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Abstract

This thesis aims to investigate the complexity of the physiological mechanical response

of soft tissues, providing rich datasets for the verification of clinical systems limiting or

preventing tissue injury. A thorough understanding of the sagging of the brain tissue

under the effect of gravity (positional brain shift, PBS) is paramount for the design of

an effective intra-operative correction of surgical trajectories; rich measurements of the

response of the buttock to sitting loads can help the verification of computational models

to couple with clinical measures for the prevention and control of pressure ulcers.

Digital volume correlation (DVC) consists in measuring the local differences between

scans depicting the deformed and undeformed stages of a sample under load, facilitating

the characterisation of the mechanical response of the sample. The use of DVC in-vivo

is limited, due to the limited quality of the scans constrained by the acquisition setting.

Accuracy of three deformable registration methods was first assessed after optimisation

against biomechanically plausible ground truths generated via finite element simulations.

Against the simulation of PBS, the best accuracy achieved was of one order of magnitude

smaller than the resolution of the images. For the simulation of deformations of the

buttock due to sitting, optimal accuracy was around 10% of the average deformation

fields applied.

The best performing methods alongside their optimal parameter sets were then used

to perform in-vivo measurements on real magnetic resonance scans of two separate

datasets of healthy subjects. For PBS, the study revealed the need for intervention- and
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patient-specific correction of surgical trajectories given the effect of head geometry and

orientation on the shift. For the deformation of the buttock due to sitting, the measure-

ments gave a three-dimensional depiction of the local and global pattern of deformation,

which results were previously limited to thickness or surface measurements.
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Chapter 1

Introduction

1.1 Overview

Navigation software for image-guided surgical interventions aids in planning a proced-

ure to be carried out as minimally invasivally as possible. Their use is critical for the

optimal surgical outcome of procedures for deep brain stimulation, brain drug delivery

and brain tissue biopsy. The planning is generally delineated on the base of the tissue

distribution captured before a procedure generally via magnetic resonance (MR) ima-

ging [2, 3]. However, surgical manipulation and gravity can induce deformation of the

tissue (referred to as positional brain shift, PBS) that can invalidate the conditions which

the planning was based on [4, 5]. This small shift has a magnitude comparable to the

resolution of clinical scans and it is reported to be around or just below 1 mm [4–8]. A

reliable and validated mathematical model for the intra-operative correction of surgical

trajectories predicting such complex deformation is missing; accurate measurements of

brain shift would undoubtedly improve the general understanding of the phenomenon,

helping to assess the need for correction of surgical trajectories as well as how to achieve

that.

Similarly, an accurate way to predict the deformation of soft tissues via mathematical

models can benefit clinical strategies and systems for the control and prevention of

pressure ulcers. They are localised areas of tissue degeneration and injury that result

from sustained mechanical load and pose a considerable burden on patients and health-
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care systems [9]. Further advancements in the prevention and management of pressure

ulcers depend on the thorough understanding and reliable prediction of the onset of

damage. This is particularly true for deep tissue injury, an ulceration frequent to the

buttock where damage originates deep in the flesh and is not always associated with

broken skin or external wounds. Damage initiation is related to the sustained straining

effect of large tissue displacements, which are reported to reach values up to 27 mm in

the gluteus maximus muscle [1, 10–12]. The response of the tissue can be modelled

with computational biomechanical models (such as finite element modelling), which

ultimately can have the potential to predict the initiation and location of the damage [13].

Rich deformation data depicting the mechanical response of a tissue sample is critical

for their careful design and development, as well as for their thorough verification and

clinical validation [14].

Recent advancements in imaging systems and computational capabilities have allowed

not only the non-destructive visualisation of the internal conformation of samples,

but also the characterisation of their deformation state under the effect of load [15].

Capturing the mechanical response of biological tissues is challenging due to their

inhomogeneous nature, where the mechanical response varies throughout the tissue

sample [16]. Such a complex mechanical behaviour can be characterised from the load

applied and the constraints on the deformation (boundary conditions), only if the locally

varying deformation of the sample is known in its entirety. Digital volume correlation

(DVC) is a method that facilitates this [17]; in its simplest form, it makes use of imaged

volumes representing the deformed and undeformed states of a sample to track the

local movements of corresponding points or features. The full-field distribution of

the spatially varying compression / extension state of a sample can then be visualised

via maps of the displacement and strain fields and used to determine the mechanical

response.

The importance of capturing the full-field measurements of spatially variable mechanical

response of biological tissues is critical for the understanding of their response to load.
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This information is crucial, as previously introduced, for the development as well as

validation of clinical systems and strategies aimed at minimising tissue damage (e.g.,

surgical planning) or at preventing tissue injury (e.g., support surfaces). To complicate

things further, the mechanical response of soft tissues is considerably affected by the

surrounding biochemical environment and by the constraining effect of neighbouring

tissues [18]. Any mechanical testing after tissue extraction (that is, ex-vivo) can give an

inaccurate representation of their true mechanical behaviour. A non-destructive way to

image the stages of deformation of biological tissues in their physiological environment

(that is, in-vivo) is paramount.

Recent advancements in MR imaging has allowed the observation of the deep anatomy

non-invasively and in-vivo, without the use of damaging radiation. In particular, the

distribution of soft tissues can nowadays be captured over wide areas with excellent con-

trast, making the use of MR imaging in the clinical context ever growing. MR imaging

consists in measuring the energy released by protons as they return to equilibrium after

their direction of spin is perturbed [19]. An initial equilibrium is guaranteed by a strong

magnetic field, which aligns the spins of magnetic atom nuclei towards along the same

direction. This state of equilibrium is then perturbed via radiofrequency pulses, whereas

spatial gradients are applied to encode spatial location. The time it takes for protons

to return to equilibrium depends on the microstructure of the tissue; the volumetric

conformation of different tissues can therefore be reconstructed with a suitable contrast

over a wide area.

Thanks to the favourable contrast of tissues, MR imaging has also been recently used

alongside digital volume correlation (DVC) to capture the deformation of hard tissues

non-destructively and in-vivo [20, 21]. MR-based DVC enriches well-established

experimental ex-vivo mechanical testing by depicting the response of tissues over a

large volume in physiological conditions, surrounded by anatomical boundaries and

under typical loads [16, 17]. In-vivo MR-based DVC has proved to be favourable in

particular in the case of soft tissues, as their mechanical response is greatly affected
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by tissue extraction and preservation [18]. However, their for soft tissues is somewhat

limited [20], more so from clinical scans affected by limited resolution [21].

DVC studies investigating tissue response in-vivo are mostly based on anaesthetised

animal models [20, 21]. Under these testing conditions, the conformation of the de-

formed and undeformed tissues can be acquired with appropriate resolution over a

longer acquisition [20]. In-vivo MR imaging of compliant subjects, on the other hand,

poses a compromise between resolution and acquisition time: rich spatial representation

either requires unacceptable acquisition times due to subject comfort or it is affected

by the artefacts given by unavoidable subject motion [22]. First and foremost, in-vivo

MR scans have typically a resolution of just below a millimetre, limiting the spatial

wavelengths of the deformation field that can be accurately reconstructed via DVC to

only the ones larger than twice the resolution (without any constraints on the trans-

formation model) [23, 24]. Secondly, the reconstruction of small displacements (that

is, smaller than voxel resolution) relies on appropriate assumptions and constraints

on the DVC calculations (that is, regularisation on the deformation model and on the

optimisation). These guarantee sub-voxel resolution to some extent [24, 25]. Finally,

error of the DVC measurements increases when capturing large deformations: the

approximations and the assumptions which the deformable methods are based on can in-

troduce inaccuracies in the estimated displacement field. First, the measure of similarity

between two sub-regions to align suppresses high spatial variations in the displacement

field, occluding, for instance, strain concentrations [24]. Moreover, there is a trade-off

between accuracy and precision in the estimated displacement field; higher flexibility of

the transformation model is required to accurately follow large deformations (such as

strain concentrations), whereas precision is guaranteed by enforcing smoothness that

limits spurious variations [25].

In the context of MR imaging, deformable registration methods for medical imaging

have been developed on images affected by these limitations. One of the applications

of these methods is capturing the small and large differences in anatomy between
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subjects, so that scans of different individuals can be aligned together and compared in

population studies [26]. Medical image processing and registration were major drivers

for developments of DVC: these methods shares many similarities, although their

progressions have differed due to the requirements of the individual applications [17].

Given that these freely-available methods have been thoroughly developed to tackle the

specific challenges of in-vivo MR imaging on compliant subjects, it is natural to test

their accuracy under such conditions before moving to DVC software developed for

mechanical testing or material science.

Studies that have used medical image registration methods for in-vivo MR DVC [4, 5]

lack a comprehensive and thorough evaluation of the accuracy of the measurements. Ac-

curacy of the DVC calculations is of fundamental importance: it dictates the confidence

in any clinical findings based on such measurements or their value for the validation and

verification of computational models affected by or aimed at predicting biomechanical

deformations. The work presented in this thesis aims to assess such accuracy on the

two applications representing small and large deformation mentioned at the beginning

of the section: that is, image-guided neurosurgery and prevention of deep tissue injuries.

The comparison of the performance between these two deformation fields will be a first

step towards understanding the absolute accuracy of such models.

1.2 Hypothesis and Research Questions

The work is based on the following hypothesis: deformable registration methods for

medical imaging have the accuracy and flexibility to capture, on a global and local

scale, the small and large displacement of soft tissues in physiological conditions.

This hypothesis is intended to give a measure of the degree of accuracy of well estab-

lished deformable registration methods for medical imaging in following mechanically

driven deformation of soft tissues. This was achieved by first testing the performance of

three best performing registration methods in the literature (from Chapter 2, DRAMMS,
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SyN and elastix) against the following two biomechanically plausible synthetic dis-

placement fields: the small shift of the brain tissue under the effect of gravity; and the

large deformations of tissues in the buttocks due to sitting. The minimal constraints

on the estimation of the displacement fields limited any bias on the measurements

given by any assumptions on the distribution of the deformation. The methods with

their optimised parameters were then applied to real MR scans depicting in-vivo the

aforementioned phenomena. Clinical conclusions were drawn where possible and the

DVC measurements released as a freely available dataset for the development and

verification of future biomechanical computational models.

The following research questions are addressed:

Research question 1: What is the accuracy of in-vivo MR DVC measurements of

biomechanically induced small and large deformation fields?

Research question 2: Can in-vivo MR DVC measurements characterise the small

displacements due to brain shift on a local and global scale, strengthening our under-

standing of the phenomenon?

Research question 3: Can in-vivo MR DVC measurements characterise the large

displacements of the tissues of the buttock due to sitting on a local and global scale,

strengthening our understanding of the phenomenon?

1.3 Thesis Structure and Contributions

Included in this section is a brief outline of the thesis and the corresponding contribu-

tions.

Chapter 2 contains a literature review introducing the reader to the major technical

works on image registration, with a focus on DVC and deformable registration for

medical imaging. The chapter finishes with a brief introduction to sensitivity analysis,
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an effective tool for error analysis, and to MR distortions, a critical source of error to

any measurements of morphology based on MR scans.

Chapter 3 begins with an introduction to the problem of PBS in the context of neurosur-

gery. Next, the main sources of error affecting DVC measurements of PBS from MR

scans are investigated, namely, MR distortions, initial skull alignment and DVC meas-

urements. Given the lack of a distortion-free imaging system, the effort that were

made to measure MR distortions are reported: these were captured in relative terms as

differences in the morphology in each of two subjects, imaged in two different scanners.

The error related to the initial alignment of the skull (used as rigid reference between

deformed and undeformed scans) is then examined, which was evaluated against few

synthetic rotations and translations. Finally, the results of the optimisation of three

deformable registration methods for medical imaging used for the DVC calculations

are reported. Optimisation was carried out against a physically plausible deformation

field replicating the small displacements due to PBS, obtained from a biomechanical

computational model developed in the doctoral thesis by Nicholas Bennion [27]. This

leads to the first contribution:

Contribution 1 Deformable registration methods for medical imaging showed accur-

acy which was one order of magnitude smaller than the resolution of the images

in following a deformation field characterised by the small displacements repres-

enting positional brain shift. This addresses the first part of Research Question

1.

Chapter 4 contains the specifications of the acquisition protocol that was carried out

to acquire PBS in-vivo from a population sample of 11 healthy individuals. The best

registration method alongside its optimal parameter set from Chapter 3 was then used

to capture the deformation from the acquired scans. The chapter concludes with the

analysis of the deformation and a few clinical implications. This leads to the second

contribution:
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Contribution 2 An average volumetric vector field with the corresponding inter-subject

variability was extracted in-vivo, allowing tissue displacement within surgically

relevant regions of interest to be characterised. This addresses Research Question

2.

Chapter 5 introduces the problem of deep tissue injury and the limitations of current

clinical measures for the prevention and control of this type of pressure ulcers. Similarly

to Chapter 3, the efforts made to quantify the main sources of error affecting DVC

measurements from MR scans are reported. First, the results of the optimisation of

three affine registration methods (FLIRT, ANTs and elastix) for medical imaging are

reported; their accuracy in the alignment of pelvic skeletal elements to use as rigid

references is investigated. Then, the outcome of the optimisation of three deformable

registration methods is discussed, showing their accuracy in capturing simulated data of

large deformations generated with a simplified biomechanical computational model of

the buttock. This leads to the third contribution:

Contribution 3 Deformable registration methods for medical imaging showed accur-

acy which was around 10% of the average magnitude of the simulated deformation

fields representing the large deformation of the buttock due to sitting. This ad-

dresses the second part of Research Question 1.

Chapter 6 shows the DVC measurements taken from the dataset provided by Al-Dirini

et al. [1], depicting the progressive deformation of the buttock due to semi-recumbent

sitting in 10 healthy individuals. The best registration methods (affine and deformable)

alongside their optimal parameter sets from Chapter 5 were used for the initial pelvic

alignment and the following DVC measurements. The chapter concludes with the

analysis of such deformation and few clinical implications. This leads to the fourth and

final contribution:

Contribution 4 For the first time, the three-dimensional displacement field depicting

the deformation of the buttock due to sitting in 10 healthy subjects was successfully
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extracted in-vivo on a local and global scale, giving an extensive depiction of the

pattern of deformation. This addresses Research Question 3.

Finally, Chapter 7 contains a conclusion of the work and findings presented in the

thesis, as well as a delineation of further directions of development.

These contributions have resulted in the following peer-reviewed publication, where

Chapter 4 formed the main body and Chapter 3 the supplementary materials:

Zappalá, S., Bennion, N. J., Potts, M. R., Wu, J., Kusmia, S., Jones, D. K.,

Evans, S. L., & Marshall, D. (2021). Full-field MRI measurements of in-vivo

positional brain shift reveal the significance of intra-cranial geometry and head

orientation for stereotactic surgery. Scientific Reports, 11(1), 17684. https:

//doi.org/10.1038/S41598-021-97150-5.

In addition, the draft of the following manuscript is to be submitted soon to the Journal

of Biomechanics, where Chapter 6 will form the main body and Chapter 5 the supple-

mentary materials:

Zappalà, S., Bethany E. K., Marshall, D., Wu J., Evans S. L. & Al-Dirini M. A.

R.. Volumetric redistribution of the soft tissues in the human buttock captured

from MR in-vivo scans: accuracy of measurements and analysis of deformation.

Finally, outcomes of the research have been presented in the following international

conferences:

14-16/08/2019 : Two presentations at the 16th International Symposium on Computer

Methods in Biomechanics and Biomedical Engineering (CMBBE) and the 4th

Conference on Imaging and Visualization, New York City (USA) (Guarantors

of Brain "Support for short meetings & conferences" bursary), titled "Digital

Volume Correlation via Magnetic Resonance Imaging: an In-vivo Investigation

https://doi.org/10.1038/S41598-021-97150-5
https://doi.org/10.1038/S41598-021-97150-5
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of Positional Brain Shift" and "Application of Digital Volume Correlation to the

In-vivo Deformation of the Sub-dermal Tissues in the Human Buttock".

11-16/05/2019 : Electronic poster presentation at the International Society for Magnetic

Resonance in Medicine (ISMRM) 27th Annual Meeting & Exhibition, Montreal

(Canada) (ISMRM Educational stipend award), titled "Ten Minutes for the Brain

to Settle: an In-vivo Investigation of Positional Brain Shift".

7-12/07/2018 : Poster presentation at the 8th World Congress of Biomechanics (WCB),

Dublin (Ireland), titled "Is your brain deforming right now? An image-based

investigation of the in-vivo positional brain shift".
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Chapter 2

Literature Review

2.1 Overview

As introduced in Chapter 1, this thesis considers the suitability of digital volume correl-

ation (DVC) measurements on the in-vivo deformation of soft tissues from magnetic

resonance (MR) scans. This chapter aims to ensure that the content delivered in this

thesis is as self-contained as possible: given the interdisciplinarity of the work carried

out, a great effort was made to cover the most relevant technical contributions.

This chapter will begin with an introduction to deformable image registration, the

backbone of DVC. The technical background to DVC will then be reviewed with a

focus on its use in biological tissues. With the aim of investigating the deformation of

soft tissues in-vivo, the chapter then moves on to reporting the main relevant literature

on medical image registration, as they were designed and optimised on the limitations

related to in-vivo MR scanning. Being very flexible tools, these methods need thorough

parametric optimisation to gauge their suitability for DVC calculations and to assess

the error in the measurements: sensitivity analysis for error analysis will therefore be

briefly introduced. Finally, further in the assessment of the error affecting the DVC

measurements, the problem of MR distortions will be introduced. MR distortions add a

systematic error to the measurements and, hence, form another source of inaccuracy

affecting MR-based DVC calculations.

The reader is asked to note that introductions to the two applications investigated
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in the thesis (that is, positional brain shift and deep tissue injury) are reported in

Chapters 3 and 5.

2.2 Image Registration

Image registration is a technique that allows the alignment of images on the basis of the

common information they share, so that points representing similar features are mapped

together. Image registration plays an important role, in particular, where the depiction

of analogous information in the images to align differs in terms of view-points, intensity

representations or time acquisitions [28]. Numerous disciplines have benefited from

image registration, such as computer vision and medical imaging. The reader is pointed

towards the following (among others) comprehensive reviews in the medical field for

more details on the applications of image registration: Oliveira et al. [28], Sotiras et

al. [26] and Keszei et al. [29].

Here, the problem of image registration will be considered between two images. One of

the two images can be referred to as the moving (or source image), denoted by Im(x)

and defined in a three-dimensional discrete image domain made of voxels located at

coordinates x ∈ R3. The other image will be referred to as fixed (or target image) and

denoted with If (x), whose discrete domain of voxels is defined in a separate coordinate

system from Im(x).

The registration problem lies in the estimation of the vector of parameters p of the

transformation Tp, that maximises a similarity measure S, given some restrictions

represented by the penalty term R:

p = arg max
p

(
S
(
If (x), Im(Tp ◦ x)

)
+ γR

)
. (2.1)

• The similarity measure S() represents the differences between features of the

fixed image and the moving one after transformation Im(Tp ◦ x) [30].



2.2 Image Registration 13

• The penalty termR enforces regularisation in the estimation, which incorporates a-

priori information to restrict the estimation towards the space of feasible solutions

(more details in the following sections) [31].

• γ is the regularisation weight which controls the balance between the correspond-

ence of features and the regularisation term.

The presentation of the image registration problem will be divided into its main three

parts:

1. Definition of a search strategy.

2. Choice of the similarity measure.

3. Selection of the transformation model.

Search strategy

Registration problems are generally solved with a non-linear optimisation technique,

where the objective function describing the differences between images has a non-

linear distribution and the search aims to find a global minimum, that is, the point that

maximises their similarity. The discrete nature of the problem and the approximations in

the calculations induce local minima to the search space that can deviate the registration

estimation from an optimal solution.

Deformable image registration, in particular, is an inherently ill-posed problem where

the number of unknowns exceeds the number of constraints [17, 26]. There is no closed-

form solution and the search space has many local minima, giving different equally

sub-optimal estimates of the unknowns. Constraints on the estimation are therefore

needed to direct the registration towards the most reasonable transformation out of

all the arbitrary ones that equally satisfy the registration problem. These constraints

make the registration problem well-posed and an unique solution can be therefore

determined [31].
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Search strategy consists in spanning the search space in an efficient way, constraining

the search only to meaningful alignment between images. Therefore, the quality of

registration depends on the choice of search method and the constraints imposed [26].

In other words, if the similarity measure represents differences between features of the

images, the optimisation aims to minimise such differences for a correct alignment [28].

Several optimisation algorithms has been developed over the years. Two main cat-

egories can be distinguished: continuous, where variables to estimate take continuous

values and discrete, otherwise [26]. Some examples of continuous search strategies

include gradient descent, conjugate gradient, Powell’s conjugate directions, Levenberg-

Marquardt, stochastic gradient descent. Continuous methods consist in refining the

estimated parameters at each iteration by identifying and following the direction that

ideally points towards the global minimum. Simpler methods are based on following

the direction of the negative gradient of the cost function or the conjugate of the same

direction [26]. An important parameter controlling the search is the gradient step. It

represents the advancement of the solution in the direction of the minimum after each

iteration, where large steps can decrease the time to reach convergence but can have the

negative effect of deviating the solution from the minimum itself.

One approach to avoid local minima and direct the optimisation towards the optimal

sub-space of acceptable solutions, and ultimately to the global minimum, is the pyramid

strategy. This consists in progressively solving multiple registration sub-problems

of the same image but from coarser to finer resolutions, where each successive step

uses the previous best guess as initial transformation [32]. Downsampling the images,

although being detrimental to the accuracy of the alignment, smooths the search space,

suppressing most of the local sub-optimal minima [17]. At the end of the registration

process the output is still based on the alignment of the images at their original resolution

(guaranteeing precise alignment) but each iteration is based on an initial alignment given

by a simpler registration process run on coarser versions of the same images. The multi-

resolution pyramidal structure consists, in general, of four levels, with halved resolution
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at each level from bottom (original resolution) to top. Multi-scale approaches have

several advantages, such as speeding up the optimisation, increasing the convergence

radius and being more robust to local minima [28].

Similarity Measure

As more pertinent to MR image registration, this section will focus on intensity-based

registration, where a suitable transformation is estimated based on the intensity distribu-

tion of the images. Feature-based (or geometric) registration problems, instead, will be

quickly introduced at the end of the section.

Defining an appropriate criterion that measures the similarity between images is critical:

first, it should account for the different physical principles of the acquisition systems

so that the information from the intensities can be exploited to identify regions that are

anatomically similar and should correspond. Moreover, it should be convex, allowing

for accurate inference without distorting the information represented by the images [26].

The choice of the similarity measure depends on whether the registration problem is

mono-modal, that is, similar acquisition modalities were used to acquire the images

and similar distributions can be assumed; or multi-modal, where images have different

distribution related to different acquisition modalities used. In the first case, the same

anatomical structures are represented with similar intensity values, that mainly differ

due to the noise affecting them. In this case, the simple sum of square differences

between intensities can be the optimal similarity measure. On the other hand, when an

affine relation has to be assumed between the intensities, then some variations of the

cross-correlation are known to be more robust [17, 28].

In a multi-modality registration problem, instead, similar anatomical regions are not

represented by similar intensity values. As no relation between the two intensity

distributions can be assumed, similarity measures based on information criteria need

to be chosen. Mutual information and its derived forms are the best choice in this
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case. The measure comes from information theory and it is based on the calculation

of joint distribution of intensity values [33]. The following two main limitations of

the criterion motivated its many variants: degradation of alignment measure with

overlapping regions [33]; limited spatial information born regarding the distribution

of the features [30]. Normalised mutual information was therefore defined, as well as

other variations aimed at including regional information as well [26].

As opposed to intensity-based problems, feature-based registration problems consist in

minimising the distance between points or point-sets (such as curves or surfaces) that are

manually or automatically extracted from the images. In the latter case, corresponding

features do not have to be estimated during the registration call, as they are known, and

the measure to minimise is the distance between point-sets [31]. The calculations are

robust and straightforward; however, accuracy of the final alignment depends, to a great

extent, on the reliability of their extraction and a vast number of them is needed for

more complex deformable registration [26, 34]. The interested reader is pointed towards

the review by Sotiras et al. [26].

The inclusion of spatial information to intensity-based criteria as additional geometrical

features has shown promising results when similar anatomical structures are represented

with similar intensity values. Examples of this are geometric moment invariants, local

intensity histograms or Gabor filters [26, 35].

Transformation models

The image registration approach can be global (or affine) or deformable (or non-linear,

non-rigid) (see Figure 2.1): in the former, the transformation Tp from Equation 2.1 can

be represented with a 4x4 homogeneous matrix that is common to every voxels in an

image. In the latter case, a dense vector field at each voxel that best locally warps one

image onto the other is outputted.

In the case of global registration methods, the transform is an affine mapping, where
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Figure 2.1: Depiction of the difference between a global (middle) and a deformable
(right) registration problem.

parallel lines are corresponded to parallel lines [36]. The transform can be considered

as a combination of the following components: translation, rotation, scale and skew

(Figure 2.2) and it presents 12 degrees of freedom (DoF). The plethora of affine trans-

forms also includes rigid transforms, composed by three components of rotation and

three components of translation, making 6 DoF and similarity transforms, which also

include three components of scaling, defining 9 DoF.

Figure 2.2: Depiction of the components of an affine transformation: translation,
rotation, scale and skew.

In the case of deformable registration, the output transform is specific to sub-regions

of the images [26]: the warp maps straight lines to curves [36]. The transform Tp is a

dense mapping that varies spatially and presents numerous DoF (even millions [26]).

In its most straightforward representation (i.e., non-parametric), the transformation

can be considered as a three-dimensional warp field (or displacement field) u(x). The

transformation is used to update the location of the voxel x of the moving image, such

that the new position of the voxel x̂ can be retrieved as x̂ = x + u(x). A paramet-
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erised representation of the warp field is often used to reduce the number of feasible

transformations [26].

The choice of the transformation model impacts both the computational efficiency and

the accuracy of the registration task [26]. The chosen transformation model imposes

constraints on the overall estimation and should adhere to the nature of the deformation

to follow. Increasing the complexity enriches the descriptive power of the model: how-

ever, higher complexity introduces higher computational demand; but more importantly

it can also introduce spurious variations in the estimated warp affecting the estimation

error.

Following the same classification as in Holden [36], transformation models for deform-

able registration can be enumerated as based on:

• Physical models.

• Interpolation/approx models.

The physical models solve the registration problem by interpreting the similarity between

features of the images to register as a force that drives them together. These forces

need to be in balance with the internal stresses generated, which can be interpreted as

smoothness constraints on the deformation. The simplest models involve the use of

linear elasticity that are based on only two parameters (Lamé constants λ that relates

stresses to strain, and µ that represents the shear modulus): the system to solve (Navier-

Cauchy PDE) At each voxel then simplifies to 15 equations in 15 unknowns (6 values of

strain, 6 values of stress and 3 values of displacement). The shortcoming of this model

is that it ignores second-order terms of the displacement gradients, assumption that is

valid only for infinitesimally small displacements. The transform exhibits sub-optimal

performance in the case of inter-subject registration problems, which rely on capturing

large deformations between features, up to a few centimetres [37].

Another transformation model inspired by physical phenomena is based on fluid-flow.

Unlike the linear elastic one, it can model large localised deformations, with the draw-
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back of an increased number of computations as well as greater registration errors [36].

It is based on solving Navier-Stokes partial differential equations, which are identical to

the Navier-Cauchy ones but based on the velocity field, rather than on the deformation

field. The Cauchy stress tensor here is a combination of hydrostatic fluid pressure (im-

age similarity) and viscous stress tensor (constraints on the deformation field). Similarly

to the linear elastic model, the registration problem is about balancing the momentum of

the fluid with the pressure and the viscous forces. Optical flow models (such as Demons

algorithm) are based on a similar concept, but incorporate the intensity gradient between

frames representing incremental stages of deformation during registration [38, 39].

The second group includes transformations that are based on interpolation and ap-

proximation theory. In this section, the radial basis functions (RBFs) will be firstly

described to then introduce basis-spline (B-spline) models, which possess desirable

properties alongside good performance in terms of accuracy [40] and computational

burden [36, 41].

RBFs are an umbrella of functions where the displacement is the sum of basis functions

centred at some control points (or landmarks). These nodes do not have to correspond

to a structured grid of voxels. The basis functions depend on the distance of a query

point x from a known point xi and they are positive definite functions. RBFs are fixed

in the registration process, which aims to estimate the weight of each function that is

summed up. RBFs generally have global support: although they perform well with

sparsely populated data-points, the effect of outliers affects the whole displacement

field [26]. One of the most used RBF are thin-plate splines [36]. They are the solution

of a square Laplacian of the deformation field, which can be interpreted as a thin plane

that passes on or next to control points. The smoothness of the plane is guaranteed by a

resistance to bending. Although having useful smoothing properties and being able to

fit through a sparse set of points, thin-plate splines are globally supported and struggle

to follow more localised deformation.

Unlike thin-plate splines, B-splines have minimal support. In one dimension, any spline
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function of degree n can be described as a linear combination of B-splines of the same

degree over the same partition. A B-spline of order n is a basis function with minimal

support around a control point: each one is obtained as a convolution of (n− 1)-order

B-splines. The Cox-de Boor recursion formula allows the construction of B-splines of

nth order from two splines of order n− 1. A basis function of 0th order is defined as a

step function between two knot points. The total number of control points depends on

the number of knots and the degree of the spline, and their location depends on the fit to

the data points that is wanted.

An example of a multivariate B-spline model is the free-form deformation (FFD) model,

which can be formed from tensor products of univariate splines [26]. Their name

represents the minimal assumptions they are based on, and distinguishes them from

any knowledge-based methods where a-priori information on the deformation field is

assumed [28]. Moreover, their support is local, hence the movement of a control point

does not affect the whole warp field as in the case of thin-plate splines. Each point of an

n-dimensional B-spline depends on n+ 1 neighbouring control points [42]. They are

based on partitioning the support space into regularly spaced sub-domains (a lattice),

defined by a grid of control points. For example, the cubic spline is defined, within the

support region of sub-domain (u, v, w), as:

u(u, v, w) =

3,3,3∑
l=0,m=0,n=0

bl,3(u)bm,3(v)bn,3(w)Pi+l,j+m,k+n (2.2)

where (i, j, k) are the indices spanning the grid of control points and bl,3(u) the cubic
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basis functions:

b0,3(u) =
(1− u)3

6
, (2.3)

b1,3(u) =
3u3 − 6u2 + 4

6
, (2.4)

b2,3(u) =
−3u3 + 3u2 + 3u+ 1

6
, (2.5)

b3,3(u) =
u3

6
. (2.6)

Global deformations are captured with larger spacing between control points (and

fewer number of DoF); whereas a tighter spacing allows to capture more information

about the deformation and hence local differences in features (with the need of more

computational burden given by the higher number of degrees of freedom) [43, 44].

Relative to thin-plate splines, B-splines are not only locally controlled (better fitting of

local differences in features between images) but also computationally more efficient

even with a large number of control points [43]. Similar penalty terms to the ones for the

thin-plate splines can be added to increase the smoothness of the deformation field [43].

Other transformation models were considered to be out of the scope for the present

work; the interested reader can find more information on registration via wavelets or

knowledge-based approaches in the reviews by Holden et al. [36], Sotiras [26], and

methods using machine learning in the reviews by Fu et al. [45] and Xiao et al. [46].

Additional constraints on the transformation model can guarantee good properties on the

output warp field, allowing the model to have the flexibility to follow quick variations,

while still guaranteeing good properties [26, 36]. These can be summarised as:

Inverse consistency - Registration algorithms are asymmetric, therefore the choice of

fixed and moving images impacts the registration output. Inverse consistent meth-

ods aim at estimating both forward and backward transformations, constraining

one to be the inverse of the other. These methods are symmetric only asymptotic-

ally and when the weight of the term imposing inverse consistency is dominant
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over the similarity term.

Symmetry - Symmetric algorithms either are based on objective functions that are

symmetric by construction, or the registration problem is based on two forward

and backward sub-problems towards to a common mid-domain.

Topology preservation - Topology is preserved when injectivity and continuity is im-

posed onto the transformation model, as well as the continuity of its inverse. The

determinant of the Jacobian guarantees injectivity of the warp field when it is

greater than zero. The existence of the Jacobian implies the differentiability of

the transformation and its continuity.

Diffeomorphism - Diffeomorphism is a stronger constraint aimed at preserving the

topology whilst guaranteeing smooth mappings. Diffeomorphic transformations

are differentiable mappings with a differentiable inverse.

Imposing diffeomorphism has shown good results when assumptions on the transform-

ation models cannot be made, such as in the case of intra-subject registration [39].

Constraining the transformation to be diffeomorphic guarantees that connected / dis-

connected sets stay connected / disconnected, smoothness of curves and surfaces are

maintained and points are transformed consistently [47]. Moreover, the use of diffeo-

morphic transform is motivated in the case of brain registration by microscopy studies

showing a preservation of cell layout throughout the brain [48].

Although constraints on the deformation model are beneficial in most of the applications

of image registration, tight constraints were shown to be detrimental on the accuracy

of registration-based segmentation methods. In these cases, the quality of the propaga-

tion of the segmentations is of more importance than the smoothness of the obtained

transformation, showing the benefits of looser constraints [40, 49].

This section has introduced the basis of deformable image registration, which is the

backbone of DVC and image registration for medical imaging, which will now be de-

scribed. The challenges related to in-vivo MR DVC will be presented. Then, deformable
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image registration methods for medical imaging will be introduced and proposed as a

initial solutions to address these limitations.

2.3 Digital Volume Correlation

In its simplest form, digital volume correlation (DVC) is a method that consists in

estimating the displacement field from scans depicting consecutive stages of deform-

ation of a sample. Differences between features in the two scans are tracked and the

displacement field that induced the morphological differences outputted. One of the two

images is iteratively morphed onto the other, in order to find the local warp field that

best corresponds details of the features. At each iteration, the correspondence between

sub-regions of the images is measured and the warp field updated until some condition

on an acceptable alignment or number of iterations is reached. When features are

properly aligned together, the output of DVC represents the distribution of the desired

displacement field. Strain maps which depict the full-field compression state of the

sample can then be calculated.

DVC extends other methods for strain evaluation, by giving the three-dimensional

distribution over the whole imaged sample: strain gauges give a measure of strain only

at discrete points on a surface, whereas extensometers give a one-dimensional measure

over the whole sample [50]. Applications of DVC include the characterisation of the

material properties of a sample, once boundary and loading conditions are accounted for.

This is particularly beneficial in the case of heterogeneous materials, such as compressed

stone wool, low density fiberboards, cellulose fibre mats and biological tissues [17, 50].

In these cases, strain gauges and extensometers would fail in the depiction of the

complexity of the compression state of the sample. Moreover, DVC is used for the

localisation of strain concentration for the identification of cracks and control of their

propagation [51]. Finally, DVC measurements on biological tissues can further improve

our understanding of tissue remodelling: tissue remodelling, as restoration and repair of
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biological tissues, is a process that is partially strain-driven [52, 53].

The DVC method can be generalised into the following three main components [50]:

• Acquisition of the sample at different stages of deformation.

• Retrieval of the displacement field that best aligns features of the two volumes.

• Calculation of strain tensors from the computed displacement field.

Medical applications have been the major driver for early works on global DVC [17],

both in terms of imaging systems to capture the stages of deformation and image

processing to reconstruct the displacement field. In particular, the development of

computed tomography (CT) and magnetic resonance (MR) imaging for diagnostic

purposes has allowed the non-destructive depiction of the microstructure of both natural

and industrial materials.

DVC and image registration for medical imaging have developed in separate ways due to

the following differences: sub-voxel accuracy for the former versus voxel accuracy for

the latter; small deformations caused by mechanical testing versus substantial warping

caused by anatomical inter-subject variability; richness of features to align versus lack of

suitable spatial and intensity resolution [17]. Early works using deformable registration

methods for medical imaging for DVC include Schnaudigel et al. [5] and Gerard et

al. [54].

Volumes Acquisition Imaging techniques used for DVC comprise of, but are not

limited to, CT, MR, optical coherence tomography, confocal microscopy and ultrasonic

imaging [17, 50]. The choice of imaging system is crucial, in order to acquire the stages

of deformation with suitable spatial and intensity resolutions, without it interfering with

the experimental set up. The main difference with its precursor, digital image correlation

(DIC), is that accuracy of DVC measurements depends on the imaging systems’ ability

to reliably capture naturally occurring structural features with a suitable level of detail
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and appropriate contrast. In the case of DIC, researchers can control on the quality of

the random patterns that are deliberately drawn or sprayed on materials undergoing

deformation to aid the correlation between the two images.

The conditions of testing pose considerable restrictions on the experimental apparatus

and on the imaging system used. Ex-situ testing can be considered the simplest way

of applying the load to a sample, as this is isolated from the original conditions and

then tested. The sample can be prepared to fit the constraints of the imaging system

or vice-versa. Specific experimental apparatus, instead, is needed for in-situ testing,

where the sample is kept in its own original conditions and environment [17]. Regarding

testing of biological samples, other conditions include ex-vivo and in-vivo testing. The

former consists in testing the sample out of the physiological environment it originally

came from, imposing fewer restrictions on the experimental apparatus. Although ex-vivo

testing allows better quality of the acquired scans, tissue extraction and preservation

negatively affect the mechanical behaviour of the tested sample. In-vivo testing, on the

other hand, provides the real conditions of deformation and the true mechanical response

of the samples; it poses, however, tight restrictions on the overall apparatus. Even tighter

restrictions are related to in-vivo testing on human subjects for research purposes, where

ethical approval is needed, for example, in case of using ionising radiation (e.g., CT) [55].

This leads to only the use of MR systems on compliant subjects, where high resolution

scans cannot be obtained due to long acquisition times affecting the subject comfort

and is not advised due to the artefacts related to unavoidable subject motion [22].

For instance, Dall’Ara et al. [20] compared the performance of two DVC methods

(one local, the other global) on different datasets of ex-vivo zero-strain tests and one

in-vivo database of bone structures on an anaesthetised rat model. Even in these ideal

conditions where sample motion could be partially factored out, they showed that

against ex-vivo testing, in-vivo DVC measurements were affected by higher errors due

to moving artefacts and lower intensity contrast due to the lower radiation energy.
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Deformable Registration DVC algorithms can be broadly categorised into two

groups: local and global methods. The local methods were developed first and consist in

partitioning the region to register into sub-volumes which are aligned independently. A

displacement vector is then estimated for each sub-region, with inaccurate displacement

calculations at boundaries [25]. All the contributions then need to be smoothed after

estimation, to avoid discontinuities in the estimated displacement field [56]. The global

DVC methods, instead, consist in outputting a dense displacement field, where each

sub-volume contributes towards the whole output volume [17]. Regularisation is part

of the estimation process and guarantees less discontinuities and inconsistencies in

the output displacement field, leading to generally higher accuracy relative to local

approaches [57]. With the aim of testing the suitability of deformable registration

methods for medical imaging for DVC measurements, the second group will be the

focus of the thesis work.

As previously mentioned, global DVC has many similarities with deformable registration

for medical imaging, as the latter has been the major driver. The reader is referred to

Section 2.2 for a presentation of the basis of the deformable registration component of

DVC methods, that is, search strategy, similarity measure and transformation model. In

the following, the challenges related to the deformable registration problems typical of

DVC calculations are discussed.

Transformation model is the main component determining the accuracy of a DVC

method. With the aim of reaching sub-voxel accuracy, displacement needs to be interpol-

ated to have an estimate of displacement points between independent measurements [50].

Simpler interpolation models can give systematic errors (bias), as the displacement

field does not have the flexibility to follow quick variations. On the other hand, higher

order schemes have the flexibility to capture quick spatially varying components of

deformation. This, however, introduces higher uncertainties, and subsequent variations

in the outputted warp field [17, 50]. Uncertainty levels that arise from higher order

deformation models can be kept under control by imposing stricter regularisation or by
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choosing a larger spacing between independent measurements of displacements [17].

The larger the spacing, the lower the random errors associated with the displacement

field [20], hence higher precision is achieved [58, 59]. However, the larger the spacing,

the lower the flexibility of the transformation model to follow quick spatial variations,

such as strain concentrations [25, 60], leading to systematic errors and decreasing

accuracy. In particular in the case of large deformations, there is a trade-off between the

accuracy of the measurements (that is, the higher complexity to follow quick spatial

variations) and their precision (that is, the limited spurious variations around the true

values). A balance between the flexibility and smoothness of the transformation model

therefore play a pivotal role when capturing large displacements [25].

In the presence of large deformations, decorrelation effects can lead to improper calcu-

lation of the similarity between sub-regions of the images, with corresponded points

representing different anatomical features [61, 62]. The pyramidal scheme introduced in

Section 2.2, greatly limited the decorrelation effect in DIC and DVC calculations [61].

High-frequency content can anyway be lost in the cross-correlation due to the low-pass

effect of the formulation due to the averaging process [24]: this can lead to loss in high

frequency displacement information. Nogueira et al. [63] devised a window weighting

function that flattens the frequency response and stabilise the frequency information

(although the low-pass filtering effect cannot be factored out).

Strain Calculations The maps of the strain measurements can then be extracted from

the dense displacement field. Among the many measures of strain, a convenient one is

the Green-Lagrange strain, E. By definition the translational and rotational components

of deformation are discarded, so that only the compressive state of a sample even under

larger deformations is represented [64]:

E =
1

2

(
FTF− I

)
, (2.7)
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F =
∂u(x)

∂x
+ I, (2.8)

where x is the voxel position in a Lagrangian coordinate system (that is, that moves with

the material), u(x) the deformation field, I the identity matrix and F the deformation

gradient.

The simplest way to calculate the deformation gradient F is via central differences,

where 3- (or more) point or formulae can be chosen depending on the level of noise

affecting the displacements. Otherwise, a first- [65] or second-order [66] approximation

of the strain tensor can be fitted to the displacement data via least-squares. The latter

was shown to be advantageous when dealing with high strain gradients and showed the

same level of errors in deriving strain values in the main field and at the edges of the

field of view [66, 67].

The subset of displacement points used to calculate the tensors defines the strain window.

The size of the strain window affects the accuracy of the calculations and its choice

depends on the specific application [50]. On the one hand, larger strain windows reduce

the noise affecting the displacement field (that are amplified in the differentiation) and

generally lead to higher precision in the strain calculations [16, 67]. On the other hand,

larger strain windows can attenuate existing strain gradients, reducing the capability

of locating quick spatial variations in compression state and ultimately introducing

systematic errors [16, 51]. This is particularly detrimental for the localisation of strain

concentrations or in the case of strain distributions over irregular geometries.

This section has introduced DVC and its application to biological tissues. The challenges

related to in-vivo MR DVC have also been discussed, in particular, in the case of

acquisition on compliant subjects for research purposes. In the following section, the

state of the art of deformable image registration methods for medical imaging will

be introduced, as these methods have the accuracy and flexibility to be used for DVC

measurements and have been developed to tackle the specific limitations of in-vivo MR

imaging.
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2.4 Medical Image Registration

Applications of image registration in the medical field include structural and functional

image fusion, image subtraction for contrast enhanced images, population studies,

surgical and radiotherapeutic planning, disease follow-up, and segmentation [28, 29,

40, 68]. There is a broad selection of freely available software for image registration,

which come from many years of research in the medical field. This includes stand-

alone registration methods [32, 35] as well as toolboxes with a broad selection of

methods and utilities [44, 69]. Desirable aspects of a registration method are [29, 40]:

versatility to be applicable to many scenarios; automatic, i.e., no need for parameter

tuning; computationally fast and light to possibly be used in a clinical context; robust to

noise, inhomogeneities, lost correspondences, pathological anatomy, different FOVs and

intensity ranges; supported by clear and comprehensive manuals and wikis; consistent

user support; finally, availability of utilities for auxiliary image processing [29].

Registration methods for medical imaging have nowadays the flexibility to be applied

to many parts of the body [28]. To cite but a few, brain both in physiological [70]

and pathological conditions [40], lungs [71], breast [43] and abdomen [72]. Generic

registration algorithms have actually performed better than other methods tailored to

any specific registration task by introducing some kind of a-priori constraints [71].

Recent research on medical image registration has focussed on models based on deep

learning (DL). DL-based methods showed comparable results [73, 74] relative to the

more conventional registration methods, with the benefits of requiring less computational

demand, as most of these models are based on one iteration, and being less dependant

on prior expert parameter tuning [73]. Two are the main categories, depending on

the training that the models undergo: supervised, where examples of the registration

problems are given for the model to learn from, prior to any application of the model;

unsupervised, where the model learn from the registration problem to solve, without

requiring training. State-of-the-art performance can be achieved with supervised models:

they need, however, a large amount of labelled training data or reliable ground truth
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to generate [46, 73]. In the case of unsupervised models, the deformation field is

reconstructed without a ground truth as guidance, giving as output a warp field that can

show spurious variations [75]. This thesis work will focus on conventional registration

methods as research on guaranteeing good properties of the warp field from ML-based

models is still ongoing, such as guaranteeing physically and physiologically plausible

output warps [45, 73].

In the following section, the state of the art of academically popular deformable re-

gistration algorithms will be introduced and their selection justified in this section.

The performance of many of these methods have been compared in several evaluation

studies: the following section will begin with an introduction to such studies, to then

describe in more details the best performing ones that were used in the thesis work.

One of the largest evaluation studies was carried out by Klein et al. [76]. It includes 14

deformable registration algorithms that were tested on 80 manually labelled brain scans

and compared using 8 different error measures on both regions and surface overlaps.

Scans were taken from four publicly available datasets, skull stripped and linearly

registered to the MNI standard space prior to the non-linear registration. A total of

45,000 registrations were run. Algorithms were ranked on the basis of permutation tests,

confidence intervals obtained from one-way ANOVA tests with Bonferroni correction,

and indifference-zone ranking. SyN consistently showed good performance across

subjects and label sets, reaching rank 1st in their evaluation system.

A few years later, the EMPIRE10 [71] challenge aimed to compare registration methods

on different challenges related to the application of image registration to the CT scans

of the lungs. A total of 34 and 20 algorithms in two separate phases were tested

on the alignment of lung boundaries; alignment of major fissure (plate-like structure

separating the top form the bottom side of the lungs); correspondence of 100 annotated

landmarks that were automatically extracted and then matched by either three or four

expert observers; correspondence of surgically implanted metallic markers on two ovine

animal models (67 in the first, 103 in the second); singularity on the deformation field,
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that is, the negative values of the determinant of the Jacobian. A ranking system for each

one of these categories was designed in order to score each registration method. SyN

and elastix were the top two performing methods (out of 20) in the second phase (taking

place at the 2010 MICCAI Grand Challenge Workshop) of the EMPIRE10 challenge.

In the first phase (taking place remotely in each participant’s own facility), SyN still

scored first; elastix, however, placed 7th out of 34.

In the evaluation by Ou et al. [40], the performance of twelve deformable image regis-

tration algorithms was tested against four challenges representing different challenges

in brain clinical imaging: inter-subject anatomical variability; intensity inhomogeneity,

noise and structural differences in raw images; acquisition protocol and FOV differences

in multi-site databases; finally, pathology-induced missing correspondences. A com-

bination of Dice coefficient and Hausdorff distance was used as performance criteria

in the first three challenges. For the last one (presence of pathology), two independent

experts were used to first define the contour of the abnormal region; then, 10 anatomical

landmarks were identified in a 30 mm-wide band outside the abnormal region, with

40 landmarks in the rest of the images. SyN performed best at aligning cortical and

sub-cortical structures from the simpler registration problems of skull-stripped images,

followed by DRAMMS. DRAMMS then outperformed SyN (which came second) in the

more challenging tests that included raw, multi-site and pathology-bearing images. [40]

Finally, Xu et al. [72] tested 6 registration methods on 100 abdominal CT scans. Thirteen

abdominal organs were manually labelled by experts from each image. Scans were

pairwise registered, leading to a large number of analysed registration problems. Dice

coefficient, mean surface distance, and Hausdorff distance were used as error metrics.

The aim of their study was to find the best method that aligns scans of different

individuals for abdomen segmentation or atlas construction. The deformation field

was reported to be discontinuous given the large number of organs in the abdominal

area and the complexity of its morphology. For this reason, SyN performed worse

comparably to other methods.
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The evaluation studies gave a quantitative comparison of the performance of deformable

registration methods for medical imaging and allowed the identification of the best

performing ones. The remainder of this section will describe the best performing

methods that were used in the present thesis work. In Table 2.1 a brief comparison of

these methods is reported in terms of their similarity measure, optimisation process,

constraints, computational time and memory usage.

FLIRT One of the most popular rigid registration algorithms used in medical image

registration and therefore used in the present thesis work is FMRIB’s Linear Image

Registration Tool (FLIRT), part of the FMRIB Software Library (FSL). It was developed

by Jenkinson and Smith [77] and it is based on a hybrid optimisation method, where

both a global and local search is achieved via a multi-stage registration process.

The registration problem is first solved by a global search at 8 mm resolution. In

this stage, three steps are run, that is, a coarse search over few rotation values for

the best translation and scale values; a finer search over the rotation values, given the

already extracted values of scale and translation; finally, a local optimisation for all

three components for all the local minima identified in the previous steps. At 4 mm

resolution, the three best guesses from the previous stage are perturbed and another

refined solution found. Then, in the 2 mm and 1 mm resolution stages, the single best

candidate transformation from the previous step (rotation, scale and translation) is used

and a local optimisation is run to identify the optimal scale and skew (totalling 12 DoF).

For non entropy-based similarity measures, the contribution of a voxel is weighted by

its distance from the boundaries of the FOV of the moving image, avoiding the effect of

discontinuities in the intensity distribution. For entropy-based measures, instead, the

binning needed to calculate the joint entropy is chosen so that they overlap (with a linear

gradient), in order to have a smoother joint entropy (in other words, fuzzy-binning) [78].
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ANTs The Advanced Normalization Tools (ANTs) is a comprehensive software

library that includes methods for population analysis to capture statistics of the brain

structure and its functions [69]. Among other auxiliary tools, ANTs offers a powerful

registration method that allows the application of both affine and deformable image

registration, which were used in the thesis work.

The following section will introduce the more complex deformable registration method,

the symmetric image normalization (SyN) algorithm, as the affine algorithm follows

a similar implementation. It allows the estimation of a transformation that is both

diffeomorphic and symmetric. This guarantees that the transformation is differentiable

as is its inverse and that there is no difference in the choice of which image to consider

fixed or moving. The idea is based on deforming both the input images to a common

mean shape. This leads to the estimation of two transformation fields which have

velocity fields that are regularised over the path connecting one image to the common

shape, guaranteeing the transformation to be diffeomorphic (and therefore the path

to be a geodesic). This half-diffeomorphic transformation can then be joint together

in order to define the overall warp field. The default similarity measure is the cross-

correlation, but sum of squared differences and mutual information can be selected. The

optimisation process is multi-scale and based on the gradient descend method. [79]

The initial implementation of the SyN method [79] implied the estimation of the vector

field over all the voxels and with a constant sub-pixel update over the geodesic path

between fixed and moving images. This implementation required substantial resources

and a greedy version was created, which only stores vector fields solely at the extremities

and at the mid-point of the geodesic connecting the moving to the fixed image, limiting

the simultaneous storage needed [76]. The warp field was then extracted via a standard

ordinary differential equations.

The default transformation model is based on the large deformation diffeomorphic metric

mapping (LDDMM) [47], where the deformation is extracted from the velocity over

time, whose estimation is regularised according to the Lagrange transport equation [79].
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This formulation is a diffeomorphism by construction and it allows the definition of

geodesic distances between points of the images to register, which proved to be beneficial

in the analysis of brain anatomical variability [26]. A later implementation by Tustison

et al. [80] included the B-spline formulation, which showed statistically significant

better overlap values than the LDDMM implementation. This implementation is based

on the directly manipulated FFD (DMFFD) which skips the smoothing needed during

the gradient descent optimisation strategy used in traditional FFD models by projecting

the update in the gradient fields to the class of B-spline functions. This was shown to

alleviate the hemstitching effect that can happen with the traditional FFD formulation

based on gradient descent, which can cause inefficiency in the optimisation process [80].

DRAMMS The deformable registration via attribute matching and mutual-saliency

weighting (DRAMMS) is a robust algorithm based on the comparison of voxels rep-

resented by a set of attributes extracted from multi-scale and multi-orientation Gabor

filters. The resulting method was proven to be robust to inter-subject variability, in-

tensity inhomogeneities, noise, differences in the field of view and pathology-induced

missed correspondences [40]. This is due to the estimation of the warp field, where

each voxel is dynamically weighted during the process on the base of its saliency in

defining a reliable correspondence. A salient correspondence is one that corresponds

one voxel of the moving image to very little ones in the fixed image, guaranteeing a

correspondence between identical anatomical features rather than just similar geometric

features. Reliability is not measured independently in each image, but by giving higher

weights to voxels of the moving image that are very similar to a neighbour of another in

the fixed image and very dissimilar to the voxels on a peripheral neighbourhood. The

weight of a voxel is extracted by comparing its set of attributes in the fixed image with

the ones in a neighbourhood of the moving image. The rich set of Gabor attributes are

then simplified by identifying the most salient ones based on a backward elimination

and forward inclusion algorithm: this reduces the problem of the redundancy given by

the non-orthogonality of all the scales and orientations of the Gabor filters, alongside
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decreasing the computational burden.

The estimation of the transformation is based on the discrete optimisation, due to its

computational efficiency and robustness to local minima. Finally, it can be considered

multi-scale, since different scales of the Gabor filters represent different frequency

contents [35].

The transformation model is based on the free form deformation (FFD) model by

Rueckert et al. [49], based on composing transformations at multiple resolution levels

that are guaranteed to be diffeomorphic by constraining the displacement of each control

point not to exceed 40% of the spacing between them. More spaced control points

lead to a smoother deformation field: therefore it was proven that constraining the

maximum displacement on the base of the knot spacing would guarantee injectivity of

the estimated transformation [81].

elastix elastix is a toolbox with a modular design that allows the user to test different

registration options, including optimisation methods, multi-resolution schemes, trans-

formation models, cost functions and interpolators. With the aim of making this flexible

and powerful method more user-friendly, a database of parameter sets is available to the

users (who are encouraged to upload theirs), with the aim of showing the best combina-

tions in different studies for the specific application. The basic implementation is based

on the (Insight Toolkit) ITK source library [44]. Both the affine and the deformable

registration method from this library were used in the present thesis work. This section

will focus on the latter, as the affine algorithm follows a similar implementation.

elastix allows the application a hierarchical strategy to the values of most parameters,

including multi-resolution schemes that allow one to blur / downsample scans at higher

levels of computations, as well as multi-level of complexity of transformation models,

allowing for coarse resolutions at higher levels and the number of samples of the joint

histogram bins when using MI-based similarity measures.

Many transformation models are available. In the present study, the affine registration



2.5 Sensitivity Analysis 37

method and the deformable algorithm based on the FFD model by Rueckert et al. [43]

were used. The main feature of the method is that transformation models are paramet-

erised and the generic output of the call is not a warp field, yet a file of parameters.

The function transformix can be used to evaluate the warp field at specific points / on a

uniform grid.

Many optimisation strategies are available, as for instance uniform sampling on whole

scans, outside scans (which showed good results in regularising the transformation

model [44]), random sampling and sampling on masks to specify a region of interest.

Random sparse sampling off-grid is also available, avoiding the irregularities on the cost

function that are caused when sampling at points on the uniform voxel grid. The cost

function shows peaks and troughs depending on the form of the transformation model

at a specific iteration. The effect of the random off-grid sampling leads to smoother cost

functions over the different forms of the transformation model over the iterations [44].

2.5 Sensitivity Analysis

Deformable registration methods for medical imaging are very powerful and have

the flexibility to be applied to many body parts [71]. Their flexibility, however, can

lead to variable performance depending on the parameter set used. The sensitivity of

registration methods to these parameters is still an open topic of research [40].

Given the pivotal role of accuracy in displacement measurements, DVC methods have

to be thoroughly optimised for the specific application [20]. Peña Fernández et al. [59]

reported a decrease in 33% of the standard deviation of errors after optimisation in

zero-strain measurements relative to the same experiment as in Dall’Ara et al. [20]. The

following section will therefore report a quick introduction to sensitivity analysis, which

aims to quantify the effect of parameters on the accuracy of the DVC measurements.

Sensitivity analysis allows the characterisation of the response of a model given the

variation of input parameters [82]. Local sensitivity analysis infers the response of
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a model in a neighbourhood of an instance of the input, whereas global sensitivity

analysis aims to sample the whole hyperspace of reasonable values of the input, to

gauge the response of the model for most of the possible combinations. Therefore,

sampling techniques are needed in order to efficiently span the hyperspace of the input.

Quasi-random sampling techniques such as Sobol’s, Morris’ and Latin hypercube allow

one to span the space in a more efficient way than random sampling [83, 84].

Non-parametric linear regression and Pearson correlation were initially used to infer

the linear and non-linear monotonic dependencies between input and the model’s out-

put [82]. More recently, variance-based methods were introduced, where the sensitivity

of the model output to the model input is quantified in terms of the reduction in the

variance of the model’s output. Given Xi the random variable describing the distribution

of the ith parameter, then the variance of the output Y (here a random variable also it

depends on the input Xi), given that everything is known about the ith parameter, is:

Vi = var{E(Y |Xi)}.

The measure Vi can be interpreted as the expected amount of uncertainty in the model

output Y given that the true value of the input Xi is known [83]. The variance is

evaluated between all possible values of Xi. If we then divide this variance by the

overall variability of the random variable Y , then we obtain the main effect index Si:

Si =
Vi

var(Y )
. (2.9)

Now, the uncertainty on the output, given that every input is known but the ith parameter,

can be expressed as:

VTi
= var(Y )− var{E(Y |X−i)}, (2.10)

where X−i represents the random vector of the random variables representing each

parameters excluding the ith parameter. Similarly, the total effect index can be defined
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as:

STi
=

VTi

var(Y )
. (2.11)

It is straightforward to notice that:

∑
parameters

Si ≤ 1 ≤
∑

parameters

STi
, (2.12)

with equality only when all interactions are 0 [85]. Joint interactions between two (2nd

order) or more parameters can be extracted by evaluating the joint expected reduction

in the variance:

Vp = var{E(Y |Xp)}, (2.13)

where Xp is the random vector representing all the desired parameters.

However, variance-based methods for sensitivity analysis need simulations in the order

of over 500(k + 2) considering only first order sensitivity (that is, without assessing

pair-wise interactions), where k is the number of parameters influencing the model

output [83]. For computationally expensive models where the number of runs achiev-

able is somewhat limited, metamodels (or emulators) allow the extraction of the total

sensitivity indices using considerably fewer model evaluations.

The meta-model described by Oakley and O’Hagan [85] and implemented in GEM-

SA (used in the present thesis work), treats sensitivity analysis, and therefore the

evaluation of Si and STi
, with a Bayesian approach, imposing a multi-variate a-posteriori

t-distribution of the output corresponding to any set of inputs. This allows the evaluation

of the measures previously introduced as regression with Bayesian inference. This

approach allows also the extraction of the uncertainty related to the estimations of

the measures as confidence intervals. Two requirements are needed for the Gaussian

process to best represent a model’s response. First, the output needs to behave smoothly

with respect to the inputs for mathematical tractability [85]. Moreover, independence

of inputs allows a tidy decomposition of the total variance in first and second order
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components.

The overall uncertainty was shown to be smaller than the one extracted with a brute-

force Monte Carlo evaluation of the sensitivity of the parameters; moreover, Oakley

and O’Hagan [85] reported that 15360 model evaluations were needed when using a

variance-based method to achieve the same error as the one obtained with 250 model

evaluations after fitting the metamodel.

2.6 MR Distortions

Finally, this literature review concludes with a brief presentation of MR distortions,

which introduce an artificial warp to the MR scans, altering the true morphology of the

imaged samples. These distortions ultimately affect the accuracy of DVC calculations

by introducing a heterogeneous systematic error. The analysis of distortions is still an

open problem and there is a general lack of a proper correction [86].

MR distortions depend both on the scanner used (static magnetic field inhomogeneities)

or the gradient coil (gradient nonlinearities, eddy currents) and on the scanned object

(chemical shift, susceptibility changes) [87–90]. Moreover, their effect is directly

proportional to the magnetic field strength [91] and it is stronger further away from the

iso-centre [86, 87, 89, 90], affecting more along the z-axis [86, 87]. Distribution on the

brain area is non-uniform, with larger distortions in inferior and frontal areas, close to

air-filled cavities [89, 90, 92].

The literature reports either phantom or clinical studies where CT scans were used as

ground truth to infer the accuracy and fidelity of MR imaging. Care must be taken when

interpreting results based on phantom studies: a more complex distribution of distortions

is to be expected when scanning participants, due to the effects of susceptibility related to

iron deposits in the basal ganglia, signal cancellations at air-tissue boundaries, chemical

shift and flow effect [88].
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Watanabe et al. [87] reported an accuracy on corrected MPRAGE scans of a phantom

acquired with a 3T scanner, giving a root mean squared error of 1.8± 0.36 mm. The

authors also state that the default algorithm developed by the scanner’s vendor did not

correct to a satisfactory level. Karger et al. [88] reported an average± standard deviation

of 1.3± 0.3 mm, 0.9± 0.1 mm and 0.9± 0.5 mm superiorly, centrally and inferiorly

on corrected images of a phantom on a 3T scanner. On a 1.5T scanner, instead, they

reported values of 1.1±0.3 mm, 1.4±0.2 mm and 1.5±0.4mm, respectively. Damman

et al. [89] found distortion values of 0.6 ± 0.1 mm and 0.5 ± 0.1 mm on 1.5 and 7T

scanners, respectively, when acquiring MPRAGE images of a phantom, after applying

a 3D scanner-default distortion correction. Duchin et al. [90] carried out the study on

clinical images. They showed errors just above 1 mm when identifying landmarks on

7T images after affine registration to CT, for an actively shielded 7T scanner. Their

main finding is that affine registration was enough to model the distortion at high MR

field, obtaining an acceptable alignment with CT images. Neumann et al. [86] reported

a targeting error on a non-clinical study assessing the accuracy of stereotactic targeting

of 1.31±0.41 mm on 1.5T and 1.42±0.56 mm on 3T MPRAGE images corrected with

the scanner-default correction algorithm. Treiber et al. [93] report median displacement

of 2.11 mm, (5th and 95th percentiles: 1.2 mm to 5.9 mm respectively). Regions mostly

affected were the brainstem (median distortion 5.43 mm), temporal lobe (2.61 mm),

and frontal lobe (2.21 mm), while the parietal (1.61 mm) and occipital (1.77 mm) lobes

had the least amount of distortion. In particular, the temporal and frontal parenchyma

adjacent to the bone-air interfaces showed distortions as severe as the brainstem. Again,

they report these values relative to the MR structural scans, considered as ground truth,

with no CT imaging.

Regarding the effect of acquisition sequences, both Neumann et al. [86] and Watanabe et

al. [87] showed that MPRAGE led to worse, even if comparable, accuracy in comparison

to using other contrast, as FLASH or VIBE. Moreover, Dammann et al. [89] showed

greater distortion when using T2-weighted sequences than using T1-weighted sequences,

due to longer echo time and inhomogeneities in the B1 field that affected the refocusing
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of the magnetisation spins.

2.7 Summary

This chapter has provided a comprehensive review of the key technical literature relevant

to the research questions outlined in Section 1. The literature on such an interdisciplinary

problem is substantial: a great effort was made to cover the most relevant contributions

to the work carried out in the thesis. The reader is asked to note that introductions to the

two applications investigated in the study are reported in Chapters 3 and 5: respectively,

brain shift and deep tissue injury.

Image registration was firstly introduced as a basis for DVC and deformable registration

in the medical field. This was followed by a brief description of DVC and the main

technical contributions in the biomechanical field. The state-of-the-art registration

methods for medical imaging were then presented as well as sensitivity analysis for

the evaluation of their dependence on input parameters. Finally, the chapter concluded

with a description of the MR distortions, which add a heterogeneous component of

systematic error to the DVC measurements.
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Chapter 3

Brain Shift: Parametric Identification

and Error Analysis

Overview

This chapter aims to evaluate the suitability of deformable registration for medical

imaging in capturing small deformations due to positional brain shift (PBS), the sagging

of the brain tissue due to the effect of gravity alone. Previous works that aimed at

measuring PBS lacked of a thorough quantification of the accuracy of the measurements

taken and of the sources of error affecting them [4–6, 8]. Quantifying the error affecting

the measurements is paramount to gauge the confidence on the obtained results and

the validity of their interpretations. The work of this chapter aimed at investigating

the following main sources of error: magnetic resonance (MR) distortions, improper

initial rigid registration and inaccuracies in the DVC measurements. Results advised on

the margin of error associated to the DVC measurements of in-vivo PBS that will be

introduced in Chapter 4.

The work presented in this chapter is part of the supplementary materials of the following

peer-reviewed paper:

Zappalá, S., Bennion, N. J., Potts, M. R., Wu, J., Kusmia, S., Jones, D. K.,

Evans, S. L., & Marshall, D. (2021). Full-field MRI measurements of in-vivo

positional brain shift reveal the significance of intra-cranial geometry and head
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orientation for stereotactic surgery. Scientific Reports, 11(1), 17684. https:

//doi.org/10.1038/S41598-021-97150-5.

The chapter first presents in Section 3.1 the problem of PBS and its relevance to

image-guided neurosurgical systems (IGNS).

Section 3.2 shows the extent of MR distortions affecting the brain morphology in

two subjects acquired with two different scanners. The relative performance of two

distortion correction methods were compared and the best one for the specific application

identified.

Section 3.3 shows the efforts that were made to assess the accuracy of the initial

skull alignment against some synthetic rotations and translations. An improper initial

alignment of reference elements that do not undergo deformation can add an additional

component of rigid displacement to the DVC measurements.

Finally, Section 3.4 shows the optimisation of three deformable registration methods for

medical imaging against a synthetic deformation field representing PBS. Accuracy of

the DVC measurements with the optimal parameter set was then determined.

3.1 Introduction to Brain Shift

Given its low stiffness, brain tissue shifts within the skull cavity under the effect of

gravity due to changes in head orientation even in normal healthy individuals without

any surgical manipulation [4, 5, 54]. This shift is reported to be a non-rigid deformation

induced by a complex interaction of gravity, geometry of contact surfaces, fluid pressure,

mechanical response, presence of pathological tissue and surgical procedure [4, 5,

54, 94]. Displacements of a few millimetres are typically observed in physiological

conditions, whereas displacements as large as a few centimetres can be observed for

pathological causes (e.g. tumour, hydrocephalus) or surgical intervention (e.g. skull or

dura opening, cerebro-spinal fluid leakage, device insertion, tissue resection) [3, 95, 96].

https://doi.org/10.1038/S41598-021-97150-5
https://doi.org/10.1038/S41598-021-97150-5
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Commonly referred to as brain shift (BS), displacements are generally comparable if

not 2-3 times larger than the current accuracy of image-guided neurosurgical systems

(IGNS) [4, 5, 97]. These systems are routinely used for the planning and navigation

of stereotactic procedures such as deep brain stimulation, local drug delivery and

stereotactic biopsy [2, 3, 98]. IGNS allow the planning of the surgical trajectories and

the indirect navigation of the surgeon to a target area, using as reference pre-operative

scans. Accurate planning is essential in order to target the correct structure, as well as

to define a minimal entry point in the skull and limit damage to tissue (cortical veins,

sulci and lateral ventricles) surrounding the path to the medical devices [99, 100]. An

example of the interface of one of these IGNS is reported in Figure 3.1.

Figure 3.1: Example of an IGNS software: interface of Renishaw
neuroinspireTMdesigned for the planning of most stereotactic neurosur-
gical procedures. Taken from https://www.renishaw.com/en/

neuroinspire-neurosurgical-planning-software--8244

Provision of correct neuronal stimulation, drug administration or tissue biopsy requires

accurate placement of the probe to within 1-2 mm of the target [99, 101–103]. Despite

showing sub-millimetre accuracy [3, 98, 102], IGNS usually rely on a global rigid

alignment of the pre-operative coordinate system to the patient reference on the surgical

https://www.renishaw.com/en/neuroinspire-neurosurgical-planning-software--8244
https://www.renishaw.com/en/neuroinspire-neurosurgical-planning-software--8244
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table (acquired via intra-operative imaging); this approach implicitly assumes that

every structure rotates and translates in an identical fashion and, as such, maintains

the same dimensions and shape [54, 104, 105]. However, the BS caused by any slight

differences in head orientation between the pre-operative scanning session and the

surgical procedure can cause a non-uniform deformation comparable in magnitude to

the margin of error for surgical targeting [4–6]. Therefore, this positional BS (PBS)

occurring without any presence of pathology nor surgical manipulation can affect the

outcome of a procedure, as the planned targets might differ from their actual location.

Any further improvements of IGNS do not rely on the accuracy of each individual

components, but on the addition of a suitable correction of the location of surgical

targets given the PBS arising during a surgical procedure.

Due to PBS, IGNS have recently been used only to localise targets, and are not fully

trusted [54]. The clinical standard for checking the correct positioning is micro-electrode

recording (MER), which is based on the insertion of a single or multiple small-tip

electrodes that register the single cell or group neuronal activity in order to locate

structures of interest depending on their firing frequency and amplitude [106–108].

As this invasive technique requires a compliant patient, anaesthesia has to be stopped

during the procedure. Further, the risk of haemorrhagic complications is high [106].

Intra-operative imaging and computational modelling are two emerging techniques that

have been recently used alongside IGNS to update the location of target areas given the

effect of PBS. The former is based on the use of MR imaging, computer tomography

(CT), ultrasound (US) or optical systems in the surgical room [99, 100, 109, 110]. The

actual conformation of the brain tissue as well as the location of the implanted medical

devices can be imaged during the surgical procedure. Starr et al. [100] showed that, in

comparison with standard stereotactic procedures based on MER checking, the use of

intra-operative imaging gave a 29% improvement in the placement error, with a 60%

improvement in the off-medication state in the follow-up. Even if minimally invasive,

these systems are questionable due to the cost of the equipment needed; the impact on
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the workflow; the poor image quality; the exposure to ionising radiations in the CT case

or any hazard in an MR environment [54, 95, 109].

Compensation for PBS via mathematical models have recently shown promising res-

ults [109, 111]. Given the increasing availability of computational power, such complex

models can be run almost in real-time [112–114]. One such example is finite ele-

ment (FE) modelling, which are becoming an accurate and cost-effective solution in a

neurosurgical context [109, 111]. FE modelling is based on simulating the mechanical

response of complex structures (brain) under loading conditions (gravity), which are

constrained by boundaries (meninges, falx, tentorium, etc). FE models have the capabil-

ity to simulate complex processes, such as the head orientation chosen for surgery, the

extent and position of the skull opening, the insertion of medical devices. Among others,

Dumpuri et al. [111] and Sun et al. [113] reported an error of 0.7±0.3 mm in the predic-

tion of PBS driven by the captured deformation of the tissue from an exposed brain area.

Garlapati et al. [115] showed that a linear FE outperformed the state-of-the-art registra-

tion technique for the compensation of PBS through intra-operative imaging. Although

non-invasive and cost-effective compensation for the shift arising during a procedure,

such models are still a long way from being the clinical standard in image-guided

neurosurgery due to lack of comprehensive clinical validation [97, 109, 116].

Further improvements in compensation measures suitable for clinical practise require

a comprehensive understanding of the mechanics behind PBS as well as rich datasets

to verify and validate such measures against [18]. In achieving this, the following

and the next chapter will focus on the efforts that were made to capture in-vivo the

PBS in a population of 11 healthy subjects. The characterisation of the mechanics

in normal physiological conditions (i.e., in the healthy brain) is the first step towards

modelling the more challenging shift induced by pathology or surgical manipulation.

To the best of the author’s knowledge, previous studies were based on observations

mostly limited to surfaces [4, 5] or based on measurements at specific locations [7, 8].

This motivated the three-dimensional, full-field DVC measurements that were captured
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in-vivo of PBS from MR images that will be introduced in Chapter 4. However, the

validity of any interpretations of the DVC calculations depend on their accuracy, that is,

on the quantification of the sources of error affecting the measurements. This chapter

will show the efforts that were made to achieve this.

3.2 MR Distortions

As introduced in Chapter 2, residual MR distortions after shimming cause a spurious

warp in the scans which depends on the magnetic field and gradients applied, as well

as on the way the imaged object perturbs the MR field. If not fully compensated for,

this spurious warp is a source of error in the DVC measurements, since it is acquired

as additional component of deformation. Given the sub-optimal performance of a

built-in correction method reported by Watanabe et al. [87], the following section

shows the relative performance of the compensation method developed by the vendor

of the scanner against gradunwarp, the standard correction used in a multi-site and

multi-modality acquisition project over a large population sample [117].

Methods The performance of the distortion correction method built in the scanners

was compared to gradunwarp [118], the correction method used in the WU-Minn Hu-

man Connectome Project consortium [117]. Both methods calculate the distortion field

from the spherical harmonic coefficients specific to the scanner [118]. These normalised

coefficients represent non-linear terms of the truncated series of the distribution of

the distortion field, which can be used to reconstruct the three-dimensional warp field

approximating the MR distortions.

Two subjects were both scanned in a Siemens 7T MAGNETOM (Siemens Healthcare,

Erlangen, Germany) and in a Siemens 3T PRISMA at the same Cardiff University

Brain Research Imaging Centre (CUBRIC), Cardiff University in different acquisition

sessions. T1-weighted MPRAGE scans were acquired, which parameters are reported



3.2 MR Distortions 49

Correction Prone Supine

None 1.88± 0.34 mm 1.40± 0.36 mm
Scanner default 1.32± 0.11 mm 1.31± 0.33 mm
gradunwarp 1.25± 0.10 mm 1.30± 0.20 mm

Table 3.1: Differences between scans acquired with the 7T and 3T scanners for both
prone and supine positioning prior to correction and after correction with the scanner
default software and with gradunwarp. Differences are represented in terms of average
and standard deviation magnitude of the warp field in the brain area.

in Table 4.1. Images acquired with the 7T scanner were warped to the 3T ones via

deformable registration (symmetric image normalisation (SyN) [79]), prior to any

correction as well as after correction with the built-in method and with gradunwarp.

This approach was used for scans acquired with subject lying both in prone and in

supine positions. The correction method leading to the smallest differences between

scans in the same position from different scanners was therefore used for the DVC

measurements of Chapter 4. Differences between scans were calculated as norms of the

vectors from the warped field output of the deformable registration.

Results Results (Table 3.1) show a better correspondence between scans after using

the software gradunwarp. In prone position, the warp field representing differences

between scans was on average 33% smaller after using gradunwarp, and 30% smaller

after using the scanner-default software; in supine position, these values were consider-

ably smaller, that is, 7% and 6%, respectively.

Fig. 3.2 shows the distribution of the error norms after aligning the 3T and 7T scans

(prone on the left, supine on the right) over some regions of interest (ROI). The figure

confirms the previously mentioned larger effect of distortions in prone images than

in supine images. Moreover, it shows larger differences in frontal regions relative to

posterior ones. Finally, lateral differences can be noticed, with larger errors in the same

left regions relative to the scanner reference (that is, right regions in the plot for prone

positioning and left regions in the plot for supine positioning, relative to the anatomical
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reference).
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Figure 3.2: Average magnitude of the warp field representing differences between
scans from different scanners. On the right, results when imaging the subjects in prone
position, whereas in supine on the right. Whiskers represent intra-region variability. In
blue, differences between scans with no correction applied; in orange and yellow error
after correction with the scanner default method and gradunwarp. Values are evaluated
over the following ROI: left (L) and right (R) anterior and posterior meninges (Men
Ant, Men Post), frontal lobe (Front), temporal lobe (Temp), ventricles (Vent), parietal
lobe (Par), occipital lobe (Occ).

Discussion The relative performance of MR distortion correction methods showed a

better correspondence between anatomies after correction with the software gradunwarp,

which was therefore used for the DVC measurements in Chapter 4. Differences between

the morphology of the same subject acquired with different scanners were 1.25 ±

0.10 mm in prone positioning and 1.30± 0.20 mm in supine.

Results are in line with previous studies: Watanabe et al. [87] reported an improvement

in the root mean squared error of 15% after using the default distortion correction with a

3T scanner. Karger et al. [88] reported an decrease of 54% in mean deviation with a 3T

scanner and 12% with a 1.5T scanner. Tavares et al. [119] reported an improvement of

43% with a 1.5T scanner. Finally, Neumann et al. [86] found an increased accuracy of
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6% with 3T and up to 55% with 1.5T scanners after applying the distortion correction.

Differences after correction (either with the scanner default compensation or gradun-

warp) led to more consistent differences in anatomy between ROI as well as between

prone and supine positions. Larger differences in the frontal regions can be related to

the effect of air cavities, which are known to affect the MR field [89, 90, 92]. The dif-

ferences noticed along the lateral direction are in line with the MR distortions along the

same direction reported on two phantoms to give absolute differences of 0.4± 0.2 mm

on 7T [89] and 1.3± 0.26 mm on a 3T scanner [87], respectively, both after correction.

Although not providing an absolute error related to the MR distortions, the following

results show the importance of applying distortion correction, which reduced differences

in anatomy between scanners. A considerable residual warp has to be acknowledged

(1.30 ± 0.20 mm) even after correction. This residual error could have been a com-

bination of the unknown MR distortions affecting the 3T scans (used as reference),

which could not be determined; inaccuracy in the deformable registration call; and the

likely differences in tissue conformation due to slight different head positioning, as

images were acquired in different acquisition sessions. Further investigation is needed

to evaluate the distribution of MR distortions specific to the scanner against a distortion

free ground truth.

3.3 Skull Alignment

Differences between anatomical features of the deformed and undeformed scans should

be solely related to the deformation of the soft tissues. In these conditions, the output

of the DVC measurements depicts the desired displacement field at soft tissues. Hard

tissues, such as skeletal elements, do not undergo deformation; therefore, they can be

considered as rigid reference and need to be accurately aligned between the two scans

(that is, setting the initial conditions of deformation). Any differences between these

reference structures is captured as additional component of deformation by the DVC
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calculations. The following section aims at quantifying the error related to this initial

registration step.

Methods The error related to such alignment was determined against few synthetic

rigid transformations. Three best performing affine registration methods from the

following software libraries were compared: FSL [78], ANTs [79] and elastix [44].

Typical rotations and translations that were seen in the study were represented (Table

3.2). A maximum rotation of 30◦ was applied around the left-right axis (tilt), 5◦

around the posterior-anterior one (roll) and 10◦ around the interior-superior axis (pan).

Translation was kept to a maximum of 5 mm, given the initial alignment of the centre

of images implemented in most of the registration algorithms. Few compositions of

these were also tried. Transformations were applied to the MPRAGE scans of 8 subjects

from a 7T scanner (further details in Section 4.2) prior to the skull-based registration.

Rician noise was added to the generated images, which standard deviation was set to

the noise distribution affecting the background of the original image [120]. Given the

extensive investigation in the literature regarding linear registration problems applied

to the alignment of brain structures, optimisation was considered unnecessary and the

default parameters regarded as optimal for these simple intra-subject and intra-modality

registration calls.

L-R angle P-A angle I-S angle L-R translation P-A translation I-S translation

T1 30◦ 0◦ 0◦ 5 mm 0 mm 0 mm
T2 0◦ 5◦ 0◦ 0 mm 5 mm 0 mm
T3 0◦ 0◦ 10◦ 0 mm 0 mm 5 mm
T4 -30◦ 0◦ 0◦ -5 mm 0 mm 0 mm
T5 0◦ -5◦ 0◦ 0 mm -5 mm 0 mm
T6 0◦ 0◦ -10◦ 0 mm 0 mm 5 mm
T7 15◦ -2.5◦ -5◦ 2 mm -2 mm 2 mm
T8 15◦ -2.5◦ 5◦ 2 mm 2 mm -2 mm
T9 -15◦ -2.5◦ 5◦ -2 mm 2 mm 2 mm
T10 -15◦ 2.5◦ -5◦ -2 mm 2 mm -2 mm

Table 3.2: Rotation and translation values tested for the validation of the skull alignment.

The accuracy of this initial step was evaluated by calculating the Dice coefficient (DC),
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given by [121]:
|Q ∩ P̂ |
|Q|+ |P̂ |

, (3.1)

where Q represents the original skull segmentation and P̂ the skull segmentation after

registration of the synthetic images. These segmentations were automatically generated

via the brain extraction tool (BET) command of the FSL software library [122].

Rohlfing [123] showed that DC alone is not sufficient to gauge the accuracy of the

alignment between unlocalised regions such as the brain, which contain little information

on spatial location. An additional measure was therefore used, that is, the Hausdorff

distance HD [124]:

HD = max
(−−→
HD(P̂ , Q),

−−→
HD(Q, P̂ )

)
, (3.2)

−−→
HD(P̂ , Q) = max

∀p∈P̂

(
min
∀q∈Q
||p− q||

)
, (3.3)

where
−−→
HD(P̂ , Q) is the directional HD and p and q voxels in the masks P̂ and Q,

respectively.

Results Fig. 3.3 shows the values of the DC and HD averaged among the subjects for

each of the registration methods tested. ANTs performed best given the outliers showed

by elastix (reported in the zoom out box in the bottom-right part of the figure), and was

therefore used throughout the study.

Discussion All three registration methods performed well in these simple affine and

intra-subject registration problems tested. Values are in line with previous studies,

which identified successful registrations of large structures (such as the brain) with DC

above 80% [72, 79]. Registration calls could be considered, therefore, satisfactory and

precise.
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Figure 3.3: Boxplot of the DC (left) and the HD (right) representing the alignment of
skulls after affine registration with the three algorithms tested (FLIRT in blue, ANTs
in red and elastix in yellow). In the top-left corner of the DC plot a zoom-out box
highlights few outliers for elastix. Annotated values display the best performance for
each method, that is, maximum DC and minimum HD values.

Klein et al. [76] reported DC values above 60% in inter-subject registration problems

of brain areas using FLIRT. Similarly, Ou et al. [40] reported DC values for FLIRT

above 62% for similar inter-subject registration problems. FLIRT performed worse in

the alignment of various abdominal organs, showing values of DC below 50% [72].

Finally, Visser et al. [125] reported similar performance of FLIRT, linear ANTs and

linear elastix on few normalisation problems of low grade brain gliomas, with values of

DC above 70% and HD below 5 mm.

A limitation of the study was the lack of expertly drawn landmarks, which would

have given a better estimation of the error in the alignments [123]. Automatic skull

segmentation was used, therefore it was not possible to assess the accuracy of the

extracted boundaries, which had to be considered correct. This was evident in the

same optimal values of HD between methods, that is 5.314 mm. This was related to

imperfections in the generated masks, which were captured by the maximum operation

in the HD calculations.
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3.4 Deformable Registration: Optimisation

Once the initial conditions of deformation are set, differences between scans are only

related to the mechanical deformation of the soft tissues, making the output field of the

deformable registration the desired displacement field. Given the comparable magnitude

of PBS to the resolution of the scans, accuracy of DVC measurements of displacements

below the resolution relies on the smoothness constraints imposed onto the deformation

field and the optimisation process during the registration call. This section shows the

efforts that were made to measure the error related to the measurements of displacement.

Methods Three best performing deformable registration algorithms for medical ima-

ging were optimised and then compared in order to gauge their accuracy in measuring

a synthetic displacement field replicating PBS. As introduced in Section 2.4, the ex-

tensive comparisons by Klein et al. [76], Ou et al. [40] and Murphy et al. [71] put

DRAMMS [35], SyN [69] and elastix [44] at the top for best performance. These

methods have been proven in the literature to capture both small and large deforma-

tions, without any a-priori information on the mechanical response of the deforming

tissues [120, 126].

A local and flexible transformation model was selected for the methods, that is, B-spline.

Apart from showing good performance [43, 80], its support is local, in order to have the

flexibility to follow the spatial variations of the deforming soft tissues. Diffeomorphism

was also considered a good property of the transformation model, as it safe to assume

that biological tissues deform smoothly under the effect of load [40]. The minimal

assumptions on the estimated deformation field make these methods the best tool to

capture data to use for the unbiased design and verification of any mathematical models

to use for the intra-operative correction of surgical trajectories [26, 36].

A biomechanically plausible displacement field was generated through a biofidelic finite

element (FE) simulation of PBS, based on a brain mesh extracted from the Montreal
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Figure 3.4: Axial (left) and sagittal (right) views of the synthetic displacement field used
for the evaluation of the accuracy of the measurements of PBS. Length of vectors have
been scaled for visualisation purposes: their magnitude is represented by the underlying
contour plots (in [mm]).

Neurological Institute-Hospital 152 (MNI152) standard atlas [127] (Fig. 3.4). The FE

method is a computational tool aimed at obtaining an approximate solution to the system

of equations describing the mechanical behaviour of an object, given its mechanical

response and geometry, as well as boundary, loading and initial conditions. It consist

in the sub-division of the domain into smaller simple parts, called finite elements,

forming the mesh. An approximate solution to the problem is solved at each finite

elements [128, 129]. The complex system of equations is then retrieved by assembling

all the smaller solutions at finite elements. More information on the FE model used

in this chapter can be found in the doctoral thesis by Nicholas Bennion [27]. This

displacement field was characterised by a magnitude of 0.60± 0.26 mm, azimuth angle

of −89.70 ± 11.98◦ and elevation angle of 1.27 ± 11.46◦. The warp field from the

MNI152 standard space was then morphed to the specific anatomy of each participant

and applied to the supine scans of the 8 subjects [130] (further details in Section 4.2)

and these registered back to the original using each of the selected methods.

Given the extensive literature on brain registration, parameters were varied around

the default values recommended by developers. Parameters controlling for the trans-

formation model, the similarity measure and the regularisation in the calculations were
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optimised, leaving the others to default values in order to reduce the number of combin-

ations to test (Table 3.3). Given the simple monomodal and intra-subject nature of the

registration task, variations of cross-correlation were chosen as a similarity measure for

all methods. Computations were run on a cluster at Cardiff University Brain Research

Imaging Centre (CUBRIC).

Specific to the call to DRAMMS, regularisation weights were varied between 0.1

(aggressive fitting) and 0.25 (smoother deformations). Knot spacing for the free form

deformation model was varied between 3 and 9 voxels (2.4 mm and 7.2 mm) [49].

Between 3 and 7 samples were drawn in the optimisation process along each direction

and their diagonal, giving a total of 55 and 127 samples (in a neighbour that depends on

the selected Gabor scales), respectively.

Regarding the call to SyN, knot spacing of the B-spline transformation model [80] at the

top of the four multiresolution levels was varied between 16 mm and 33 mm (final knot

spacing between 2 mm and 4.125 mm at original resolution). Gradient step controlling

for the extent of movement of control points after each iteration was varied between

0.05 and 0.3, where small values represent small advancements. Radius of the similarity

window was varied from 1 to 6 voxels, defining regions of 2 · radius+ 1 voxels (that is,

between 26 and 2196 voxels), respectively.

Finally, for elastix, the tested final grid spacing ranged from 2 mm to 8 mm, with scaling

factors of 8, 4, 2, 1 over the four resolution levels. Between 1000 and 2500 random

samples were drawn from a cubic region with side length between 30 mm and 70 mm,

giving regions made of 52734 and 669921 voxels.

Error metric used was the mean norm of the error vector (MNE) [120, 131]:

MNE = Ex [‖Tgt(x)− Te(x)‖] , (3.4)

where Te(x) is the estimated displacement field via deformable registration and Tgt(x)

the ground truth representing PBS, x is the original position of voxels in a region of
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Method Parameter Values

DRAMMS samples in optimisation 3, 5, 7
regularisation weight 0.1, 0.15, 0.2, 0.25

final knot spacing [vxls] 3, 5, 7, 9

SyN base knot spacing 16, 19, 23, 26, 29, 33
neighbourhood radius [vxls] 1,2,3,4,5,6

step update 0.05,0.1,0.17,0.25,0.3

elastix final grid spacing 2 4 6 8
spatial samples 1e3 1.5e3 2e3 2.5e3

region size 30 40 50 60 70

Table 3.3: Values of the parameters trialled in the optimisation of each registration
methods.

interest and Ex[] the expected value over the voxels at some ROI.

The choice of the optimal parameter set was based on both pair-wise surface plots of

MNE values and on the frequency of individual parameters’ values in optimal calls (that

is, corresponding to error values below the 5th-percentile). First, sensitivity analysis

via Gaussian emulation (GEM-SA software [132]) was used to assess the influence of

parameters on the error metric and identify the most influential parameters. Surfaces

were then extracted by fitting a Gaussian process regression model to the MNE values

via MATLAB. Optimal values of the hyperparameters of the Gaussian process were

automatically optimised during the call. The generation of pair-wise surfaces required

averaging of MNE values between all the other parameters not represented in the surface.

Therefore, the use of the frequency of individual parameters in calls characterised by

MNE below 5th-percentile as additional representation was motivated by the absence

of any averaging in the calculations. When reaching a plateau the parameter set closer

to the default parameters or that was associated with lower degrees of freedom was

chosen [17].

Results Fig. 3.5 shows the boxplot of the distribution of the error metric for all

registration calls at superficial (meninges, GM and WM) and deep (ventricles, STN and
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Figure 3.5: Boxplots of the mean norm error (MNE, in [mm]) for each method
(DRAMMS in blue, SyN in red and elastix in yellow). Annotated values display
the best performance, that is, the minimum MNE value. Top row shows results for the
superficial (including meninges, GM and WM), whereas bottom row for deep (including
Vent, STN and Put) brain areas. For reference, diamonds indicate the performance of
the methods with the specific default parameters.

putamen) ROI. The 5th-percentiles of MNE were 0.258 mm, 0.010 mm and 0.110 mm

for DRAMMS, SyN and elastix, respectively. SyN showed very little variability in

MNE values, with an inter-quartile range of 0.040 mm (7% of the average simulated

displacement). DRAMMS showed a higher inter-quartile range 0.218 mm (36%), with

the highest shown by elastix (that is, 0.550 mm, 92%).

Heatmaps of the sensitivity analyses are reported in Fig. 3.6, 3.9 and 3.12, whereas

surface plots are reported in Fig. 3.7, 3.10 and 3.13. Finally, each group of plots ends

with the histogram of the frequency of parameters’ values in optimal registration calls,

that is, calls that lead to MNE below its 5th-percentile (Fig. 3.8, 3.11 and 3.14).

Table 3.4 shows the optimal parameter set for each method. MNE values at superficial

ROI with optimal parameters were 0.5597 ± 0.2265 mm, 0.0743 ± 0.0412 mm and

0.3983± 0.2058 mm for DRAMMS, SyN and elastix, respectively. Similarly, values
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Figure 3.6: DRAMMS: heatmap of the individual and joint sensitivity on the error
metric (MNE). On the left, results at superficial ROI (including meninges, GM and
WM) and deep ROI (including ventricles, STN and Putamen). Values are percentages
relative to the mean total variances (1.1662 · 10−5 mm2 at superficial ROI whereas
6.34252 · 10−8 mm2 at deep ROI).
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Figure 3.7: DRAMMS: surface plots showing the pair-wise distribution of the error
metric (MNE, in [mm]) between the three most influencing parameters. Red dots
represent query points.

at deep ROI were instead 0.8172 ± 0.0486 mm, 0.0262 ± 0.0114 mm and 0.2208 ±

0.2116 mm. SyN was therefore chosen for its favourable error statistics. The distribution

of the error for the chosen parameters for one of the subjects is reported on an axial

slice in Fig. 3.15 for the three methods. DRAMMS showed a general bias in the MNE

values, whereas elastix showed small scattered areas of high MNE values.
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Figure 3.8: DRAMMS: histogram of the number of registration calls leading to MNE
values below its 5th-percentile. Histograms are reported for the three most influencing
parameters; in blue at superficial ROI (including meninges, GM and WM) and in orange
at deep ROI (including Ventricles, STN and putamen).

Discussion SyN showed best performance in following a biomechanically plausible

ground truth representing PBS: the optimal parameters were therefore used for the

DVC measurements in Chapter 4. The chosen parameter set led to an average MNE

of 0.050± 0.038 mm in the brain area, which was considered acceptable, it being one

order of magnitude smaller than the expected average PBS [17].

SyN and elastix showed good performance, with 5th-percentile MNE values of 0.010 mm

and 0.110 mm, respectively. These two methods showed lower metric error in deeper

regions, probably due to the smoother and more consistent distribution of the tissue

deformation away from boundaries. DRAMMS, instead, showed a noticeable higher

error, with a 5th-percentile MNE value of 0.258 mm.
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Figure 3.9: SyN: heatmap of the individual and joint sensitivity on the error metric
(MNE). On the left, results at superficial ROI (including meninges, GM and WM) and
deep ROI (including ventricles, STN and Putamen). Values are percentages relative to
the mean total variances (7.54401·10−6 mm2) on superficial whereas 4.11782·10−5 mm2

on deep ROI).
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Figure 3.10: SyN: surface plots showing the pair-wise distribution of the error metric
(MNE, in [mm]) between the three most influencing parameters. Red dots represent
query points.

Little effect had the optimisation on the performance of SyN. It was necessary, instead,

for elastix and DRAMMS, which showed the greatest inter-quartile range of MNE

values. Regarding elastix, this could be related to the absence of a penalty term on the

transformation model, such as a restriction on the bending energy of the transformation

model. This left only knot spacing to control for the smoothness of the estimated

deformation field. Indeed, this caused the small areas of high MNE values that can
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Figure 3.11: SyN: histogram of the number of registration calls leading to MNE
values below its 5th-percentile. Histograms are reported for the three most influencing
parameters; in blue at superficial ROI (including meninges, GM and WM) and in orange
at deep ROI (including Ventricles, STN and putamen).

be noticed in the distribution of Fig. 3.15. This confirms the results obtained in the

EMPIRE10 challenge [71], where methods were tested for the positiveness of the

determinant of the Jacobian of the output warps. elastix consistently scored 4th lowest

(out of 34) in this test, in both phase 1 and phase 2. Given the smoothness of PBS,

future developments will aim at including also a penalty term on the transformation

model of elastix.

Grid spacing was the most critical parameter for all registration methods, explaining at

least 50% of the variance in MNE values. Different were its optimal values between

the methods, where smaller values were preferable for DRAMMS and elastix, whereas

larger spacings for SyN. Regarding spatial distribution, frequency of parameter values
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Figure 3.12: elastix: heatmap of the individual and joint sensitivity on the error metric
(MNE). On the left, results at superficial ROI (including meninges, GM and WM) and
deep ROI (including ventricles, STN and Putamen). Values are percentages relative to
the mean total variances (0.0106621 mm2 for superficial and 0.0461161 mm2 for deep
ROI).
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Figure 3.13: elastix: surface plots showing the pair-wise distribution of the error metric
(MNE, in [mm]) between the three most influencing parameters. Red dots represent
query points.

in registration calls below the 5th-percentile of MNE values showed that smaller grid

spacings of the B-spline model were preferable at more superficial ROI. Larger control

point spacing performed best in deeper regions confirming the more consistent and

smoother deformation field in those regions.

Evaluating accuracy on synthetic data represents a best case-scenario [133], as synthetic
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Figure 3.14: elastix: histogram of the number of registration calls leading to MNE
values below its 5th-percentile. Histograms are reported for the three most influencing
parameters; in blue at superficial ROI (including meninges, GM and WM) and in orange
at deep ROI (including Ventricles, STN and putamen).

SyN DRAMMS Elastix

0

0.2

0.4

0.6
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1

Figure 3.15: Distribution of the MNE for the best registration call for each method
tested (that is, SyN on the left, DRAMMS in the centre and elastix on the right). Values
are extracted over the brain area for one subject. Colour bar represents values in [mm].
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Method Parameter Optimal value

DRAMMS samples in optimisation 7
regularisation weight 0.25

final knot spacing 9

SyN base knot spacing 29
neighbourhood radius 3

step update 0.05

elastix final grid spacing 4
spatial samples 1500

region size 30

Table 3.4: Best parameter set for each registration methods.

warp field, interpolation and noise pattern cannot reproduce the realistic conditions fully.

However, given the lack of an real ground truth to test the accuracy on and the lack of

expertly placed fiducial landmarks, any further attempt in assessing the accuracy of the

method was considered out of scope and a limitation of the study.

The study also lacked of an assessment of the effect of interpolation after initial regis-

tration on the estimated displacement fields. Its effect is mentioned in the literature on

DVC measurements, but not extensively investigated [17, 20]. The study by Schreier et

al. [134] reported favourable results of spline- and Fourier-based interpolation methods

on 2D digital image correlation measurements, reducing the systematic error in the

measurements.

Summary

This chapter has shown the efforts that were made to measure the sources error affecting

the DVC measurements, identified as MR distortions, initial skull alignment and inac-

curacy in the call to the deformable registration. The analysis allowed the identification

of the best performing method, alongside the optimal parameter to be used in the DVC

measurements Chapter 4.
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First, MR distortions are known to deform the morphology of a sample object in an

MR scanner; this heterogeneous warp is to be considered as a systematic error affecting

the DVC measurements. In the case of two individuals, differences between scans

of the same subject imaged in scanners with different magnetic field strengths were

captured via deformable registration. Gradunwarp, a popular correction method in

the neuroimaging community, showed lowest error (1.27 ± 0.11 mm), relative to the

scanner default compensation method.

As a second source of inaccuracy in the DVC measurements, initial skull registration

was shown to have an average accuracy in DC values of 0.996 and a HD values of

5.314 mm. Any misalignment between rigid skeletal elements are captured as an

additional component of deformation by the DVC measurements and considered as

displacement of soft tissues.

Finally, error in the actual DVC measurements after optimisation led to an average error

of 0.0503± 0.0385 mm in the brain area. SyN showed superior performance relative

to the other two deformable registration methods compared (that is, DRAMMS and

elastix) in following a synthetic deformation field simulating PBS. SyN alongside the

best parameter set identified were used in the following Chapter 4.
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Chapter 4

Brain Shift: Digital Volume

Correlation

Overview

This chapter describes the methods used to capture positional brain shift (PBS) and

the clinical significance of the measurements. The work carried out in this chapter

contributes towards a larger over-arching research project involving other two comple-

mentary PhD works, which objective was to capture or generate the deformation of

PBS with different approaches, so to facilitate the cross validation of the methods and

the obtained results. One of the other two projects aimed to generate a finite element

model of the head for the accurate simulation of PBS [27]; the other, instead, aimed to

manufacture a brain phantom that could reliably replicate PBS [135]. The work of this

chapter aims to capture the actual PBS from healthy individual to validate the other two

models of PBS investigated. It adds to the previous knowledge on PBS by providing

volumetric measurements of the deformation of the brain tissue at surgically relevant

regions of interest in both subject-specific and average spaces; by investigating the

compressibility of the brain tissue; by exploring the influence of intra-cranial geometry

and head orientation on PBS. The work presented in this chapter is part of the the main

body of the following peer-reviewed paper:

Zappalá, S., Bennion, N. J., Potts, M. R., Wu, J., Kusmia, S., Jones, D. K.,



4.1 Introduction 69

Evans, S. L., & Marshall, D. (2021). Full-field MRI measurements of in-vivo

positional brain shift reveal the significance of intra-cranial geometry and head

orientation for stereotactic surgery. Scientific Reports, 11(1), 17684. https:

//doi.org/10.1038/S41598-021-97150-5.

Section 4.1 expands on the more generic introduction to the problem related to brain

shift introduced in Section 3.1, with the findings in the literature regarding the general

consensus on the pattern of deformation of PBS.

Section 4.2 introduces to the specification of the acquisition protocol and the parti-

cipant recruitment. Section 4.3 describes the registration pipeline, beginning with the

affine alignment to set the initial conditions of deformations, followed by the DVC

measurements using the optimal parameter set identified in Section 3.4.

Results of the analysis of deformation are shown in Section 4.4, which clinical implica-

tions are then discussed in Section 4.5.

4.1 Introduction

As introduced in the previous chapter (Section 3.1), positional brain shift (PBS), the

sagging of the brain under the effect of gravity, is comparable in magnitude to the

margin of error for the success of stereotactic interventions (∼1 mm). This non-uniform

shift due to slight differences in head orientation can lead to a significant discrepancy

between the planned and the actual location of surgical targets.

The pattern of deformation in the physiological case is reported to be far from rigid,

with local variations even between individual sulci and gyri of the cortex [4]. The

regional variability of PBS is significant, as the momentum generated by gravity is

non-uniformly distributed [4] and the tissue properties vary among structures, due to

different histological compositions between grey and white matter tissues [5]. PBS

has been shown to be generally localised in deep, central brain regions (e.g., basal

https://doi.org/10.1038/S41598-021-97150-5
https://doi.org/10.1038/S41598-021-97150-5
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ganglia), which are the main targets for IGNS-based interventions [4–6]. Considering

prone to supine changing of positioning, PBS has been shown having a rotational

component in the sagittal plane, with the centre of rotation located around the brainstem

region [4, 5, 136, 137]. Different boundary structures limiting such deformation have

been reported, such as the falx, the tentorium, as well as vascular, endural and dural

elements [4, 5, 136, 137]. The brainstem, apart from acting as a centre of rotation,

was also shown to pull the brain tissue depending on the angle of the neck, even if

this contribution was reported to be secondary to the effect of gravity at neck flexion

between 20◦ and 30◦ [107, 138].

As previously mentioned in Chapter 3, these conclusions were drawn based on observa-

tions mostly limited to surfaces [4, 5] or to measurements at specific locations [7, 8],

failing to capture the local and global deformation of the tissue. To expand on the

contributions previously introduced, the study aimed to acquire and analyse a dense set

of full-field measurements of the in-vivo deformation of brain tissue resulting from a

prone-to-supine change in head orientation. Understanding the mechanics in normal

physiological conditions (i.e., in the healthy brain) is the first step before modelling

the more challenging shift induced by pathology or surgical manipulation. Deformable

image registration was used to extract the displacement field between skull-aligned

magnetic resonance (MR) scans representing the different states of deformation of the

tissue (that is, via digital volume correlation (DVC)). This study adds to the previous

knowledge on PBS [4–6, 8] with the following contributions:

• provision of a dataset of accurate volumetric measurements at various regions of

interest (ROI) and surgically relevant structures;

• normalisation of data from different subjects to a common reference space allow-

ing an inter-subject analysis on a voxel-wise basis.

• investigation of the local compressibility of the brain, in particular to further test

the hypothesis that the brain is slightly compressible with spatial heterogeneity in

compressibility;
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• exploration of factors influencing PBS, such as intra-cranial geometry and head

orientation.

4.2 Study Definition and Ethics

This study was carried out at the Cardiff University Brain Research Imaging Centre

(CUBRIC), Cardiff University. The aim of the protocol was to acquire MRI images

representing the differences in the brain morphology between prone and supine posi-

tions, that is, PBS. This study was approved by the Ethical Committee of the Cardiff

University School of Psychology, United Kingdom. All methods were carried out in

accordance with the relevant guidelines and regulations. Informed consent was given by

all participants before scanning.

The initial aim was to scan around 10 healthy people for each of 5 decades of life (20-

30, 30-40, 40-50, 50-60, 60-70 years), in order to characterise the variability of brain

shift among different life spans. However, the difficult subject recruitment required

a prioritisation of the age ranges 20-30 and 50-70. Then, the closure of the CUBRIC

centre due to the COVID-19 outbreak impacted the completion of planned experiments.

The study was therefore considered completed with 13 subjects in the age range 20-

30 and 12 in the range 50-70, allowing for a statistical analysis between these two

population samples.

In order to avoid any pathological conditions to the brain tissue affecting its morphology

or mechanical response, subjects were excluded from the study in case of (self-reported):

• Alcohol intake of more than 30 units/week or intake of more than 10 units within

48 h prior to scanning. A unit of alcohol is equal to 10 ml of pure alcohol and is

roughly equivalent to a glass of wine (125 ml) or a single measure of spirits (25

ml) [139].

• History of alcohol or drug abuse [139].
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• History of severe head trauma requiring medical attention [139].

• History of neurosurgical procedure [140].

• History of neurological, psychiatric disease or cognitive difficulties [139, 141].

• Risk factors for stroke, such as diabetes, cardiovascular disease or hyperlipid-

aemia [139, 141].

• Any contraindication for MRI scanning [140].

Posters (Figure 4.1) describing the study were shown in University departments and

public places, once the approval was obtained by the corresponding gatekeeper. Recruit-

ment was also carried through e-mailing lists in each of the University department, prior

to approval by the corresponding gatekeeper. An incentive of 10 pounds per hour was

offered to each participant. The amount was paid according to the going rate amongst

similar kinds for study.

A diagram of the acquisition protocol is reported in Figure 4.2. The total required time,

considering participant welcoming and scanning setting-up, was maximum 2 hours. The

scanner used was a Siemens 3T PRISMA (Siemens Healthcare, Erlangen, Germany).

Subjects were scanned initially in a prone position (20 min in total) where diffusion-

weighted followed by MPRAGE T1-weighted [142] scans were acquired. Padding

on cheeks and the forehead were used to make the subject comfortable in such prone

position, taking care not to reduce the access to air. The time taken to position the

subject comfortably in the scanner guaranteed that the tissue had displaced fully towards

the frontal part of the skull before scanning. This setting was tested successfully in a

previous pilot study based on T1w MPRAGE scans of 8 subjects scanned in a Siemens

7T MAGNETOM (Siemens Healthcare, Erlangen, Germany) scanner. The results of

the pilot showed no further deformation of the brain tissues in 8 healthy participants

after 8 mm from swapping head orientation. No additional material was used, but for

the standard MRI imaging.
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We are looking for healthy volunteers aged 50-70 for a 
study aimed at imaging the shape of the brain under 

different orientations of the head

Is Your Brain Deforming 
Right Now? 

The study is based on the teamwork of four PhD students under the 
supervision of Prof. Sam Evans (School of Engineering), Prof. Derek 

Jones (CUBRIC) and Prof. David Marshall (School of Computer Science 
and Informatics). The work is part of a strategic alliance between 

Cardiff University and Renishaw PLC. 

then face-up for around 40 minutes. 
The study lasts a maximum of 2 hours and  
takes place at the Cardiff University Brain 
Research Imaging Centre(CUBRIC). 

Participants are asked to lie face-down in 
an MRI scanner for around 20 minutes 
whilst images of the head are acquired,

Participants will be offered £20 as a thank-you for their time. 

If you would like to take part or 
would like further information, 
please contact Stefano Zappalà at:

zappalaS@cardiff.ac.uk

The results of the project will help in the   
design of a smarter graphical system for 
surgical navigation. The overall aim is to 
improve the delivery of electrodes for deep 
brain stimulation (e.g., the treatment of 
Parkinson’s Disease) or the targeted delivery of 
drugs to the brain tissue (e.g. Cancer Therapy).

Bottom picture by Hellerhoff [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

Make an impact on the future
of image-guided neurosurgery

Figure 4.1: Poster used for the recruitment targeting participants in the age range 50 to
70 years of age, as individuals in the 20-30 years age range could be easily found in the
academic setting.
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Figure 4.2: Schematic of the acquisition protocol for the study carried out in the 3T
scanner. Duration of each acquisition sequence is reported below for prone scanning,
on the left; and for supine scanning (right), after switching participant position.

After asking subjects to move to a supine position, 30 2D spoiled gradient-recalled eco

(FLASH) scans (including 2 sagittal, one axial and one coronal slices) were acquired

at every 17 s, in order to capture brain shift in the first 8 min of deformation. Then,

additional T1-weighted MPRAGE followed by diffusion-weighted scans were acquired.

Acquisition parameters for both pilot study (7T) and main study (3T) are reported in

Table 4.1. Manual shimming was run on the 7T scanner by an experienced MR physician,

whereas the vendor’s automatic shimming was used for the 3T data. 3D FatNav

correction was applied to the 3T scans, which consists in a retrospective correction of

the subject micro-movements (that is, root-mean-squared displacement of 1.08 mm

and rotation of 0.84◦) tracked during scans via additional accelerated fat-selection 3D

scans [22].

For both prone and supine acquisitions, care was taken to position the head of each

participant consistently in the head coil and to locate the latter at the isocentre of the

magnetic field, via a laser module built in the system.

Anonymised demographics were stored alongside the scans, such as age, height and

weight to allow statistical analysis. With the aim of sharing scans and demographic

information publicly after publication of the work, consent from each subjects was ob-

tained and their information not shared unless consent was given. All the recommended

guidelines for the anonymisation of the scans were followed: all sensible information in

the headers was deleted and the faces of participants blurred via mri_deface from the

FreeSurfer library [143] prior to sharing the data publicly.
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MPRAGE at 7T MPRAGE at 3T FLASH at 3T
TR 2200 ms 2300 ms 8.6 ms
TE 2.93 ms 2.88 ms 4 ms
Flip Angle 7◦ 9◦ 20◦

FOV 256x318 256x256 256x256
Slices 242 256 1
Resolution 0.8x0.75x0.75 mm3 1x1x1 mm3 1x1 mm2

Scan Time 4m 28s 5m 32s 17 s

DWI at 3T
TR 3500 ms
TE 80.6 ms
Flip Angle 90◦

FOV 154x154
Slices 84
Resolution 1.5x1.5x1.5 mm3

Scan Time 8m 30s
Diffusion Directions 9 B0 blip-up

4 B0 blip-down
20 at 200 s/mm2

20 at 500 s/mm2

30 blip-up at 1200 s/mm2

30 blip-down at 1200 s/mm2

60 at 2400s/mm2

Table 4.1: Acquisition parameters for the structural sequences on the top row, whereas
for diffusion sequence on the bottom row.

4.3 Methods

Data Acquisition The following initial work is based on only eleven (7 male and 4

female) healthy young adults from the population sample scanned (average age: 25.18

years; range: 22-32 years). This was chosen to limit the confounding effect of age [4],

leaving the comparison of the two acquired population samples as future directions.

The first six participants were scanned as part of the pilot study in the Siemens 7T

MAGNETOM scanner (Siemens Healthcare, Erlangen, Germany); the last five were

scanned in the Siemens 3T PRISMA. This initial study consisted of the comparison

of the T1-weighted MPRAGE scans, leaving the 2D scans and the diffusion-weighted
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scans for future investigations.

Data Pre-processing In order to reduce any residual MR distortions, correction

with the software gradunwarp [118] was applied (standard for the multi-site Human

Connectome Project [117]). It showed better performance relative to the scanner-default

distortion correction on two participants who were scanned in both 7T and 3T scanners

(Section 3.3). Scans were corrected for low-spatial frequency intensity inhomogeneities

with the unified segmentation module of the Statistical Parametric Mapping (SPM) [144]

toolbox [145]. Finally, a semi-automated segmentation process was carried out to extract

the skull and brain masks, where the brain extraction tool (BET) command of the FSL

software library [122] was used and the segmentations thus-obtained were amended

manually where necessary via Seg3D (Scientific Computing and Imaging Institute

(SCI)).

Digital Volume Correlation Prior to deformable registration, images were aligned

at the level of the skull in order to define the initial conditions of deformation. The

prone scan of each participant was registered to the supine one, which served as the

subject-specific reference volume. Registration was limited to the skull to avoid any

bias induced by PBS; affine rather than rigid transformation was chosen to reduce any

residual distortions [90, 92]. The ANTs [79] affine registration method was used as it

showed better performance than two other popular registration software in correcting

for some combinations of rotations and translations (Section 3.3).

The warp field resulting from a deformable registration call of the skull-aligned prone

and supine images depicted the displacement field due to PBS alone [5]. The symmetric

image normalisation (SyN) [79] method was used: it showed better performance than

two other state-of-the-art registration packages for neuroimaging in following a biofi-

delic synthetic deformation field representing PBS (Section 3.4). Parameters were left

as default apart from those controlling similarity measure (cross-correlation) and the

transformation model (BSpline [80]) which were optimised against the ground truth; the
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best set gave an error of 0.0503± 0.0385 mm in the brain area, one order of magnitude

smaller than the expected magnitude of PBS.

Spatial Normalisation In order to conduct an inter-subject (group) analysis, all su-

pine scans were spatially normalised (that is, deformably registered) to the Montreal

Neurological Institute-Hospital 152 (MNI152) standard space (isotropic resolution

1 mm3) [127] with the same SyN software. Vectors of each displacement field were re-

oriented (ANTs suite) according to the global rotation matrices representing the specific

head orientations of participants relative to the standard space; this guaranteed the cor-

respondence between deformation and head orientation following normalisation [130].

An average displacement field was extracted with the corresponding inter-subject vari-

ability that would otherwise be lost when measuring PBS on templates extracted after

averaging images between participants [5].

Furthermore, the normalisation allowed the derivation of the orientation of each par-

ticipant’s head in the scanner (i.e., direction of gravity) relative to the neutral supine

position represented by the MNI152 standard space, as well as the antero-posterior

diameter (APD: 176±6 mm) and the maximum cranial breadth (MCB: 137±6 mm) [4].

Any correlation between these factors and PBS was evaluated using the Spearman

correlation coefficient [146].

Analysis of Deformation Statistics were computed both globally and locally with

MATLAB R2020b (Mathworks, Natick, MA). Results presented throughout the study

are either reported in Cartesian or in spherical coordinates. For the former, a RAS (right-

anterior-superior) convention was used. For the latter, the azimuth angle represented

orientation of vectors on an axial plane relative to the positive axis of the left-right (L-R)

direction; elevation angles represented orientation on a sagittal plane relative to the

positive axis of the posterior-anterior (P-A) direction.

A ROI-wise analysis was performed after normalisation to infer the anatomical vari-
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ability in PBS. Atlases used include: Harvard Oxford (HO) [147], the Atlasing of

the Basal Ganglia (ATAG) [148] and the International Consortium for Brain Mapping

(ICBM) [149] atlases. These included deep white matter structures as well as ventricles

and basal ganglia, which are relevant surgical targets for IGNS-based interventions [150–

152].

Finally, the Green-Lagrange strain tensor [153] was evaluated at each voxel in the brain

in order to interpret the deformation in a differential manner, that is, discarding any

rigid body displacement. The strain tensor, E, was extracted as:

E =
1

2

(
FTF− I

)
, (4.1)

F =
∂u(x)

∂x
+ I, (4.2)

where x is the voxel position in the original configuration, u(x) the deformation field, I

the identity matrix and F the deformation gradient.

To further investigate the role of the tissue meso-architecture, strain tensors were

partitioned into a hydrostatic component representing volume change (at small strains):

Ehyd =
Exx + Eyy + Ezz

3
, (4.3)

whereExx, Eyy, Ezz are the three diagonal elements of the strain tensor; and a deviatoric

component representing shape change:

Edev = E− Ehyd. (4.4)
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4.4 Results

Subject Positioning Fig. 4.3 shows head orientation among subjects as direction of

gravity during scanning. Average ± standard deviation of azimuth and elevation angles

were, respectively, 89.91± 2.99◦ and −9.86± 8.90◦ for prone, and −91.01± 2.03◦ and

171.72± 6.22◦ for supine, showing an average neutral pan but slight upward tilt of the

head in both prone and supine scans.

Figure 4.3: Polar histograms of the direction of gravity (i.e., head orientation of parti-
cipants) during scanning. On the left, greater values of azimuth angle represent head of
the participant turned right during scanning. On the right, higher values of elevation
angle represent head of the participant tilted downwards during scanning. The shape of
the skull from the MNI atlas is overlapped as reference for the neutral head orientation.

Skull Alignment Fig. 4.4 shows the resulted alignment of the skull from the prone

scans onto the skull from supine ones.

Analysis of Deformation The most significant component of displacement was P-

A as reported in Table 4.2. With respect to the average, the inferior-superior (I-S)

component showed greater variability among subjects. A consistent shift towards left

can be noticed in the L-R component. Fig. 4.5 shows PBS as a displacement field. An

overall translational component towards the posterior part of the skull can be seen, with
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Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Subject 7 Subject 8 Subject 9 Subject 10 Subject 11

Subject 11

Prone Supine

Figure 4.4: Axial views of the initial alignment of the pelvic elements between supine
(blue), prone (orange) scans.

significant local variability. Displacement was greater in deeper (compared to more

superficial) regions and in particular further away from anatomical boundaries such

as the falx cerebri (midline), the tentorium cerebelli (just below the cerebrum) and

the meninges (periphery). Whilst inward displacement can be seen in frontal regions,

movement was negligible more posteriorly. The previously observed shift to the left can

be seen here in the axial distributions of Fig. 4.5; this lateral displacement correlated

weakly with brain volume (p=0.07, r=-0.58), showing a greater leftward deformation

with bigger brain volumes.

Mean ± standard deviation Inter-subject variability
Left-right -0.09 ± 0.23 mm 0.19 mm
Posterior-anterior -0.2 ± 0.36 mm 0.26 mm
Inferior-superior 0.10 ± 0.33 mm 0.3 mm
Magnitude 0.57 ± 0.34 mm 0.41 mm

Table 4.2: Average and standard deviation displacement values in the brain area with
the corresponding inter-subject variability. Global statistics are extracted for the three
components separately and for the magnitude of displacement.

Fig. 4.6 shows deformation within significant ROI. Values of azimuth angle (left of
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Figure 4.5: Vector plots of PBS for two axial (a and b) and two sagittal (c and d)
slices. Length of vectors have been scaled for visualisation purposes: their magnitude
is represented by the underlying contour plots. As reference, dashed coloured lines
represent the position of the other slices. In particular, slice a was positioned at the
level of the anterior and posterior horns of the lateral ventricles, whereas slice c was
positioned at the level of the falx cerebri.

Fig. 4.6) indicate an overall displacement from anterior to posterior, as well as a predom-

inant leftward component of deformation at peripheral (GM) and inferior (STN/RN/SN

and BStem) regions. Elevation angle (centre of Fig. 4.6) shows an overall upward

displacement which was bigger in the left than in the right hemisphere. Magnitude

(right of Fig. 4.6) was greater in deep regions (e.g., basal ganglia) and lesser towards the

skull and slightly bigger in the left than in the right hemisphere. Inter-subject variability

between ROI showed slightly bigger values at deep structures than at the periphery, with

an average of 0.15 mm at surgically relevant ROI.
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Figure 4.6: Polar diagrams showing azimuth (left) and elevation (centre) angles as well
as magnitude (right) of PBS averaged over some ROI: left (L) and right (R) gray matter
(GM), white matter (WM), ventricles (Vent), thalamus (T), caudate (Cad), putamen
(Put), pallidus (Pall), subthalamic nucleus (STN), red nucleus (RN), substantia nigra
(SN) and brain-stem (BStem). Whiskers represent inter-subject variability. Decreasing
values of azimuth angle in the [−90,−180]◦ range represent vectors progressively
oriented towards left, whereas increasing values of elevation angle in the [90, 270]◦

range represent vectors progressively oriented downwards. STN, RN and SN were
combined together due to the small number of voxels represented by these structures.

Average and standard deviation values of strain are reported in Table 4.3, alongside

the corresponding inter-subject variability. Figures 4.7 and 4.8 show the distribution of

the hydrostatic and the deviatoric strains, respectively. Strain maps show elongation in

frontal regions and confirm the negligible deformation in posterior regions as previously

noticed. Local variability of deformation can be seen, as well as some structures (such

as ventricles) and anatomical boundaries (such as the falx cerebri and the tentorium

cerebelli). The polar plots in Fig. 4.9 show the diagonal components of the strain tensor

for different lobes also decomposed in their hydrostatic and deviatoric components.

Deformation along P-A direction occurred as both volume preserving (0.52± 1.02 %)

and volume change (0.44±0.64 %) expansion in the frontal lobe. However, deformation

occurred predominantly as shape change in more posterior regions (−0.48± 1.14 %),

with a small volumetric compression (−0.25± 0.76 %).

The APD did not reach statistical significance in the correlation with PBS. In supine po-

sitioning, however, MCB strongly correlated with azimuth (p=0.04, r=−0.63, Fig. 4.10)
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Mean ± standard deviation Inter-subject variability
L-R 0.18 ± 1.34 % 0.09 %
P-A -0.04 ± 1.38 % 0.08 %
I-S 0.03 ± 1.32 % 0.09 %

Table 4.3: Average and standard deviation values of strain in the brain area with the
corresponding inter-subject variability along the three main directions.
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Figure 4.7: Distribution of the hydrostatic component at two axial (a and b) and two
sagittal (c and d) slices. As reference, three ROI (Vent, STN, BStem) are delineated.
Dashed coloured lines represent the position of the other slices. In particular, slice a
was positioned at the level of the anterior and posterior horns of the lateral ventricles,
whereas slice c was positioned at the level of the falx cerebri.

and elevation angles (p<0.01, r=−0.87, Fig. 4.10) of PBS, and weakly with magnitude

(p=0.08, r=−0.55, Fig. 4.10). Linear fit showed that an increase of 10 mm of MCB led

to a displacement 20.66◦ more to the left, a displacement 29.17◦ more downwards and

finally a decrease of 0.12 mm in its magnitude.
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Figure 4.8: Distribution of the main deviatoric components of the Green-Lagrange
strain. First row shows axial (a) and sagittal (b) slices of the L-R component; second
row shows the P-A component (c and d); third the I-S component (e and f ). As reference,
three ROI (Vent, STN, BStem) are delineated. Dashed coloured lines represent the
position of the other slices. Axial slices were positioned at the level of the anterior and
posterior horns of the lateral ventricles, whereas sagittal slices were positioned 1 cm to
the right of the falx cerebri.
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Figure 4.9: Diagonal components of strain averaged over some ROI: left (L) and right
(R) anterior and posterior meninges (Men Ant, Men Post), frontal lobe (Front), temporal
lobe (Temp), ventricles (Vent), parietal lobe (Par), occipital lobe (Occ). Blue lines rep-
resent the overall diagonal component (whiskers representing inter-subject variability),
whereas the orange and yellow lines its deviatoric and volumetric components.
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Figure 4.10: Scatter plots of the correlation between PBS and MCB. Azimuth (blue dots)
and elevation (orange squares) angles are reported on the left against values of MCB,
whereas against magnitude of PBS on the right. As reference, linear fit is superimposed
to the data.

Head orientation in prone position did not reach statistical significance in the correlation

with PBS. In supine positioning, however, a statistically significant correlation (p=0.01,

r=0.7364, Fig. 4.11) was found between elevation angle of gravity in supine and that of

PBS: head tilt 10◦ more downwards in supine induced a shift 10.86◦ more downwards.

Moreover, elevation angle of gravity strongly correlated with the magnitude of PBS

(p<0.01, r=0.80, Fig. 4.11): head tilt 10◦ more downwards induced a decrease in the

shift by 0.18 mm.
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Figure 4.11: Scatter plots of the correlation between PBS and gravity (ḡ). Elevation
angle of gravity is here reported against elevation angle (left) and against magnitude
of PBS (right) for both prone (blue dots) and supine (orange squares) positioning. As
reference, linear fit is superimposed to the data in the case of the statistical correlation
between elevation angle of ḡ in supine and both elevation angle (on the left) and
magnitude (on the right) of PBS.

4.5 Discussion

This study successfully captured PBS as three-dimensional deformation over the entire

brain volume, without limiting the analysis to any surface (such as the ventricular

or the cortical surfaces [4, 5]). Differently from previous studies investigating the

phenomenon in analogous conditions, accuracy of the measurements was evaluated,

giving an error in following a biofidelic ground truth of 0.0342 ± 0.0229 mm in the

brain area. Analysis showed local variability in both displacement and compressibility

of the tissue, demonstrating the complexity of PBS as interaction of gravity, anatomical

boundaries and mechanical response of the tissue. Finally, the study revealed a strong

correlation between the shift and both head orientation and the geometry of the intra-

cranial cavity, giving a measure of their effect on PBS.

Values measured in the present study might be negligible relative to the typical shift seen

during more invasive procedures such as craniotomy and tumour resection [94, 104, 154].

The obtained magnitude, however, was comparable to the error allowed for the correct

targeting in IGNS-based interventions [3, 98, 101, 102]: deformation of some surgically
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relevant structures ranged from 0.52 mm at the STN/RN/SN complex to 0.77 mm at

the T. Values were in accordance with previous studies investigating the phenomenon

in analogous conditions. Among these, Hill et al. [6] compared scans for two patients

before surgery finding a deformation smaller than the resolution of their scans (1 mm).

Schnaudigel et al. [5] reported brain deformation between 0.6 and 1.3 mm. Monea et

al. [4] reported a 95% confidence interval of inwards shift between 1.08 and 0.47 mm

at the brain surface and between 0.72 mm (inwards) to 0.83 mm (outwards) at the

ventricular surface. Rice et al. [7] reported a value of PBS of 1 mm from measuring

the change in thickness in occipital cerebro-spinal fluid. Recently, Yokoyama et al. [8]

reported a downward and posterior displacement of the pituitary body of 0.68±0.27 mm

and 0.76 ± 0.24 mm, respectively, and a shortening of the pituitary gland by 1.23 ±

0.71 mm from a sitting-to-supine change of positioning.

Deformation happened predominantly along the P-A axis following the direction of

gravity, with a lateral component consistent among all subjects. Greater deformation

could be seen further away from anatomical boundaries, and in particular in deeper

structures, such as T, BG and BStem, confirming the influence of both gravity and

anatomical constraints reported in the literature. The joint effect of the curved shape of

the skull and the anchoring effect of the BStem most likely induced the anticlock-wise

rotation around the L-R axis [4, 5, 155]; simultaneously, the tethering effect created by

the meningeal and vascular elements might have contributed to the smaller deformation

near these cortical areas [136, 137, 156]. The falx cerebri most likely limited any shift

along its surface, inhibiting any deformation along the L-R direction (in particular at the

level of the WM) [4, 5]; Finally, the tentorium cerebelli reduced the I-S deformation of

the lowermost part of cerebrum. Results supported the pattern of deformation reported

by Schnaudigel et al. [5]; but contrasted Monea et al. [4], who found a bigger shift of

the cortex relative to the ventricles. The observed difference in elevation angle and

magnitude of displacement between hemispheres can be related to the reported lateral

asymmetry of the intra-cranial cavity [70, 157], as the head pan of subjects during

scanning was consistent (89.91± 2.99◦) and did not show any statistical significance in
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the correlation with PBS.

Strain analysis showed deformation as prevalent shape change rather than actual volu-

metric compression/extension. Frontal regions showed both stretch and expansion of

tissue (consistent with the softer response in tension [158, 159]); on the other hand,

posterior regions showed a prevalent deviatoric contraction along P-A (accommodated

by an elongation along L-R and I-S directions) with a volumetric compression that was

half the same component in frontal regions (consistent with the nearly incompressible

nature of the brain tissue [160, 161]). The compression found in this study can be

related to interstitial fluid redistribution and intracellular interactions as water escaping

from ex-vivo specimens was reported during pre-conditioning before compressive test-

ing [161]. Values were in accordance with the decrease in volume by 5.07 ± 3.24 %

reported by Yokoyama et al. [8] at the lateral ventricles from a sitting-to-supine change

of positioning. Whilst direct comparison is limited, Libertiaux et al. [162] reported a

standard deviation of up to 5% in the volume ratio of ex-vivo specimens opposing to a

natural compressive strain of up to 0.22 at rates between 1.2 mm/min and 120 mm/min;

Franceschini et al. [163] showed small deformation of 2.8± 1.26% of specimens un-

der load of 3 and 6 N until displacement halted under physiological saline and free

drainage. Conclusions on the mechanical response of the brain tissue are limited by

the numerous factors influencing the full-field displacement measured in this study.

However, brain tissue showed local variability in volumetric compression (up to 2%) in

physiological conditions: these values help in assessing the degree of incompressibil-

ity [160, 162, 164] to assume when modelling the brain response in light of the accuracy

required for the specific application.

The study reaffirmed the lateral component of deformation (−0.09 ± 0.23 mm) in

prone-supine change of positioning as firstly reported by Schnaudigel et al. [5]. Despite

being comparable to the margin of error of the measurements taken, this component

was consistent in all subjects and stronger in deep and posterior regions (such as

BG) [5]. As head orientation in an axial plane was neutral during scanning, gravity
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alone could not be the only cause. First, MR distortions are reported to induce a spurious

deformation along the L-R axis, which was measured on two phantoms giving absolute

differences of 0.4± 0.2 mm on 7T [89] and 1.3± 0.26 mm on a 3T scanner [87] after

correction. Second, asymmetry of the hemispheres is a well known characteristic of the

human brain (Yakovlevian torque) which presents an anti-clockwise rotation around

the P-A axis caused by a bigger right frontal and left occipital lobes relative to their

controlateral [70, 165, 166]. Therefore, the leftward component of deformation seen

in the present study could have been a joint effect of both residual distortion after

correction and a clockwise deformation when moving to a supine position as a result

of an even stronger twist effect when in prone positioning. Moreover, bigger brain

volumes showed stronger leftwards deformation, the tissue being less constrained by

anatomical boundaries. The results of the study further demonstrate the complexity of

the phenomenon, as even an off-axis deformation can be critical to the overall accuracy

of its prediction.

The inter-subject variability extracted in this study (average at surgically relevant ROI:

0.15 mm) represents the effect on PBS of further subject- and intervention-specific

characteristics that needs to be addressed when modelling such phenomenon. Among

these, intra-cranial geometry and head orientation revealed a strong correlation with

PBS. Regarding the former, bigger cranial breadths diminished the constraining effect of

anatomical boundaries on the brain tissue, giving bigger leftward and upward component

of displacement. Monea et al. [4] also reported a statistically significant correlation

of both MCB; however, statistical significance was reached only for lateral PBS and

not for prone-to-supine change of positioning. Regarding head orientation, bigger shift

was captured in neutral positions relative to more downwards tilted positions, as the

curved shape of the skull might have limited the deformation of the brain tissue in more

angled head orientations. No significant correlation was found for the head pan, due to

the limited range of rotations acquired on an axial plane. In an experimental scenario,

these factors need to be addressed in order to increase the accuracy of model-based

predictions, conditional to the margin of error for the specific application. For the case
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of IGNS, for instance, results of the study demonstrate the need for both subject- and

intervention-specific correction of surgical trajectories as anatomical differences and

slight changes in head tilt on a surgical table can affect the successful targeting of the

correct structure.

A significant effort was made to understand and limit the potential inaccuracies related

to the measurements, leading to the following main sources of error: residual MR

distortions, improper initial skull alignment and inaccuracy of the deformable registra-

tion. Phantom and clinical studies on MR distortions report a spurious warp of around

1 mm [86–89] even after correction. This warp depends not only on the scanner (static

magnetic field inhomogeneities) or the gradient coil (gradient nonlinearities, eddy cur-

rents), but also on the scanned object (chemical shift, susceptibility differences) [87–90].

Distribution of these properties over the brain is non-uniform, with larger distortions

in inferior and frontal areas, close to air-filled cavities [89, 90, 92]. It is not stated

whether distortions were accounted for in similar studies measuring PBS, as 1.5T [5]

or 3T [4] scanners were used without any additional CT image. In the present study,

gradunwarp showed better performance relative to the uncorrected scans and to the

scanner-default distortion correction methods when comparing 7 T to 3 T images of

two subjects (Section 3.2). Given the complexity of the phenomenon and the lack of

a proper correction in the scanner [86], any further attempt to model distortions was

considered out of scope and therefore a limitation of the study. Alongside distortions,

any residual differences in the alignment of the skulls between the prone and supine

scans of the same subject were captured by the deformable registration as an additional

spurious component of deformation. Therefore, accuracy of this first step was evaluated

on synthetic images (Section 3.3). Finally, with the aim of minimising the error when

approximating the true deformation field, the transformation models of three best per-

forming deformable registration methods were optimised against a biofidelic ground

truth and their performance compared (Section 3.4).

Finally, the present study is limited by the small sample size, consisting solely of healthy
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and young individuals. This choice was made for practical reasons, to make an initial

evaluation and to limit the confounding effects of age [4]. As such, results presented

here cannot be easily generalised to represent the average population of patients neces-

sitating IGNS-based interventions. Widening the age range of the population sample or

including patients in the analysis will be of more clinical interest and is going to be a

future investigation.

4.6 Data Availability

The dataset generated during and/or analysed during the current study is available at the

following OSF repository. OSF is a platform that allows researchers to collaborate, doc-

ument, archive, share, and register research projects, materials, and data. Anonymised

and face-stripped scans are available in the repository for other researchers to use,

alongside the displacement and the strain maps extracted in the present work.

Summary

Data acquisition of the physiological deformation of the brain tissue under the effect

of gravity due to prone-to-supine change of positioning was discussed in the present

chapter for a sample of 11 young adults. Differently from previous studies depicting

the pattern of deformation of PBS, global and local three-dimensional measurements of

deformation were capture over the whole brain area, both in a subject-specific and in an

average spaces.

Even in the physiological conditions investigated in this study, magnitude of PBS

resulted comparable to the 1 mm margin of error for the successful outcome of a

IGNS-based intervention; displacement ranged from 0.52 mm to 0.77 mm at surgically

relevant ROI.

https://doi.org/10.17605/OSF.IO/GDB29
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Strain analysis confirmed the reported softer response of the brain tissue in tension

(0.44 ± 0.64 % deviatoric strain and 0.52 ± 1.02 % hydrostatic strain) and its nearly

incompressibility (−0.48±1.14 % deviatoric strain,−0.25±0.76 % hydrostatic strain),

with half the volume change in compression at posterior regions than the volume change

in extension in frontal regions.

Cranial breath showed a strong correlation with PBS, showing a shift 20.66◦ more to

the left and 29.17◦ more downwards, as well as a decrease in magnitude by 0.12 mm

for a 10 mm increment in breadth. Head tilt, instead, induced a 0.18 mm smaller and

20.86◦ more downwards shift after a 10◦ downward tilt.

Results suggest the need for patient- and intervention-specific correction of surgical

trajectories in order to improve the outcome of stereotactic procedures. Any improve-

ment on IGNS does not rely on the amelioration of their hardware components, but on

a suitable intra-operative update of the location of surgical targets. With this aim, the

displacement field extracted in the study is of critical value for the initial validation of

mathematical models aimed at compensating for PBS to integrate into IGNS, which is

offered to download freely for interested researchers.
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Chapter 5

Deep Tissue Injury: Parametric

Identification and Error Analysis

Overview

Similarly to Chapter 3, this chapter presents the efforts that were made to quantify

the sources of error related to the DVC measurements of the large deformations of

the human buttock from the in-vivo MR dataset [1] that will be investigated further in

Chapter 6. As mentioned in Chapter 1, the approximations and the assumptions on

both the calculations of the similarity measure and the flexibility of the transformation

model introduce inaccuracies in the displacement measurements of large deformations.

Quantifying the error associated to these estimations is therefore paramount to gauge

the confidence in the DVC calculations of large deformations. Considerable effort

was made to optimise three deformable registration methods, alongside assessing the

corresponding accuracy against two biomechanically plausible ground truths replicating

the phenomenon.

The work presented in this chapter will be part of the supplementary materials to the

following draft to be submitted soon to the Journal of Biomechanics:

Zappalà, S., Bethany E. K., Marshall, D., Wu J., Evans S. L. & Al-Dirini M. A.

R.. Volumetric redistribution of the soft tissues in the human buttock captured

from MR in-vivo scans: accuracy of measurements and analysis of deformation.
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First of all, Section 5.1 introduces to the problem of deep tissue injury, its clinical

relevance and the importance of DVC measurements in the advancements of strategies

and systems for the prevention and control of pressure ulcers.

Section 5.2, then, presents the optimisation of the affine registration methods that were

used to set the initial conditions of deformation, that is, the alignment of pelvic elements,

and the corresponding error.

Finally, Section 5.3 introduces first the biomechanical computational model that was

designed to generate two physically plausible synthetic deformation fields representing

the deformation of the human buttock under sitting loads. Then, three deformable regis-

tration methods were optimised against the latter ground truths and the corresponding

error quantified.

5.1 Introduction to Deep Tissue Injury

A pressure ulcer is localised damage to the skin and/or underlying tissue over bony

prominences resulting from prolonged compression and shear strain induced by the

interaction with supporting surfaces [13, 167–170]. Despite preventative measures

being in place, pressure ulcers remain a burden on healthcare systems. In the UK,

up to 202,000 people developed a new pressure ulcer annually in the period 2017/18,

leading to an average annual cost of £748 for healed and £5972 for unhealed wounds

per patient [9]. The highest incidence of pressure ulcers was observed in the sacrum

and buttocks across six hospitals in the UK [171].

Deep tissue injury (DTI) is a pressure ulcer that originates at internal tissues surrounding

bony prominences such as the ischial tuberosity (IT), greater trochanter (GT) and the

sacrum [168, 172]. DTIs can, sometimes, be diagnosed even 24–72 hours after the

initial onset [173] or can be initially miscategorised, as the damage is not always asso-

ciated with broken skin or an open wound [174]. Age, impaired mobility, continence,

temperature and nutrition have been found to be related to the onset of the damage,
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making the efficacy of preventive measures adopted in clinical practice somewhat lim-

ited [10, 175, 176]. Among these, re-positioning, skin examination, wound dressing,

nutritional assessment and pressure measurements at the skin-seat interface are common

practice in the control and prevention of DTIs [172, 174, 175, 177]. Any advancements

in the design of these measures rely on a better understanding of the aetiology of DTI,

alongside a more reliable way to reproduce conditions associated with the onset of

tissue damage [10, 10, 178, 179].

In order to achieve this, finite element (FE) models of sitting biomechanics allow the

calculation of the internal deformation field of tissues in response to a load at the

seating interface, replicating and ultimately predicting the conditions leading to tissue

damage [10, 180, 181]. The reliability of FE models depends on the availability of

accurate measurements that can fully represent the complexity of the phenomenon to

be modelled. This is crucial for the appropriate design, exhaustive optimisation and

thorough validation of such models [181–183]. To the best of the authors’ knowledge,

previous measurements failed to represent fully the three-dimensional complexity of the

deformation of the human buttock in-vivo both at superficial and internal tissues [1, 184–

187]. These include direct measurements from MR scans [1, 10, 11, 184], motion

capture data [188] and digital image correlation on ultrasound images [189]. Rich

volumetric measurements of such deformation would benefit the understanding of the

phenomenon. Accuracy is therefore essential to gauge the margin of error associated

with the DVC calculations and hence the value of these measurements.

5.2 Pelvis Alignment: Optimisation

As previously introduced in Section 3.3, for the output warp field of the elastic registra-

tion to depict the displacement field under investigation, every differences between scans

not caused by the solely deformation of the soft tissues should be minimised. An initial

registration of the scans was therefore needed to bring images to the same coordinate
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system, but more importantly, to align bony structure to use as rigid reference between

deformed and undeformed conditions (that is, setting initial conditions of deformation).

Similarly to Section 3.3, the following section shows the optimisation of the registration

methods in the alignment of pelvic skeletal elements, followed by the comparison of

their performance in setting the initial conditions of deformation.

Methods The same dataset by Al-Dirini et al. [1] as in Chapter 6 was used, where

magnetic resonance (MR) scans of 10 healthy subjects (aged 19-39, body mass index

(BMI) = 28.02± 4.71 kg/m2) depict the quasi-static deformation of gluteal soft tissues

from sitting in a semi-recumbent position. The progressive deformation was captured by

removing two 10 mm inserts from the left buttock. Scans were proton density weighted

spin echo (TR=4542 ms, TE=32.18 ms) and were acquired in a 1.5T scanner, with

an anisotropic resolution of 0.78x0.78x10 mm3. Image deconvolution via software

NiftyMIC [190] was used to decrease the voxel spacing along the same direction. The

sagittal scans available in the dataset [1] (resolution 10x0.78x0.78 mm3) could not be

used in the deconvolution call, due to them being affected by strong MR distortions.

A single observer manually segmented the following skeletal structures from both the

full-weight bearing (full-WB) and non-WB scans: bilateral inferior pubic rami (to

include the left IT) as well as the left femoral head (to include the left GT). Registration

parameters were optimised on the scans of three participants to include the effect of

inaccuracies in the segmentations: subjects were selected to represent the minimum

(subject 10), average (subject 2) and maximum (subject 8) BMIs in the population

sample. Further details on the database used are in Section 6.2.1

The following best performing affine registration methods were compared: FLIRT (from

the FSL suite) [78], ANTs [79] and elastix [44]. The segmented masks were used to

restrict the intensity-based registration of the full-WB to the non-WB scans. Quality of

the alignment was quantified with two error metrics. First, the Dice coefficient DC was
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calculated on the whole masks to give a measure of the global correspondence:

DC =
#(Â ∩B)

#(Â) + #(B)
, (5.1)

where Â is the registered moving mask and B the fixed one. Moreover, the Haus-

dorff distance HD [124] was extracted to gauge the specific alignment of the masks

representing the IT and GT only (regions of interest):

HD = max
(−−→
HD(P̂ , Q),

−−→
HD(Q, P̂ )

)
, (5.2)

−−→
HD(P̂ , Q) = max

∀p∈P̂

(
min
∀q∈Q
||p− q||

)
, (5.3)

where P̂ is the registered moving masks, Q the fixed one and
−−→
HD(P̂ , Q) the directional

HD.

Search grids were generated using the Simulink Design Optimization package in MAT-

LAB: 300 points were selected for each method via the Sobol quasi-random sampling,

giving a total of 2700 runs. Computations were run on a cluster at the Cardiff Uni-

versity Brain Research Imaging Centre (CUBRIC). Sensitivity analysis via Gaussian

emulation [85] (GEM-SA software [132]) was used to infer the main effect, as well

as the pairwise interactions of parameters with the error metrics: these were given as

percentages of the total variance on the metrics.

Chosen ranges of parameters are reported in Table 5.1. For all methods, three similarity

measures were tested, that is, variations of sum of squared differences, mutual inform-

ation and correlation coefficient. Transformation models with 6 (rigid), 9 (similarity)

and 12 (affine) degrees of freedom (DoF) were selected.

Specifically for FLIRT, rotation angles were perturbed during optimisation in a range of

angles between 20◦ (i.e., −10◦ - 10◦) and 180◦ (i.e., −90◦ - 90◦): the wider the range,

the further the convergence is perturbed away from any sub-optimal local minima. A
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minimum of 24 and a maximum of 512 histogram bins were selected for similarity

measures based on intensity binning: their number determines the accuracy of the

statistics of the intensity distribution [77].

Regarding ANTs, gradient step was varied between 0.05 and 0.3: the parameter limits

the extent of movement of control points after each iteration, where small values

represent small advancements and vice-versa. The radius of the similarity window

was varied between 2 and 6 voxels, representing areas made of 124 and 2196 voxels,

respectively.

Finally, for elastix, similarity measure was based on drawing between 1000 and 4000

random samples on a cubic region with side length ranging from 40 mm to 70 mm,

giving regions made of 10519 and 56377 voxels.

Method Parameter Values

All similarity measure SSD, MI, CC
degrees of freedom 6, 9, 12
z-resolution [mm] 2 - 10

FLIRT number of bins 24 - 512
search angles [◦] 10 - 90

ANTs neighbourhood radius 2 - 6
step update 0.05 - 0.3

elastix spatial samples 1e3 - 4e3
region size [mm] 40 - 90

Table 5.1: Optimisation of the initial registration: ranges of parameters tested. Similarity
measures tested include sum of squared differences (SSD), mutual information (MI)
and correlation coefficient (CC)

Results Figure 5.1 shows comparable intra-subject performance between methods

(that is, within the same subject). Evident were instead the inter-subject differences in

values (i.e., between subjects). elastix was the most robust method and was therefore

used for the measurements of Chapter 6, with 405 calls reaching an acceptable DC
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value of at least 0.80 [79]; FLIRT and ANTs, instead, showed only 342 and 361 runs

with DC over 0.8, respectively.
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Figure 5.1: Boxplots showing the extracted values of the DC (right) and the HD (left)
for each method. Values of DC are evaluated over the whole pelvic area segmented; HD
values, instead, are evaluated only at the IT and GT. Annotated values display the best
performance for each method, that is, maximum DC and minimum HD values. Top,
centre and bottom rows show results for the 3 subjects (sbj) analysed. As reference,
diamond markers show the performance of each model with default parameters (if
successful).

Sensitivity analysis on elastix (Figure 5.2) showed that variability in DC given by

uncertainty in inputs was 8% of its average, whereas the same fraction for the HD

was 40%: the latter was therefore more sensitive to changes in parameters’ values.

Z-resolution, similarity measure and number of samples were the most influencing

parameters: z-resolution explained the majority of the variance in DC values (72%),

whereas 9% of the total variance in HD values; similarity measure led to the majority of

the variability of HD (28%), whereas z-resolution and spatial sample together explained

4% of the total variance in HD.

Figure 5.3 shows the surface plots of the pairwise comparison between the previously

identified three most influencing parameters. The optimal set was therefore chosen

as: advanced mattes mutual information as similarity measure; affine transformation;

10 mm z-resolution; 1937 samples drawn from a cubic region with 49 mm side length.
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Figure 5.2: Sensitivity analysis on the initial registration: heatmap of the individual and
joint sensitivity of the error metrics on the parameters trialled for elastix. On the left,
percentages relative to the mean total variance of the DC (that is, 0.00271051), whereas
on the right of the HD (that is, 13.7047 mm2).

Discussion Registration calls were satisfactory as the majority of DC values were

close to 0.85 with few above it. Xu et al. [72] recommended values above 80% for

satisfactory alignment of medium organs. Methods showed similar optimal intra-subject

performance. This was expected given the simple registration problem, that is, intra-

subject and monomodal registrations. Performance was mostly affected by differences

in either the quality of the segmentations or in the initial alignment of the scans. On one

hand, scans of subject 10 were well aligned prior to registration and were clear enough

for straightforward segmentations: this led to most of the calls been successful for all

methods. Parameters’ optimisation for this subject had very little effect. On the other

hand, scans of subject 2 were misaligned and segmentations proved to be challenging

due to the small number of slices capturing the pelvic area. Most of the registration

calls were unsuccessful and the few successful were outliers1. In this case, optimisation

made the difference between an acceptable and a catastrophic registration call.

elastix was the most robust method in terms of number of successful alignments over the

registration runs. This might have been related to the random sampling: bigger regions

could be compared between images, and it was shown to be stronger to noise [44].

1Outliers are calculated as values that are one and a half times the inter-quartile range away from
either the 25th or the 75th percentiles.
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Figure 5.3: Optimisation of the initial registration: surface plots of the DC (top row)
and HD (bottom row, in [mm]) for the three most influencing parameters of the elastix
method. Yellow dots represent the query points. Best performance is represented with
lighter colours, that is, higher values of DC and lower values of HD. Similarity measures
tested were SSD (number 1 in the plot), MI (number 2 in the plot) and CC (number 3 in
the plot).

Affine over similarity and rigid transformations was the best scoring transformation,

probably due to the higher DoF and the beneficial effect on compensating for residual

distortions between scans [90, 92]. The optimal resolution along the z-direction was the

original one, as deconvolution with no orthogonal scans is known to introduce intensity

averaging and partial-volume errors [131].

A limitation of the study was the absence of the evaluation of the inter- or intra-rater

variability in the segmentations. This made it impossible to distinguish between error

due to improper manual segmentation (proved to be difficult by the coarse z-resolution)



5.3 Deformable Registration: Optimisation 102

and the one caused by inaccuracy in the registration [76]. Any further attempt to improve

the quality of the segmentations was considered out of scope: ultimately, registration

calls were based on intensity values and the ROI only used to restrict the registration

area.

5.3 Deformable Registration: Optimisation

As previously introduced in Section 3.4, once the initial conditions of deformation are

carefully set, the warp field as output of the deformable registration should depict the

desired displacement field. The sections aims to quantify the accuracy in capturing the

large deformation of the buttock due to sitting, which are affected by approximations in

the calculations leading to inaccuracies in the estimated warp field [24].

Methods The same three best performing elastic registration methods as in Section 3.4

were optimised and compared. These were identified in Section 2.4 as DRAMMS [35],

SyN [69] and elastix [191].

Optimisation was carried out against two biomechanically plausible displacement fields

generated via a simplified FE model of the buttock (detailed below). The fields were

extracted to represent the deformation captured in the dataset used in Chapter 6. The

first simulated field depicted the transition from non-WB condition to partial-WB, which

was replicated during acquisition by removing one of three 10 mm thick wooden boards

that were placed under the left buttock. The second field, instead, represented the

transition from non-WB to full-WB conditions, where all three boards were removed

(further details in Section 6.2.1). These ground truths were then applied to the non-WB

scan of one subject and the resulting images registered back to the original.

Minimising discrepancies between the estimated displacement field Te and the ground

truth Tgt gave the best performing method alongside its optimal parameter set. The



5.3 Deformable Registration: Optimisation 103

error metric used was the mean norm of the error vector (MNE) [120, 131]:

MNE = Ex [‖Tgt(x)− Te(x)‖] , (5.4)

where x is the original position of voxels in a region of interest and Ex[] the expected

value over the voxels.

A linear tetrahedral mesh was extracted from the segmentations of the fat and muscle

areas of the subject showing average BMI [1] via Simpleware ScanIP (Figure 5.4). A

Neo-Hookean constitutive model was used for both the fat and muscle layers, with a

Poisson’s ratio of 0.49 and equivalent Young moduli of 30 kPa and 100 kPa, respect-

ively [192]. A tied/non-slip contact was assigned to the fat–muscle interface. Two

loading conditions of 10 mm (simulating non-WB to partial-WB) and 30 mm (simu-

lating non-WB to full-WB) were imposed as fixed displacements on the nodes at the

buttock-seat interface. Only in-plane displacement was allowed at the lateral surfaces,

with a zero-displacement condition at the internal (muscle-pelvis interface) surface.

Simulations were run with the FEBio suite (Version 2.0), obtaining the vector fields in

Figure 5.5. Linear interpolation onto the voxel grid of nodal displacements was carried

out.

The focus of the optimisation was on parameters controlling for the transformation

model and the similarity measure. Range of parameters tested are reported in Table 5.2.

For all methods, cross-correlation was chosen as a similarity measure, given the simple

monomodal and intra-subject nature of the registration task. Three interpolation methods

(linear, sinc and B-spline) were applied to the warped scans to gauge the influence

of intensity interpolation after initial registration of the skeletal elements. Given the

coarse resolution of the images along the z-direction (0.78x0.78x10 mm3), image

deconvolution via software NiftyMIC [190] was used to decrease the voxel spacing

along the same direction. The sagittal scans available in the dataset [1] (resolution

10x0.78x0.78 mm3) could not be used in the deconvolution call, due to them being

affected by strong MR distortions. Resolution along z after deconvolution was varied
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Figure 5.4: Simplified FE model of the buttock. On the left, the position of the
segmented area is reported over the acquired field of vision. On the right, axial view of
the generated mesh. Fat tissue is here depicted in orange, whereas muscle in yellow. For
reference, nomenclature for anatomical locations used in the present study is reported
on the mesh: Deep Medial Muscle, Deep Lateral Muscle, Superficial Lateral Muscle,
Superficial Medial Muscle, Lateral Fat, Medial Fat

P
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RL

P

A

RL

2 4 6 8 10 12 5 10 15 20 25 30 35

Figure 5.5: Axial views of the generated ground truths: on the left, vector field given by
a fixed displacement of 10 mm (azimuth angle of 43.25 ± 21.77◦, elevation angle of
−0.77±1.53◦ and magnitude of 7.30±3.15 mm), whereas given by a fixed displacement
of 30 mm on the right (azimuth angle of 45.07 ± 25.44◦, elevation angle of 0.26 ±
1.02◦ and magnitude of 19.37 ± 9.58 mm). Lengths of vectors have been scaled for
visualisation purposes: their magnitude is represented by the underlying contour plots.

between half the resolution on the xy-plane and the original resolution.

Specific to the call to DRAMMS, regularisation weights were varied between 0.1

(aggressive fitting) and 0.25 (smoother deformations). Knot spacing for the free form
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deformation model [49] was varied between 3 and 33 voxels on the X-Y plane (i.e.,

between 2.34 mm and 33.78 mm) and between 1 and 30 along the Z direction (with

spacing depending on the z-resolution after deconvolution). Trilinear and B-spline

models were tested for the interpolation of the displacement field from the control points

to the voxel grid. Between 3 and 7 samples were drawn in the optimisation process,

where larger values are associated with higher accuracy at a higher computational

cost. These samples are selected along each direction and their diagonal, giving a total

of 55 and 127 samples (in a neighbour that depends on the selected Gabor scales),

respectively.

Regarding the call to SyN, knot spacing of the B-spline transformation model [80]

at the top of the four multiresolution levels was varied between 16 and 33 mm on

the xy-plane (final knot spacing between 2 mm and 4.125 mm at original resolution),

whereas between 16 and 33 mm along the z direction (final knot spacing between 2 mm

and 4.125 mm); first, second and third orders of the spline model were tested. Similarly

to the call for ANTs, gradient step controlling for the extent of movement of control

points during optimisation was varied between 0.05 (small advancements) and 0.29

(large advancements). Cross-correlation was used as similarity measure, with a radius

ranging from 1 to 6 voxels (that is, defining regions of 26 and 2196 voxels), respectively.

Finally, for elastix different final grid spacing were tried (2 - 30 mm on xy-plane and

2 - 30 mm along z-direction), with scaling factors of 8, 4, 2, 1 over the four resolution

levels. First, second and third order B-spline models were tested. Advanced normalised

correlation was used with between 1000 and 4000 random samples drawn from a region

with side length between 30 mm and 70 mm, with a third of the samples along the

z-direction.

Grid points for the optimisation were generated with the Sobol quasi-random sequence

with the Simulink Design Optimization package in MATLAB, giving a total of 2400 runs

per method. Sensitivity analysis via Gaussian emulation [85] (GEM-SA software [132])

was performed to evaluate the main influence of parameters on the error metric, as well
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as the pairwise interactions. Surfaces of the pairwise interaction of parameters on the

MNE were generated by fitting a Gaussian process regression model to the MNE values

given the input parameters via MATLAB, where best values of hyperparameters were

automatically optimised during the call for optimal fit.

Method Parameter Values

All z-resolution [mm] 0.4, 0.78, 2 - 10
interpolation linear, sinc, BSpline

DRAMMS final knot xy-spacing [vxls] 3 - 33
final knot z-spacing [vxls] 1 - 30
interpolation to voxel grid 1 - 3
samples in optimisation 3 - 10

regularisation weight 0 - 1

SyN base knot xy-spacing [mm] 3 - 33
base knot z-spacing [mm] 16 - 33

spline order 1 - 3
neighbourhood radius [vxls] 1 - 6

step update 0.05 - 0.29

elastix final grid xy-spacing [mm] 2 - 30
final grid z-spacing [mm] 2 - 30

spline order 1 - 3
spatial samples 1e3 - 4e3

region size [mm] 40 - 90

Table 5.2: Ranges of parameters tested for the three deformable registration methods
tested.

Results Similar optimal performance was shown by the methods in following the

10 mm ground truth, whereas diverse were the optimal values for the 30 mm simulation

(Figure 5.6). In the 10 mm simulation, 5th percentiles of errors were 0.792 mm,

1.036 mm and 0.849 mm for DRAMMS, SyN and elastix, respectively. For the 30 mm,

the same values were 2.905 mm, 6.563 mm and 1.398 mm, respectively.

Figures are grouped by registration methods, showing first heatmaps of the sensitivity

analyses (Fig. 5.7, 5.10, and 5.13). These allowed the identification of the three most

influencing parameters, whose pair-wise interaction on the error metric are shown in the
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surface plots of Fig. 5.8, 5.11 and 5.14. Each group of plots ends with the histogram of

the frequency of parameters’ values in optimal registration calls, that is, calls leading to

MNE below its 5th-percentile (Fig. 5.9, 5.12 and 5.15). Choice of optimal parameter set

was based on both the individual frequency of parameters in the optimal calls as well as

their pairwise interactions from surface plots of the average MNE.

Optimisation was fundamental for all methods, even for SyN which showed the smallest

difference between unsuccessful and successful calls. In the 10 mm simulation, inter-

quartile ranges of MNE values were 1.815 mm for DRAMMS (25% of the average

simulated displacement), 1.271 mm for SyN (17%) and 1.549 mm for elastix (21%);

whereas 6.549 mm (34% of the average simulated displacement), 2.443 mm (13%) and

3.830 mm (20%) in the 30 mm one, respectively.

fat

muscle

-1 0 1 2 3 4 5 6

MNE [mm]

10 mm

1.4622

0.54552
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

1.7607

0.53666

0.61227

1.0116

fat

muscle

0 5 10 15

MNE [mm]

30 mm

2.8163

1.0773
 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

4.7479

2.0211

1.0844

2.3424

DRAMMSSyNelastix DRAMMS SyN elastix

Figure 5.6: Boxplots showing the distribution of MNE values on the left for the 10 mm
results, on the right for the 30 mm results. Boxplots are reported for each method: that
is, DRAMMS, SyN and elastix. Annotated values display the best performance, that is,
the minimum MNE value. Top row show results in the muscle area, whereas for the
muscle areas at the bottom. For reference, diamonds indicate the performance of the
methods with their specific default parameters.

elastix showed a more desirable distribution of the MNE in both simulations and was

therefore chosen for the DVC measurements in Chapter 6. Although surfaces do not

show a global minimum, a plateau of comparable values of MNE can be noticed: the

optimal set was therefore chosen as the one that was associated with lower degrees of
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Figure 5.7: DRAMMS: heatmap of the individual and joint sensitivity on the error
metric (MNE). On the left, percentages relative to the total variance in the 10 mm
simulation, whereas on the right for the 30 mm simulation (0.992304 mm2 for the
10 mm simulation, and 15.5281 mm2 for the 30 mm one).

freedom [17] or that was closer to the recommended parameters. Final parameter sets

are reported in Table 5.3, with the corresponding values of MNE in Table 5.4

To gauge the effect of the coarser resolution along z and the consequent reconstruction

on the accuracy of the measurements, elevation angles of the vector errors were extracted.

Larger values of the elevation angle represent an overall larger deviation along the z-

direction than the deviation on the xy-plane. For the 10 mm simulation, values for

DRAMMS, SyN and elastix were, respectively 59± 22◦, 52± 24◦ and 44± 24◦. For

the 30 mm simulation, instead, values were 59± 25◦, 35± 30◦ and 48± 25◦. Values

were overall above 45◦, which can be considered the threshold above which the error

along the z-direction is larger than the projection of the error onto the xy-plane. This

shows that accuracy was on average affected by the uncertainty in the reconstruction of

the displacement along the coarser z-direction.

Discussion elastix showed a preferable performance in following the ground truth

representing the large deformations of the buttock due to sitting. The optimal parameter

set in Table 5.3 was used for the DVC measurements in Chapter 6, which lead to an error

of 0.989 mm in following the 10 mm simulation field whereas 1.777 mm in following
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Figure 5.8: DRAMMS: surface plots showing the pair-wise distribution of the error
metric (MNE, in [mm]) between the three most influencing parameters. On the top,
results for the 10 mm; at the bottom, results for the 30 mm simulation. Yellow dots
represent query points

the 30 mm one. The performance was considered acceptable as optimal values of the

error metric were below 10% of the imposed displacement loads applied.

The three best performing elastic registration methods compared in this study showed

overall similar optimal performance in the smaller 10 mm simulation, whereas dif-

ferences were more marked in the larger 30 mm simulation. The optimisation was a

decisive step especially in the 30 mm simulation, where the inter-quartile range of MNE

values between parameter sets was 2.44 mm for the best performing method, showing a

large difference between a successful and an unsuccessful registration call. The results

show the importance of optimising the parameter to the specific deformation field to
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Figure 5.9: DRAMMS: histogram of the number of registration calls leading to MNE
values below its 5th-percentile. On the left, results for the 10 mm simulation, whereas
for the 30 mm simulations on the right. Histograms are reported for the three most
influencing parameters, in blue in the fat area and in orange in the muscle

acquire, more so in the presence of large displacements.

Similar results were obtained by Schnabel et al. [120], where they applied a surface

displacement field of 10 mm to MR breast images. Their results show an average

MNE of 0.4 mm with maximum error between 2.4 and 10 mm. The top six algorithms

evaluated in the EMPIRE10 challenge [71] showed average landmark distance scores of

less than 1 mm, with a range from 0.66 to 0.99 mm, on different challenges including

deformation of the lungs due to inspiration / expiration tests.

Similarly to Section 3.4, the sensitivity analysis showed primary importance of paramet-

ers controlling for grid spacing of the transformation model on the xy-plane in all the

methods, explaining around 32% of the variability in the error metric. Comparing the

two simulations, DRAMMS and elastix showed better performance with wider spacing

in the xy-plane, more so in the 30 mm simulation. Opposite was the behaviour of

SyN, whose best performance was associated to smaller spacing between control points.
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Figure 5.10: SyN: heatmap of the individual and joint sensitivity on the error metric
(MNE). On the left, percentages relative to the total variance in the 10 mm simulation,
whereas on the right for the 30 mm simulation (0.518632 mm2 for the 10 mm simulation,
and 3.16815 mm2 for the 30 mm one).

As expected, larger spacing between grid points was noticeable in the large displace-

ments due to the deformation of the buttock under sitting load than the sub-millimetre

redistribution of the brain tissue under the effect of gravity.

Resolution along z after deconvolution was the second most important parameter in

all methods. This was confirmed by the larger component of the error along the z-

direction relative to its projection onto the xy-plane. Without additional scans on an

orthogonal plane, the ill-posed problem of image deconvolution degenerates into a trade-

off between spatial (density of voxels) and intensity (sharpness of features) resolution,

as the problem of reconstruction is bounded by the original dynamic intensity range of

the images [193–195]. The very aggressive increase in resolution most likely introduced

intensity averaging and partial-volume error [131]. However, the optimisation carried

out showed that the quality or sharpness of features along z was of secondary importance

in following smooth deformation fields such as the ones simulated from scans that were

already well aligned together. The adverse effect of averaging and partial-volume error

on the accuracy were clear with finer resolutions: this is showed in the surface plots for

elastix (Fig. 5.14) and in the 10 mm simulation of DRAMMS (Fig. 5.8), where MNE

increased with values of z-resolution below 2 mm. Regarding DRAMMS and SyN,
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Figure 5.11: SyN: surface plots showing the pair-wise distribution of the error metric
(MNE, in [mm]) between the three most influencing parameters. On the top, results
for the 10 mm; at the bottom, results for the 30 mm simulation. Yellow dots represent
query points

simulating finer resolutions resulted too demanding even for the cluster, with individual

calls taking more than a week to complete.

Optimal values for z-resolution were around 4 mm for DRAMMS and elastix, whereas

SyN showed better performance with smaller resolutions than the ones tested. This is

contrast with the initial affine registration, where the original resolution proved to be

the optimal spacing. As mentioned in the previous discussion section, the quality of

the affine registration was greatly affected by any averaging of partial-volume effects

introduced in the deconvolution process; this step greatly relied on the quality of the

features to match, to limit the uncertainty in the correspondences and improve the
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Figure 5.12: SyN: histogram of the number of registration calls leading to MNE values
below its 5th-percentile. On the left, results for the 10 mm simulation, whereas for the
30 mm simulations on the right. Histograms are reported for the three most influencing
parameters, in blue in the fat area and in orange in the muscle

accuracy of the alignment.

Sensitivity analysis showed that the coarser resolution of the images along z affected

more the in-plane component of the transformation model than the components in

the xy-plane: it is not surprising giving that the B-spline model depends on the three-

dimensional distance of the voxels from the control points [196]. A denser voxel grid

along z aided the registration methods in capturing the high spatial frequencies of in-

plane components (that is, x- and y-components), more so in the presence of the larger

displacements of the 30 mm simulation. Little was the interaction between z-resolution

after deconvolution and the z-spacing of control points, showing that for the type of

deformation investigated, the voxel spacing along z was enough to reconstruct the low

spatial variability of the deformation field along the same direction (standard deviation

in elevation angle of the 10 mm simulated field of 1.53◦ whereas 1.02◦ for the 30 mm

one). The results therefore showed the importance of the off-axis resolution to the

evaluation of in-plane components of deformation.
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Figure 5.13: elastix: heatmap of the individual and joint sensitivity on the error metric
(MNE). On the left, percentages relative to the total variance in the 10 mm simulation,
whereas on the right for the 30 mm simulation (0.577863 mm2 for the 10 mm simulation,
and 4.73588 mm2 for the 30 mm one).

Although based on similar transformation models, the registration methods investigated

showed differences in their behaviour. First, no penalty term on the transformation

model was used in the calls to elastix. This made the parameters controlling for the

B-spline grid spacing of elastix more decisive. DRAMMS showed better performance

with lower values of regularisation weight, more so in the 30 mm simulation. This

shows that regularisation constraints on the optimisation needs to be loose to let the

transformation model free to follow the high variations of the deformation field tested.

Finally, SyN showed worst performance in following the larger 30 mm displacement

field, although being the best method for the DVC measurements of PBS. SyN did

not have the flexibility to follow such deformation, as performance improved with

decreasing values of xy-spacing, radius of the similarity window and z-resolution.

Better performance was noticed with larger values of step update (not plotted), showing

that larger advancements were needed to follow the large deformation fields, in particular

the 30 mm one: higher values of the parameter should be included in the optimisation

in future investigations. However, the computational cost of registration calls with low

control grid spacing and high resolution were prohibitive even for the cluster.

Specifically for elastix, optimal grid spacing in the 30 mm simulation was associated
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Figure 5.14: elastix: surface plots showing the pair-wise distribution of the error metric
(MNE, in [mm]) between the three most influencing parameters. On the top, results
for the 10 mm; at the bottom, results for the 30 mm simulation. Yellow dots represent
query points

with larger spacings in both fat and muscle areas. In the 10 mm simulation, if on one

hand the fat showed lower optimal grid spacing in particular along the z-direction,

on the other, the muscle showed larger optimal spacing: stronger smoothness of the

transformation model was needed to constrain its fluctuations given the lack of clear

features in the area. Only blurred connective tissue surrounding muscle fascicles and

blood vessels can be noticed.

Although the comprehensive optimisation, a limitation of the investigation is the repres-

entation of a single subject. This was done primarily to limit the number of registration

calls to run. Moreover, anatomical differences were considered negligible relative

to the large deformations simulated. To support this assumption, subject differences
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Figure 5.15: elastix: histogram of the number of registration calls leading to MNE
values below its 5th-percentile. On the left, results for the 10 mm simulation, whereas
for the 30 mm simulations on the right. Histograms are reported for the three most
influencing parameters, in blue in the fat area and in orange in the muscle

in MNE values between the three modelled patients were almost negligible in the

experimentation by Schnabel et al. [120] on breast tissue deformation. However, inter-

subject variability affected the success of the registration calls in Section 3.4. Further

investigation is therefore needed to quantify the effect of inter-subject variability on the

performance of registration parameters.

Summary

The chapter has aimed to evaluate the sources of inaccuracies related to the DVC

measurements that will be investigated further in Chapter 6. These were identified as,

similarly to Chapter 3, initial registration of skeletal elements and final deformable

registration.

Regarding the initial registration of the pelvic elements, three affine registration methods
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Parameter 10 mm 30 mm

DRAMMS
final knot xy-spacing [mm] 9 17
z-resolution [mm] 1 1
final knot z-spacing [mm] 3 3
regularisation weight 0.25 0
samples in optimisation [mm] 3 8
interpolation to voxel grid 2 2
interpolation BSpline BSpline

SyN
base knot xy-spacing [mm] 6 6
z-resolution [mm] 1 1
base knot z-spacing [mm] 25 22
neighbourhood radius 1 1
step update [mm] 0.28 .28
spline order 2 3
interpolation BSpline BSpline

elastix
final grid xy-spacing [mm] 17 20
z-resolution [mm] 3 4
final grid z-spacing [mm] 3 20
spatial samples 3.4e3 3.6e3
region size [mm] 82 58
spline order 3 3
interpolation BSpline sinc

Table 5.3: Optimal parameter set for each deformable registration method tested.

were optimised in order to obtain the best alignment between segmentations of the

pelvis in two different stages of deformation in 10 subjects. Results differed mostly

between subjects, with similar performance of the methods: optimal parameters led to

a maximum DC value of 0.92%, whereas a minimum of 0.70%; minimum HD values,

instead, was 3.98 mm, whereas 6.99 mm for the maximum.

Regarding the DVC measurements, instead, three deformable registration methods for

medical imaging were optimised against two ground truths representing the deformation

of the human buttock under sitting loads. The optimal parameter set led to a final accur-

acy of 0.989 mm in following the smaller 10 mm simulation field whereas 1.777 mm
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Regions 10 mm 30 mm

Fat Ground truth 6.0061± 2.6942 15.0986± 8.3525
DRAMMS 2.4920± 2.3732 3.0561± 3.3613

SyN 2.3780± 2.4367 7.6140± 8.0717
elastix 1.3302± 1.2548 2.8347± 2.9244

Superficial muscle Ground truth 6.2870± 2.0925 17.1096± 6.8749
DRAMMS 1.3345± 1.4924 1.3643± 1.0765

SyN 1.0682± 1.3120 6.8645± 7.6530
elastix 1.1684± 0.9498 1.4405± 0.9990

Deep muscle Ground truth 4.3940± 3.1363 11.0040± 7.5872
DRAMMS 0.3373± 0.2873 0.9853± 0.9437

SyN 0.2712± 0.3039 5.9120± 7.8942
elastix 0.4693± 0.4381 1.0556± 0.8755

Table 5.4: MNE values corresponding to the optimal parameter set, for each registration
method. Values are extracted in the following ROIs: fat, superficial muscle and deep
muscle. Values of the ground truth are also reported for comparison.

against the larger 30 mm one. Although not satisfying the recommended accuracy for

DVC measurements in the biomedical field [17], inaccuracies were below 10% of the

simulated displacement fields applied.
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Chapter 6

Deep Tissue Injury: Digital Volume

Correlation

Overview

This chapter describes the measurements taken from a dataset depicting two stages

of the progressive deformation of the buttocks under body load via digital volume

correlation (DVC). Measurements were taken from MR data acquired in a previous

study on healthy individuals in a semi-recumbent position [1]. To the best of the author’s

knowledge, this is the first study capturing the local and global distribution as well as

the three-dimensional nature of such deformation. Previous studies depicted only but

a limited representation of the complexity of the phenomenon, by way of thickness

measurements from MR scans [1, 10, 11, 13, 184], motion capture data [188] and

digital image correlation on ultrasound images [189]. This dataset is invaluable for

the thorough design and verification of FE models simulating sitting positions and

ultimately for the advancement of systems for the prevention and control of DTIs.

The work presented in this chapter will be part of the main body of the following draft

to be submitted soon to the Journal of Biomechanics:

Zappalà, S., Bethany E. K., Marshall, D., Wu J., Evans S. L. & Al-Dirini M. A.

R.. Volumetric redistribution of the soft tissues in the human buttock captured

from MR in-vivo scans: accuracy of measurements and analysis of deformation.
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Section 6.2 describes the registration pipeline, beginning with the affine alignment to

set the initial conditions of deformations, followed by the DVC measurements based on

the optimal method and parameter set identified in Chapter 5.

Finally, results of the analysis of deformation is shown in Section 6.3, which clinical

implications are then discussed in Section 6.4.

6.1 Introduction

The accuracy and reliability of computational models replicating the large deformations

of the buttock due to sitting relies on the availability of volumetric measurements to

represent the complexity of the phenomenon, by providing dense measurements of

displacement to identify appropriate parameter values against or to validate the accuracy

of the prediction of computational.

The pattern of deformation is reported to be mostly displacement and redistribution of

tissues rather than volumetric deformation, given their incompressibility [185]. Muscle

thickness was reported to greatly reduce under the effect of load in the study by Son-

enblum et al. [12], by sliding away from the ischium under sitting loads, increas-

ing the thickness of the tissues in surrounding areas (lesser trochanter and femoral

head) [185]. This slide, which was measured to happen along both the I-S and R-L

directions [185, 197], leaves very little of the gluteus maximus under the ischium during

sitting [13], leading to the fat tissue holding the pressure of the IT. This results was

afterwards confirmed by other studies [169, 185].

Large variations in the mechanical response due to differences in anatomy were reported,

both between genders [198] and between able-bodied and SCI individuals [199]. Strong

variability between subjects due to differences in anatomy such as tissue composition

and bone shape [169], fat thickness [184] and body weight [10, 185] were identified.

The study by Harry et al. [188] showed that mass, waist depth, hip depth, hip breadth,
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hip girth and percentage of fat had moderate to strong correlation with 12 compression

variables acquired with motion sensors.

Imaging studies that aimed at capturing the deformation were based on volume change

in a specific ROI [169, 184], or tissue thickness between loaded and unloaded condi-

tions [1]. Experimental ex-vivo tissue testing [10, 180, 200, 201] or inverse identification

on deformation data on localised measurements [181, 187] were used to identify para-

meters; finally, validations of computational models were mostly based on alignment

of prediction to MR scan [197, 202], tissue thickness between loaded and unloaded

conditions [181] or pressure distribution at the seating interface [10]. The need for a

rich set of 3D measurements has been reported in many studies [1, 184–186], as the

aforementioned measurements cannot fully represent the deformation at more internal

structures [187].

6.2 Methods

6.2.1 MR Dataset

As part of a previous study [1], magnetic resonance (MR) scans depicting the quasi-

static deformation of gluteal soft tissues of ten healthy male subjects (aged 19-39, BMI

= 28.02 ± 4.71 kg/m2) sitting in a 1.5 T scanner in a semi-recumbent position were

acquired. A schematic of the acquisition protocol is reported in Figure 6.1, taken from

Al-Dirini et al. [1]. The buttocks of each subject were scanned in an undeformed,

partially deformed and deformed state. The right side of the buttock remained in a

weight bearing position, whilst three 10 mm inserts were removed from beneath the

left buttock to capture the deformation of the soft tissues. The following states of

deformation were therefore simulated: non-, partial- and full-weight bearing (WB)

loads. Further details can be found in Al-Dirini et al. [1].

Proton density weighted spin echo scans (TR=4542 ms, TE=32.18 ms), with an an-
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isotropic resolution of 0.78x0.78x10 mm3 over a field of view of 401x400x481 mm3

including the hips and part of the thighs were analysed in this study. A single observer

manually segmented (Simpleware ScanIP) the gluteus maximus and subcutaneus fat,

which were considered regions of interest (ROIs).

6.2.2 DVC Measurements

Initial conditions of deformation were imposed by aligning the femoral head on the

side undergoing deformation (to include the left greater trochanter (GT)), as well as

both the left and right inferior pubic rami (to include the left ischial tuberosity (IT)).

The aim was to compensate for the residual pelvic tilt in the dataset, reported to be

below 6◦ [1]: any residual misalignment between these skeletal elements was captured

as an additional component of deformation by the deformable registration. Affine

registration was carried out with elastix: details of the optimisation of this step can be

found in Section 5.2. The full-WB scans were chosen as subject references, given the

consistency in the posture between subjects. The progressive deformation was extracted

by morphing the non-WB scan of each subject to the partial-WB and the latter then to

the full-WB scan.

A linear approximation of the deformation gradient, F, was evaluated using maximum

likelihood estimation [66] with a radius of the strain windows matching the optimal

B-spline spacing after optimisation. The Green-Lagrange strain tensor, E, was extracted

as [153]:

E =
1

2

(
FTF− I

)
(6.1)

where I is the identity matrix.

The maximum compressive strain and maximum shear strain (γmax) were extracted as

the minimum eigenvalue of the strain and the absolute difference between the maximum

and minimum principal strains, respectively [15, 176]. Both are considered as indicators

of tissue damage, with γmax having shown a monotonic relationship with tissue damage
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Figure 6.1: Illustration of the acquisition set-up. On the top (a), schematic representation
of the positioning of the subject in the bore of the scanner during acquisition; below on
the left (b), photograph from one of the scanning sessions. An axial view of the wooden
board used to support the buttocks is reported in (c): the 10 mm removable inserts used
to reproduce the progressive stages of deformation are represented in light brown colour.
Coronal views of the MR scans for the full-WB (d), partial-WB (e) and non-WB (f)
conditions are reported on the right. Taken from Al-Dirini et al. [1]

after initiation [203].
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6.3 Results

Analysis of deformation Results presented throughout the paper are in anatomical

space: right-left (R-L) represents the medial-lateral direction, posterior-anterior (P-

A) the ventral-dorsal and finally inferior-superior (I-S) the caudal-cranial direction.

Figure 6.2 shows the initial conditions of deformation, as results of the registration of

the pelvic elements. Average Dice coefficients (representing the percentage intersection

between the aligned masks) were 80% in the alignment of the pelvic elements between

partial-WB and full-WB and 79% for the non-WB to full-WB (where 60% and 80%

can be considered acceptable for small and large structures, respectively [79]).

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Subject 6 Subject 7 Subject 8 Subject 9 Subject 10

Partial-WB Non-WB Full-WB

Figure 6.2: Axial views of the initial alignment of the pelvic elements. The masks of
the pelvis for the full-WB condition are delineated in blue, in green for the partial-WB
and in orange for the non-WB scans. In purple, the muscle and fat areas are delineated
as reference.

Displacement maps for each subject are reported in Figure 6.3, with average and standard

deviation values in a few selected ROIs in Figure 6.4. The most prominent component

was the P-A one, which occurred predominantly in the first stage of deformation (non-

to partial-WB). Displacement was bigger below the I-T than below the GT in both

stages of deformation. Displacement along the R-L and I-S directions were noticeable,

in particular in the superficial medial ROIs. Patterns of deformation were very different

between subjects, in particular alongside the R-L and I-S directions.
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-200
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Figure 6.4: Polar plot of the main components of the displacement field (right-left (R-L),
posterior-anterior (P-A) and inferior-superior (I-S)) for the two stages of deformation
analysed. Average values (here reported in [mm]) were evaluated over few ROIs
(alongside their standard deviation between subjects): Medial Fat, Superficial Medial
Muscle, Deep Medial Muscle, Muscle below IT, Muscle below GT, Deep Lateral
Muscle, Superficial Lateral Muscle, Lateral Fat.

Figure 6.5 shows the distribution of compressive strain for the overall deformation (non-

to full-WB). Polar plots of the components of the strain tensors (Figure 6.6) show an

overall higher compression sate of the tissues in the first stage of deformation. The

P-A component of strain was predominant, with corresponding expansion in the other

directions. Compression state of the deep muscle closer to the GT was generally higher

than the compression below the IT.
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Figure 6.6: Polar plot of the main components of the Lagrangian strain tensor (EL−R,
EP−A, EI−S) and the maximum shear strain (γmax) averaged over few ROIs: Medial
Fat, Superficial Medial Muscle, Deep Medial Muscle, Muscle below IT, Muscle below
GT, Deep Lateral Muscle, Superficial Lateral Muscle, Lateral Fat.

The average spatial evolution of γmax between subjects was evaluated along a vertical

line from the IT and to the seat interface (Figure 6.7). The first stage of deformation

showed a peak in the fat area, which was 1.6 times the peak of the second stage.

Moreover, the latter was located more towards the superficial muscle. After the peak,

values monotonically decreased towards the IT.

6.4 Discussion

The aim of the study was to further expand the work by Al-Dirini et al. [1] by extracting

the three-dimensional distribution of the progressive deformation of the buttock due to

sitting in 10 healthy individuals. The obtained measurements add novelty to existing

experimental values in the literature [1, 10, 184, 188, 189, 197, 201, 202] by depicting in-

vivo the volumetric deformation field of the whole buttock area, providing useful insight

into the global and local compression state of the soft tissues. The accuracy of such

measurements was assessed by optimising three deformable registration methods against

two biomechanically plausible ground truths representing large deformations (10 mm

and 30 mm displacement load), generated via a simplified FE model (Section 5.3). The
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Figure 6.7: Spatial evolution of γmax in the first (non- to partial-WB) and second (partial-
to full-WB) stage of deformation. Curves represent average between subjects, whereas
shaded areas the corresponding inter-subject variability.

best registration method alongside its optimal parameter set gave an overall accuracy

of 0.99 mm against the 10 mm simulation, whereas 1.78 against the 30 mm one. The

acquired pattern of deformation was in line with the previous literature: a prevalent

redistribution of the tissue was captured, with larger deformation below the IT than

below the GT [1, 204, 205], and a noticeable off-axis shift of the gluteal muscle [184,

189].

Below the IT, the superficial muscle showed both displacement and compression along

the P-A direction in the first stage of deformation. The fat, instead, alongside the same

sagittal compression, showed a slide of the tissue (approximately 11 mm) towards the

inferior direction that was not associated with any compression state. In the second

stage of deformation (partial- to full-WB), the overall P-A displacement was smaller,

with now both fat and superficial muscle showing a noticeable shift towards inferior

direction. In this stage, however, the fat showed I-S compression, probably caused

by redistribution of surrounding tissue that restricted the fat laterally. The superficial

muscle showed no increase in its compression state, depicting a sliding of tissue of

around 7 mm away from the IT.
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The deformation below the GT showed a general compression along the P-A direction in

the first stage of deformation, with high values located at the muscle just below the GT.

The second stage of deformation showed again a slide of the superficial muscle with no

noticeable compression state. The measured shift of the superficial muscle below both

the IT and GT confirms and quantifies the lateral and posterior sliding of the gluteal

muscle tissue reported in the literature, which led to it being little if not loaded by the IT

during scanning (especially in wheelchair users), leaving fat, ligaments and tendons to

withstand the load [12, 13, 169, 184, 189]. The muscle did not slide completely off the

IT in the present study due to the semi-recumbent posture imaged [13, 189]: this result

suggests that semi-recumbent and lying positions might be preferable over a sitting

one to redistribute the load over a thicker layer of tissues [186]. The complexity of the

deformation evaluated in the present study showed the limit of simplified FE models

disregarding off-axis deformation, representing only but a small part of the buttocks, or

missing an adequate characterisation of the interaction between tissues [13, 181].

Although comparison is limited by methodological differences, acquired values of γmax

suitably fit between the literature on the deformation of the human buttock due to sitting

and due to lying: Doridam et al. [189] reported values of shear strain above 75% on

average from DIC measurements on ultrasound data of 7 healthy subjects sitting on a

stool; Linder-Ganz et al. [186] reported average γmax strain around 90% and 41% in

the fat and muscle layers, respectively, in sitting healthy participants; finally, a MR-

validated FE simulation of healthy subjects lying on a hard spine board generated values

up to 0.8 [202]. In our study, the muscle area showed a consistent γmax of around 0.4 in

both stages of deformation, with an average peak of 0.8. The fat layer, instead, appeared

to take most of the shear strain in the first stage of deformation, possibly responding to

load with an increased stress state during the second stage [1].

The spatial evolution of the γmax on the path from the skin to the IT showed a similar

trend to the FE prediction by Oomens et al. [176]. Differently from the simulations, the

peak in the second stage shifted towards the superficial muscle and curves monotonically
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decreased towards the IT. The peak in the first stage of deformation was 1.6 times the

one in the second, suggesting that onset of damage could be associated more to the

initial redistribution of soft tissues under the effect of partial weight than due to the

compressive effect of the full-weight load.

Values of shear strain the present study, alongside other works on human subjects [176,

186, 189], exceeded the thresholds of 45% max compressive strain and 75% γmax based

on mechanical indentation of the tibialis-anterior of a rat model [203]. Although a

comparison is limited by the lack of evaluation of the state of the tissue after scanning

and by the differences in the duration of the load, these results point towards an

adjustment of those thresholds for human subjects [189].

Results showed the complexity of the phenomenon affected by differences in posture

and anatomy. Subjects 1 and 5 dropped the left side of the hips after boards were

removed, leading to different directions of gravity between scans; subjects 3, 6 and 9

touched the seat in the non-WB position, resulting in residual load on the left buttock;

subject 8 showed fat infiltration [1], which affected the overall mechanical response

of the surrounding tissue [201]. Moreover, the population sample was characterised

by diverse BMI values, partly explaining the anatomical differences between subjects

found in the estimated fields. The study shows the importance of the effort in isolating

the effect of each of these factors on the deformation of the buttock area, with improved

repeatability of experimental set-ups or with more selective recruitment.

The spurious fluctuations captured in the displacement and strain fields can be associated

to inaccuracies in the calculations, which left the transformation model relying on its

smoothness constraints. First, high-frequency content of large displacements can be lost

in the cross-correlation process due to the low-pass effect (that is, averaging effect) of

its formulation [24]. The window formulated by Nogueira et al. [63] has been shown to

improve the reconstruction of high-frequency spatial components. Second, a first order

approximation of the deformation gradients (used in the present study) was shown to be

inaccurate in the presence of high strain gradients or at edges and corners, relative to a
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second-order approximation including quadratic terms of the gradient expansion [66].

Finally, the semi-recumbent position chosen for the scanning had the limitation that

the pelvis was not located at the isocentre of the scanner. MR distortions are known to

affect scans by introducing a spurious warping, which magnitude increases further away

from the isocentre [86, 87, 89, 90]: studies on 1.5T scanners reported distortions after

correction below 2 mm [86, 88, 119]. MR distortions were evident at the top slices of

the scans at the level of the superior pubic rami, even after distortion correction.

6.5 Data Availability

The dataset generated during and/or analysed during the current study is going to be

made available in the following OSF repository. Displacement and the strain maps

extracted in the present work are going to be available for other researchers to use.

Summary

This chapter demonstrated the complexity of the deformation of the buttock due to semi-

recumbent sitting: the captured three-dimensional measurements extensively depicted

the local and global deformation of the subcutaneous tissues, affected by differences in

anatomy and posture.

On a global scale, the analysis of deformation allowed the quantification the slide of the

gluteus maximus that was reported in the literature: the muscle displaced downwards

away from both IT and GT of about 11 mm in the second stage of deformation, whereas

the fat shifted inferiorly from the IT of about 12 mm in both stages of deformation.

On a local scale, the maximum shear γmax showed maximum value at the fat-muscle

interface in a path from the skin to the pelvis at the level of the IT. After the peak, γmax

monotonically decreased towards the IT. The same behaviour was shown in both stages

https://osf.io/762dx/?view_only=6bcfdcd6babd4514b954c37b1f553ec2
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of deformation, with a peak in the first that was 1.6 times the peak in the second stage;

this showed that high values of maximum shear (as predictor of tissue damage) were

more related to the initial tissue redistribution under the effect of partial-weight, than to

the shear caused by the effect of full body load.

The study showed the complexity of the deformation, composed by a large component

of tissue shifting and tissue deformation. Results showed the limitation of simplified

FE models disregarding off-axis deformation, representing only but a small part of

the buttocks, or missing an adequate representation of the soft tissues involved in the

deformation.

The study provides a selection of rich and comprehensive displacement fields of 11

healthy subjects (that will be made freely available) for the verification of FE mod-

els. Considerable effort was therefore made to keep assumptions on the estimated

deformation field as minimal as possible, alongside quantifying the margin of error

of the measurements. It is hoped that such an unbiased dataset can be crucial for the

verification of FE models aimed at providing a straight answer towards the usability of

such models in a clinical practice.
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Chapter 7

Conclusions and Future Work

In this chapter, the research questions will be restated and reflected upon, relating them

to the corresponding contributions described in the above chapters. Limitations of the

work will be discussed to suggest some directions for future development. Finally, the

chapter ends with overall observations and conclusion of the thesis.

7.1 Research Questions and Contributions

The following overarching hypothesis was presented in Chapter 1: deformable regis-

tration methods for medical imaging have the accuracy and flexibility to capture, on a

global and local scale, the small and large displacement of soft tissues in physiological

conditions.

The availability of rich data representing the global and local mechanical response

of soft tissues can improve our understanding of their behaviour and point towards

further advancements of surgical and preventive clinical systems. Considerable effort

was made to keep minimal assumptions on the estimated displacement field, alongside

optimising the measurements to the specific deformation. The datasets of full-field

DVC measurements based on minimal assumptions are a valuable benchmark for the

unbiased design and validation of biomechanical computational models to use in a

clinical setting [14, 16, 17].

The benefit of datasets of DVC measurements and the reliability of any conclusions
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drawn from these deformation maps depends on the accuracy of the calculations. The

assessment of accuracy of DVC calculations capturing the deformation of soft tissues in-

vivo has not been explored completely [16, 17]. As a first step towards understanding the

error related to such measurements, the suitability of deformable registration methods

for medical imaging was initially investigated, as these have been designed to capture

the small and large differences in anatomy due to inter-subject variability mostly from

in-vivo MR scans.

Accuracy was assessed against both the small deformations of the brain tissue under the

effect of gravity and the large deformations of the buttock due to sitting. As introduced

in Chapter 1, in-vivo MR DVC calculations are complicated by the limited resolution of

the images that can be acquired in-vivo without compromising the comfort of the subject

or without them being affected by image blurring due to subject motion. Moreover,

capturing displacements smaller than the voxel spacing relies on suitable a-priori

constraints on the search strategy and the deformation model. When capturing large

deformations, on the other hand, the approximations and the assumptions which the

deformable methods rely on can introduce inaccuracies in the estimated displacement

field. First, measures of similarity between scans to align can attenuate high spatially

varying components of the deformation field, leading to a sub-optimal alignment of local

details of the images [24]. Second, high flexibility of the transformation model given by

higher complexity of its formulation allows for higher accuracy in the measurements;

however, higher complexity leads to lower precision due to spurious variations that need

to be controlled by the regularisation constraint on the deformation model [25]. The

optimal balance between complexity of the deformation model (that is, accuracy) and

the constraints its smoothness (that is, precision) is application-specific, and requires

individual investigation given the characteristics of the phenomenon to capture.

How the research questions were addressed and to what extent they have been achieved

are now summarised. The most significant findings in each chapter are highlighted,

alongside the main contributions.
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Research Question 1

What is the accuracy of in-vivo MR DVC measurements of biomechanically

induced small and large deformation fields?

Chapters 3 and 5 addressed the suitability of medical image registration methods in

capturing, respectively, the small (that is, smaller than the resolution of the images) and

large (that is, corresponding features several voxels apart from each other, with large

spatial gradients in the displacement field) synthetic deformations applied to in-vivo

MR scans. Biomechanically plausible deformation fields were generated via finite

element simulations, representing deformation of the brain tissue due to gravity and

the deformation of the buttock due to sitting. Final accuracy ± precision of the DVC

measurements in the former scenario was 0.050± 0.038 mm against a ground truth with

magnitude of 0.60± 0.26 mm. For the deformation of the buttock area, performance

was investigated first against a simulated field representing partial-weight bearing load

with a magnitude of 7.30±3.15 mm, giving an accuracy of 0.989±0.943 mm; secondly,

it was tested against a field representing the effect of full-weight load with magnitude

of 19.37± 9.58 mm, giving an accuracy of 1.777± 1.854 mm.

First and foremost, the measurements were affected by the limited resolution of in-

vivo scans used in the calculations, acquired from MR scans of compliant healthy

participants. For both small and large deformations, only wavelengths larger than twice

the resolution of the images could be reliably reconstructed, suppressing the distribution

of the deformation at strain concentrations, that is, areas of high spatial variations [24].

This is a critical limitation that affect the injury localisation of any risk factor based on

such measurements.

Moreover, the study quantified larger margin of error that needs to be accepted when

capturing the large deformations of soft tissues relative to other applications of DVC for

material science or mechanics of materials [17, 20], in particular when the resolution

is limited by in-vivo scanning. Only the measurements of positional brain shift (PBS)
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satisfied the the recommended accuracy of at least less than 10−1 voxel-size reported in

Buljac et al. [17].

Optimisation was a critical step for all the experiments on small and large displacements

giving different sets of optimal parameters. Better performance in the case of PBS

was associated with both smaller spacing of control points of the transformation model

and smaller similarity windows. Larger spacing and windows were preferable for

the simulation of the buttock deformation due to sitting. These differences are to be

related to the magnitude of the displacement fields, as well as the quality of the features

represented in the images. For example, higher regularisation was needed in the muscle

area of the buttock due to the large deformations that the area underwent, as well as

due to the lack of clear features, showing just blurred connective tissue surrounding

muscle fascicles and blood vessels. The study showed the importance of optimising

these flexible and multi-purpose methods for the specific deformation field to capture

via DVC, whose accuracy is of critical importance for any further interpretation of

results.

The results from Chapters 3 and 5 addressed Research question 1 and formed the

following two contributions:

Contribution 1: Deformable registration methods for medical imaging showed ac-

curacy which was one order of magnitude smaller than the resolution of the

images in following a deformation field characterised by the small displacements

representing positional brain shift.

Contribution 3: Deformable registration methods for medical imaging showed accur-

acy which was around 10% of the average magnitude of the simulated deformation

fields representing the large deformation of the buttock due to sitting.

Research Question 2

Can in-vivo MR DVC measurements characterise the small displacements due to
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brain shift on a local and global scale, strengthening our understanding of the

phenomenon?

In Chapter 4, the best deformable registration method alongside its optimal parameter

set identified in Chapter 3 was used to capture PBS on a population sample of 11

young healthy subjects. For the first time, an average volumetric vector field with

the corresponding inter-subject variability was extracted, allowing tissue displacement

within surgically relevant ROI to be characterised.

Results showed that even in the healthy brain without any surgical manipulation, the

magnitude of PBS can be comparable to the margin of error for the success of stereotactic

intervention, with a significant displacement ranging from 0.52 mm to 0.77 mm at

surgically relevant structures.

Although likely confounded by MR distortions, strain analysis confirmed both the

reported softer response of the brain tissue in tension (0.44± 0.64 % volume preserving

and 0.52 ± 1.02 % volume change) and its near incompressibility (−0.48 ± 1.14 %

volume preserving, −0.25± 0.76 % volume change).

Analysis of correlation revealed that in subjects where cranial breadth is larger than

10 mm, the shift was 20.66◦ more to the left and 29.17◦ more downwards, with a

decrease in magnitude by 0.12 mm (the latter, with weak correlation). On the other

hand, head tilt 10◦ more downwards induced a shift 0.18 mm smaller and 20.86◦ more

downwards.

The chapter gave a measure of the influence of tissue compressibility, intra-cranial

geometry and head orientation on PBS: depending on the margin of error allowed

for the specific application, these factors need to be addressed when modelling such

complex phenomenon. For the case of deep brain stimulation, drug delivery and tissue

biopsy, the stringent 1 mm margin of error necessitates patient- and intervention-specific

correction of surgical trajectories to integrate into IGNS before further improving the

accuracy of other components. The full vector field extracted in the study is of critical
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value for the initial validation in simple physiological conditions of any correction

to integrate into IGNS, before moving to the more complex deformation induced by

surgical manipulation.

These results addressed Research question 2 and lead to:

Contribution 2: An average volumetric vector field with the corresponding inter-

subject variability was extracted in-vivo, allowing tissue displacement within

surgically relevant regions of interest to be characterised.

Research Question 3

Can in-vivo MR DVC measurements characterise the large displacements of the

tissues of the buttock due to sitting on a local and global scale, strengthening our

understanding of the phenomenon?

Chapter 6 showed the measurements of the deformation of the buttock due to semi-

recumbent sitting in ten healthy subjects taken from the database by Al-Dirini et al. [1].

The best deformable registration method and its optimal parameter set identified in

Chapter 5 were used: the three-dimensional measurements taken extensively depicted

the local and global deformation of the subcutaneous tissues, affected by differences in

anatomy and posture.

On a global scale, the analysis of deformation permitted to quantify the off-axis slide of

the gluteus maximus reported in the literature [13, 189]: the muscle displaced down-

wards away from both IT and GT of about 11 mm in the second stage of deformation,

whereas the fat shifted inferiorly of about 12 mm in both stages of deformation. These

results showed the limitations of simplified FE models disregarding off-axis deformation,

representing only but a small part of the buttocks, or missing an adequate representation

of the soft tissues involved in the deformation.
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On a local scale, the spatial evolution of the maximum shear γmax (that has been

associated to tissue damage [203]) in a path from the skin to the IT showed a peak of

values at the fat-muscle interface and a monotonic decrease towards the IT. Peak value

in the first stage of deformation was 1.6-fold the peak in the second stage suggesting

that high values of γmax were associated more to the initial redistribution of the tissues

under the effect of partial weight than to the effect of the full-body load.

Results from Chapter 6 addressed Research question 3 and formed:

Contribution 4: For the first time, the three-dimensional displacement field depicting

the deformation of the buttock due to sitting in 10 healthy subjects was successfully

extracted in-vivo on a local and global scale, giving an extensive depiction of the

pattern of deformation.

7.2 Future Work

This section presents some key directions for future development as result of the

limitations of the work carried out.

Optimisation The optimisation carried out in the study is limited to two applications.

This is only but the first step towards quantifying the general accuracy and precision

of these methods: a larger variety of deformation fields needs to be tested to assess

the overall accuracy of these methods and infer the effect of each parameter on the

performance.

In the present work, ground truths were generated via FE simulations, as a cost-effective

solution to obtain full-field deformation fields that could be considered biomechanically

plausible. The accuracy of such predictions was not investigated and it is to be con-

sidered a limitation of the study [120]. The error in their prediction is affected by, among

others, geometry of the represented anatomy as well as realistic boundary and loading
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conditions [20]. Obtaining distortion-free ground truths that can reliably represent the

anisotropic, inhomogeneous and non-linear mechanical response of biological tissues is

challenging. Mask and landmark alignment, apart from needing expert drawing from a

trained rater, are but a reduced representation of the conformation of tissues, that cannot

fully capture the error associated to a dense set of measurements.

With further investigation, better understanding of the accuracy and spatial resolution of

strain fields could improve the definition of risk factors to use in a clinical context. Many

are the factors influencing such measurements: for instance, strain calculation [66], type

of filtering [59], size of the strain window [50], voxel spacing of original images [20]

and quality of the features [58]. Independent measures (such as strain gauges on ex-vivo

testing), 0-strain measures (repeated scans) or using specimens with known material

properties are the most common ways to test accuracy of strain measurements [16].

Among these, 0-strain measures would be ideal in the case of imaging deforming tissues

in-vivo. However, they cannot represent the complexity of the strain distribution in

biological tissues even under simple physiological loads [20, 59]. FE modelling can

predict such strain distributions; however, as previously introduced, these systems need

prior verification and validation in replicating the complexity of the deformation of most

biological tissues [20]. Moreover, high spatial resolution in the strain maps would allow

the accurate localisation of areas undergoing deformation above some injury threshold

and ultimately predict the location of damage. The feasibility of such calculation in

the more challenging in-vivo conditions needs further investigation, as the study by

Dall’Ara et al. [20] showed that the same strain error (200µ) could be achieved in-vivo

on an anaesthetised animal model only with a strain window 2.8-times bigger than the

same but on ex-vivo measurements, due to moving artefacts, lower contrast and lower

radiation energy.

Finally, the number of freely available software packages for deformable image regis-

tration is very large [40, 71, 72, 76]. Only three of these were compared in this study,

but many more could have been analysed (such as NiftyReg [206]). Another important
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point of comparison would be testing the performance of conventional deformable

registration methods against deep learning-based methods in their use for DVC. Ground

truth via FE simulations can be used as training sets for these methods, imposing good

properties to the output warp field [45]. Investigation will be needed also to compare

the accuracy with the state-of-the-art for DVC measurements in material science or

mechanics of material [20].

Positional Brain Shift Regarding the influence of brain shift on the success of ste-

reotactic neurosurgery, further understanding of the time evolution of such deformation

is needed. Knowing the time it takes for the tissue to stabilise would be critical for

the surgeon when re-positioning is needed during a surgical procedure: imaging the

distribution of the tissue while it still deforms would give a wrong representation of

the actual location of surgical targets. Schnaudigel et al. [5] showed that PBS was still

developing even after 24 mins, whereas we identified no tissue deformation after 8 mins

during the pilot study. Characterising the time evolution of the deformation is therefore

paramount. As briefly mentioned in Section 4.2, fast 2D axial, sagittal and coronal

slices were acquired capturing the deformation of the brain tissue in the first 8 mins of

deformation. This information, although limited to only four slices, can be coupled with

FE modelling [27] to infer the full-field three-dimensional distribution and ultimately

confirming the viscoelastic properties of the various regions of the brain.

Future development will also include the analysis of the older population sample

investigated, which comparison with the younger sample will inform surgeons on

the effect of ageing on PBS. Monea et al. [4] reported that age led to a decrease in

displacement amplitude, due to a reduction of brain tissue elasticity and deformability

with age, result confirmed with in-vivo elastography measurements [207, 208]. Material

properties can be investigated from a dense set of displacement with the virtual fields

method, informing on the increased stiffness of the brain tissue with age. These methods

rely on the use of isostatic displacement fields, where stress distribution can be extracted

independently from the material properties, allowing for the identification of material
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properties [18]. The method has already been successfully applied to the data on the

younger population sample, showing promising directions in the comparison with the

older group.

Moreover, diffusion weighted scans were also acquired, in order to investigate the role

of white matter tracts on brain shift. The recommended pipeline for diffusion weighted

scans in CUBRIC will be followed, implementing the necessary processing such as

denoising, gibbs ringing correction, drift correction, etc. The recommended models for

tractography, such as spherical deconvolution [209], will be applied in order to then

reliably extract the distribution of fibres even in the complex cases of fibre crossing,

bending and fanning [210]. The fibre distributions in prone and supine positions will be

compared, showing the effect of PBS on white matter tracts.

Deep Tissue Injury Regarding the problem of pressure ulcers, as mentioned in

Chapter 6, a better acquisition set-up is needed, in order to extract better population

statistics by way of a stricter participant recruitment to isolate the individual effects

and improve the understanding of such complex deformation. At first, a thorough

understanding of the deformation in healthy tissues is paramount, before moving on

to pathological cases complicated by impaired mobility or pain sensitivity, as well as

scarred or wounded tissue.

A further expansion of the work carried out would consist in the use sitting MR systems

such as the Open and Upright MRI Scanner in Wales at the European Scanning Centre.

Such as system would allow a simpler acquisition process, giving more repeatable and

reliable results [184, 186]. The effect of cushions on the deformation of the buttock is

another critical aspect in a clinical setting; the impact of cushioning on the full-field

deformation of the tissues in the buttock has not been characterised in-vivo yet [169].

Finally, work will be carried out on the design and verification of a finite element model

of the human buttock using the results from the study. Material properties will be

inversely identified and the performance of the model compared to the state of the art.
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The previously mentioned investigation on the spatial resolution and the accuracy of

strain field would have here a straightforward application: a reliable way to predict the

location of areas of tissues that undergo high strains can be a critical factor in the further

development of the prevention of deep tissue injury.

7.3 Final Remarks

The investigation of the accuracy of DVC methods capturing displacement fields from

in-vivo MR scans has not been explored completely. The richness of the information

that can be extracted is invaluable for the further understanding of the complexity of the

deformation of soft tissues and the conditions leading to injury.

Verification and validation of both computational models would greatly benefit from the

availability of such accurate full-field measurements, in order to predict and simulate

the mechanical response of soft tissues.

Designed and developed to tackle inter-subject anatomical differences for MR imaging,

deformable registration methods for medical imaging proved to have the flexibility and

accuracy to capture the physiological deformation of soft tissues prior to appropriate

optimisation. The thesis gave a measure of the error associated to measurements of

deformation from such scans.

Future directions of work include first a thorough understanding of the accuracy and

spatial resolution of strain measurements, to move to the more challenging cases of

tissue deformation in pathological and injurious conditions.
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