conference on Intelligent Transportation
Systems. 1–6.

Zaheer, M., et al., 2017. Deep sets. In: I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan and R. Garnett, eds. Advances in Neural Information Processing
Systems. Curran Associates, Inc., vol. 30. Available from: https://proceedings.neurips.
cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf.

Zomorodian, A. and Carlsson, G., 2005. Computing persistent homology. Discrete & Compu-
tational Geometry, 33 (2), 249–274.

32


