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ABSTRACT

In this present work polynomial transformations are identified that preserve the
property of the polynomials having all zeros lying on the imaginary axis. Existence
results concerning families of polynomials whose generalised Mellin transforms have
zeros all lying on the critical line ℜs = 1

2
are then derived. Inherent structures

are identified from which a simple proof relating to the Gegenbauer family of or-
thogonal polynomials is subsequently deduced. Some discussion about the choice of
generalised Mellin transform is also given.
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1. Introduction

In the paper ‘Mellin transforms with only critical zeros: Legendre functions’ [1] M. W.
Coffey and the second author discuss generalised Mellin transforms [2–4] of Legendre
polynomials [5–7]. They start from the fact that the Legendre polynomials Pn, n =
0, 1, 2, 3, . . . satisfy the Legendre differential equation

(1− x2)P ′′

n (x)− 2xP ′

n(x) + n(n+ 1)Pn(x) = 0 ,

and apply the generalised Mellin transform Pn 7→ Mn to the polynomials Pn where

Mn(s) =

∫ 1

0

xs−1

(1− x2)
1

2

Pn(x) dx .

They show that the functions Mn satisfy

(n(n+ 1)− 1− 2s(s− 1))Mn(s) + (s− n)(s+ n+ 1))Mn(s+ 2)

+(s− 1)(s − 2)Mn(s− 2) = 0. (1.1)
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They went on to show that the generalised Mellin transform Mn may be written as a
product of Gamma functions and a polynomial function pn, where all the zeros of the
polynomials pn lie on the critical line. Their proof, which was based on (1.1), involves
demonstrating that all the zeros of the polynomials qn, defined by

qn(s) = pn(s+ 1/2) ,

lie on the imaginary axis. The generalised Mellin transform they used appeared via
exploratitive modification of results due to Bump, Choi and Ng [8,9] that gave in-
teresting results and linked to the functional relation for the Riemann zeta function.
However, the detail of this argument is omitted and it is not entirely obvious to the
reader how to reconstruct the full argument.

To redress this Lettington and Coffey published a technical proof for generalised
Mellin transforms of the larger family of Gegenbauer polynomials in their 2020 paper
[10], that utilised continuous Hahn polynomials [11].

In this present work the authors expand upon these results by combining a first order
differential-difference relation, with a result similar to one that appears in Titchmarsh
[12]. The two structure theorems (below) obtained concern polynomial transforma-
tions that preserve the property of the zeros all lying on the imaginary axis ℜs = 0.
Subsequently a simple proof of the Gegenbauer result detailed in [10] is then deduced.
Some discussion about the choice of generalised Mellin transform is also given.

With the background and motivation outlined we now state our main results below.

Theorem 1.1. Let P be a polynomial function of degree ℓ, all of whose zeros lie on

the imaginary axis, then the polynomial function Q1 defined by

Q1(z) = (m− z)P (z + 1) + (m+ z)P (z − 1)

will also have all its zeros on the imaginary axis in the case that m ≤ 0 or m ≥ ℓ.

Theorem 1.2. Let P be a polynomial function of degree ℓ, all of whose zeros lie on

the imaginary axis, then the polynomial function Q2 defined by

Q2(z) = (m− z)(z + 1/2)P (z + 1) + (m+ z)(z − 1/2)P (z − 1)

will also have all its zeros on the imaginary axis in the case that m ≤ 0 or m ≥ ℓ+1/2.

2. The differential-difference relation

Our starting point is the sequence of polynomials {Pn}∞n=0 defined by the differential-
difference equation

(n+ 1)Pn+1(x) = anxPn(x)− (1− x2)P ′

n(x) , (2.1)

where P0(x) = 1, an > n− 1 and an 6= n, which is a special case of

Pn+1(x) = − 1

bn

(

anxPn(x)− (1− x2)P ′

n(x)
)

(2.2)
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with −bn = n + 1. The differential-difference relation (2.2) is itself a special case of
the more general differential-difference equation

Pn+1(x) = An(x)P
′

n(x) +Bn(x)Pn(x), n ≥ 0 P0(x) = 1, (2.3)

with An(x) = (x2 − 1)/bn, and Bn(x) = −anx/bn. The polynomial systems (2.3)
have been studied in greater generality by Dominici et al. in [13,14], where An(x)
and Bn(x) are polynomials of degree at most 2 and 1 respectively. In [13] the au-
thors study the zeros of polynomial solutions to equation (2.3), in which they analyze
when their zeros are real and simple and whether the zeros of polynomials of adjacent
degree interlace. Their results hold for general families of polynomials including se-
quences of classical orthogonal polynomials as well as Euler-Frobenius, Bell and other
polynomials. Later on, in [14] the asymptotics of their zero counting distribution is
deduced.

Also of relevance to our results are the so called tangent polynomials (see §6.5 of
[14]), which satisfy (2.3) with An(x) = x2 + 1 and Bn(x) = 1 for all n = 0, 1, 2, . . ..
They have all imaginary zeros and hence satisfy the conditions of Theorems 1.1 or 1.2.

Here we consider the generalized Mellin transform of sequences of polynomials
{Pn(x)}∞n=0 defined as above. The reason for choosing the definition (2.1) is that in
Section 5 we focus specifically on the Gegenbauer family of orthogonal polynomials
{Cλ

n}∞n=0 which satisfy

(n+ 1)Cλ
n+1(x) = (n+ 2λ)xCλ

n(x)− (1− x2)Cλ ′

n (x) ,

where Cλ
0 (x) = 1, λ > −1/2, λ 6= 0. Setting Cλ

n = Pn and n+2λ = an we see that the
above is of the form given in (2.1).

By using fundamental properties of zeros of polynomials generated as in Theo-
rem 1.1 and Theorem 1.2, we deduce that the polynomial factors of the generalized
Mellin transforms of Gegenbauer polynomials have all their zeros on the critical line
z ∈ C,ℜ z = 1/2.

Before proving Theorems (1.1) and (1.2) in Section 3, we first notice that, just like
the Gegenbauer polynomials, the polynomials {Pn}∞n=0, are alternately even or odd
and obey the functional equation Pn(−x) = (−1)nPn(x).

3. Proof of theorems

Proof of Theorem 1.1. If ℓ = 0 then P (z) = a then Q1(z) = 2ma and there are no
zeros to consider. If ℓ = 1 then Q1(z) = 2a(m − 1)z whose only zero is at 0, on the
imaginary axis.

For the case ℓ ≥ 2 we look for points on the imaginary axis which are zeros of Q1.
Consider the path t 7→ z(t) = ıt which runs up the imaginary axis. The point ıt will
be a zero of Q1 provided that

(m− ıt)P (ıt+ 1) = −(m+ ıt)P (ıt− 1), (3.1)

which will be the case if and only if both

|(m− ıt)P (ıt+ 1)| = |(m+ ıt)P (ıt − 1)| (3.2)
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and

arg
(

(m− ıt)P (ıt+ 1)
)

= arg
(

−(m+ ıt)P (ıt− 1)
)

. (3.3)

Let the zeros of P , which by assumption are all on the imaginary axis, be at
ıa1, ıa2, · · · ıal where the aj ∈ R then

P (z) = c(z − ıa1)(z − ıa2) · · · (z − ıal),

where c 6= 0 is a constant, so that (3.1) becomes

(m− ıt)c(ıt − (ıa1 − 1))(ıt − (ıa2 − 1)) · · · (ıt− (ıaℓ − 1))

= −(m+ ıt)c(ıt− (ıa1 + 1))(ıt − (ıa2 + 1)) · · · (ıt− (ıaℓ + 1)).

We have

|m− ıt| = |m+ ıt| and |ıt− (ıaj − 1)| = |ıt− (ıaj + 1)|

for all aj and so (3.2) is satisfied. If in addition (3.3) holds then ıt will be a zero
of Q1(z). Equation (3.3) is equivalent to

arg

(

(ıt− (ıa1 − 1))(ıt− (ıa2 − 1)) · · · (ıt− (ıaℓ − 1))

(ıt− (ıa1 + 1))(ıt− (ıa2 + 1)) · · · (ıt− (ıaℓ + 1))

)

= arg

(−(m+ ıt)

(m− ıt)

)

. (3.4)

At the point ıt

ıt− (ıaj − 1)

ıt− (ıaj + 1)
= −(1 + ı(t− aj))

2

1 + (t− aj)2
,

so

arg

(

ıt− (ıaj − 1)

ıt− (ıaj + 1)

)

= arg(−1) + 2 arg (1 + ı(t− aj)) ,

and for 1 ≤ j ≤ ℓ, the continuous function Aj , defined by

Aj : t 7→ π + 2arctan(t− aj)

gives an argument for

ıt− (ıaj − 1)

ıt− (ıaj + 1)

at the point ıt on the imaginary axis with

Aj(t) →
{

0 as t → −∞,

2π as t → ∞,
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and A =
∑ℓ

j=1Aj , gives an argument for

(

(ıt− (ıa1 − 1))(ıt − (ıa2 − 1)) · · · (ıt− (ıaℓ − 1))

(ıt− (ıa1 + 1))(ıt − (ıa2 + 1)) · · · (ıt− (ıaℓ + 1))

)

at the point ıt on the imaginary axis with

A(t) →
{

0 as t → −∞,

2ℓπ as t → ∞ .

The functions Aj and A are increasing functions on (−∞,∞). Similarly, because

(

−m+ ıt

m− ıt

)

=

(

−(m+ ıt)2

m2 + t2

)

,

we have

arg

(

−m+ ıt

m− ıt

)

= arg(−1) + 2 arg(m+ ıt) ,

and so the continuous function B : t 7→ B(t) = π + 2arctan(t/m), gives an argument
for

(

−m+ ıt

m− ıt

)

at the point ıt on the imaginary axis. For m > 0, B is increasing on (−∞,∞) and
decreasing for m < 0 with respectively,

B(t) →
{

0 as t → −∞ ,

2π as t → +∞ ,
and B(t) →

{

2π as t → −∞ ,

0 as t → +∞ .

Define the ℓ−1 points tj, j = 1, 2, · · · l−1 where A(tj) = 2jπ, and the ℓ intervals such
that

I1 = (−∞, t1], Ij = [tj−1, tj] , for 2 ≤ j ≤ ℓ− 1 , Iℓ = [tℓ−1,∞) .

In the interval Ij the function A increases from 2(j − 1)π to 2jπ, for 1 ≤ j ≤ ℓ.
We consider the behaviour of the the functions A and B for different values of m

as follows.
The case m < 0. We first note that Q1 has the same degree, ℓ, as P because for

P (z) = cℓz
ℓ + · · · ,

where the dots indicate powers of z of order ℓ− 1 or less,we have

Q1(z) = (m− z)P (z + 1) + (m+ z)P (z − 1) = 2(m− ℓ)cℓz
ℓ + · · · , (3.5)

which is of order ℓ because m− ℓ 6= 0
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We therefore seek to locate all ℓ zeros of Q1. In the interval Ij the function A
increases from 2(j − 1)π to 2jπ, for 1 ≤ j ≤ ℓ and, because m < 0, the function B is
decreasing taking values between 2π and 0. It follows that there will be at least one
point t̃j in Ij where

A(t̃j) = 2(j − 1)π +B(t̃j) .

This means that each of the ℓ points ıt̃j, for 1 ≤ j ≤ ℓ, satisfies equation (3.2) and we
have located all ℓ zeros of Q1 on the imaginary axis.

The case m > ℓ. Again Q1 has the same degree, ℓ, as P but this time because
m > 0, the function B(t) is increasing. As above we find at least one point t̃j in Ij ,
for 2 ≤ j ≤ ℓ− 1, where

A(t̃j) = 2(j − 1)π +B(t̃j) .

This means that each of the ℓ− 2 points ıt̃j . for 2 ≤ j ≤ ℓ− 1, satisfies equation (3.2)
and we have located at least ℓ− 2 zeros of Q1 on the imaginary axis. We next locate
two more zeros which will account for all ℓ zeros. To do this consider the interval
Iℓ = [tℓ−1,∞) and use

arctan(x) =
π

2
− arctan

(

1

x

)

.

We have

Aj(t) = π + 2arctan(t− aj) = 2π − 2 arctan

(

1

t− aj

)

and therefore

A(t) = 2ℓπ − 2

l
∑

j=1

arctan

(

1

t− aj

)

.

Also

B(t) = π + 2arctan(t/m) = 2π − 2 arctan
(m

t

)

,

then at tℓ−1

A(tℓ−1) = 2(ℓ− 1)π and B(tℓ−1) > 0

and so

B(tℓ−1) + 2(ℓ− 1)π −A(tℓ−1) > 0.

As t → ∞

A(t) → 2lπ − 2ℓ

t
and B(t) → 2π − 2m

t
.

6



Therefore

B(t) + 2(ℓ− 1)π −A(t) → 2(ℓ−m)

t

and, because in this case m > ℓ,

B(t) + 2(ℓ− 1)π −A(t) becomes negative as t → ∞ .

It follows that there will be a point t̃ℓ where

B(t̃ℓ) + 2(ℓ− 1)π −A(t̃ℓ) = 0 ,

giving another zero of Q1 on the imaginary axis. Similar considerations for the interval
I1 = (−∞, t1] give another zero of Q1 on the imaginary axis showing that all ℓ zeros
of Q1 lie on the imaginary axis.

The case m = 0. If m = 0 then Q1(z) = −zP (z + 1) + zP (z − 1), and the zeros
of Q1 are 0 together with the zeros of P (z + 1) − P (z − 1) . This will have a zero
at the point ıt on the imaginary axis provided both |P (ıt + 1)| = |P (ıt − 1)| , and
argP (ıt + 1) = argP (ıt − 1) . The first of these will be satisfied as above and the
second when

arg

(

P (ıt+ 1)

P (ıt− 1)

)

= 1

which is the case at the ℓ− 1 points tj, j = 1, 2, · · · ℓ− 1 where A(tj) = 2jπ as defined
above.

The case m = ℓ. From (3.5) we see

Q1(z) = (m− z)P (z + 1) + (m+ z)P (z − 1) = 2cℓ−1z
ℓ−1 + · · ·

and so the degree of Q1 is at most ℓ− 1. Considerations as above show that there are
still ℓ − 2 zeros on the imaginary axis. If 2cℓ−1 = 0 this accounts for all of them but
if 2cℓ−1 6= 0 there is one more zero, z0 say, to be located. Let the zeros of P , which
by assumption are all on the imaginary axis, be at ıa1, ıa1, · · · ıaℓ, where the aj ∈ R.
Then we have that

P (z) = c(z − ıa1)(z − ıa2) . . . (z − ıaℓ),

where c 6= 0 is a constant. Because z0 is a zero it is a solution of (3.1), and so satisfies
after cancellation with c,

(m− z0)(z0 − (ıa1 − 1))(z0 − (ıa2 − 1)) · · · (z0 − (ıaℓ − 1))

= −(m+ z0)(z0 − (ıa1 + 1))(z0 − (ıa2 + 1)) · · · (z0 − (ıaℓ + 1)).

Taking the complex conjugate of this equation and putting z1 = −z̄0 gives

(m+ z1)(z1 − (ıa1 + 1))(z1 − (ıa2 + 1)) · · · (z1 − (ıaℓ + 1))

= −(m− z1)(z1 − (ıa1 − 1))(z1 − (ıa2 − 1)) · · · (z1 − (ıaℓ − 1)),
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and so z1 is also a zero of equation (3.1). As there was only one more zero to be
located we must have z1 = z0 therefore z0 = −z̄0 and so z0 lies on the imaginary axis
as required.

Proof of Theorem 1.2. The proof of Theorem 1.2 is as above except that for the
extra terms (z+1/2) and (z−1/2) an additional argument function, Aℓ+1, is required.
Because

arg

(

(ıt+ 1/2)

(ıt− 1/2)

)

= arg (−1) + 2 arg(1 + 2ıt) ,

and the continuous function defined by Aℓ+1 : t 7→ π+2arctan(2t), gives an argument
for

(ıt+ 1/2)

(ıt− 1/2)

at the point ıt on the imaginary axis with

Aℓ+1(t) →
{

0 as t → −∞,

2π as t → ∞.

The important consequence of this additional term is that as t → ∞

A(t) → 2(ℓ+ 1)π − 2l

t
− 1

t
.

Therefore

B(t) + 2ℓπ −A(t) → 2(ℓ+ 1/2 −m)

t

and, in order to obtain a point t̃ℓ+1 in Iℓ+1 = [tℓ+1,∞) where

B(t̃ℓ+1) + 2lπ −A(t̃ℓ+1) = 0 ,

a point which is needed to locate a further zero of Q2 on the imaginary axis, we require
m > l + 1/2.

Remark 3.1. Theorems 1.1 and 1.2 apply more generally than we will need in that
they apply to any polynomials having all their zeros on the imaginary axis whereas
we will only be concerned with odd or even polynomials with real coefficients. They
do not tell us what happens in Theorem 1.1 if 0 < m < l and in Theorem 1.2 if
0 < m < l+1/2. In some cases the polynomials Q1 and Q2 may still have all zeros on
the imaginary axis. For example for the polynomial P (z) = z − ı, whose only zero is
on the imaginary axis, we have Q1(z) = −2mı + 2(m − 1)z and so Q1 has a zero on
the imaginary axis, at ı/(m − 1), for all values of m except m = 1 in which case Q1

has no zeros.

Remark 3.2. We also note that for m < 0, both Theorems 1.1 and 1.2 may be proved
without using the argument equality (3.3). If P (z) = c(z − ıa1)(z − ıa2) · · · (z − ıaℓ),
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is a polynomial with all zeros on the imaginary axis, where c 6= 0 is a constant, and if
z0 is a zero of

Q1(z) = (m− z)P (z + 1) + (m+ z)P (z − 1),

then

|(m− z0)||(z0 − (ıa1 − 1))||(z0 − (ıa2 − 1))| · · · |(z0 − (ıaℓ − 1))|
= |(m+ z0)||(z0 − (ıa1 + 1))||(z0 − (ıa2 + 1))| · · · |(z0 − (ıaℓ + 1))| .

Now if m < 0 then all the points m, (ıa1 − 1), (ıa2 − 1), · · · , (ıaℓ − 1) lie to the left
of the imaginary axis and −m, (ıa1 − 1), (ıa2 − 1), · · · , (ıaℓ − 1) to the right so that
unless z0 is on the imaginary axis the above equality of the moduli cannot be satisfied.
This is similar to the Lemma in Section 10.23 of Titchmarsh [12]. The same argument
will not work for all m because for example if P (z) = z2 + 1, where both zeros are
imaginary, then for the case m = 1

Q1(z) = (m− z)P (z + 1) + (m+ z)P (z − 1) = 4− 2z2,

which has zeros at z = ±
√
2, which are not on the imaginary axis. Whilst for m = 3,

we have Q1(z) = 12 + 2z2, whose zeros are ±ı
√
6, in accordance with Theorem 1.1.

In the following section we consider the choice of generalised Mellin transform, before
applying the theory developed to the Gegenbauer family of orthogonal polynomials in
Section 5.

4. The choice of generalised Mellin transform

We introduce a generalised Mellin transform of the form

M(f)(s) =

∫ b

a
m(x)xs−1f(x) dx, (4.1)

where the function m and the limits of integration will be chosen to provide a simple
functional recurrence relation for the transformed functions. Put

Mn(s) =

∫ b

a
m(x)xs−1Pn(x) dx.

Applying the transform (4.1) to equation (2.1), we obtain, after integration by parts,

(n+ 1)Mn+1(s) = −(−an + s+ 1)Mn(s+ 1) + (s− 1)Mn(s− 1)

−
∫ b

a

d

dx

(

m(x)xs−1(1− x2)Pn(x)
)

dx+

∫ b

a
m′(x)(1 − x2)xs−1Pn(x) dx . (4.2)

We choose the limits of integration a = 0, b = 1 so that the first integral vanishes.
There are already terms Mn(s+ 1) and Mn(s− 1) on the right hand side of equation

9



(4.2) and the second integral will provide similar terms if we choose m so that

m′(x)(1 − x2) =
(

αx+
β

x

)

m(x), (4.3)

where α and β are constants. With this choice the second integral becomes

∫ 1

0

(

αx+
β

x

)

m(x)xs−1Pn(x) dx = αMn(s+ 1) + βMn(s− 1)

and equation (4.2) becomes

(n+ 1)Mn+1(s) = (α+ an − s− 1)Mn(s+ 1) + (s− 1 + β)Mn(s− 1) . (4.4)

The solution of the differential equation (4.3) for m is

m(x) =
Cxβ

(1− x2)
α+β

2

,

where C is a constant and our Mellin transform is

Mn(s) =

∫ 1

0

Cxβ+s−1

(1− x2)
α+β

2

Pn(x) dx .

The constant C may be set to 1, as it appears in every term and may be cancelled,
and β to 0 as the effect of β is simply to translate s to s+β. We will look at the choice
of α in Section 5. With these choices we have

Mn(s) =

∫ 1

0

xs−1

(1− x2)
α

2

Pn(x) dx ,

and the recurrence relation for the Mellin transforms given in (4.4) becomes

(n+ 1)Mn+1(s) = (α+ an − s− 1)Mn(s + 1) + (s − 1)Mn(s − 1) . (4.5)

Next consider the generalised Mellin transforms of the {P}∞n=0, which as already
remarked at the end of section 2 are alternatively even or odd, taking the case of even
n with n = 2m first. Here we have

P2m(x) = a2m, 2m x2m + a2m−2,2m x2m−2 + · · ·+ a2j, 2m x2j + · · ·+ a0, 2m .

The generalised Mellin transform is linear so we look at the transforms of powers of
x. Using

∫ 1

0
x2a(1− x2)b dx =

Γ(a+ 1/2)Γ(b + 1)

2Γ(a+ b+ 3/2)

we obtain the transform of x2j

∫ 1

0

xs−1x2j

(1− x2)α/2
dx =

Γ(s/2 + j)Γ(−α/2 + 1)

2Γ((s − α)/2 + j + 1)
.
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We now wish to express the value of this integral as a product of a polynomial in s
multiplied by Gamma functions of s that depends only on α and m = n/2. We use
the functional equation for the Gamma function Γ(s+ 1) = sΓ(s) to obtain

Γ(s/2 + j) = fj,1(s)Γ(s/2) ,

where fj,1(s) = (s/2 + j − 1)(s/2 + j − 2) · · · (s/2) and

Γ((s− α)/2 + j + 1)) =
Γ((s− α)/2 +m+ 1))

fj,2(s)
,

where fj,2(s) = ((s − α)/2 + j + 1)(s − α)/2 + j + 2) · · · (s − α)/2 + m). Hence the
generalised Mellin transform of x2j is of the form

∫ 1

0

xs−1x2j

(1− x2)α/2
dx =

fj,1(s)fj,2(s)Γ(s/2)Γ(−α/2 + 1)

2Γ((s− α)/2 +m+ 1)
.

This holds for each term in the generalised Mellin transform of Pn and so this may be
written as

Mn(s) =

∫ 1

0

xs−1Pn(x)

(1− x2)α/2
dx =

pn(s)Γ(s/2)Γ(−α/2 + 1)

2Γ((s + n− α)/2 + 1)
, (4.6)

where pn(s) is a polynomial in s obtained from the fj,1(s), fj,2(s) and the coefficients
a2j, 2m, where j = 0, · · · ,m

For the case of odd n = 2m+ 1 we have

P2m+1(x) = a2m+1, 2m+1x
2m+1+a2m−1, 2m+1x

2m−1+· · ·+a2j+1, 2m+1x
2j+1+· · ·+a1, 2m+1x

and it may similarly be shown

Mn(s) =
pn(s)Γ((s + 1)/2)Γ(−α/2 + 1)

2Γ((s + n− α)/2 + 1)
. (4.7)

We take equations (4.6) and (4.7) as the definitions of the polynomial fam-
ily {pn}∞n=0.

We now return to the functional recurrence relation given in (4.5), and substitute
the above expressions for Mn. For the case of even n, so n+ 1 is odd, we have

Mn+1(s) =
pn+1(s)Γ((s+ 1)/2)Γ(−α/2 + 1)

2Γ((s + n+ 1− α)/2 + 1)
,

Mn(s+ 1) =
pn(s+ 1)Γ((s + 1)/2)Γ(−α/2 + 1)

2Γ((s+ n+ 1− α)/2 + 1)
,

Mn(s− 1) =
pn(s− 1)Γ((s − 1)/2)Γ(−α/2 + 1)

2Γ((s+ n− 1− α)/2 + 1)
.

Using Γ((s− 1)/2) = Γ((s+1)/2)
(s−1)/2 , and Γ((s + n− 1− α)/2 + 1) = Γ((s+n+1−α)/2+1)

(s+n−1−α)/2+1 , we
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can rewrite Mn(s− 1) as

Mn(s− 1) =
pn(s − 1)((s + n+ 1− α))Γ((s + 1)/2)Γ(−α/2 + 1)

2(s − 1)Γ((s + n+ 1− α)/2 + 1)
. (4.8)

All three terms Mn+1(s), Mn(s+ 1), Mn(s− 1) now have the same Gamma function
factors and so, after substituting into (4.5) and cancellation, for the case of n even we
find that

(n+ 1)pn+1(s) = (α+ an − s− 1)pn(s+ 1) + (s+ n+ 1− α)pn(s− 1) . (4.9)

For the case of odd n, so n+ 1 is even, we have

Mn+1(s) =
pn+1(s)Γ(s/2)Γ(−α/2 + 1)

2Γ((s + n+ 1− α)/2 + 1)
,

Mn(s+ 1) =
pn(s+ 1)Γ(s/2 + 1)Γ(−α/2 + 1)

2Γ((s+ n+ 1− α)/2 + 1)
,

Mn(s− 1) =
pn(s− 1)Γ(s/2)Γ(−α/2 + 1)

2Γ((s + n− 1− α)/2 + 1)
.

As above we use the functional equation for the Gamma function to give all three
terms Mn+1(s), Mn(s+ 1), Mn(s− 1) the same Gamma function factors and so after
substituting into (4.5) and cancellation, for the case n odd we have that

(n+1)pn+1(s) =
s

2
(α+an− s− 1)pn(s+1)+

(s− 1)

2
(s+n+1−α)pn(s− 1) . (4.10)

We are interested in the case where these polynomials have zeros on the critical
line. For simplicity we will look at the polynomials qn defined by

qn(s) = pn

(

s+
1

2

)

which, for n even, satisfy

(n+ 1)qn+1(s) =
(

α+ an − 3

2
− s

)

qn(s+ 1) +
(

−α+ n+
3

2
+ s

)

qn(s − 1) (4.11)

and for n odd (n+ 1)qn+1(s) =

(

α+ an − 3

2
− s

)(2s + 1

4

)

qn(s+ 1) +
(

−α+ n+
3

2
+ s

)(2s− 1

4

)

qn(s− 1). (4.12)

5. Transforms of Gegenbauer Polynomials

The Gegenbauer polynomials [2,5,10,15] obey the differential-difference equation

(n+ 1)Cλ
n+1(x) = (n+ 2λ)xCλ

n(x)− (1− x2)Cλ ′

n (x) , (5.1)
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where Cλ
0 (x) = 1, λ > −1/2, λ 6= 0. This is (2.1) with an = n+2λ. Using the generalised

Mellin transform of Section 3 we have

M0(s) =

∫ 1

0

xs−1

(1− x2)
α

2

Cλ
0 dx =

Γ(s/2)Γ(−α/2 + 1)

2Γ((s− α)/2 + 1)
,

and from (4.6) we see that p0 is also the constant polynomial p0(s) = 1. Using (4.9)
and (4.10), we obtain the functional recurrence relations for the polynomial factors
pn(s). For n even we have

(n+ 1)pn+1(s) = (n+ 2λ+ α− s− 1)pn(s+ 1) + (n− α+ s+ 1)pn(s− 1), (5.2)

and for n odd

(n+1)pn+1(s) = (n+2λ+α−s−1)
(s

2

)

pn(s+1)+(n−α+s+1)
(s− 1

2

)

pn(s−1) . (5.3)

These give p1(s) = 2λ, and p2(s) =
λ
2 (s(2λ+ 1) + α− 2) . Because λ > −1/2 we have

1 + 2λ 6= 0, and so p2 has one zero at 2−α
1+2λ , which will be on the critical line provided

that α = 3/2 − λ .
This completes the definition of our generalised Mellin transform which now becomes

Mn(s) =

∫ 1

0

xs−1

(1− x2)3/4−λ/2
Pn(x) dx .

The integral in the definition of the generalised Mellin transform converges because
we have λ > −1/2.

We may now use Theorems 1.1 and 1.2 to prove that all the zeros of all pnwill also
lie on the critical line. We do this using the simpler polynomials qn(z) = pn

(

z + 1
2

)

,
which obey, (4.11) for n even and (4.12) for n odd. Setting an = n+ 2λ, α = 3/2 − λ
and mn = n+ λ in (4.11) and (4.12) we obtain for n even,

(n+ 1)qn+1(z) = (mn − z) qn(z + 1) + (mn + z) qn(z − 1), (5.4)

and for n odd

(n+1)qn+1(z) = (mn − z)

(

2z + 1

4

)

qn(z+1)+ (mn + z)

(

2z − 1

4

)

qn(z− 1) , (5.5)

which exhibit the structure of the forms used in Theorems 1.1 and 1.2.
We need to show that the degree of qn is n/2 when n is even and (n− 1)/2 when n

is odd. The first four qn are

q0(z) = 1 , q1(z) = 2λ q2(z) =
λ

2
(2λ+ 1)z , q3(z) =

λ

3
(λ+ 1)(2λ + 1)z ,

and have degree 0 , 0 , 1 , 1 , as given above. If k is even assume qk has degree k/2 then,
as shown in the course of the proof of Theorem 1.1, qk+1 will also have degree k/2
provided mk − k/2 6= 0. Similarly if k is odd assume qk has degree (k − 1)/2 then
qk+1 will have degree (k− 1)/2 + 1 provided mk − (k− 1)/2− 1/2 6= 0, which is again
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mk − k/2 6= 0. This condition is satisfied for all k > 1 because mk = k + λ and and
λ > −1/2.

All the zeros of the above four polynomials are on the imaginary axis. For the case
k even assume qk has all its zeros on the imaginary axis, then, from Theorem 1.1, so
will qk+1 provided that mk > k/2 which is satisfied for all k ≥ 1. For the case k odd
assume qk has all its zeros on the imaginary axis, then, from Theorem 1.2, so will qk+1

provided that mk > (k − 1)/2 + 1/2 which is satisfied for all k ≥ 1. Thus we have
proved

Theorem 5.1. The polynomial factors of the generalised Mellin transforms of the

Gegenbauer polynomials have all their zeros on the critical line.

6. Conclusion and further work

In the above we showed that the polynomials {pn(s)}∞n=0, arising from generalised
Mellin transforms of the Gegenbauer polynomials have the interesting property that
all their zeros lie on the critical line. We have observed that these zeros appear to obey
an interlacing property similar to that of the real zeros of orthogonal polynomials with
regard to their positions on the critical line (a possible area for future investigation).

The interplay between the three term recurrence relation satisfied by families of
orthogonal polynomials (see Favard’s Theorem, p21 [6]) and our first order differential-
difference relation (2.1) can be viewed as reciprocal operators. Here (2.1) represents
the raising operator of the form Cn = (1− x2)D − anxI (see [16]), whereas the three
term recurrence relation yields a lowering operator. Consequently it can be shown
that these are semiclassical orthogonal polynomials, studied in [17,18], among others,
from a structural point of view and in [19,20], from the point of view of holonomic
equations.

In this work our fundamental motivation has been to understand polynomial trans-
formations in terms of their zeros, such as those given in Theorems 1.1 and 1.2, and
also the generalised Mellin transform considered here. An area of interest for future
investigation is that between the Mellin transformed polynomials having critical zeros
and the coefficients of the orthogonal polynomial families in the three-term recurrence
relation.
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