
Materials Research Express

PAPER • OPEN ACCESS

Plasma etching and surface characteristics
depending on the crystallinity of the BaTiO3 thin
film
To cite this article: Han Byeol Lee et al 2023 Mater. Res. Express 10 016401

 

View the article online for updates and enhancements.

You may also like
Structural and ferroelectric properties of
epitaxial BaZrxTi1xO3 thin films
S Engelhardt, M Mietschke, C Molin et al.

-

Temperature tunable electromagnetically
induced transparency in terahertz
metasurface fabricated on ferroelectric
platform
Koijam Monika Devi, Arun Jana, Shreeya
Rane et al.

-

Microstructure and ferroelectricity of
BaTiO3 thin films on Si for integrated
photonics
Kristy J Kormondy, Youri Popoff, Marilyne
Sousa et al.

-

This content was downloaded from IP address 82.16.166.249 on 24/01/2023 at 13:46

https://doi.org/10.1088/2053-1591/aca9a9
https://iopscience.iop.org/article/10.1088/0022-3727/49/49/495303
https://iopscience.iop.org/article/10.1088/0022-3727/49/49/495303
https://iopscience.iop.org/article/10.1088/0022-3727/49/49/495303
https://iopscience.iop.org/article/10.1088/0022-3727/49/49/495303
https://iopscience.iop.org/article/10.1088/0022-3727/49/49/495303
https://iopscience.iop.org/article/10.1088/0022-3727/49/49/495303
https://iopscience.iop.org/article/10.1088/1361-6463/ac9912
https://iopscience.iop.org/article/10.1088/1361-6463/ac9912
https://iopscience.iop.org/article/10.1088/1361-6463/ac9912
https://iopscience.iop.org/article/10.1088/1361-6463/ac9912
https://iopscience.iop.org/article/10.1088/1361-6528/aa53c2
https://iopscience.iop.org/article/10.1088/1361-6528/aa53c2
https://iopscience.iop.org/article/10.1088/1361-6528/aa53c2
https://iopscience.iop.org/article/10.1088/1361-6528/aa53c2
https://iopscience.iop.org/article/10.1088/1361-6528/aa53c2
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssOu997fsvJZ_BWvLiH6I5YQcn1HODNLYIgIy1RF9ud4TK7kQV3B6hVAxhLv1iExE-aYrbnvxiVxLJBO4qv5XIwjh1nG6SXE2NH3oocwmrs8JmjNUyPhSKqBf-NewF60RYHLTm28hN5gEJCDMfUT61MRPhg3k9WZlQ8I8uKAiRgXyRazGCMkqXG20IgGC5m7J405WAHudUG8R2heN9Df3k_OHSHpxe0JeGQu3M_rhXpBKKcyjuXSzG1X4nH66ASatjx6xqYkn9dCnQR4ASqlrp7QVNNSN9CRI3l7RIT2j1niA&sai=AMfl-YRTx8UUocvr1B4L15SkBxZdGLtpiPJshxuqoC6m6vVvlIY4W9MrIaFYkmuEYGvc6yYwAm3or279h8WkHth_Jg&sig=Cg0ArKJSzFM8nPO9cE-1&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/toyota-fellowship%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3D2023ECSTYIF


Mater. Res. Express 10 (2023) 016401 https://doi.org/10.1088/2053-1591/aca9a9

PAPER

Plasma etching and surface characteristics depending on the
crystallinity of the BaTiO3 thin film

HanByeol Lee1, Young-Hee Joo1,2 , Harshada Patil3, Gwan-HaKim4, InsuKang5, BoHou6 ,
Deok-keeKim3 , Doo-SeungUm3,∗ andChang-Il Kim1,∗

1 School of Electrical andElectronics Engineering, Chung-AngUniversity, Seoul 06974, Republic of Korea
2 Department of Firearms andOptics, DaedukUniversity, Daejeon 34111, Republic of Korea
3 Department of Electrical Engineering, SejongUniversity, Seoul 05006, Republic of Korea
4 Department of SemiconductorMaterials andApplications, Korea Polytechnic, Seongnam13122, Republic of Korea
5 Department of Semiconductors & Electrical System, Semiconductor Convergence Campus of Korea Polytechnic, Anseong-si 17550,
Republic of Korea

6 School of Physics andAstronomy, Cardiff University, The Parade, Cardiff CF24 3AA,Wales, United Kingdom
∗ Authors towhomany correspondence should be addressed.

E-mail: dsum@sejong.ac.kr and cikim@cau.ac.kr

Keywords:BaTiO3, plasma etching, crystallinity, etch rate, perovskite, XRD, XPS

Supplementarymaterial for this article is available online

Abstract
Due to its high dielectric constant (κ), the BaTiO3 (BTO) thinfilm has significant potential as a next-
generation dielectricmaterial formetal oxide semiconductor field-effect transistors (MOSFETs).
Hence, the evaluation of the BTO thinfilm etching process is required for such nanoscale device
applications.Herein, the etching characteristics and surface properties are examined according to the
crystallinity of the BTO thinfilm. The results demonstrate that the etching rate is low in the high-
crystallinity thinfilm, and the surface residues aremuch lower than in the low-crystallinity thinfilm.
In particular, the acceleratedCl radicals in the plasma are shown to penetratemore easily into the low-
crystallinity thinfilm than the high-crystallinity thinfilm. After the etching process, the surface
roughness is significantly lower in the high-crystallinity thinfilm than in the low-crystallinity thin
film. This result is expected to provide useful information for the process design of high-performance
electronic devices.

1. Introduction

Over the past several decades, themetal oxide semiconductor field-effect transistors (MOSFETs) have been
scaled to increase the speed, power efficiency, and density of the integrated circuit [1–4]. However, due to the
concurrent reduction input voltage, the thickness of the insulating layermust also be reduced. Consequently,
because a very thin insulating layer causes leakage current and adversely affects device performance, an
insulating layer with a high dielectric constant (κ)has become an important requirement forMOSFETs and
metal-insulator-metal (MIM) capacitors for application inmemory devices [5–7]. In particular, the ternary
perovskite barium tin oxide (BaTiO3 or BTO) has attracted attention as a next-generation insulator due to its
highκ value of∼1,700 compared to the binary oxides such as SiO2 (κ= 3.9) andZrO2 (κ= 2.9) [8, 9]. In
addition, BTO iswidely used in various applications such as nanogenerators, photovoltaics, and sensors due to
its piezoelectric, pyroelectric, and ferroelectric characteristics [10–12].

For application to nanoscale electronic devices, anisotropic nano-patterning of the BTO thinfilm is
required. Although various nano-patterningmethods exist and are under development, the extreme ultraviolet
(EUV) photolithographymethod can reliably realize the finest patterns, with a size of several nanometers. By
contrast, wet etching is difficult to apply to certain nano-sized patterns due to its isotropic etching characteristics
[13]. Hence, it is essential to apply a plasma etching process that provides anisotropic and elaborate etching
characteristics [14, 15]. In addition, a post-deposition annealing process is essential to obtain high-κ, high-
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crystallinity BTO thinfilms [16, 17]. Therefore, various studies are needed in order to establish various process
strategies for nano-patterning. For example, the patterningmay be performed either before or after the post-
deposition annealing process of the BTO thinfilm. If the patterning is performed after annealing, the
crystallinity of the annealed thin filmmay cause differences in the etching rate, surface residues, surface doping
by the plasma, and density of defects [18–21].

In this study, the Cl-based plasma etching characteristics and surface properties of BTO thinfilms are
investigated according to the crystallinity of the thinfilms. The crystallinity and surface chemical states of the
BTO thin films are examined via x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS),
respectively, before and after the annealing and etching processes. The etch rate of the low-crystallinity thinfilm
is shown to be higher than that of the high-crystallinity thinfilm. Further, the proportion of surface residues on
the thinfilm after etching is significantly higher in the low-crystallinity thin film than in the high-crystallinity
thinfilm. In particular, it is found that significant numbers of Cl radicals are inserted deep into the low-
crystallinity BTO thinfilm. Additionally, the surface roughness of the high-crystallinity BTO thinfilmwas less
affected by the etching process. This study reveals the effects of crystallinity upon the etching characteristics of
the thinfilm, and is expected to provide useful information for the process design of high-performance
electronic devices.

2. Experimental

The BTO thin filmswere deposited on P-type (100) silicon substrates via RF-magnetron sputtering using a
3-inch diameter, 1/8-inch thick BaTiO3 (99.9%) target with a bondedCu backplate. The target-to-substrate
distancewas 57 cm. Before the sputtering process, the 4-inch siliconwafer was cleaned by sonication in
isopropyl alcohol (IPA) for 10 min, rinsedwith deionized (DI)water, and dried byN2 blowing. Tominimize the
effects of potential contamination, the base pressure of the chamberwasmaintained at 2× 10–6 Torr using a
turbomolecular pump for 1 h.

The BTO thinfilmswere deposited on the Si wafer for 4 h at a substrate temperature of 300 °C, anRF power
of 140W, aworking pressure of 22mTorr, andAr andO2 flow rates of 12 and 4 standard cubic centimeters per
minute (sccm). The thickness of the as-deposited BTO thin filmwas about 280 nm.After deposition, samples
were annealed for 2 h under an oxygen atmosphere in a furnace at 600, 700, or 800 °C, respectively, to compare
the effects of crystallinity on the subsequent Cl-based plasma etching.

The plasma etching characteristics according to the crystallinity of the BTO thin filmswere compared by
using a planar high-density plasma (HDP; SELEX200, APTC, SouthKorea) system,which combines the high
plasma density of the inductively-coupled plasma (ICP) and processing reproducibility of the capacitively
coupled plasma (CCP) sources, respectively [22]. In detail, the design of the upper RF antenna for plasma
generationwas a combination of the plate structure of theCCP source and the coil structure of the ICP source.
AnRF generator was connected to the bottomof the chamber to control the bottom (platen)RFpower and,
thus, control the ion energy in the plasma. The frequencies of 13.56 and 2MHzwere used for the upper and
lower generators, respectively. Prior to the plasma etching process, the chamberwasmaintained at a base
pressure of 5× 10–6 Torr for 30 min using a turbomolecular pump. A cooling systemwas connected to thewafer
chuck to keep the substrate temperature constant during the process.

The BTO thinfilmswere etched for 1 min at various Cl2/Ar gasmixing ratios of 0:100, 25:75, 50:50, 75:25,
100:0 (with a totalmixing gas flow rate of 100 sccm in each case), while other conditionswere fixed as anRF
power of 150W, a bottomRFpower of 50W, a process pressure of 15mTorr, and a substrate temperature of
21 °C.

The etch rate wasmeasured using a depth profiler (α-step 500, KLATencor, USA) after the etching process.
The crystallinities of as-deposited and annealed filmswere examined via x-ray diffractometer (XRD;NewD8-
Advance, Bruker, USA), while x-ray photoelectron spectroscopy (XPS;NEXSA, Thermo-Fisher Scientific, USA)
was used to define the atomic percentage, chemical bonds, chemical shifts, and depth profiles before and after
plasma etching. The base pressure wasmaintained below 10−8mbar using two turbomolecular pumps, an
automated titanium sublimation pump and a backing pump, for a high vacuum forXPS analysis. Then, the
sample surface was etchedwith anAr+ ion gun for 10 s prior toXPSmeasurement in order to remove the surface
contamination that occurred during themovement formeasurement. TheXPS spectrawere recorded using a
monochromatic Al Kα radiation at 1486.6 eVwith a 400 μmspot size infixed delay ratiomode, and all the
binding energies were determinedwith reference to the adventitious C 1s peak at 284.8 eV. For curvefitting, a
Gaussian-Lorentzian peak shapewas used sequentially after subtracting the background signal by Shirley’s
method. To confirm the contamination depth byCl-based plasma etching, the XPS depth profile wasmeasured
after the etching by anAr+ ions gun at intervals of 10 s for a total of 250 s.
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In addition, atomic forcemicroscopy (AFM;NX-10, Park system,Korea)was used tomeasure the surface
roughness.

3. Results and discussion

TheXRDpatterns of the BTO thinfilms that were annealed at 600, 700, and 800 °C for 2 h are presented in
figure 1(a). Here, all the deposited BTO thin films exhibit peaks in the (111), (200), and (211) orientations
(indicated by the red triangles). After annealing, however, an additional peak appears in the (110) orientation of
the perovskite structure [23, 24]. This demonstrates that the annealing process leads to crystallization of the
previously non-crystallized regions inmainly the (110) orientation.However, no peaks are observed in the (100)
and (210) orientations of the perovskite phase, which can be attributed to the specificmethod of deposition
[25–27]. The peaksmarkedwith red rectangles and blue circles infigure 1(a) are due to TiO2 andTi2O3,
respectively, while the peakmarkedwith awhite diamond is due to the Si substrate [28, 29]. In brief, the changes
in the intensities of the (110), (111), (211) peaks indicate that the annealing process promotes the crystallization
of the perovskite phase in the BTO thin films.

The FE-SEM images in Fig. S1 of the SupplementaryMaterial indicate that crack and void are formed in the
BTOfilmwhen annealed at 800 °C. Therefore, the annealing temperature of 700 °C is selected for additional
investigation. The 700 °C-annealed BTO thin filmwas then plasma etched at the highest etching rate (i.e. 75:25
Cl2:Ar) under the conditions given in the Experimental section. TheXRD results obtained before and after
etching of the 700 °C-annealed BTO thin film are presented infigure 1(b). Here, a peak due to the (110)
orientation of the perovskite phase is clearly seen in the BTO thinfilm before the etching process, but is absent
after the etching process, while an intense silicon peak has appeared. The latter can be attributed to a decrease in
the thickness of the BTO thinfilm by removal of the crystallized surface during the etching process. This
indicates that the change in crystallinity during the annealing process occursmainly on the surface of the BTO
thinfilm.

TheCl2/Ar plasma-etching rates of the as-deposited and 700 °C-annealed BTO thin films are compared in
figure 2(a). In both cases, the etching rate is seen to steadily increase as the proportion of Cl2 gas is increased up to
75%, but then decrease under the pureCl2 plasma. This decrease can be attributed to the absence of Ar ion
bombardment (physical sputtering) [30, 31], which is required in order to accelerate the removal of by-products
and, thus, achieve a high etching rate [32]. Thus, withAr ion bombardment, the etching rate of the as-deposited
BTO thin film ranges from14.2 to 87 nmmin−1, while that of the as-annealed thinfilm ranges from12.8 to 65.8
nmmin−1. The generally lower etching rate of the as-annealed BTO thin film is attributed to the influence of
crystallization during the annealing process, as shown schematically infigure 2(b) [33]. There are some reports
that higher crystallinity inhibits oxygen vacancy formation due to the lesser structural flexibility and smaller
atomic relaxation [34, 35]. Thismeans that there aremore unbroken atomic bonds in high-crystallinity thin
films than in low-crystallinity thinfilms. In turn, the increased number of broken chemical bonds in the low-
crystallinity BTO thinfilm allows easy combinationwith theCl radicals generated during the plasma etching
process (figure 2(b)). As a result, the etching rate of the low-crystallinity thinfilm is higher than that of the high-
crystallinity (i.e., the annealed) thin film.

Figure 1.TheXRDpatterns of the as-deposited BTO thin films (a) before (RT) and after annealing at various temperatures, and (b)
before and after etching of the as-deposited and 700 °C-annealed BTO thinfilm.
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TheXPS narrow scans of the as-deposited and 700 °C-annealed BTO thin films obtained before and after
etching are presented infigure 3.Here, the Ba 3d spectrumof the as-deposited BTO thin film exhibits a doublet
of peaks at about 793.66 and 778.29 eVdue to the Ba 3d3/2 and Ba 3d5/2 levels, respectively (figure 3(a)). Further,
these are deconvoluted into sub-peaks at 779.36 and 780.20 eVdue to BaO, 779.93 eV due to BaCO3, and 780.74
eVdue to BaO2. The BaCO3 bonds are due to contamination of the sample surface during thinfilm deposition
and transport for XPSmeasurement [36].

After the etching process of both the as-deposited and the 700 °C-annealed BTO films, a new peak appears at
781.98 eVdue to BaCl2, while the intensity of the BaCO3 peak is reduced. This indicates that the Ba on the
surface of the BTO thinfilm is etched away after bondingwithCl radicals, thereby reducing the proportion of
BaCO3 on the surface [15]. Surface residues that are not etched away after the bonding of Ba andCl radicals
remain on the surface in the formof BaCl2.

Similarly, the XPS narrow scanTi 2p spectra each exhibit a doublet of peaks at 464 and 456 eV due to the Ti
2p1/2 andTi 2p3/2 levels, respectively, and are deconvoluted into sub-peaks corresponding to TiO (459.05 eV),
TiO2 (457.75, 458.24, and 458.68 eV) andTi2O3 (456.53 eV) (figure 3(b)) [37]. An additional peak is observed at
455.0 eVdue to residual TiClX on the surface of both samples after the etching process [38], thereby indicating
that the surface Ti atoms are etched by bondingwithCl radicals in the formof TiClX. Further, the deconvoluted
sub-peaks ofO 1s spectra show the bonding of Ti–O,Ba–O, andBaCO3 (figure 3(c)). After the annealing
process, theO 1s peak is shifted by about 0.2 eV towards a lower energy due to compensation of the cation
defects. Further, the Ba–Obonds are significantly decreased in both the as-deposited and 700 °C-annealed BTO
thinfilms after the etching process, while the Ti–OandBa–C–Obonds are unaffected. Thismay be because the
Ba–Cl chemical bond occursmore predominantly than the Ti–Cl bond, as can be seen from theGibb’s free
energies of BaCl2 (– 806.67 kJmol−1) andTiCl4 (– 737.2 kJmol−1) [39]. In particular, the decrease in the B–O
bond ismore significant in the as-deposited sample than in the 700 °C-annealed sample, whichmay be due to
the difference in crystallinity of the two thinfilms.

As expected, noCl 2p peak is observed in either the as-deposited or the 700 °C-annealed sample before
etching, whereas, a Cl 2p peak is observed in both thinfilms after the Cl2/Ar plasma etching process
(figure 3(d)).Moreover, the as-deposited BTO thin film exhibits a significantly larger Cl 2p peak than does the
annealed thin film. This is due to the different crystallinities of the thin films, such that the penetration of Cl
radicals into the BTO thin film surface under bottomRFpower occursmore easily in the low-crystallinity (as-
deposed) thinfilm than in the high-crystallinity (annealed) thinfilm, as shown schematically infigure 2(b).

TheXPS elemental contents of the as-deposited and 700 °C-annealed BTO thinfilms before and after
plasma etching are summarized in table 1. In each case, the proportion of Ba atoms is seen to decrease after
etching.However, the as-deposited thin film exhibits a larger decrease in the proportion of Ba atoms, alongwith
a larger increase in the proportion of Cl atoms, than does the as-annealed thinfilm. In addition, the as-deposited
thinfilm exhibits amuch larger decrease in the amount of surface Ti than does the annealed thinfilm after the
etching process. In conclusion, the BTO thinfilm is etchedmainly via BaCl2 andTiClX bonding in the presence
of theCl2/Ar plasma, with BaCl2 bonding proceedingmore actively thanTiClX bonding on the surface of the
low-crystallinity BTO thin film.

The bottomRFpower of the plasma etching process causes strong physical sputtering of radicals and ions in
the plasma, and these can penetrate into the bulk of the thin film to cause chemical contamination and defects.
The depth variations in the chemical compositions of the as-deposited and 700 °C-annealed BTO thin films after

Figure 2. (a)The etching rates of the as-deposited (red) and 700 °C-annealed (black)BTO thin films, and (b) the schematic etching
mechanisms in the corresponding high- and low-crystallinity thin films.
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the etching process are revealed by theXPS profiles in figure 4.Here, both samples exhibit high surface
concentrations ofO 1s (black profile) andC1s (blue profile) due to contamination and oxidation of the thinfilm
surface upon exposure to the atmosphere during transport for XPS analysis after Cl2/Ar plasma etching.Hence,

Figure 3.The high-resolution Ba 3d (a), Ti 2p (b), O 1s (c), andCl 2p (d)XPS spectra of the various samples. In (a) to (c), the blue
background indicates theXPS spectra of the as-deposited BTOfilms, and the orange background indicates theXPS spectra of the 700
°C-annealed thinfilms.

5

Mater. Res. Express 10 (2023) 016401 HBLee et al



the Cpeak disappears after about 25 s of etching time, while the intensity of theOpeak decreases from about 60
to about 50 at% after about 50 s, as the bulk of the film is sampled. In the as-deposited BTO thinfilm
(figure 4(a)), the atomic percentage of Ti 2p becomes higher than that of Ba 3d between 25 and 125 s, after which
the atomic percentage of Ba 3d exceeds that of Ti 2p.Meanwhile, the atomic percentage of Cl 2p gradually
decreases from7 to 3%as the etching time increases. In the 700 °C-annealed BTO thin film, however, the atomic
percentage of Ba 3d is consistently higher than that of Ti 2p, and both concentrations aremaintained at constant
levels after 50 s, while the atomic percentage of theCl 2p remains very low. Thus, theCl radicals andAr ions in
theCl2/Ar plasma havemore pronounced effects in the bulk of the as-deposited BTO thinfilm than in the as-
annealed thin film. This can be attributed to the difference in crystallinity, such that the Cl radicals penetrate into
the crystal defects in the as-deposited BTO thinfilm,where they are trapped as residues and bondwith Ti atoms
[40, 41], whereas the high surface crystallinity of the as-annealed BTOprevents the deep penetration of Cl
radicals andAr ions.

The surfacemorphologies of the as-deposited and 700 °C-annealed BTO thin films before and after the
Cl2/Ar plasma etching process are revealed by theAFM images infigure 5. Before etching, the as-deposited BTO
thinfilm exhibits a very smooth surface, with a roughness of 0.5 nm (figure 5(a)), while the as-annealed thin film
exhibits a slightly increased surface roughness of 7.6 nmdue to the surface crystallization (figure 5(b)). After the
etching process, however, the surface roughness of the as-deposited BTO thinfilm is significantly increased to
31.7 nm (figure 5(c)), whereas that of the as-annealed BTO thin filmhas decreased very slightly to 4.7 nm
(figure 5(d)). These results suggest that the amorphous state is partially present in the as-deposited BTO thin
film, and that the etching rate is higher in the amorphous region than in the crystalline region, thereby resulting
in an increased surface roughness during the etching process. However, because the surface of the as-annealed
BTO thin film ismostly crystallized, the etching rate is similar onmost parts of the surface, thus leading to no
significant change in surface roughness. Since themetal/insulator interface topography deeply affects the
electric field strengths and leakage currents of devices such as transistors and capacitors, this indicates that the
use of the annealing process prior to etching can be advantageous for improving the device performance [42, 43].

Figure 4.TheXPS depth profiles of (a) the as-deposited BTO thin film and (b) the annealed thinfilm after the etching process.

Table 1.The atomic percentages of Ba, Ti, O, andCl in the as-deposited and
700 °C-annealed BTO thinfilms before and after etching.

As-deposited Annealed

Before

etching (%)
After etch-

ing (%)
Before

etching (%)
After etch-

ing (%)

Ba 3d 17.0 13.7 18.1 16.5

Ti 2p 24.7 22.0 22.7 22.6

O 1s 58.3 56.9 59.2 59.1

Cl 2p 0 7.5 0 1.8
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4. Conclusions

Herein, the Cl2/Ar plasma etching characteristics ofmagnetron-sputtered BTO thin filmswere investigated
according to their surface crystallinities. To increase the surface crystallinity, the as-deposited BTOfilmwas
annealed at 700 °C for 2 h in an oxygen atmosphere, andXRD analysis confirmed that the (110) orientationwas
newly formed on the annealed surface. The etching ratewas highest at the Cl2/Ar gas ratio of 75:25 in both the
as-deposited and as-annealed BTO thin films, andwas higher in the low-crystallinity (as-deposited) thinfilm
than in the high-crystallinity (as-annealed) thin film. TheXPS spectra indicated that the BTO thinfilmwas
etched in the formof BaCl2 andTiClX by bondingwithCl radicals, and the BaCl2 bondingwasmore dominant
than that of TiClX. In addition, the bonding of BaCl2 occurredmore actively in the as-deposited BTOfilm than
in the as-annealedfilm. TheXPS depth analysis confirmed that Cl radicals were deeply inserted in the defects of
the low-crystallinity thin film under the bottomRFpower, where they remained in the formof TiClX. Further,
AFManalysis revealed that the surface roughness was highest for the as-deposited, etched BTO thinfilm, while
no significant changewas observed in the surface roughness of the as-annealed BTO film before and after
etching. These results demonstrate the effect of the surface crystallinity provided by the annealing process upon
the subsequent plasma etching of the BTO thinfilm, and are expected to provide a direction for the process
design of thinfilms for high-performance electronic devices.
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