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Abstract

Spectral measures provide invariants for braided subfactors via fusion modules.
In this paper we study joint spectral measures associated to the compact connected
rank two Lie group SO(5) and its double cover the compact connected, simply-
connected rank two Lie group Sp(2), including the McKay graphs for the irreducible
representations of Sp(2) and SO(5) and their maximal tori, and fusion modules
associated to the Sp(2) modular invariants.

1 Introduction

Spectral measures associated to the compact Lie groups SU(2), SU(3) and G2, their
maximal tori, nimrep graphs associated to the SU(2), SU(3) and G2 modular invariants,
and the McKay graphs for finite subgroups of SU(2), SU(3) and G2 were studied in
[1, 22, 23, 25, 26]. Spectral measures associated to other compact rank two Lie groups
and their maximal tori are studied in [27].

For the SU(2) and SU(3) graphs, the spectral measures distill onto very special sub-
sets of the semicircle/circle for SU(2) (which are both one-dimensional spaces) and dis-
coid/torus for SU(3) (which are both two-dimensional spaces), and the theory of nimreps
allowed us to compute these measures precisely. Our methods gave an alternative ap-
proach to deriving the results of Banica and Bisch [1] for ADE graphs and subgroups
of SU(2), and explained the connection between their results for affine ADE graphs and
the Kostant polynomials. In the case of G2, the spectral measures distill onto subsets
of R and the torus T

2, which are one-dimensional and two-dimensional respectively, re-
sulting in an infinite family of pullback measures over T2 for any spectral measure on R.
This ambiguity was removed by considering instead joint spectral measures for pairs of
graphs corresponding to the two fundamental representations of G2. Such joint spectral
measures, which have support in R

2, yield a unique pullback measure over T
2, and the

spectral measures are obtained as pushforward measures.
In this paper we study spectral measures for the compact, connected, simply-connected

rank two Lie group Sp(2), the group of 4 × 4 unitary symplectic matrices with entries
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in C. We also study spectral measures for the (non-simply-connected) compact rank
two Lie group SO(5), the group of 5 × 5 real orthogonal matrices, whose double cover
is Sp(2). In particular we determine the joint spectral measures associated to the Lie
groups themselves and their maximal tori, and joint spectral measures for nimrep graphs
associated to the Sp(2) modular invariants.

In C2 = sp(2) (the Lie algebra of Sp(2)) conformal field theories, one considers the
Verlinde algebra at a finite level k, which is represented by a non-degenerately braided
system NXN of irreducible endomorphisms on a type III1 factor N , whose fusion rules
{Nµ

λν} reproduce exactly those of the positive energy representations of the loop group
of Sp(2) at level k, NλNµ =

∑
ν N

µ
λνNν . The statistics generators S, T for the braided

tensor category NXN match exactly those of the Kac̆-Peterson modular S, T matrices
which perform the conformal character transformations (see footnote 2 in [6]). The fusion
graph for these irreducible endomorphisms are truncated versions of the representation
graphs of Sp(2) itself (see Section 4.1). From the Verlinde formula (1) we see that this
family {Nλ} of commuting normal matrices can be simultaneously diagonalised:

Nλ =
∑

σ

Sσ,λ

Sσ,0

SσS
∗
σ, (1)

where the summation is over each σ ∈ NXN and 0 is the trivial representation. It is
intriguing that the eigenvalues Sσ,λ/Sσ,0 and eigenvectors Sσ = {Sσ,µ}µ are described by
the modular S matrix.

A braided subfactor is an inclusion N ⊂ M where the dual canonical endomorphism
decomposes as a finite combination of endomorphisms in NXN , and yields a modular
invariant partition function through the procedure of α-induction which allows two ex-
tensions of λ on N , depending on the use of the braiding or its opposite, to endomorphisms
α±
λ ∈ MX±

M ofM , so that the matrix Zλ,µ = 〈α+
λ , α

−
µ 〉 is a modular invariant [8, 5, 18]. The

systems MX±
M are called the chiral systems, whilst the intersection MX 0

M = MX+
M ∩MX−

M

is the neutral system. Then MX 0
M ⊂ MX±

M ⊂ MXM , where MXM ⊂ End(M) denotes a
system of endomorphisms consisting of a choice of representative endomorphisms of each
irreducible subsector of sectors of the from [ιλι], λ ∈ NXN , where ι : N →֒M is the inclu-
sion map. Although NXN is assumed to be braided, the systems MX±

M or MXM are not
braided in general. The action of the N -N sectors NXN on the M -N sectors MXN and
produces a nimrep (non-negative integer matrix representation of the original Verlinde
algebra) Gλ = (〈ξλ, ξ′〉)ξ,ξ′∈MXN

, i.e. GλGµ =
∑

ν N
µ
λνGν whose spectrum reproduces ex-

actly the diagonal part of the modular invariant [9]. In the case of the trivial embedding
of N in itself, the nimrep G is simply the trivial representation N . Since the nimreps are
a family of commuting matrices, they can be simultaneously diagonalised and thus the
eigenvectors ψσ of Gλ are the same for each λ ∈ NXN . We have

Gλ =
∑

σ

Sσ,λ

Sσ,0

ψσψ
∗
σ, (2)

where the summation is over each σ ∈ NXN with multiplicity given by the modular
invariant, i.e. the spectrum of Gλ is given by {Sσ,λ/Sσ,0 with multiplicity Zσ,σ}. We call
the set {µ with multiplicity Zµ,µ} the set of exponents of G.

Along with the identity invariants for Sp(2), there are orbifold invariants for all levels
k [2]. There are three exceptional invariants due to conformal embeddings at levels 3,
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7, 12 [12], (Sp(2))3 ⊂ (SO(10))1, (Sp(2))7 ⊂ (SO(14))1 and (Sp(2))12 ⊂ (E8)1. These
three conformal embedding invariants correspond to type I extensions in [11, 5] and this
list is complete by recent work of Gannon [30]. Type II extensions arise from extensions
of the nets without locality. In general [5] for a physical modular invariant Z there are
local chiral extensions N(I) ⊂M+(I) and N(I) ⊂M−(I) with local Q-systems naturally
associated to the vacuum column {Zλ,0} and vacuum row {Z0,λ} respectively. These
extensions are indeed maximal and should be regarded as the subfactor version of left and
right maximal extensions of the chiral algebra. The representation theories or modular
tensor categories ofM± are then identified. For example, the E7 conformal net or module
category is then a twist or auto-equivalence on the local D10 extension which form the
type I parents. This reduces the analysis to understanding first local extensions and then
classifying auto-equivalences to identify the two left and right local extensions. Schopieray
[38], using α-induction, found bounds for levels of exceptional invariants for rank 2 Lie
groups, and Gannon [30] extended this for higher rank with improved lower bounds using
Galois transformations as a further tool. Edie-Michell has undertaken extensive studies
of auto-equivalences [16]. There is an exceptional Type II invariant at level 8 [42] which
is a twist of the orbifold invariant at level 8. These are all the known Sp(2) modular
invariants.

This paper is organised as follows. In Section 2 we describe the representation theory
of Sp(2) and SO(5), and their maximal torus T

2, and in particular focus on their fun-
damental representations. In Sections 2.1-2.3 we determine the (joint) spectral measures
associated to the (adjacency matrices of the) McKay graphs given by the action of the
irreducible characters of Sp(2) on its maximal torus T

2, and the analogous results for
SO(5). In Section 3 we determine the (joint) spectral measures associated to the (adja-
cency matrices of the) McKay graphs of Sp(2) and SO(5) themselves. In all these cases
we focus on the fundamental representations of Sp(2), SO(5) respectively, and determine
these (joint) spectral measures over both T

2 and the (joint) spectrum of these adjacency
matrices. Finally in Section 4 we determine joint spectral measures over T

2 for nimrep
graphs arising from Sp(2) braided subfactors.

2 Spectral measures for WA∞(Sp(2)), WA∞(SO(5))

The irreducible representations λ(µ1,µ2) of Sp(2) are indexed by pairs (µ1, µ2) ∈ N
2 such

that µ1 ≥ µ2. Let the fundamental representation ρx = λ(1,0) be the standard represen-
tation of Sp(2), ρx(Sp(2)) = Sp(2), the group of 4 × 4 unitary symplectic matrices with
entries in C. The maximal torus of Sp(2) is T = diag(t1, t2, t

−1
1 , t−1

2 ), for ti ∈ T, which is
isomorphic to T

2, so that the restriction of ρx to T
2 is given by the 4× 4 diagonal matrix

(ρx|T2)(ω1, ω2) = diag(ω1, ω2, ω
−1
1 , ω−1

2 ), (3)

for (ω1, ω2) ∈ T
2.

Let the fundamental representation ρy = λ(1,1) be the standard representation of
SO(5), ρy(Sp(2)) = SO(5), the group of 5 × 5 real orthogonal matrices. The restric-
tion of ρy to T

2 is given by the 5× 5 diagonal matrix

(ρy|T2)(ω1, ω2) = diag(ω1ω2, ω
−1
1 ω−1

2 , ω1ω
−1
2 , ω−1

1 ω2, 1), (4)
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Figure 1: Multiplication by χρx |T2 , χρy |T2 and χρz |T2

for (ω1, ω2) ∈ T
2.

The irreducible representations of SO(5) are given by the representations λ(µ1,µ2) of
Sp(2) for which µ1+µ2 is even. In order to study spectral measures associated to SO(5),
we take ρy and a second fundamental representation ρz = λ(2,0) of SO(5), which is the
adjoint representation of Sp(2) of dimension 10. The restriction of ρz to T

2 is given by
the 10× 10 diagonal matrix

(ρz|T2)(ω1, ω2) = diag(ω2
1, ω

2
2, ω

−2
1 , ω−2

2 , ω1ω2, ω1ω
−1
2 , ω−1

1 ω2, ω
−1
1 ω−1

2 , 1, 1), (5)

for (ω1, ω2) ∈ T
2.

Let {χ(µ1,µ2)}µ1,µ2∈N:µ1≥µ2 , {σ(µ1,µ2)}µ1,µ2∈Z be the irreducible characters of Sp(2), T2

respectively, where χ(µ1,µ2) := χλ(µ1,µ2)
. The characters χ(µ1,µ2) of Sp(2) are self-conjugate

and thus are maps from the torus T2 to an interval Iµ := χµ(T
2) ⊂ R. For ωi ∈ T, µi ∈ Z,

the characters of T2 are given by σ(µ1,µ2)(ω1, ω2) = ωµ1

1 ω
µ2

2 , and satisfy σ(µ1,µ2) = σ(−µ1,−µ2).
If σu is the restriction of χρu to T

2, u = x, y, z, then from (3)-(5)

σx = χ(1,0)|T2 = σ(1,0) + σ(−1,0) + σ(0,1) + σ(0,−1), (6)

σy = χ(1,1)|T2 = σ(0,0) + σ(1,1) + σ(−1,−1) + σ(1,−1) + σ(−1,1), (7)

σz = χ(2,0)|T2 = 2σ(0,0) + σ(2,0) + σ(−2,0) + σ(0,2) + σ(0,−2) + σ(1,1) + σ(−1,−1) + σ(1,−1) + σ(−1,1).
(8)

Then
σxσ(µ1,µ2) = σ(µ1+1,µ2) + σ(µ1−1,µ2) + σ(µ1,µ2+1) + σ(µ1,µ2−1), (9)

for any µ1, µ2 ∈ Z, where multiplication by σx = χρx |T2 corresponds to the edges illustrated
in the first diagram in Figure 1. The representation graph of T2 for the first fundamental
representation ρx is identified with the infinite graph WAρx

∞(Sp(2)), which is the first figure
illustrated in Figure 2, whose vertices may be labeled by pairs (µ1, µ2) ∈ Z

2 such that
there is an edge from (µ1, µ2) to (µ1 + 1, µ2), (µ1 − 1, µ2), (µ1, µ2 + 1) and (µ1, µ2 − 1).

Similarly, the representation graph of T2 for the irreducible representations ρy, ρz are
identified with the infinite graphs WAρy

∞(Sp(2)) and WAρz
∞(Sp(2)), which are the second,

third figures illustrated in Figure 2 respectively, where multiplication by σy = χρy |T2 ,
σz = χρz |T2 corresponds to the edges illustrated in the second, third diagram respectively
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Figure 2: Infinite graphs WAρx
∞(Sp(2)), WAρy

∞(Sp(2)) and WAρz
∞(Sp(2))

in Figure 1. Both these graphs are in fact a disjoint union of two infinite graphs, coloured
black, grey respectively, whose vertex sets consists of all λ such that λ1 + λ2 is even, odd
respectively. These graphs WAρ

∞(Sp(2)) are essentially W -unfolded versions of the graphs
Aρ

∞(Sp(2)) (see Figures 11-14), where W denotes the Weyl group D8 of Sp(2).
We consider first the fixed point algebra of

⊗
N
M4,

⊗
N
M5,

⊗
N
M10 under the conju-

gate action of the torus T2 given by the restrictions of ρx, ρy, ρz respectively to T
2 given

in (3), (4), (5) respectively. Here T
2 acts by conjugation on each factor in the infinite

tensor product. Thus by [19, §3.5] we have (
⊗

N
M4)

T2 ∼= A(WAρx
∞(Sp(2))), (

⊗
N
M5)

T2 ∼=
A(WAρy

∞(Sp(2))) and (
⊗

N
M10)

T2 ∼= A(WAρz
∞(Sp(2))). Here A(G) = ⋃

k A(G)k is the path
algebra of the graph G, where A(G)k is the algebra generated by pairs (η1, η2) of paths
from the distinguished vertex ∗ such that the ranges r(η1) and r(η2) are equal, and
|η1| = |η2| = k, with multiplication defined by (η1, η2) · (η′1, η′2) = δη2,η′1(η1, η

′
2).

We now define commuting self-adjoint operators which may be identified with the
adjacency matrix of WAρu

∞(Sp(2)). We define operators vuZ in ℓ2(Z)⊗ ℓ2(Z), for u = x, y, x,
by

vxZ = s⊗ 1 + s∗ ⊗ 1 + 1⊗ s+ 1⊗ s∗, (10)

vyZ = 1⊗ 1 + s⊗ s+ s∗ ⊗ s∗ + s⊗ s∗ + s∗ ⊗ s, (11)

vzZ = 2(1⊗ 1) + s2 ⊗ 1 + (s∗)2 ⊗ 1 + 1⊗ s2 + 1⊗ (s∗)2 + s⊗ s+ s∗ ⊗ s∗ + s⊗ s∗ + s∗ ⊗ s,
(12)

where s is the bilateral shift on ℓ2(Z). Let Ω denote the vector (δi,0)i. Then vuZ is
identified with the adjacency matrix of WAρu

∞(Sp(2)), u = x, y, z, where we regard the
vector Ω ⊗ Ω as corresponding to the vertex (0, 0) of WAρu

∞(Sp(2)), and the operators of
the form sl⊗sm which appear as terms in vuZ as corresponding to the edges on WAρu

∞(Sp(2)).
Then (sλ1⊗sλ2)(Ω⊗Ω) corresponds to the vertex (λ1, λ2) of

WAρu
∞(Sp(2)) for any λ1, λ2 ∈ Z,

and applying (vuZ)
m to Ω⊗Ω gives a vector y = (y(λ1,λ2)) in ℓ

2(WAρu
∞(Sp(2))), where y(λ1,λ2)

gives the number of paths of length m on WAρu
∞(Sp(2)) from (0, 0) to the vertex (λ1, λ2).

We define a state ϕ on C∗(vuZ) by ϕ( · ) = 〈 · (Ω ⊗ Ω),Ω ⊗ Ω〉. We use the notation
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(a1, a2, . . . , ak)! to denote the multinomial coefficient (
∑k

i=1 ai)!/
∏k

i=1(ai!). Then

ϕ((vuZ)
m) =

∑

ki≥0∑
i ki≤m

(k1, . . . , kl(u),m−
∑

i

ki)! ϕ(s
ru1 ⊗ sr

u
2 )

=
∑

ki≥0∑
i ki≤m

(k1, . . . , kl(u),m−
∑

i

ki)! δru1 ,0 δru2 ,0,

where l(u) = 3, 4, 9 for u = x, y, z respectively, and

rx1 = k1 − k2, rx2 = k1 + k2 + 2k3 −m, (13)

ry1 = k1 − k2 + k3 − k4, ry2 = k1 − k2 − k3 + k4, (14)

rz1 = 2k1 − 2k2 + k5 + k6 − k7 − k8, rz2 = 2k3 − 2k4 + k5 − k6 + k7 − k8, (15)

When u = x, we get a non-zero contribution when k2 = k1 and k3 = −k1 +m/2. So we
obtain

ϕ((vxZ)
m) =

∑

k1

(k1, k1,−k1 +m/2,−k1 +m/2)! (16)

where the summation is over all integers 0 ≤ k1 ≤ m/2. When u = y, we get a non-zero
contribution when k2 = k1 and k4 = k3. So we obtain

ϕ((vyZ)
m) =

∑

k1,k3

(k1, k1, k3, k3,m− 2k1 − 2k3)! (17)

where the summation is over all integers k1, k3 ≥ 0 such that 2k1+2k3 ≤ m. When u = z,
we get a non-zero contribution when k7 = k1−k2+k3−k4+k5 and k8 = k1−k2−k3+k4+k6.
So we obtain

ϕ((vzZ)
m) =

∑

ki

(k1, k2, k3, k4, k5, k6, p1, p2, k9,m−3k1+k2−k3−k4−2k5−2k6−k9)! (18)

where p1 = k1 − k2 + k3 − k4 + k5, p2 = k1 − k2 − k3 + k4 + k6, and the summation is over
all integers k1, k2, . . . , k6, k9 ≥ 0 such that 3k1 − k2 + k3 + k4 + 2k5 + 2k6 + k9 ≤ m.

2.1 Joint spectral measure for WA∞(Sp(2)), WA∞(SO(5)) over T
2

The ranges of the restrictions (6)-(8) of the characters χρu of the irreducible representa-
tions ρu of Sp(2) to T

2, for u = x, y, z, are given by Ix := {2Re(ω1) + 2Re(ω2)|ω1, ω2 ∈
T} = [−4, 4], Iy := {1 + 2Re(ω1ω2) + 2Re(ω1ω

−1
2 )|ω1, ω2 ∈ T} = [−3, 5] and Iz :=

{2 + 2Re(ω2
1) + 2Re(ω2

2) + 2Re(ω1ω2) + 2Re(ω1ω
−1
2 )|ω1, ω2 ∈ T} = [−2, 10]:

χρx(ω1, ω2) = ω1 + ω−1
1 + ω2 + ω−1

2 = 2 cos(2πθ1) + 2 cos(2πθ2), (19)

χρy(ω1, ω2) = 1 + ω1ω2 + ω−1
1 ω−1

2 + ω1ω
−1
2 + ω−1

1 ω2

= 1 + 2 cos(2π(θ1 + θ2)) + 2 cos(2π(θ1 − θ2)), (20)

χρz(ω1, ω2) = χρx(ω1, ω2)
2 − χρy(ω1, ω2)− 1

= 2 + 2 cos(4πθ1) + 2 cos(4πθ2) + 2 cos(2π(θ1 + θ2)) + 2 cos(2π(θ1 − θ2)),
(21)
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where ωj = e2πiθj ∈ T for θj ∈ [0, 1], j = 1, 2. We will write x, y, z for the elements
χρx(ω1, ω2), χρy(ω1, ω2), χρz(ω1, ω2) respectively. Since the spectrum σ(s) of s is T, the
spectrum σ(vuZ) of v

u
Z is Iu, u = x, y, z.

The Weyl group of Sp(2) is the dihedral group D8 of order 8. If we consider D8 as the
subgroup of GL(2,Z) generated by the matrices T2, T4, of orders 2, 4 respectively, given
by

T2 =

(
0 1
1 0

)
, T4 =

(
0 1
−1 0

)
, (22)

then the action of D8 on T
2 given by T (ω1, ω2) = (ωa11

1 ωa12
2 , ωa21

1 ωa22
2 ), for T = (ail) ∈ D8,

leaves χρu(ω1, ω2) invariant, for u = x, y, z. Then for u = x, y, z, any D8-invariant measure
ε on T

2 produces a probability measure µu on Iu by

∫

Iu

ψ(x)dµu(x) =

∫

T2

ψ(χρu(ω1, ω2))dε(ω1, ω2), (23)

for any continuous function ψ : Iu → C, where dε(ω1, ω2) = dε(g(ω1, ω2)) for all g ∈ D8.
There is a loss of dimension here, in the sense that the integral on the right hand side is
over the two-dimensional torus T2, whereas the spectrum of WAρu

∞(Sp(2)) is real and lives
on the interval Iu. We introduce an intermediate probability measure ν in Section 2.2
which lives over the joint spectrum Dλ,µ ⊂ Iλ × Iµ ⊂ R

2 for irreducible representations λ,
µ, where there is no loss of dimension.

The spectral measure on T
2 for the graph WAρu

∞(Sp(2)) is easily seen to be the uniform
Lebesgue measure dε(ω1, ω2) = dω1 dω2/4π

2 for u = x, y, z, since the mth moment is given
by

1

4π2

∫

T2

(χρu(ω1, ω2))
mdω1 dω2 =

1

4π2

∑

ki≥0∑
i ki≤m

(k1, k2, . . . , kl(u),m−
∑

i

ki)!

∫

T2

ω
ru1
1 ω

ru2
2 dω1 dω2

=
∑

ki≥0∑
i ki≤m

(k1, k2, . . . , kl(u),m−
∑

i

ki)! δru1 ,0 δru2 ,0,

where ru1 , r
u
2 are as in (13)-(15) and l(u) = 3, 4, 9 for u = x, y, z respectively, which is

equal to ϕ((vuZ)
m) given in (16)-(18).

A fundamental domain C of T2 under the action of the dihedral group D8 is illustrated
in Figure 3, where the axes are labelled by the parameters θ1, θ2 in (e2πiθ1 , e2πiθ2) ∈ T

2.
In Figure 3, the lines θ1 = 0 and θ2 = 0 are also boundaries of copies of the fundamental
domain C under the action of D8. The torus T2 contains 8 copies of C, so that

∫

T2

φ(ω1, ω2)dε(ω1, ω2) = 8

∫

C

φ(ω1, ω2)dε(ω1, ω2), (24)

for any D8-invariant function φ : T2 → C. The fixed points of T2 under the action of
D8 are the points (1, 1) and (−1,−1), which map to the points 4, −4 respectively in
the interval Ix, whilst both map to the points 5, 10 in the intervals Iy, Iz respectively.
The point (−1, 1) (and its orbit under D8) maps to 0, −3, 2 in the intervals Ix, Iy, Iz
respectively.
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Figure 3: A fundamental domain C of T2/D8.

2.2 Joint spectral measure for WA∞(Sp(2)), WA∞(SO(5)) on R
2

Let Ψλ,µ be the map (ω1, ω2) 7→ (xλ, xµ) = (χλ(ω1, ω2), χµ(ω1, ω2)). We denote by Dλ,µ

the image of Ψλ,µ(C) (= Ψλ,µ(T
2)) in R

2. Note that we can identify Dλ,µ with Dµ,λ by
reflecting about the line xλ = xµ. The joint spectral measure ν̃λ,µ is the measure on Dλ,µ

uniquely determined by its cross-moments ςλ,µ(m,n) =
∫
Dλ,µ

xmλ x
n
µdνλ,µ(xλ, xµ). Then

there is a unique D8-invariant pullback measure ελ,µ on T
2 such that

∫

Dλ,µ

ψ(xλ, xµ)dν̃λ,µ(xλ, xµ) =

∫

T2

ψ(χλ(ω1, ω2), χµ(ω1, ω2))dελ,µ(ω1, ω2), (25)

for any continuous function ψ : Dλ,µ → C.
Any probability measure on Dλ,µ yields a probability measure on the interval Iλ, given

by the pushforward (pλ)∗(ν̃λ,µ) of the joint spectral measure ν̃λ,µ under the orthogonal

projection pλ onto the spectrum σ(λ) = Iλ. In particular, when ψ(xλ, xµ) = ψ̃(xλ) is only
a function of one variable xλ, then

∫

Dλ,µ

ψ̃(xλ)dν̃λ,µ(xλ, xµ) =

∫

Iλ

ψ̃(xλ)

∫

Dλ,µ(xλ)

dν̃λ,µ(xλ, xµ) =

∫

Iλ

ψ̃(xλ)dνλ(xλ)

where the measure dνλ(xλ) =
∫
xµ∈Dλ,µ(xλ)

dν̃λ,µ(xλ, xµ) is given by the integral over xµ ∈
Dλ,µ(xλ) = {xµ ∈ Iµ| (xλ, xµ) ∈ Dλ,µ}. Since the spectral measure νλ over Iλ is also
uniquely determined by its (one-dimensional) moments ς̃λ(m) =

∫
Iλ
xmλ dνλ(xλ) for all

m ∈ N, one could alternatively consider the moments ςλ,µ(m, 0) to determine the measure
νλ over Iλ. For more detailed discussion on joint spectral measures in the context of
braided subfactors associated to compact connected rank two Lie groups, see e.g. [25].

In particular, we will consider the joint spectral measure of the fundamental repre-
sentations ρx and ρy of Sp(2) over Dx,y := Dρx,ρy , and the joint spectral measure of the
fundamental representations ρy and ρz of SO(5) over Dy,z := Dρy ,ρz , illustrated in Figure
4.

We first describe Dx,y. The boundaries of C given by θ2 = 0, θ1 = 1/2 respectively,
yield the lines c1, c2 respectively, whilst the boundary θ1 = θ2 of C yields the curve c3.

8



Figure 4: The domains Dx,y and Dy,z for Sp(2).

These curves are given by given by (c.f. [41, §6.3])

c1 : y = 2x− 3, c2 : y = −2x− 3, c3 : 4y = 4 + x2. (26)

For Dy,z, the boundaries of C given by θ2 = 0 and θ1 = 1/2 both yield the curve c4,
whilst the boundary θ1 = θ2 of C yields the line c5. Additionally, the line θ2 = 1/2 − θ1
which bisects C yields the third boundary of Dy,z, the line c6. These curves are given by

c4 : 4z = y2 + 2y + 5, c5 : z = 3y − 5, c6 : z = −y − 1. (27)

Note that there is a two-to-one mapping from the fundamental domain C to Dy,z.
Under the change of variables x = χρx(ω1, ω2), y = χρy(ω1, ω2), the Jacobian Jx,y =

det(∂(x, y)/∂(θ1, θ2)) is given by

Jx,y(θ1, θ2) = 8π2(cos(2π(θ1 + 2θ2)) + cos(2π(2θ1 − θ2))− cos(2π(2θ1 + θ2))

− cos(2π(θ1 − 2θ2)). (28)

The Jacobian Jx,y is real and is illustrated in Figures 5, 6, where its values are plotted
over the torus T2.

With ωj = e2πiθj , j = 1, 2, the Jacobian is given in terms of ω1, ω2 ∈ T by

Jx,y(ω1, ω2) = 8π2Re(ω1ω
2
2 + ω2

1ω
−1
2 − ω2

1ω2 − ω1ω
−2
2 )

= 4π2(ω1ω
2
2 + ω−1

1 ω−2
2 + ω2

1ω
−1
2 + ω−2

1 ω2 − ω2
1ω2 − ω−2

1 ω−1
2 − ω1ω

−2
2 − ω−1

1 ω2
2).

(29)

The Jacobian Jx,y is invariant under T 2
4 ∈ D8, but T (Jx,y) = −Jx,y for T = T2, T4. Thus

J2
x,y is invariant under the action of D8. An expression for J2

x,y in terms of the D8-invariant
variables x, y may be obtained as a product of the roots appearing as the equations of
the boundary of Dx,y in (26), and is given as (see also [41])

J2
x,y(x, y) = 16π4(y + 2x+ 3)(y − 2x+ 3)(4y − x2 − 4), (30)

9



Figure 5: The Jacobian Jx,y over T2. Figure 6: Contour plot of Jx,y over T2.

for (x, y) ∈ Dx,y. Thus we see that the Jacobian vanishes only on the boundary of Dx,y,
which is equivalent to vanishing only on the boundaries of the images of the fundamental
domain in T

2 under D8.
The factorizations of Jx,y in (30) and the equations for the boundaries of Dx,y given

in (26) will be used in Sections 2.3, 3.2 to determine explicit expressions for the weights
which appear in the spectral measures µvuZ

over Iu in terms of elliptic integrals.
Similarly, under the change of variables y = χρy(ω1, ω2), z = χρz(ω1, ω2), the Jacobian

Jy,z = det(∂(y, z)/∂(θ1, θ2)) is given by

Jy,z(θ1, θ2) = 16π2(cos(2π(θ1 − 3θ2)) + cos(2π(3θ1 + θ2))− cos(2π(θ1 + 3θ2))

− cos(2π(3θ1 − θ2)). (31)

The Jacobian Jy,z is real and is illustrated in Figures 7, 8, where its values are plotted
over the torus T2. The Jacobian is given in terms of ω1, ω2 ∈ T by

Jy,z(ω1, ω2) = 8π2(ω1ω
−3
2 +ω−1

1 ω3
2+ω

3
1ω2+ω

−3
1 ω−1

2 −ω1ω
3
2−ω−1

1 ω−3
2 −ω3

1ω
−1
2 −ω−3

1 ω2).
(32)

The Jacobian Jy,z is again invariant under T 2
4 ∈ D8, and T (Jy,z) = −Jy,z for T = T2, T4.

An expression for J2
y,z in terms of the D8-invariant variables x, y may be obtained as a

product of the roots appearing as the equations of the boundary of Dy,z in (27), and is
given as

J2
y,z(y, z) = 64π4(z − 3y + 5)(z + y + 1)(y2 + 2y + 5− 4z), (33)

for (y, z) ∈ Dy,z. Thus we see that the Jacobian vanishes only on the boundary of Dy,z,
which is equivalent to vanishing on the boundaries of the images of the fundamental
domain in T

2 under D8 as well as on the lines θ2 = 1/2 ± θ1. The lines θ2 = 1/2 ± θ1
denote the lines of reflection of the additional symmetry of χρu , which corresponds to the
fact that there is a two-to-one mapping from the fundamental domain C to Dy,z.

Note that since z = x2−y−1, we find that |Jx,y(y, z)| = 4π2
√
(z − 3y + 5)(y2 + 2y + 5− 4z),

and thus Jx,y and Jy,z are related by Jy,z(y, z) = 2
√
z + y + 1Jx,y(y, z). Thus Jx,y(y, z) is

10



Figure 7: The Jacobian Jy,z over T2. Figure 8: Contour plot of Jy,z over T
2.

zero only on the boundaries of Dy,z given by the curves c4, c5 in (27), but is not zero on
the boundary given by c6.

Since Jx,y, Jy,z are real, J
2
x,y, J

2
y,z ≥ 0 and we have the following expressions (c.f. [22, 25]

for the corresponding expressions for the Jacobian for the cases of SU(3) and G2):

Jx,y(θ1, θ2) = 8π2(cos(2π(θ1 + 2θ2)) + cos(2π(2θ1 − θ2))− cos(2π(2θ1 + θ2))

− cos(2π(θ1 − 2θ2))),

Jx,y(ω1, ω2) = 4π2(ω1ω
2
2 + ω−1

1 ω−2
2 + ω2

1ω
−1
2 + ω−2

1 ω2 − ω2
1ω2 − ω−2

1 ω−1
2 − ω1ω

−2
2 − ω−1

1 ω2
2),

|Jx,y(x, y)| = 4π2
√
(y + 2x+ 3)(y − 2x+ 3)(4y − x2 − 4),

Jy,z(θ1, θ2) = 16π2(cos(2π(θ1 − 3θ2)) + cos(2π(3θ1 + θ2))− cos(2π(θ1 + 3θ2))

− cos(2π(3θ1 − θ2))),

Jy,z(ω1, ω2) = 8π2(ω1ω
−3
2 + ω−1

1 ω3
2 + ω3

1ω2 + ω−3
1 ω−1

2 − ω1ω
3
2 − ω−1

1 ω−3
2 − ω3

1ω
−1
2 − ω−3

1 ω2),

|Jy,z(y, z)| = 8π2
√

(z − 3y + 5)(z + y + 1)(y2 + 2y + 5− 4z),

where 0 ≤ θ1, θ2 < 1, ω1, ω2 ∈ T and (x, y) ∈ Dx,y, (y, z) ∈ Dy,z.
Then∫

C

ψ(χρx(ω1, ω2), χρy(ω1, ω2))dω1 dω2 =

∫

Dx,y

ψ(x, y)|Jx,y(x, y)|−1dx dy, (34)

∫

C

ψ(χρy(ω1, ω2), χρz(ω1, ω2))dω1 dω2 = 2

∫

Dy,z

ψ(y, z)|Jy,z(y, z)|−1dy dz, (35)

and from (24) we obtain

Theorem 2.1 The joint spectral measure νx,y (over Dx,y) for WAρx
∞(Sp(2)), WAρy

∞(Sp(2))
is

dνx,y(x, y) = 8 |Jx,y(x, y)|−1dx dy,

whilst the joint spectral measure νy,z (over Dy,z) for
WAρy

∞(Sp(2)), WAρz
∞(Sp(2)) is

dνy,z(y, z) = 16 |Jy,z(y, z)|−1dy dz.

11



2.3 Spectral measure for WA∞(Sp(2)), WA∞(SO(5)) on R

We now determine the spectral measure µu,G
Z := µvu,GZ

over Iu, u = x, y, z, where G is

Sp(2) or SO(5), which is determined by its moments ϕ((vu,GZ )m) =
∫
Iu
umdµu,G

Z (u) for all
m ∈ N.

Thus for µ
x,Sp(2)
Z we set ψ(x, y) = xm in (34) and integrate with respect to y. Similarly,

setting ψ(x, y) = ym in (34), the measure µ
y,Sp(2)
Z is obtained by integrating with respect to

x. More explicitly, using the expressions for the boundaries ofD given in (26), the spectral

measure µ
x,Sp(2)
Z (over [−4, 4]) for the graph WAρx

∞(Sp(2)) is dµ
x,Sp(2)
Z (x) = JT2

x (x) dx, where
JT2

x (x) is given by

JT2

x (x) =

{
8
∫ (x2+4)/4

−2x−3
|Jx,y(x, y)|−1 dy for x ∈ [−4, 0],

8
∫ (x2+4)/4

2x−3
|Jx,y(x, y)|−1 dy for x ∈ [0, 4].

The weight JT2

x (x) is the integral of the reciprocal of the square root of a cubic in y,
and thus can be written in terms of the complete elliptic integral K(m) of the first kind,

K(m) =
∫ π/2

0
(1−m sin2 θ)−1/2dθ. Using [10, Eqn. 235.00], JT2

x (x) is given by

JT2

x (x) =
4

π2(4− x)
K(v(x)) =

−4 v(x)1/2

π2(x+ 4)
K(v(x))

for x ∈ [−4, 0], where v(x) = (x+ 4)2/(x− 4)2, whilst for x ∈ [0, 4], JT2

x (x) is given by

JT2

x (x) =
4

π2(x+ 4)
K(v(x)−1).

The weight JT2

x (x) is illustrated in Figure 9.

The spectral measure µ
y,Sp(2)
Z (over [−3, 5]) for the graph WAρy

∞(Sp(2)) is dµ
y,Sp(2)
Z (y) =

JT2

y (y) dy, where JT2

y (y) is given by

JT2

y (y) =

{
8
∫ (y+3)/2

−(y+3)/2
|Jx,y(x, y)|−1 dx for y ∈ [−3, 1],

16
∫ (y+3)/2

2
√
y−1

|Jx,y(x, y)|−1 dx for y ∈ [1, 5],

where the value of the square root is taken to be positive. Note that the Jacobian is an
even function of x. The weight JT2

y (y) is the integral of the reciprocal of the square root
of a quadratic in x2 and thus can also be written in terms of the complete elliptic integral
of the first kind. In fact, using [10, Eqn. 214.00] for y ∈ [−3, 1] and [10, Eqn. 218.00]
for y ∈ [1, 5], we obtain that JT2

y (y) = JT2

x (y − 1) for all y ∈ [−3, 5]. This is a surprising
result, since there is no obvious symmetry between x and y in the Jacobian Jx,y(x, y) – for
one thing J2

x,y is a quartic in x but only a cubic in y – and yet the integral of |Jx,y(x, y)|−1

over x ∈ D and over y ∈ D yields identical weights JT2

x and JT2

y , up to a shift.

Moving to the case of SO(5), the spectral measure µ
y,SO(5)
Z (over [−3, 5]) for the graph

WAρy
∞(SO(5)) is dµ

y,SO(5)
Z (y) = JT2

y (y) dy, where JT2

y (y) is as above, since WAρy
∞(SO(5)) is

simply the connected component of (0, 0) in WAρy
∞(Sp(2)), thus the moments ϕ((v

y,Sp(2)
Z )m) =

12



Figure 9: JT2

x (x) Figure 10: JT2

z (z)

ϕ((v
y,SO(5)
Z )m). The spectral measure µ

z,SO(5)
Z (over [−2, 10]) for the graph WAρz

∞(SO(5)) is

dµ
z,SO(5)
Z (z) = JT2

z (z) dz, where JT2

z (z) is given by

JT2

z (z) =





16
∫ (z+5)/3

−z−1
|Jy,z(y, z)|−1 dy for z ∈ [−2, 1],

16
∫ −1−2

√
z−1

−z−1
|Jy,z(y, z)|−1 dy + 16

∫ (z+5)/3

−1+2
√
z−1

|Jy,z(y, z)|−1 dy for y ∈ [1, 2],

16
∫ (z+5)/3

−1+2
√
z−1

|Jy,z(y, z)|−1 dy for y ∈ [2, 10],

where the value of the square root is taken to be positive. A numerical plot of the weight
JT2

z (z) is illustrated in Figure 10.

3 Spectral measures for A∞(Sp(2)), A∞(SO(5))

We now consider the fixed point algebra of
⊗

N
M4,

⊗
N
M5 under the product action

of the group Sp(2) given by the fundamental representations ρx, ρy respectively, where
Sp(2) acts by conjugation on each factor in the infinite tensor product.

The characters {χ(µ1,µ2)}µ1,µ2∈N:µ1≥µ2 of Sp(2) satisfy

χ(1,0)χ(µ1,µ2) = χ(µ1+1,µ2) + χ(µ1−1,µ2) + χ(µ1,µ2+1) + χ(µ1,µ2−1),

χ(1,1)χ(µ1,µ2) ={
χ(µ1+1,µ2+1) + χ(µ1−1,µ2−1) + χ(µ1+1,µ2−1) + χ(µ1−1,µ2+1) if µ1 = µ2,
χ(µ1,µ2) + χ(µ1+1,µ2+1) + χ(µ1−1,µ2−1) + χ(µ1+1,µ2−1) + χ(µ1−1,µ2+1) otherwise,

χ(2,0)χ(µ1,µ2) =



χ(µ1,µ2) + χ(µ1−2,µ2) + χ(µ1+2,µ2) + χ(µ1−1,µ2+1) + χ(µ1+1,µ2+1) if µ2 = 0,
χ(µ1,µ2) + χ(µ1+2,µ2) + χ(µ1,µ2−2) + χ(µ1+1,µ2−1) if µ1 = µ2 6= 0,
2χ(µ1,µ2) + χ(µ1−2,µ2) + χ(µ1+2,µ2) + χ(µ1,µ2−2) + χ(µ1,µ2+2)

+χ(µ1−1,µ2−1) + χ(µ1−1,µ2+1) + χ(µ1+1,µ2−1) + χ(µ1+1,µ2+1) otherwise,

where χ(µ1,µ2) = 0 if µ2 < 0 or µ1 < µ2.
The representation graph of Sp(2) for the first fundamental representation ρx is iden-

tified with the infinite graph Aρx
∞(Sp(2)), illustrated in Figure 11, where we have made

a change of labeling to the Dynkin labels (λ1, λ2) = (µ1 − µ2, µ2). This labeling is more
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Figure 11: Infinite graph Aρx
∞(Sp(2)) Figure 12: Infinite graph Aρy

∞(Sp(2))

convenient in order to be able to define self-adjoint operators vxN , v
y
N in ℓ2(N) ⊗ ℓ2(N)

below. The dashed lines in Figure 11 indicate edges that are removed when one restricts
to the graph Ak(Sp(2)) at finite level k, c.f. Section 4.1.

Similarly, the representation graph of Sp(2) for the second fundamental representation
ρy is identified with the infinite graph Aρy

∞(Sp(2)), illustrated in Figure 12, again using the
Dynkin labels (λ1, λ2) = (µ1 − µ2, µ2). Note that as with the infinite graph WAρy

∞(Sp(2)),
the graph Aρy

∞(Sp(2)) is a disjoint union of two infinite graphs.
By [19, §3.5] we have (⊗

N
M4)

Sp(2) ∼= A(Aρx
∞(Sp(2))) and (

⊗
N
M5)

Sp(2) ∼= A(Aρy
∞(Sp(2))).

We define self-adjoint operators v
x,Sp(2)
N , v

y,Sp(2)
N in ℓ2(N)⊗ ℓ2(N) by

v
x,Sp(2)
N = l ⊗ 1 + l∗ ⊗ 1 + l∗ ⊗ l + l ⊗ l∗, (36)

v
y,Sp(2)
N = ll∗ ⊗ 1 + 1⊗ l + 1⊗ l∗ + l2 ⊗ l∗ + (l∗)2 ⊗ l, (37)

identified with the adjacency matrix of Aρu
∞(Sp(2)), u = x, y, where l is the unilateral

shift to the right on ℓ2(N).
Let Ω denote the vector (δi,0)i. The vector Ω⊗ Ω is cyclic in ℓ2(N)⊗ ℓ2(N) since any

vector lp1Ω ⊗ lp2Ω ∈ ℓ2(N) ⊗ ℓ2(N) can be written as a linear combination of elements

of the form (v
x,Sp(2)
N )m1(v

y,Sp(2)
N )m2(Ω ⊗ Ω) so that C∗(v

x,Sp(2)
N , v

y,Sp(2)
N )(Ω⊗ Ω) = ℓ2(N) ⊗

ℓ2(N). We define a state ϕ on C∗(v
x,Sp(2)
N , v

y,Sp(2)
N ) by ϕ( · ) = 〈 · (Ω ⊗ Ω),Ω ⊗ Ω〉. Since

C∗(v
x,Sp(2)
N , v

y,Sp(2)
N ) is abelian and Ω ⊗ Ω is cyclic, we have that ϕ is a faithful state on

C∗(v
x,Sp(2)
N , v

y,Sp(2)
N ).

The moments ϕ((v
u,Sp(2)
N )m) count the number of closed paths of lengthm on the graph

Aρu
∞(Sp(2)) which start and end at the apex vertex (0, 0).
Turning our attention to SO(5), the representation graph Aρy

∞(SO(5)) of SO(5) for the
first fundamental representation ρy of SO(5) is identified with the connected component
of the apex vertex (0, 0) in the infinite graph Aρy

∞(Sp(2)). The graph Aρy
∞(SO(5)) is

illustrated in Figure 13, where we now use the Dynkin labels for SO(5), (λ1, λ2) = ((µ1−
µ2)/2, µ2), where (µ1, µ2) label the irreducible representations of Sp(2) as in Section 2. The
representation graph of SO(5) for the second fundamental representation ρz is identified
with the infinite graph Aρz

∞(SO(5)), illustrated in Figure 14, again using the Dynkin labels
for SO(5).
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Figure 13: Infinite graph Aρy
∞(SO(5)) Figure 14: Infinite graph Aρz

∞(SO(5))

We define self-adjoint operators v
y,SO(5)
N , v

z,SO(5)
N in ℓ2(N)⊗ ℓ2(N) by

v
y,SO(5)
N = ll∗ ⊗ 1 + 1⊗ l + 1⊗ l∗ + l ⊗ l∗ + l∗ ⊗ l, (38)

v
z,SO(5)
N = ll∗ ⊗ 1 + 1⊗ ll∗ + l ⊗ 1 + l∗ ⊗ 1 + l ⊗ l∗ + l∗ ⊗ l + ll∗ ⊗ l + ll∗ ⊗ l∗ + l∗ ⊗ l2 + l ⊗ (l∗)2,

(39)

identified with the adjacency matrix of Aρu
∞(SO(5)), u = y, z.

3.1 Joint spectral measure for A∞(Sp(2)), A∞(SO(5)) over T
2

We will prove in Section 4.1 that the joint spectral measure over T2 of v
x,Sp(2)
N , v

y,Sp(2)
N is

the measure ε given by

dε(ω1, ω2) =
1

128π4
Jx,y(ω1, ω2)

2dω1 dω2,

where dωl is the uniform Lebesgue measure on T, l = 1, 2, and that the joint spectral
measure over T2 of v

y,SO(5)
N , v

z,SO(5)
N is also ε.

3.2 Spectral measure for A∞(Sp(2)) on R

We now determine the spectral measure µu,G
N := µvu,GN

over Iu, where u = x, y for G =

Sp(2) and u = y, z for G = SO(5). We first consider the case of Sp(2). From (24) and
(34), with the measure given in Section 3.1, we have that

1

128π4

∫

C

ψ(χρu(ω1, ω2))Jx,y(ω1, ω2)
2dω1 dω2 =

1

16π4

∫

Dx,y

ψ(u)|Jx,y(x, y)|dx dy, (40)

where C is a fundamental domain of T2/D8 and Dx,y is as in Section 2.3. Thus the joint
spectral measure overDx,y is |Jx,y(x, y)|dx dy/16π4, which is the reduced Haar measure on

Sp(2) [41, §6.2]. The measure µ
x,Sp(2)
N over Ix is obtained by integrating with respect to y in

(40), whilst the measure µ
y,Sp(2)
N over Iy is obtained by integrating with respect to x in (40).
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More explicitly, using the expressions for the boundaries of Dx,y given in (26), the spectral

measure µ
x,Sp(2)
N (over [−4, 4]) for the graphAρx

∞(Sp(2)) is dµ
x,Sp(2)
N (x) = J

Sp(2)
x (x) dx/16π4,

where J
Sp(2)
x (x) is given by

∫ (x2+4)/4

−2x−3

|Jx,y(x, y)| dy for x ∈ [−4, 0],

∫ (x2+4)/4

2x−3

|Jx,y(x, y)| dy for x ∈ [0, 4].

The spectral measure µ
y,Sp(2)
N (over [−3, 5]) for the graph Aρy

∞(Sp(2)) is dµ
y,Sp(2)
N (y) =

J
Sp(2)
y (y) dy/16π4, where J

Sp(2)
y (y) is given by

∫ (y+3)/2

−(y+3)/2

|Jx,y(x, y)| dx for y ∈ [−3, 1],

∫ −2
√
y−1

−(y+3)/2

|Jx,y(x, y)| dx+
∫ (y+3)/2

2
√
y−1

|Jx,y(x, y)| dx = 2

∫ (y+3)/2

2
√
y−1

|Jx,y(x, y)| dx for y ∈ [1, 5],

The weight J
Sp(2)
x (x) is the integral of the square root of a cubic in y, and thus can be

written in terms of the complete elliptic integrals K(m), E(m) of the first, second kind

respectively, where K(m) =
∫ π/2

0
(1−m sin2 θ)−1/2dθ and E(m) =

∫ π/2

0
(1−m sin2 θ)1/2dθ.

Using [10, Eqn. 235.14], J
Sp(2)
x (x) is given by

π2

15
(4− x)

[
(x4 + 224x2 + 256) E(v(x)) + 8x(x2 − 24x+ 12) K(v(x))

]
,

for x ∈ [−4, 0], where v(x) = (x+ 4)2/(x− 4)2, whilst for x ∈ [0, 4], J
Sp(2)
x (x) is given by

π2

15
(x+ 4)

[
(x4 + 224x2 + 256) E(v(x)−1)− 8x(x2 + 24x+ 12) K(v(x)−1)

]
,

The weight J
Sp(2)
x (x) is illustrated in Figure 15.

Similarly, the weight J
Sp(2)
y (y) is the integral of the square root of a quadratic in x2,

and can also be written in terms of the complete elliptic integrals of the first and second
kinds. Using [10, Eqn. 214.12], J

Sp(2)
y (y) is given by

2π2

3
(5− y)

[
16(1− y) K(v(y − 1)) + (y2 + 22y − 7) E(v(y − 1))

]
,

for y ∈ [−3, 1], whilst for y ∈ [1, 5], J
Sp(2)
y (y) is given by

2π2

3
(y + 3)

[
32(1− y) K(v(y − 1)−1) + (y2 + 22y − 7) E(v(y − 1)−1)

]
,

using [10, Eqn. 217.09]. The weight J
Sp(2)
y (y) is illustrated in Figure 16.
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Figure 15: J
Sp(2)
x (x) Figure 16: J

Sp(2)
y (y)

We now consider the measures for SO(5). From (24) and (35), with the measure given
in Section 3.1, we have that

1

128π4

∫

C

ψ(χρu(ω1, ω2))Jx,y(ω1, ω2)
2dω1 dω2 =

1

8π4

∫

Dy,z

ψ(u)Jx,y(y, z)
2 |Jy,z(y, z)|−1 dy dz

=
1

16π4

∫

Dy,z

ψ(u)|Jx,y(y, z)| (z + y + 1)−1/2 dy dz.

The spectral measure µ
y,SO(5)
N (over [−3, 5]) for the graph Aρy

∞(SO(5)) is dµ
y,SO(5)
N (y) =

J
Sp(2)
y (y) dy/16π4, where J

Sp(2)
y (y) is as above. The spectral measure µ

z,SO(5)
N (over [−2, 10])

for the graph Aρz
∞(SO(5)) is dµ

z,SO(5)
N (z) = J

Sp(2)
z (z) dz/8π4, where J

Sp(2)
z (z) is given by

∫ (z+5)/3

−z−1

|Jx,y(y, z)| (z + y + 1)−1/2 dy for z ∈ [−2, 1],

∫ −1−2
√
z−1

−z−1

|Jx,y(y, z)| (z + y + 1)−1/2 dy +

∫ (z+5)/3

−1+2
√
z−1

|Jx,y(y, z)| (z + y + 1)−1/2 dy for z ∈ [1, 2],

∫ (z+5)/3

−1+2
√
z−1

|Jx,y(y, z)| (z + y + 1)−1/2 dy for z ∈ [2, 10],

where the value of the square root is taken to be positive. A numerical plot of the weight
J
Sp(2)
z (z) is illustrated in Figure 17.
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Figure 17: J
Sp(2)
z (z)

4 Spectral Measures for Nimrep Graphs associated

to Sp(2) Modular Invariants

We now determine joint spectral measures for nimrep graphs associated to Sp(2) modular
invariants, where we will focus in particular on the nimrep graphs for the fundamental
generators ρj, j = 1, 2, which have quantum dimensions [2][6]/[3], [5][6]/[2][3] respectively,
where [m] denotes the quantum integer [m] = (qm − q−m)/(q − q−1) for q = eiπ/2(k+3).
The nimrep graphs Gρj were found in [14] for the conformal embeddings at levels 3, 7, 12.
The realisation of modular invariants for Sp(2) by braided subfactors is parallel to the
realisation of SU(2) and SU(3) modular invariants by α-induction for a suitable braided
subfactors [33, 35, 44, 3, 4, 8, 9], [34, 35, 44, 3, 4, 8, 6, 7, 20, 21] respectively. The
realisation of modular invariants for SO(3) was done in [28], and the realisation for G2 is
also under way [25].

Let G be the nimrep associated to a braided subfactor N ⊂M . Then the graphs Gλ,
λ ∈ NXN are finite (undirected) graphs which share the same set of vertices NXM . Their
adjacency matrices (which we also denote by Gλ) are clearly self-adjoint. The m,nth

moment
∫
Dλ,ζ

xmλ x
n
ζdµλ,ζ(xλ, xζ) is given by 〈Gm

λ G
n
ζ e1, e1〉, where e1 is the basis vector

in ℓ2(Gλ) (= ℓ2(Gζ)) corresponding to the distinguished vertex ∗ of Gλ with lowest
Perron-Frobenius weight.

Let βν
λ be the eigenvalues of Gλ, indexed by ν ∈ Exp(G), which are ratios of the S-

matrix given by βν
λ = Sλν/S0ν , with corresponding eigenvectors (ψν

ζ )ζ∈Exp(G) (note that as
the nimreps are a family of commuting matrices they can be simultaneously diagonalised,
and thus the eigenvectors of Gλ are the same for all λ). Then Gm

λ G
n
ζ = UΛm

λ Λ
n
ζU∗,

where Λν is the diagonal matrix Λλ = diag(βν1
λ , β

ν2
λ , . . . , β

νs
λ ) and U is the unitary matrix

U = (ψν1 , ψνs , . . . , ψνs), for νi ∈ Exp(G), so that
∫

T2

(χλ(ω1, ω2))
m(χζ(ω1, ω2))

ndελ,ζ(ω1, ω2) = 〈UΛm
λ Λ

n
ζU∗e1, e1〉 = 〈Λm

λ Λ
n
ζU∗e1,U∗e1〉

=
∑

ν∈Exp(G)

(βν
λ)

m(βν
ζ )

n|ψν
∗ |2. (41)

The following D8-invariant measure on T
2 will be useful in what follows.

Definition 4.1 We denote by d(θ1,θ2) the uniform Dirac measure on the D8-orbit of the
point (e2πiθ1 , e2πiθ2), (eπi(2−θ2), eπi(2−θ1)) ∈ C ⊂ T

2.
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Figure 18: Supp(d(θ1,θ2))

The set of points (θ1, θ2) ∈ [0, 1]2 such that (e2πiθ1 , e2πiθ2) is in the support of the
measure d(θ1,θ2) is illustrated in Figure 18. For (θ1, θ2) 6∈ ∂C, |Supp(d(θ1,θ2))| = 16,
whilst |Supp(d(0,0))| = |Supp(d(1/2,1/2))| = 2 and |Supp(d(θ1,1/2−θ1))| = 8. For all other
(θ1, θ2) ∈ ∂C, |Supp(d(θ1,θ2))| = 4.

4.1 Graphs Ak(Sp(2)), k ≤ ∞
The graphs Aρu

k (Sp(2)), u = x, y, are associated to the trivial inclusion N → N , and are
the trivial nimrep graphs Gλ = Nλ, where λ ∈ NXN for Sp(2) at level k. The graphs

Aρu
k (Sp(2)) are illustrated in Figures 11, 12, where the set of vertices NXN = P

k,Sp(2)
+ :=

{(λ1, λ2)|λ1, λ2 ≥ 0;λ1 + λ2 ≤ k}, and the set of edges is given by the edges between
these vertices.

The eigenvalues βν,G
ρu of Aρu

k (G), where u = x, y for G = Sp(2) are given by the
ratio Sρuν/S0ν with corresponding eigenvectors ψν

µ = Sν,µ for Ak(Sp(2)) with exponents

Exp(Ak(Sp(2))) = P
k,Sp(2)
+ . The eigenvalues βλ,G

ρu , λ ∈ Exp(Ak(G)), are given by βλ,G
ρu =

χρu(ω1, ω2), where ωj = exp2πiθj , j = 1, 2 are related to λ ∈ Exp(Ak(Sp(2))) by

θ1 = λ̂2/2κ, θ2 = (λ̂1 + λ̂2)/2κ ⇔ λ̂1 = 2κ(θ2 − θ1), λ̂2 = 2κθ1. (42)

The S-matrix at level k, indexed by λ ∈ P
k,Sp(2)
+ , is given by [29]:

Sλ,µ =
1

κ

[
cos(ξ((λ̂1 + 2λ̂2)(µ̂1 + 2µ̂2) + λ̂1µ̂1))− cos(ξ((λ̂1 + 2λ̂2)(µ̂1 + 2µ̂2)− λ̂1µ̂1))

+ cos(ξ((λ̂1 + 2λ̂2)µ̂1 − λ̂1(µ̂1 + 2µ̂2)))− cos(ξ((λ̂1 + 2λ̂2)µ̂1 + λ̂1(µ̂1 + 2µ̂2)))

]

where ξ = π/2κ, κ = k + 3, λ = (λ1, λ2), µ = (µ1, µ2), and λ̂i = λi + 1, µ̂i = µi + 1 for
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i = 1, 2. Then for µ the distinguished vertex ∗ = (0, 0), we obtain

ψλ
(0,0) =

1

κ

[
cos(2ξ(2λ̂1 + 3λ̂2)) + cos(2ξ(λ̂1 − λ̂2))− cos(2ξ(λ̂1 + 3λ̂2))− cos(2ξ(2λ̂1 + λ̂2))

]

(43)

= − 1

8κπ2
Jx,y

(
λ̂2/2κ, (λ̂1 + λ̂2)/2κ

)
, (44)

where in (44) we have Jx,y(θ1, θ2) with (θ1, θ2) related to λ ∈ Exp(Ak(Sp(2))) by (42).
Since the S-matrix is unitary, the eigenvector ψ∗ defined by (43) has norm 1. Recall

that the Perron-Frobenius eigenvector for Ak(Sp(2)) can also be written in the Kac-Weyl
factorized form [14]:

φ
(0,0)
λ =

sin(λ̂1ξ) sin(2λ̂2ξ) sin((λ̂1 + 2λ̂2)ξ) sin((2λ̂1 + 2λ̂2)ξ)

sin(ξ) sin(2ξ) sin(3ξ) sin(4ξ)
. (45)

Now φ∗
∗ = 1 whilst ψ∗

∗ = 16 sin(ξ) sin(2ξ) sin(3ξ) sin(4ξ)/κ, and thus we have κψ∗ =
16 sin(ξ) sin(2ξ) sin(3ξ) sin(4ξ)φ∗. Then from (44) we have

Jx,y(θ1, θ2) = −8κπ2 ψ(λ̂2/2κ,(λ̂1+λ̂2)/2κ)
∗

= −128κπ2 sin(ξ) sin(2ξ) sin(3ξ) sin(4ξ) φ∗
(λ̂2/2κ,(λ̂1+λ̂2)/2κ)

= 128κπ2 sin(2πθ1) sin(2πθ2) sin(π(θ1 + θ2)) sin(π(θ1 − θ2)),

so that the Jacobian Jx,y(θ1, θ2) can also be written as a product of sine functions. A
similar argument show that

Jy,z(θ1, θ2) = −4κπ2 ψ(λ̂1+2λ̂2)/4κ,−λ̂1/4κ
∗

= −64κπ2 sin(ξ) sin(2ξ) sin(3ξ) sin(4ξ) φ∗
(λ̂1+2λ̂2)/4κ,−λ̂1/4κ

= 64κπ2 sin(2πθ1) sin(2πθ2) sin(2π(θ1 + θ2)) sin(2π(θ1 − θ2)),

so that the Jacobian Jy,z(θ1, θ2) can also be written as a product of sine functions.
We now compute the joint spectral measure for Aρx

k (Sp(2)), Aρy
k (Sp(2)). Summing

over all (λ1, λ2) ∈ Exp(Ak(Sp(2))) corresponds to summing over all (θ1, θ2) ∈ {(λ̂2/2κ, (λ̂1+
λ̂2)/2κ)| λ̂1, λ̂2 ≥ 1, λ̂1 + λ̂2 ≤ κ − 1}, or equivalently, over all (θ1, θ2) ∈ M

Sp(2)
k =

{(q1/2κ, q2/2κ)| q1, q2 = 0, 1, . . . , 2κ− 1} such that

θ1 = λ̂2/2κ ≥ 1/2κ, θ1 − θ2 = −λ̂1/2κ ≤ −1/2κ (46)

θ2 = (λ̂1 + λ̂2)/2κ ≤ (κ− 1)/2κ = 1/2− 1/2κ. (47)

Denote by CSp(2)
k the set of all (ω1, ω2) ∈ T

2 such that (θ1, θ2) ∈ M
Sp(2)
k satisfies these

conditions. Then from (41) and (44) we obtain
∫

T2

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

ndεx,y(ω1, ω2)

=
1

64κ2π4

∑

λ∈Exp(Ak(Sp(2)))

(βλ,Sp(2)
ρx )m(βλ,Sp(2)

ρy )nJx,y

(
λ̂2/2κ, (λ̂1 + λ̂2)/2κ

)2

=
1

64κ2π4

∑

(ω1,ω2)∈CSp(2)
k

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

nJx,y(ω1, ω2)
2 (48)
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Figure 19: The points (θ1, θ2) such that (e2πiθ1 , e2πiθ2) ∈ CW
3 .

If we let CSp(2) be the limit of CSp(2)
k as k → ∞, then CSp(2) is identified with the

fundamental domain C of T2 under the action of the group D8, illustrated in Figure 3.
Since Jx,y = 0 along the boundary of C, which is mapped to the boundary of Dx,y under
the map Ψx,y : T

2 → Dx,y, we can include points on the boundary of C in the summation
in (48). Since J2

x,y is invariant under the action of D8, we have

∫

T2

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

ndεx,y(ω1, ω2)

=
1

8

1

64κ2π4

∑

(ω1,ω2)∈CW,Sp(2)
k

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

nJx,y(ω1, ω2)
2

(49)

where
CW,Sp(2)
k = {(e2πiq1/2κ, e2πiq2/2κ) ∈ T

2| q1, q2 = 0, 1, . . . , 2κ− 1}, (50)

whose intersection with the complement of the image of the boundary of the fundamental
domain C is the image of CSp(2)

k under the action of the Weyl group W = D8. We

illustrate the points (θ1, θ2) such that (e2πiθ1 , e2πiθ2) ∈ CW,Sp(2)
3 in Figure 19. The points in

the interior of the fundamental domain C, those enclosed by the dashed line, correspond
to the vertices of the graph A3(Sp(2)).

Clearly |CW,Sp(2)
k | = 4(k + 3)2 = 4κ2. Thus from (49), we obtain (c.f. [22]):

Theorem 4.2 The joint spectral measure of Aρx
k (Sp(2)), Aρy

k (Sp(2)), (over T
2) is given

by

dεx,y(ω1, ω2) =
1

128π4
Jx,y(ω1, ω2)

2 d2(k+3) ω1 d2(k+3) ω2, (51)

where dm is the uniform Dirac measure over the mth roots of unity.

In fact, εSp(2) := εx,y is the joint spectral measure over T2 for anyAλ
k(Sp(2)), Aµ

k(Sp(2)).
We can now easily deduce the joint spectral measures (over T2) for A∞(Sp(2)) claimed

in Section 3.1. Letting k → ∞ in Theorem 4.2 we obtain:
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Figure 20: Statistical phase ω(i,j)

Theorem 4.3 The joint spectral measure of any pair of infinite Sp(2) graphs Aλ
∞(Sp(2)),

Aµ
∞(Sp(2)) (over T

2) are identical and are both given by

dε(ω1, ω2) =
1

128π4
Jx,y(ω1, ω2)

2dω1 dω2, (52)

where dω is the uniform Lebesgue measure over T.

4.2 Graphs Dk(Sp(2)), k ≤ ∞
The centre of Sp(2) is Z2. The graphs Dρu

k (Sp(2)), u = x, y, are associated to the orbifold
inclusion N → N ⋊τ Z2, where τ = λ(0,k) is a non-trivial simple current of order 2. For
such an orbifold inclusion to exist, one needs an automorphism τ0 such that [τ0] = [τ ] and
τ 20 = id [3, §3], which exists precisely when the statistics phase ωτ of τ satisfies ω2

τ = 1
[37, Lemma 4.4]. Kuperberg’s Sp(2) spider [32] involves two types of strands, Sp(2)
and SO(5). Using this, one can construct a semisimple braided modular tensor category

whose simple objects are generalised Jones-Wenzl projections f(i,j), (i, j) ∈ P
k,Sp(2)
+ (see

[43] for (SU(2)) Jones-Wenzl projections and [39, 32, 36] for generalised SU(3) Jones-
Wenzl projections) and whose morphisms are intertwiners between these projections (see
[40, 45, 13, 24] for a similar construction in the case of SU(2) and [13, 24] for SU(3)).
The statistics phase ω(i,j) := ωλ(i,j)

is obtained by evaluating the twist applied to the
generalised Jones-Wenzl projection f(i,j) (see Figure 20, where the single strand drawn
here represents i Sp(2)-strands and j SO(5)-strands). Then we see that ω(0,k) = (−1)k,
thus the orbifold inclusion exists. Further details will be given in a future publication.
See [40, Chapter XII] for a similar discussion in the case of SO(3) and its double cover
SU(2).

Following a similar method to [9, §5.2], one finds with [θ] = [λ(0,0)] ⊕ [λ(0,k)] that
Dρu

k (Sp(2)), u = x, y, are the nimrep graphs associated to the orbifold modular invariant

ZD2l
=

∑

(m,n)∈P
2l,Sp(2)
+ (0)

m+2n<2l

|χ(m,n) + χ(2l−m−n,2l−m−n)|2 + 2
l∑

j=0

|χ(2l−2j,j)|2,

ZD2l+1
=

∑

(m,n)∈P 2l+1,Sp(2)
+ (0)

|χ(m,n)|2 +
∑

(m,n)∈P
2l+1,Sp(2)
+

m odd

χ(m,n)χ
∗
(m,2l+1−m−n),

where P
k,Sp(2)
+ (0) = {(m,n) ∈ P

k,Sp(2)
+ |m even}. This modular invariant appeared in [2].

The graphs Dρu
k (Sp(2)) are are Z2-orbifolds of the graphs Dρu

k (Sp(2)), and are illustrated
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Figure 21: Orbifold graph Dρx
k (Sp(2)) for k = 2, 3, 4, 5

Figure 22: Orbifold graph Dρy
k (Sp(2)) for k = 2, 3, 4, 5

in Figures 21, 22, where we have labeled the vertices by the corresponding Dynkin labels
from the Ak(Sp(2)) graphs.

The exponents ofDk(Sp(2)) are given by Exp(D2l(Sp(2))) = {(m,n) ∈ P
2l,Sp(2)
+ (0)|m 6=

2l− 2n} ∪ {twice (2l− 2j, j)| j = 0, 1, . . . , l} for k = 2l even, whilst Exp(D2l+1(Sp(2))) =

P
2l+1,Sp(2)
+ (0) ∪ {(2l + 1 − 2j, j)| j = 0, 1, . . . , l} for k = 2l + 1 odd. For λ ∈ P

k,Sp(2)
+

(which label the vertices of Ak(Sp(2))) not a fixed point under the Z2-action, i.e. λ 6∈
{(k − 2j, j)| j = 0, 1, . . . , ⌊k/2⌋} where ⌊x⌋ denotes the integer part of x, the normalized
eigenvector satisfies |ψλ

∗ |2 = 2S2
∗,λ. However for λ ∈ {(k − 2j, j)| j = 0, 1, . . . , ⌊k/2⌋},

|ψλ1
∗ | = |ψλ2

∗ | =
√
2S∗,λ/2, where λj, j = 1, 2, denote the two copies of the fixed point in

the orbifold graph Dk(Sp(2)), so that |ψλ1
∗ |2 + |ψλ2

∗ |2 = S2
∗,λ.

With θ1, θ2 as in (42), summing over all λ = (λ1, λ2) ∈ P
k,Sp(2)
+ (0) corresponds to

summing over all (ω1, ω2) ∈ CSp(2)
k such that ω1ω2 = e2πi(2m+1)/2κ for m ∈ Z, where CSp(2)

k
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is as in Section 4.1. Then from (41) and (44), with ζk = 1 for k odd and ζk = 3/2 for k
even, we obtain

∫

T2

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

ndε(ω1, ω2)

=
2

64κ2π4

∑

(ω1,ω2)∈C
Sp(2)
k

:

ω1ω2=e2πi(2m+1)/2κ

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

nJx,y(ω1, ω2)
2

+
ζk

64κ2π4

∑

(ω1,ω2)∈C
Sp(2)
k

:

ω1=−ω2 or ω1=−ω−1
2

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

nJx,y(ω1, ω2)
2

=
1

8

1

32κ2π4

∑

(ω1,ω2)∈C
W,Sp(2)
k

:

ω1ω2=e2πi(2m+1)/2κ

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

nJx,y(ω1, ω2)
2

+
1

8

ζk
64κ2π4

∑

(ω1,ω2)∈C
W,Sp(2)
k

:

ω1=−ω2 or ω1=−ω−1
2

(χρx(ω1, ω2))
m(χρy(ω1, ω2))

nJx,y(ω1, ω2)
2.

Thus

Theorem 4.4 The joint spectral measure of Dρx
k (Sp(2)), Aρy

k (Sp(2)), (over T
2) is given

by

dε =
1

128π4
Jx,y(ω1, ω2)

2 (dκ × (d2κ − dκ) + (d2κ − dκ)× dκ)

+
ζk

64κ2π4
Jx,y(ω1, ω2)

2

k−1∑

j=1

d(j/2κ,(κ−j)/2κ), (53)

where κ = k + 3, ζk = 1 for k odd and ζk = 3/2 for k even, d(θ1,θ2) is as in Definition 4.1
and dm is the uniform Dirac measure over the mth roots of unity.

Letting k → ∞ we easily obtain the following corollary:

Corollary 4.5 The joint spectral measure of Dρx
∞ (Sp(2)), Dρy

∞(Sp(2)), (over T
2) is pre-

cisely the joint spectral measure of the infinite Sp(2) graphs Aρx
∞(Sp(2)), Aρy

∞(Sp(2)), given
in Theorem 4.3.

4.3 Exceptional Graph E3(Sp(2)): (Sp(2))3 → (SO(10))1

The graphs E3(Sp(2)) are associated to the conformal embedding (Sp(2))3 → (SO(10))1
and are one of two nimreps associated to the modular invariant

ZE3 = |χ(0,0) + χ(2,1)|2 + |χ(2,0) + χ(0,3)|2 + 2|χ(1,1)|2

which is at level 3 and has exponents Exp(E3(Sp(2))) = {(0, 0), (2, 1), (2, 0), (0, 3), and (1, 1) twice}.
The other family EM

3 (Sp(2)) are considered in the next section. The graphs Eρj
3 (Sp(2))

are illustrated in Figures 23, 24. Note that Eρ2
3 (Sp(2)) has two connected components.
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Figure 23: Exceptional Graph Eρ1
3 (Sp(2)) Figure 24: Exceptional Graph Eρ2

3 (Sp(2))

Following [4, §6] we can compute the principal graph and dual principal graph of
the inclusion (Sp(2))3 → (SO(10))1. The chiral induced sector bases MX±

M ⊂ Sect(M)
and full induced sector basis MXM ⊂ Sect(M), the sector bases given by all irreducible
subsectors of [α±

λ ] and [α+
λ ◦ α−

λ′ ] respectively, for λ, λ′ ∈ NXN , along with the neutral
system MX 0

M = MX+
M ∩ MX−

M , are given by

MX±
M = {[α(0,0)], [α

±
(1,0)], [α

±
(0,1)], [α

(1)
(2,0)], [α

(1)
(1,1)], [α

(2)
(1,1)]},

MX 0
M = {[α(0,0)], [α

(1)
(2,0)], [α

(1)
(1,1)], [α

(2)
(1,1)]},

MXM = {[α(0,0)], [α
+
(1,0)], [α

−
(1,0)], [α

+
(0,1)], [α

−
(0,1)], [α

(1)
(2,0)], [α

(1)
(1,1)], [α

(2)
(1,1)], [δ1], [δ2], [η1], [η2]},

where [α±
(2,0)] = [α±

(0,1)]⊕[α
(1)
(2,0)], [α

±
(1,1)] = [α±

(1,0)]⊕[α
(1)
(1,1)]⊕[α

(2)
(1,1)], [α

+
(1,0)α

−
(1,0)] = [δ1]⊕[δ2],

and [α+
(1,0)α

−
(0,1)] = [η1] ⊕ [η2], for α(i,j) ≡ αλ(i,j)

. The fusion graphs of [α+
(1,0)] (solid

lines) and [α−
(1,0)] (dashed lines) are given in Figure 25, see also [14, Figure 7(a)]. The

marked vertices corresponding to sectors in the neutral system MX 0
M have been circled.

These sectors obey Z2 × Z2 fusion rules, corresponding to SO(10) at level 1. Note that
multiplication by [α+

(1,0)] (or [α
−
(1,0)]) does not give two copies of the nimrep graph E3(Sp(2))

as one might expect, but rather one copy each of Eρ1
3 (Sp(2)) and Eρ1,M

3 (Sp(2)). This is
similar to the situation for the SU(3) conformal embedding SU(3)9 → (E6)1 [17, §5.2].

Let ι : N →֒ M denote the injection map ι(n) = n ∈ M , n ∈ N and ι its conjugate.
The dual canonical endomorphism θ = ιι for the conformal embedding can be read from
the vacuum block of the modular invariant: [θ] = [λ(0,0)]⊕ [λ(2,1)]. By [4, Corollary 3.19]
and the fact that 〈γ, γ〉M = 〈θ, θ〉N = 2, the canonical endomorphism γ = ιι is given by

[γ] = [α(0,0)]⊕ [δ1]. (54)

Then by [4, Theorem 4.2], the principal graph of the inclusion (Sp(2))3 → (SO(10))1
of index 3 +

√
3 ≈ 4.73 is given by the connected component of [λ(0,0)] ∈ NXN of the

induction-restriction graph, and the dual principal graph is given by the connected com-
ponent of [α(0,0)] ∈ MXM of the γ-multiplication graph. The principal graph and dual
principal graph are the same, and we illustrate the principal graph in Figure 26. These are
the principal graphs for the 3311 Goodman-de la Harpe-Jones subfactor [31]. The prin-
cipal graph in Figure 26 appears as the intertwiner for the quantum subgroup E3(Sp(2))
in [14, Figure 9].

One can also construct a subfactor α±
(1,0)(M) ⊂M with index (1+

√
3)2 = 2(2+

√
3) ≈

7.46, where M is a type III factor. Its principal graph is the nimrep graph Eρ1
3 (Sp(2))

illustrated in Figure 23. The dual principal graph is isomorphic to the principal graph as
abstract graphs [44, Corollary 3.7].
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Figure 25: E3(Sp(2)): Multiplication by [α+
(1,0)] (solid lines) and [α−

(1,0)] (dashed lines)

We now determine the joint spectral measure of Eρ1
3 (Sp(2)), Eρ2

3 (Sp(2)). With θ1, θ2
as in (42) for λ = (λ1, λ2) ∈ Exp(E3(Sp(2))), we have the following values:

λ ∈ Exp (θ1, θ2) ∈ [0, 1]2 |ψλ
∗ |2 1

8π2 |J(θ1, θ2)|
(0, 0)

(
1
12
, 2
12

)
3−

√
3

24
3−

√
3

2

(2, 1)
(

2
12
, 5
12

)
3+

√
3

24
3+

√
3

2

(2, 0)
(

1
12
, 4
12

)
3+

√
3

24
3+

√
3

2

(0, 3)
(

4
12
, 5
12

)
3−

√
3

24
3−

√
3

2

(1, 1)
(

2
12
, 4
12

)
1
2

3

where the eigenvectors ψλ have been normalized so that ||ψλ|| = 1, and for the exponent

(1, 1) which has multiplicity two, the value listed in the table for |ψ(1,1)
∗ |2 is |ψ(1,1)1

∗ |2 +
|ψ(1,1)2

∗ |2. Note that

|ψλ
∗ |2 = ζλ

1

12

1

8π2
|J | (55)

where ζλ = 1 for λ ∈ {(0, 0), (2, 1), (2, 0), (0, 3)} and ζ(1,1) = 2.
The orbit under D8 of the points (θ1, θ2) ∈

{(
1
12
, 2
12

)
,
(

2
12
, 5
12

)
,
(

1
12
, 4
12

)
,
(

4
12
, 5
12

)}
, are

illustrated in Figure 27, whilst the orbit of
(

2
12
, 4
12

)
is illustrated by the black points in
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Figure 26: E3(Sp(2)): Principal graph of (Sp(2))3 → (SO(10))1

Figure 27: Orbit of (θ1, θ2) 6=
(

2
12
, 4
12

)
. Figure 28: Orbit of (θ1, θ2) =

(
2
12
, 4
12

)
.

Figure 28. The orbits of the first four points support the measure d(1/12,2/12) +d(1/12,4/12),
where d(θ1,θ2) is the discrete uniform measure given in Definition 4.1. Since the hollow
points in Figure 28 lie on the boundary of the orbit of fundamental domain, J = 0 at
these points, thus we see that the orbit of (2/12, 4/12) supports the measure |J | d6 × d6,
where dn is the uniform Dirac measure on the nth roots of unity. Note that when taking
the orbit under D8, the associated weight in (55) is now counted 8 times, thus we must
divide (55) by 8. Thus the joint spectral measure for E3(Sp(2)) is

dε = 16
1

8

1

12

1

8π2
|J |

(
d(1/12,2/12) + d(1/12,4/12)

)
+ 36

1

8

2

12

1

8π2
|J | d6 × d6.

Then we have obtained the following result:

Theorem 4.6 The joint spectral measure of Eρ1
3 (Sp(2)), Eρ2

3 (Sp(2)) (over T
2) is

dε =
1

48π2
|J | d(1/12,2/12) +

1

48π2
|J | d(1/12,4/12) +

1

384π2
|J | d6 × d6, (56)

where d(θ1,θ2) is as in Definition 4.1 and d6 is the uniform Dirac measure on the 6th roots
of unity.

4.4 Exceptional Graph EM
3 (Sp(2)): (Sp(2))3 → (SO(10))1 ⋊ Z2

The graphs EM,ρj
3 (Sp(2)), illustrated in Figures 29, 30, are the nimrep graphs for the type

II inclusion (Sp(2))3 → (SO(10))1 ⋊τ Z2 with index 2(3 +
√
3) ≈ 9.46, where τ = α

(1)
(2,0)
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Figure 29: Graph EM,ρ1
3 (Sp(2)) Figure 30: Graph EM,ρ2

3 (Sp(2))

Figure 31: EM
3 (Sp(2)): Principal graph of (Sp(2))3 → (SO(10))1 ⋊ Z2

is a non-trivial simple current of order 2 in the ambichiral system MX 0
M , see Figure 25.

Now ω(2,0) = −1 [15], thus the orbifold inclusion exists (c.f. Section 4.2). Note that

[τ ′] = [α
(j)
(1,1)] ∈ MX 0

M , j = 1, 2, are also simple currents of order 2 in MX 0
M , and are

subsectors of [α±
(1,1)], where ω(1,1) = e7πi/4 [15]. Then ω2

(1,1) = e7πi/2 6= 1, and hence the

orbifold inclusion (Sp(2))4 → (SO(10))1 ⋊τ ′ Z2 does not exist.
The principal graph for this inclusion is illustrated in Figure 31. This will be discussed

in a future publication using a generalised Goodman-de la Harpe-Jones construction anal-
ogous to that for the Dodd and E7 modular invariants for SU(2) [9, §5.2, 5.3] and the type
II inclusions for SU(3) [21, §5]. It is not clear what the dual principal graph is in this
case.

The associated modular invariant is again ZE3 and the graphs are isospectral to
E3(Sp(2)). The eigenvectors ψλ are not identical to those for E3(Sp(2)), however, as
seen in the following table, the values of |ψλ

∗ |2 are equal (up to a factor 2) to those for
E3(Sp(2)), for λ 6= (1, 1). With θ1, θ2 as in (42) for λ = (λ1, λ2) ∈ Exp, we have:

λ ∈ Exp (θ1, θ2) ∈ [0, 1]2 |ψλ
∗ |2 1

8π2 |J(θ1, θ2)|
(0, 0)

(
1
12
, 2
12

)
3−

√
3

12
3−

√
3

2

(2, 1)
(

2
12
, 5
12

)
3+

√
3

12
3+

√
3

2

(2, 0)
(

1
12
, 4
12

)
3+

√
3

12
3+

√
3

2

(0, 3)
(

4
12
, 5
12

)
3−

√
3

12
3−

√
3

2

(1, 1)
(

2
12
, 4
12

)
1
2

3

where the eigenvectors ψλ have been normalized so that ||ψλ|| = 1. Then (55) becomes
|ψλ

∗ |2 = ζλ
1
6

1
8π2 |J |, where ζλ is as for E3(Sp(2)). Thus we have the following result:
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Figure 32: Graph
Eρ1
7 (Sp(2))

Figure 33: Graph Eρ2
7 (Sp(2))

Theorem 4.7 The joint spectral measure of EM,ρ1
3 (Sp(2)), EM,ρ2

3 (Sp(2)) (over T
2) is

dε =
1

24π2
|J | d(1/12,2/12) +

1

24π2
|J | d(1/12,4/12) +

1

384π2
|J | d6 × d6, (57)

where d(θ1,θ2) is as in Definition 4.1 and d6 is the uniform Dirac measure on the 6th roots
of unity.

4.5 Exceptional Graph E7(Sp(2)): (Sp(2))7 → (SO(14))1

The graphs Eρj
7 (G2), illustrated in Figures 32, 33, are the nimrep graphs associated to

the conformal embedding (Sp(2))7 → (SO(14))1 and are one of two nimreps associated
to the modular invariant

ZE7 = |χ(0,0) + χ(6,1) + χ(2,2) + χ(0,5)|2 + |χ(6,0) + χ(0,2) + χ(2,3) + χ(0,7)|2 + 2|χ(3,1) + χ(3,3)|2

which is at level 7 and has 12 exponents

Exp(E7(Sp(2))) = {(0, 0), (6, 1), (2, 2), (0, 5), (6, 0), (0, 2), (2, 3), (0, 7) and twice (3, 1), (3, 3).}

Note again that for the second fundamental representation ρ2, the graph (Figure 33) has
two connected components.

As in Section 4.3, we can compute the principal graph and dual principal graph of
the inclusion (Sp(2))7 → (SO(14))1. The chiral induced sector bases MX±

M , the neutral
system MX 0

M = MX+
M ∩ MX−

M and full induced sector basis MXM are given by

MX±
M = {[α(0,0)], [α

±
(1,0)], [α

±
(0,1)], [α

±
(2,0)], [α

(j)±
(1,1)], [α

(1)
(0,2)], [α

(1)±
(3,0)], [α

(j)±
(2,1)], [α

(j)
(3,1)], for j = 1, 2},

MX 0
M = {[α(0,0)], [α

(1)
(0,2)], [α

(1)
(3,1)], [α

(2)
(3,1)]},

MXM = {[α(0,0)], [α
ε
(1,0)], [α

ε
(0,1)], [α

ε
(2,0)], [α

(j)ε
(1,1)], [α

(1)
(0,2)], [α

(1)ε
(3,0)], [α

(j)ε
(2,1)], [α

(j)
(3,1)], [α

+
(1,0)α

−
(1,0)],

[α+
(1,0)α

−
(0,1)], [α

+
(0,1)α

−
(1,0)], [α

+
(1,0)α

−
(2,0)], [α

+
(2,0)α

−
(1,0)], [ηj], [ζj], [ψj], [ψ

′
j], [ξ], [ξ

′], [ϕ],

[γj], [γ
′
j], [δj], [λ], [λ

′], [ωj], [φj], for ε = +,− and j = 1, 2},

where [α±
(1,1)] = [α

(1)±
(1,1)] ⊕ [α

(2)±
(1,1)], [α

±
(0,2)] = [α±

(2,0)] ⊕ [α
(1)
(0,2)], [α

±
(3,0)] = [α

(1)±
(1,1)] ⊕ [α

(1)±
(3,0)],

[α±
(2,1)] = [α±

(0,1)]⊕ [α±
(2,0)]⊕ [α

(1)±
(2,1)]⊕ [α

(2)±
(2,1)], [α

±
(3,1)] = [α±

(1,0)]⊕ 2[α
(1)±
(1,1)]⊕ [α

(1)±
(3,0)]⊕ [α

(1)
(3,1)]⊕

[α
(2)
(3,1)], [α+

(0,1)α
−
(0,1)] = [η1] ⊕ [η2], [α+

(2,0)α
−
(2,0)] = [ζ1] ⊕ [ζ2], [α+

(2,0)α
−
(0,1)] = [ψ1] ⊕ [ψ2],
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Figure 34: E7(Sp(2)): Multiplication by [α+
(1,0)] (solid lines) and [α−

(1,0)] (dashed lines)

[α+
(0,1)α

−
(2,0)] = [ψ′

1] ⊕ [ψ′
2], [α

+
(1,1)α

−
(1,0)] = [ξ] ⊕ [ϕ], [α+

(1,0)α
−
(1,1)] = [ξ′] ⊕ [ϕ], [α+

(1,1)α
−
(0,1)] =

[α+
(1,0)α

−
(0,1)]⊕[γ1]⊕[γ2], [α

+
(0,1)α

−
(1,1)] = [α+

(0,1)α
−
(1,0)]⊕[γ′1]⊕[γ′2], [α

+
(1,1)α

−
(2,0)] = [α+

(1,0)α
−
(2,0)]⊕

[δ1]⊕ [δ2], [α
+
(3,0)α

−
(1,0)] = [ξ]⊕ [λ], [α+

(1,0)α
−
(3,0)] = [ξ′]⊕ [λ′], [α+

(3,0)α
−
(0,1)] = [γ1]⊕ [γ2]⊕ [ω1]⊕

[ω2] and [α+
(2,1)α

−
(1,0)] = [α+

(0,1)α
−
(1,0)]⊕ [α+

(2,0)α
−
(1,0)]⊕ [φ1]⊕ [φ2].

The fusion graphs of [α+
(1,0)] (solid lines) and [α−

(1,0)] (dashed lines) are given in Figure

34, where we have circled the marked vertices. Here multiplication by [α+
(1,0)] (or [α

−
(1,0)])

gives two copies each of E7(Sp(2)) and EM
7 (Sp(2)). The ambichiral part MX 0

M obeys
Z2 × Z2 fusion rules, corresponding to SO(14) at level 1.

We find
[γ] = [α(0,0)]⊕ [α+

(1,0)α
−
(1,0)]⊕ [η1]⊕ [ζ1], (58)

and the principal graph of the inclusion (Sp(2))7 → (SO(14))1 of index 5(3 +
√
5) +√

250 + 110
√
5 ≈ 48.45 is illustrated in Figure 35, where the thick lines denote double

edges.

Again, we can construct a subfactor α±
(1,0)(M) ⊂M of index 4 +

√
5 + 2

√
5 + 2

√
5 ≈

12.39, where M is a type III factor. Its principal graph is the nimrep graph Eρ1
7 (Sp(2))
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Figure 35: E7(Sp(2)): Principal graph of (Sp(2))7 → (SO(14))1

Figure 36: Orbit of (θ1, θ2) for λ ∈ Exp(E7(Sp(2))).

illustrated in Figure 32. The dual principal graph is again isomorphic to the principal
graph as abstract graphs.

We now determine the joint spectral measure of Eρ1
7 (Sp(2)), Eρ2

7 (Sp(2)). With θ1, θ2
as in (42) for λ = (λ1, λ2) ∈ Exp(E7(Sp(2))), we have the following values:

λ ∈ Exp (θ1, θ2) ∈ [0, 1]2 |ψλ
∗ |2 1

8π2 |J(θ1, θ2)|

(0, 0), (0, 7)
(

1
20
, 2
20

)
,
(

8
20
, 9
20

) 5−
√
5−
√

10−2
√
5

80

5−
√
5−
√

10−2
√
5

4

(6, 1), (6, 0)
(

2
20
, 9
20

)
,
(

1
20
, 8
20

) 5−
√
5+
√

10−2
√
5

80

5−
√
5+
√

10−2
√
5

4

(2, 2), (2, 3)
(

3
20
, 6
20

)
,
(

4
20
, 7
20

) 5+
√
5+
√

10+2
√
5

80

5+
√
5+
√

10+2
√
5

4

(0, 5), (0, 2)
(

6
20
, 7
20

)
,
(

3
20
, 4
20

) 5+
√
5−
√

10+2
√
5

80

5+
√
5−
√

10+2
√
5

4

(3, 1), (3, 3)
(

2
20
, 6
20

)
,
(

4
20
, 8
20

)
1
4

5
2

where the eigenvectors ψλ have been normalized so that ||ψλ|| = 1. Note that

|ψλ
∗ |2 = ζλ

1

20

1

8π2
|J |, (59)

where ζλ = 1 for λ ∈ {(0, 0), (6, 1), (2, 2), (0, 5), (6, 0), (0, 2), (2, 3), (0, 7)} and ζ(3,1) =
ζ(3,3) = 2.

The orbits under D8 of the points (θ1, θ2) ∈
{(

1
20
, 2
20

)
,
(

8
20
, 9
20

)
·,
(

2
20
, 9
20

)
,
(

1
20
, 8
20

)
·,(

3
20
, 6
20

)
,
(

4
20
, 7
20

)
·,
(

6
20
, 7
20

)
,
(

3
20
, 4
20

)
·,
(

2
20
, 6
20

)
,
(

4
20
, 8
20

)
·,
}
are illustrated in Figure 36. The

orbits of each successive pair of points support the measures d(1/20,2/20), d(1/20,8/20), d(3/20,6/20),
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Figure 37: Graph
EM,ρ1
7 (Sp(2))

Figure 38: Graph EM,ρ2
7 (Sp(2))

d(3/20,4/20) and d(2/20,6/20) respectively. Thus, using (59), we see that the joint spectral
measure for E7(Sp(2)) is

dε = 16
1

8

1

20

1

8π2
|J |

(
d(1/20,2/20) + d(1/20,2/5) + d(3/20,3/10) + d(3/20,1/5) + 2d(1/10,3/10)

)
.

Then we have obtained the following result:

Theorem 4.8 The joint spectral measure of Eρ1
7 (Sp(2)), Eρ2

7 (Sp(2)) (over T
2) is

dε =
1

80π2
|J |

(
d(1/20,2/20) + d(1/20,2/5) + d(3/20,3/10) + d(3/20,1/5) + 2d(1/10,3/10)

)
, (60)

where d(θ1,θ2) is as in Definition 4.1.

4.6 Exceptional Graph EM
7 (Sp(2)): (Sp(2))7 → (SO(14))1 ⋊ Z2

The graphs EM,ρj
7 (Sp(2)), illustrated in Figures 37 and 38 are the nimrep graphs for the

type II inclusion (Sp(2))7 → (SO(14))1⋊τ Z2 with index 10(3+
√
5)+2

√
250 + 110

√
5 ≈

96.90, where τ = α
(1)
(0,2) is a non-trivial simple current of order 2 in the ambichiral system

MX 0
M , see Figure 34. From Section 4.5, [τ ] is a subsector of [α±

(0,2)]. Now ω(0,2) = −1 [15],

which satisfies ω2
(0,2) = 1, thus the orbifold inclusion exists (c.f. Section 4.2). Note that

[τ ′] = [α
(j)
(3,1)] ∈ MX 0

M , j = 1, 2, are also non-trivial simple currents of order 2 in MX 0
M and

are subsectors of [α±
(3,1)], for which ω(3,1) = e7πi/4 [15]. Then ω2

(3,1) = e7πi/2 6= 1, and hence

the orbifold inclusion (Sp(2))7 → (SO(14))1 ⋊τ ′ Z2 does not exist.
The principal graph for this inclusion would be the graph obtained by composing the

principal graph for (Sp(2))7 → (SO(14))1, illustrated in Figure 35 with the graph for the
Z2-action, illustrated in Figure 39. This will be discussed in a future publication using a
generalised Goodman-de la Harpe-Jones construction (c.f. the comments in Section 4.4).
Again, it is not clear what the dual principal graph is in this case.

The associated modular invariant is again ZE7 and the graphs are isospectral to
E7(Sp(2)). The eigenvectors ψλ are not identical to those for E3(Sp(2)). However, as
seen in the following table, the values of |ψλ

∗ |2 are equal (up to a factor 2) to those for
E3(Sp(2)), for λ 6= (3, 1), (3, 3). With θ1, θ2 as in (42) for λ = (λ1, λ2) ∈ Exp, we have:

32



Figure 39: EM
7 (Sp(2)): Z2-action on (SO(14))1

Figure 40: Graph Eρ1
8 (Sp(2)) Figure 41: Graph Eρ2

8 (Sp(2))

λ ∈ Exp (θ1, θ2) ∈ [0, 1]2 |ψλ
∗ |2 1

8π2 |J(θ1, θ2)|

(0, 0), (0, 7)
(

1
20
, 2
20

)
,
(

8
20
, 9
20

) 5−
√
5−
√

10−2
√
5

40

5−
√
5−
√

10−2
√
5

4

(6, 1), (6, 0)
(

2
20
, 9
20

)
,
(

1
20
, 8
20

) 5−
√
5+
√

10−2
√
5

40

5−
√
5+
√

10−2
√
5

4

(2, 2), (2, 3)
(

3
20
, 6
20

)
,
(

4
20
, 7
20

) 5+
√
5+
√

10+2
√
5

40

5+
√
5+
√

10+2
√
5

4

(0, 5), (0, 2)
(

6
20
, 7
20

)
,
(

3
20
, 4
20

) 5+
√
5−
√

10+2
√
5

40

5+
√
5−
√

10+2
√
5

4

(3, 1), (3, 3)
(

2
20
, 6
20

)
,
(

4
20
, 8
20

)
0 5

2

where the eigenvectors ψλ have been normalized so that ||ψλ|| = 1. Then (59) becomes
|ψλ

∗ |2 = ζλ
1
10

1
8π2 |J |, where ζλ = 1 for λ ∈ {(0, 0), (6, 1), (2, 2), (0, 5), (6, 0), (0, 2), (2, 3), (0, 7)}

as for E7(Sp(2)), and ζ(3,1) = ζ(3,3) = 0. Thus we have the following result:

Theorem 4.9 The joint spectral measure of EM,ρ1
7 (Sp(2)), EM,ρ2

7 (Sp(2)) (over T
2) is

dε =
1

80π2
|J |

(
d(1/20,2/20) + d(1/20,2/5) + d(3/20,3/10) + d(3/20,1/5)

)
, (61)

where d(θ1,θ2) is as in Definition 4.1.

4.7 Exceptional Graph E8(Sp(2))
The graphs Eρj

8 (G2) are illustrated in Figures 40 and 41. To our knowledge neither graph
has appeared in the literature before in the context of nimrep graphs or subfactors. The
associated modular invariant is [42, (3.1)]

ZE8 = |χ(0,0) + χ(0,8)|2 + |χ(0,2) + χ(0,6)|2 + |χ(4,0) + χ(4,4)|2 + |χ(4,1) + χ(4,3)|2
+ |χ(2,2) + χ(2,4)|2 + (χ(8,0), χ(0,1), χ(0,7)) + (χ(6,1), χ(0,3), χ(0,5)) + (χ(4,2), χ(2,1), χ(2,5))

+ (χ(2,3), χ(6,0), χ(6,2)) + (χ(0,4), χ(2,0), χ(2,6)),
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where (χλ, χµ, χν) := |χλ|2 + χλ(χµ + χν)
∗ + (χµ + χν)χ

∗
λ. This modular invariant is at

level 8 and has exponents

Exp(E8(Sp(2))) = {(0, 0), (0, 8), (0, 2), (0, 6), (4, 0), (4, 4), (4, 1), (4, 3), (2, 2), (2, 4),
(8, 0), (6, 1), (4, 2), (2, 3), (0, 4)}.

Since the modular invariant associated with this family of graphs does not come from a
conformal embedding, it has not yet been shown that the graphs E8ρj(Sp(2)) arises from
a braided subfactor. This modular invariant is a twist of the D8(Sp(2)) = A8(Sp(2))/Z2

orbifold invariant discussed in Section 4.2, and is analogous to the E7 modular invariant for
SU(2) [9, §5.3] and the Moore-Seiberg E (12)

MS invariant for SU(3) [21, §5.4]. The realisation
of this nimrep by a braided subfactor will be discussed in a future publication, using
a generalised Goodman-de la Harpe-Jones construction analogous to that for E7, E (12)

MS

in [9, 21]. This construction produces Eρj
8 (G2) as nimrep graphs. It is expected that

E8ρj(Sp(2)) does indeed arise as the nimrep for a type II inclusion with index 4(cos(π/11)+
cos(2π/11))2 ≈ 12.97.

However, for our purposes it is sufficient to know the eigenvalues and corresponding
eigenvectors for these graphs, and it is not necessary for the graph to be a nimrep graph.
With θ1, θ2 as in (42) for λ = (λ1, λ2) ∈ Exp(E8(Sp(2))), we have the following values:

λ ∈ Exp (θ1, θ2) ∈ [0, 1]2 |ψλ
∗ |2 1

64π2Jy,z(θ1, θ2)
2

(0, 0), (0, 8)
(

1
22
, 2
22

)
,
(

9
22
, 10
22

)
a5

121
2
a5

(0, 2), (0, 6)
(

3
22
, 4
22

)
,
(

7
22
, 8
22

)
a4

121
2
a4

(4, 0), (4, 4)
(

1
22
, 6
22

)
,
(

5
22
, 10
22

)
a3

121
2
a3

(4, 1), (4, 3)
(

2
22
, 7
22

)
,
(

4
22
, 9
22

)
a2

121
2
a2

(2, 2), (2, 4)
(

3
22
, 6
22

)
,
(

5
22
, 8
22

)
a1

121
2
a1

(8, 0)
(

1
22
, 10
22

)
11b1 0

(6, 1)
(

2
22
, 9
22

)
11b5 0

(4, 2)
(

3
22
, 8
22

)
11b2 0

(2, 3)
(

4
22
, 7
22

)
11b4 0

(0, 4)
(

5
22
, 6
22

)
11b3 0

where ai is the i
th largest root of 56689952x5−15460896x4+1522664x3−63888x2+968x−1,

bi is the i
th largest root of x5 − 11x4 + 44x3 − 77x2 + 55x − 11, and the eigenvectors ψλ

have been normalized so that ||ψλ|| = 1.
The orbits under D8 of the points (θ1, θ2) ∈

{(
1
22
, 2
22

)
,
(

9
22
, 10
22

)
·,
(

3
22
, 4
22

)
,
(

7
22
, 8
22

)
·,(

1
22
, 6
22

)
,
(

5
22
, 10
22

)
·,
(

2
22
, 7
22

)
,
(

4
22
, 9
22

)
·,
(

3
22
, 6
22

)
,
(

5
22
, 8
22

)
·,
}
are illustrated in Figure 42. The

orbits of each successive pair of points support the measures d(1/20,2/22), d(3/22,4/22), d(1/22,6/22),
d(2/22,7/22) and d(3/22,6/22) respectively. The orbits under D8 of the points (θ1, θ2) ∈{(

1
22
, 10
22

)
,
(

2
22
, 9
22

)
,
(

3
22
, 8
22

)
,
(

4
22
, 7
22

)
,
(

5
22
, 6
22

)}
are the black points illustrated in Figure

34



Figure 42: Orbit of (θ1, θ2) for λ ∈ Exp(E8(Sp(2))).

Figure 43: Graph
Eρ1
12 (Sp(2))

Figure 44: Graph Eρ2
12 (Sp(2))

42. Thus we see that the joint spectral measure for E8(Sp(2)) is

16
1

8

2

121

1

64π4
J2
y,z

(
d(1/22,2/22) + d(3/22,4/22) + d(1/22,6/22) + d(3/22,6/22) + 2d(2/22,7/22)

)

+ 8
1

8
11

(
b1 d

(1/22,10/22) + b2 d
(3/22,8/22) + b3 d

(5/22,6/22) + b4 d
(4/22,7/22) + b5 d

(2/22,9/22)
)
.

Then we have the following result:

Theorem 4.10 The joint spectral measure of Eρ1
8 (Sp(2)), Eρ2

8 (Sp(2)) (over T
2) is

dε =
1

1936π4
J2
y,z

(
d(1/22,2/22) + d(3/22,4/22) + d(1/22,6/22) + d(3/22,6/22) + 2d(2/22,7/22)

)
(62)

+ 11
(
b1 d

(1/22,10/22) + b2 d
(3/22,8/22) + b3 d

(5/22,6/22) + b4 d
(4/22,7/22) + b5 d

(2/22,9/22)
)
,

(63)

where bi is the i
th largest root of x5 − 11x4 + 44x3 − 77x2 + 55x− 11, and d(θ1,θ2) is as in

Definition 4.1.

4.8 Exceptional Graph E12(Sp(2)): (Sp(2))12 → (E8)1

The graphs Eρj
12(Sp(2)), illustrated in Figures 43, 44, are the nimrep graphs associated to

the conformal embedding (Sp(2))12 → (E8)1 and are the graphs associated to the modular
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invariant

ZE12 = |χ(0,0) + χ(6,0) + χ(8,1) + χ(2,3) + χ(8,3) + χ(6,6) + χ(2,7) + χ(0,12) + 2χ(4,4)|2

which is at level 12 and has exponents

Exp(E12(Sp(2))) = {(0, 0), (6, 0), (8, 1), (2, 3), (8, 3), (6, 6), (2, 7), (0, 12), and four times (4, 4).}

The graphs Eρj
12(Sp(2)) are illustrated in Figures 43, 44. Note again that Eρ2

12 (Sp(2)) has
two connected components.

The chiral induced sector bases MX±
M are given by

MX±
M = {[α(0,0)], [α

±
(1,0)], [α

±
(0,1)], [α

±
(2,0)], [α

±
(1,1)], [α

±
(0,2)], [α

(j)±
(3,0)], [α

(j)±
(2,1)], [α

(j)±
(1,2)], for j = 1, 2},

where [α±
(3,0)] = [α

(1)±
(3,0)]⊕ [α

(2)±
(3,0)], [α

±
(2,1)] = [α±

(0,2)]⊕ [α
(1)±
(2,1)]⊕ [α

(2)±
(2,1)], and [α±

(1,2)] = [α±
(1,1)]⊕

[α
(1)±
(3,0)]⊕ [α

(1)±
(1,2)]⊕ [α

(2)±
(1,2)].

One can in principle compute the principal graph and dual principal graph of the
inclusion (Sp(2))12 → (E8)1, as in Section 4.3, but we do not do that here due to their
size (the principal graph for instance has 55 vertices). It is only possible to determine the

edge set of the pair of vertices [ι ◦ α(1)±
(2,1)] and [ι ◦ α(1)±

(2,1)] together, but not which edges are
attached to either vertex individually. However, the correct choice could be verified by
the generalised Goodman-de la Harpe-Jones method referred to in Section 4.3, where the
principal graph appears as the intertwining graph.

The subfactor α±
(1,0)(M) ⊂M of index 1

2
(10 + 3

√
5+

√
75 + 30

√
5) ≈ 14.31, where M

is a type III factor, has principal graph the nimrep graph Eρ1
12 (Sp(2)) illustrated in Figure

43, and the dual principal graph is again isomorphic to the principal graph as abstract
graphs.

We now determine the joint spectral measure of Eρ1
12 (Sp(2)), Eρ2

12 (Sp(2)). With θ1, θ2
as in (42) for λ = (λ1, λ2) ∈ Exp(E3(Sp(2))), we have the following values:

λ ∈ Exp (θ1, θ2) ∈ [0, 1]2 |ψλ
∗ |2 1

8π2 |J(θ1, θ2)|

(0, 0), (0, 12)
(

1
30
, 2
30

)
,
(
13
30
, 14
30

) 9−
√
5−
√

30+6
√
5

120

9−
√
5−
√

30+6
√
5

8

(6, 0), (6, 6)
(

1
30
, 8
30

)
,
(

7
30
, 14
30

) 9+
√
5−
√

30−6
√
5

120

9+
√
5−
√

30−6
√
5

8

(8, 1), (8, 3)
(

2
30
, 11
30

)
,
(

4
30
, 13
30

) 9+
√
5+
√

30−6
√
5

120

9+
√
5+
√

30−6
√
5

8

(2, 3), (2, 7)
(

4
30
, 7
30

)
,
(

8
30
, 11
30

) 9−
√
5+
√

30+6
√
5

120

9−
√
5+
√

30+6
√
5

8

(4, 4)
(

5
30
, 10
30

)
2
3

3

where the eigenvectors ψλ have been normalized so that ||ψλ|| = 1, and for the exponent

(4, 4) which has multiplicity four, the value listed in the table for |ψ(4,4)
∗ |2 is ∑4

j=1 |ψ
(1,1)j
∗ |2.

Note that

|ψλ
∗ |2 = ζλ

1

15

1

8π2
|J | (64)

where ζλ = 1 for λ ∈ Exp(E3(Sp(2))) \ {(4, 4)} and ζ(4,4) = 10/3.
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Figure 45: Orbit of (θ1, θ2) for λ ∈ Exp(E12(Sp(2))) \ {(4, 4)}.

The orbits under D8 of the points (θ1, θ2) ∈
{(

1
30
, 2
30

)
,
(
13
30
, 14
30

)
·,
(

1
30
, 8
30

)
,
(

7
30
, 14
30

)
·,(

2
30
, 11
30

)
,
(

4
30
, 13
30

)
·,
(

4
30
, 7
30

)
,
(

8
30
, 11
30

)
·
}
are illustrated in Figure 45. The orbits of the first

four pairs of points support the measures d(1/30,2/30), d(1/30,8/30), d(2/30,11/30) and d(4/30,7/30)

respectively. The orbit of the last pair has appeared before and supports the measure
|J | d6 × d6. Thus, using (64), we see that the joint spectral measure for E12(Sp(2)) is

dε = 16
1

8

1

15

1

8π2
|J |

(
d(1/30,1/15) + d(1/30,4/15) + d(1/15,11/30) + d(2/15,7/30)

)

+ 36
1

8

10

3

1

15

1

8π2
|J | d6 × d6.

Then we have obtained the following result:

Theorem 4.11 The joint spectral measure of Eρ1
12 (Sp(2)), Eρ2

12 (Sp(2)) (over T
2) is

dε =
1

60π2
|J |

(
d(1/30,1/15) + d(1/30,4/15) + d(1/15,11/30) + d(2/15,7/30)

)
+

1

8π2
|J | d6 × d6, (65)

where d(θ1,θ2) is as in Definition 4.1 and d6 is the uniform Dirac measure on the 6th roots
of unity.
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