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Abstract: Word segmentation is a crucial step in children’s vocabulary learning. While
computational models of word segmentation can capture infants’ performance in small-
scale artificial tasks, the examination of early word segmentation in naturalistic settings
has been limited by the lack of measures that can relate models’ performance to de-
velopmental data. Here, we extended CLASSIC (Chunking Lexical and Sublexical Se-
quences in Children; Jones et al., 2021), a corpus-trained chunking model that can sim-
ulate several memory and phonological and vocabulary learning phenomena to allow
it to perform word segmentation using utterance boundary information, and we have

CRediT author statement – Francesco Cabiddu: conceptualization; data curation; formal analysis;

investigation; methodology; project administration; resources; software; writing – original draft

preparation; writing – review & editing. Lewis Bott: conceptualization; formal analysis; method-

ology; writing – review & editing; supervision. Gary Jones: conceptualization; formal analysis;

methodology; writing – review & editing; supervision. Chiara Gambi: conceptualization; formal

analysis; methodology; writing – review & editing; supervision.

A one-page Accessible Summary of this article in non-technical language is freely available in

the Supporting Information online and at https://oasis-database.org

We would like to thank Professor Padraic Monaghan and the anonymous reviewers for their

valuable feedback on the manuscript. The research reported in this article was supported by a

Cardiff University School of Psychology PhD Studentship and a British Academy Small Grant

SRG1920/100600.

Correspondence concerning this article should be addressed to Francesco Cabiddu, School

of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, United Kingdom. Email:

CabidduF@cardiff.ac.uk

The handling editors for this manuscript were Scott Crossley and Kristopher Kyle.

This is an open access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.

Language Learning 73:3, September 2023, pp. 942–975 942

© 2023 The Authors. Language Learning published by Wiley Periodicals LLC on behalf of Language
Learning Research Club, University of Michigan.
DOI: 10.1111/lang.12559

https://orcid.org/0000-0001-9692-4897
https://onlinelibrary.wiley.com/doi/full/10.1111/lang.12559#support-information-section
https://oasis-database.org
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Flang.12559&domain=pdf&date_stamp=2023-02-02


Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

named this extended version CLASSIC utterance boundary (CLASSIC-UB). Further,
we compared our model to the performance of children on a wide range of new mea-
sures, capitalizing on the link between word segmentation and vocabulary learning abil-
ities. We showed that the combination of chunking and utterance-boundary information
used by CLASSIC utterance boundary allowed a better prediction of English-learning
children’s output vocabulary than did other models.

Keywords computational modeling; CLASSIC; chunking; language learning;
transitional probability; word segmentation

Introduction

Word segmentation is a fundamental process in infant language development.
Phonological word forms are not given a priori but must be extracted from
continuous speech input. While several computational models have captured
basic word segmentation phenomena displayed by infants in small-scale arti-
ficial tasks, assessing whether models can scale up to naturalistic inputs has
been hampered by limited sets of measures against which to compare perfor-
mance. We present a new word segmentation model which extends CLASSIC
(Chunking Lexical and Sublexical Sequences in Children; Jones & Rowland,
2017; Jones et al., 2021; Jones, 2016; Jones, Justice, et al., 2020), a chunking
model that uses naturalistic inputs to successfully simulate key developmen-
tal phenomena in memory and language. Our extended model, CLASSIC ut-
terance boundary (CLASSIC-UB), performs unsupervised word segmentation
using large-scale naturalistic inputs. Importantly, we have assessed our model
against existing segmentation models using both standard evaluation metrics
and novel developmental measures to provide a more comprehensive assess-
ment of segmentation performance.

Chunking models successfully account for adult (e.g., Frank et al., 2010)
and infant (e.g., French et al., 2011; Perruchet & Vinter, 1998) word segmen-
tation in laboratory tasks by extracting and storing frequent input sequences
(chunks) as candidate words that guide subsequent segmentation. This allows
chunking models (e.g., Kurumada et al., 2013) to account for lexical effects
in infant segmentation such as easier extraction of novel words when they are
preceded by familiar words (e.g., Bortfeld et al., 2005). Lexical effects are
not predicted by competing models that assume a dedicated mechanism that
estimates the location of word boundaries in speech by tracking sublexical
regularities, such as through forward and backward sound transitional proba-
bilities (e.g., Cleeremans & McClelland, 1991; Saksida et al., 2016). Further,
chunking also accounts for infants’ sensitivity to sublexical regularities (e.g.,
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

Hay et al., 2011; Pelucchi et al., 2009; Saffran, Aslin, & Newport, 1996;
Saffran et al., 1997; Saffran, Newport, & Aslin, 1996) because the component
parts of a chunk are mutually linked, giving equal weight to forward and
backward relations (e.g., French et al., 2011; Perruchet & Desaulty, 2008;
Perruchet & Poulin-Charronnat, 2012; Perruchet & Vinter, 1998; although see
McCauley & Christiansen, 2019, for a hybrid model of speech comprehen-
sion and production that forms chunks via backward transitional probability
without the need to capture forward relations).

Typically, computational investigations have used artificial language tasks
to assess the plausibility of learning mechanisms involved in infant (e.g.,
French et al., 2011; Perruchet & Vinter, 1998) and adult word segmentation
(e.g., Endress & Langus, 2017; Frank et al., 2010). Although modelers have
also examined scale-up to naturalistic input (e.g., Daland & Pierrehumbert,
2011; Monaghan & Christiansen, 2010; Saksida et al., 2016), such investiga-
tions have suffered from one important limitation: The benchmark for models’
segmentation accuracy has been the word boundaries present in adult vocabu-
laries, but these word boundaries are unlikely to accurately reflect infants’ and
children’s segmentation (e.g., Monaghan & Christiansen, 2010). In contrast, we
have introduced new measures based on developmental data and specifically on
the composition of children’s early vocabularies. The key insight is that chil-
dren’s vocabularies should reflect early word segmentation processes: Word
forms that are more easily discovered in the input should enter children’s vo-
cabulary earlier in development. We used these novel developmental measures
alongside traditional evaluation measures to provide a much richer assessment
of the developmental plausibility of word segmentation mechanisms. Specifi-
cally, we used this suite of measures to compare CLASSIC-UB to other models
that have shown different strengths in modeling early naturalistic segmentation.

CLASSIC
CLASSIC uses a domain-general chunking mechanism (Gobet et al., 2001)
to model linguistic knowledge acquisition via experience with the sequential
structure of the language. It is not a model of auditory perception or pro-
duction per se (as basic processes that transfer information to the learning
mechanism are not modeled) but a learning model representing performance
increases derived from perceptual learning and efficiency in production
(Jones, Justice, et al., 2020). The accumulation of language experience is
essentially represented by the chunking of adjacent items, gradually shifting
the model’s representations from sublexical to lexical and multiword units. A
key assumption in CLASSIC is that children already know how to identify
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

word boundaries. This has been implemented in CLASSIC because past
simulations have investigated phenomena at an age where children are likely
to have already learned how to segment speech into words.

We can illustrate how CLASSIC works using a simplified example in which
the model repeatedly processes the phonetically transcribed utterance [d, æ, d
| ɪ, z | k, ʌ, m, ɪ, ŋ]1 (i.e., dad is coming) where | demarcates word bound-
aries that, as we explained above, are given as input to the model. CLASSIC
first chunks adjacent phonemes that do not cross a word boundary and forms
biphone representations: [dæ, æd | ɪz | kʌ, ʌm, mɪ, ɪŋ]. Any learned chunks
can subsequently be used to encode the input. For example, at the second it-
eration, the model would represent the utterance as [dæ, d | ɪz | kʌ, mɪ, ŋ],
that is, proceeding from left to right, it uses the longest available chunks to
encode each demarcated word. This way of encoding preserves the input tem-
poral structure and represents a proxy for the increased processing efficiency
derived from acquired knowledge.2 The model then continues to join adja-
cent chunks; for example, the third iteration would result in the representation
[dæd | ɪz | kʌmɪ, ŋ], where CLASSIC has learned two of three words in the ut-
terance. When two adjacent chunks are words themselves, CLASSIC crosses
word boundaries and learns multiword sequences (i.e., dæd|ɪz in the example);
thus, at the fourth iteration, CLASSIC would encode the utterance as a two-
word sequence followed by a word: [dæd|ɪz, kʌmɪŋ]. Finally, in a last iteration
the model would represent the whole utterance as a single multiword chunk:
[dæd|ɪz|kʌmɪŋ].

CLASSIC accounts for the role of sublexical, lexical, and multiword
sequences in language development. For example, in Jones’s (2016) study,
incremental exposure to naturalistic speech supported CLASSIC’s building
up of chunks at different grain sizes, capturing 85% of variance in nonword
repetition performance—a task closely related to vocabulary learning (e.g.,
Hoff et al., 2008)—from six studies involving 2- to 6-year-old children.
CLASSIC has also simulated vocabulary learning more directly (Jones et al.,
2021). Similar to the way 2–3-year-old children learn to produce words,
CLASSIC gradually learns longer, more infrequent words that have a smaller
number of similar words in the language (i.e., lower neighborhood density)
and higher internal predictability (i.e., higher average biphone probability or
phonotactic probability). Jones et al. (2021) also showed that novel words
entering children’s productive vocabularies are more likely to share large
phonological chunks with words that they already use, indicating a pivotal
role for phonological knowledge in vocabulary learning. In sum, these studies
have shown that sublexical knowledge can be used to learn and produce
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pseudowords and real words (see Baayen et al., 2019; Chuang et al., 2021, for
similar conclusions using linear discriminative learning).

Finally, Jones, Justice, et al. (2020) showed that phonological knowledge
plays an important role in learning multiword sequences. CLASSIC captured
the faster increase in children’s short-term memory for digit over word se-
quences likely because chunks that span multiple digits are learned more
quickly from random combinations of digits occurring in naturalistic speech.
This study also showed how knowledge of multiword sequences facilitates
lexical processing (e.g., processing of the individual items five and six be-
comes more efficient when the two are presented within a familiar multiword
sequence five–six).

In sum, CLASSIC is a chunking-based model that has captured important
developmental phenomena in word learning but has not yet been applied to
word segmentation. We showed how CLASSIC can be extended to perform
word segmentation, thus making the model more developmentally plausible:
Infants must of course discover word forms before they can learn novel words
and integrate them into their existing vocabulary (Newman et al., 2016).

CLASSIC-UB
To extend CLASSIC to perform word segmentation, we retained CLASSIC’s
architecture but removed word boundary information from the model input
(i.e., the model was not constrained to chunk items within demarcated words).
We also added utterance boundary information using positional markers (ê)
that signal utterance start or end. Transcribers of the input corpora used in
this study coded such positional markers based on various syntactic (e.g.,
utterances are centered around a main clause) and prosodic cues (e.g., pauses,
intonation patterns distinguishing declarative, interrogative, or other clauses).
Only written transcriptions were available for most of the input, not the origi-
nal speech recordings, so it was not possible to automatically assign positional
markers based on, for example, changes in phonetic features. Positional mark-
ers have been used in previous computational work (e.g., Aslin et al., 1996;
Christiansen et al., 1998; Saksida et al., 2016) as a proxy for the increased
saliency that phonological units at utterance boundaries gain in child-directed
speech (e.g., Fernald & Mazzie, 1991). This has been modeled via conjunc-
tive use of utterance-boundary markers and phonological units to perform
distributional learning (e.g., utterance-boundary + syllable constitutes a pair
of units for which transitional probabilities can be obtained; Saksida et al.,
2016). In a similar way, CLASSIC-UB treats utterance-boundary markers
as additional units that can be used to form chunks (i.e., a chunk becomes

Language Learning 73:3, September 2023, pp. 942–975 946

 14679922, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/lang.12559 by C

ardiff U
niversity, W

iley O
nline L

ibrary on [30/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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longer when an utterance-boundary marker is attached to a phonological
sequence).

We present a version of CLASSIC-UB that uses utterance-final markers
and a version that uses both initial and final markers. Infants may privilege
utterance-final words (e.g., Aslin et al., 1996; Christiansen et al., 1998) because
these gain perceptual prominence from syllable lengthening (Wightman et al.,
1992) and sentential accent in English (Cinque, 1993). However, some studies
have suggested that infants may use both initial and final markers in segmen-
tation (Seidl & Johnson, 2006, 2008). In fact, different cues could facilitate
segmentation of utterance-initial words (e.g., exaggerated amplitude, duration,
pitch, and formant structure; Cruttenden, 1986). Therefore, the presence of ini-
tial markers should provide additional facilitation over utterance-final cues. We
are not aware of any computational studies assessing the relative contribution
of initial and final boundaries, thus our comparing CLASSIC-UB with final
markers to CLASSIC-UB with both initial and final markers could shed light
on the variables that facilitate word segmentation at utterance edges.

Figure 1 illustrates how CLASSIC-UB segments input after the input
has been transcribed using the CMU Pronouncing Dictionary (Lenzo, 2007),
which contains over 134,000 phonetic transcriptions of English words and
provides an automatic way to convert large orthographic input into phonetic
form using alphabetic codes for phonemes rather than IPA (e.g., AE instead of
æ). When encoding the utterance-final biphone AED in the first utterance, the
model learns the chunk with an associated utterance-final marker (i.e., AEDê).
If the chunk AED appears in later utterances, even in word-medial positions,
the model will recognize that it can be used in word-final position assuming a
word boundary at this location (see the third utterance dad is coming). This also
shows how the following phone IH is marked as “can begin a word” based on
the model flagging AED as ending the preceding word DAED (bolded chunk
of Figure 1). The same logic applies to utterance-initial markers. In essence,
the function of the ê markers within chunks is akin to “this chunk can appear
at the [beginning/end] of a word.”

Like CLASSIC, CLASSIC-UB processes phonemic input. As such, it as-
sumes that children already know phoneme categories in line with an early
phonetic category learning approach (e.g., Werker, 2018) and previous com-
putational studies in word segmentation (e.g., Batchelder, 2002; Daland &
Pierrehumbert, 2011; Goldwater et al., 2009; but there are alternative ap-
proaches that we briefly refer to in the Discussion section). Knowledge of
sound categories and co-occurrences of sounds might begin to develop at the
same time or soon after infants start segmenting speech into words at around
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

Figure 1 CLASSIC-UB generalization of utterance-boundary markers to utterance-
medial position. Solid lines indicate grouping of adjacent items into single chunks and
storage into the lexicon. Dashed lines indicate use of stored chunks to segment speech.
Lines are shown only for the first utterance. Time indicates independent presentations
of new child-directed utterances. All English phonemes were present in the lexicon
but are not shown for reasons of space. The transcription used was based on the CMU
Pronouncing Dictionary (Lenzo, 2007).

6 months of age (Bortfeld et al., 2005). For example, between 3 and 9 months,
infants discriminate between and learn new phonetic categories using distribu-
tional cues (e.g., Cristià, McGuire, et al., 2011; Maye et al., 2008; Mersad et al.,
2021; Yeung et al., 2014), and they can use this information in word segmen-
tation (e.g., Jusczyk & Aslin, 1995) and soon after in word recognition tasks
(around 12 months; Mani & Plunkett, 2010) and word learning tasks (around
14 months; Fais et al., 2012). Similarly, between 4 and 9 months infants at-
tune to native phonotactic patterns (Cristià, Seidl, & Gerken, 2011; Jusczyk
et al., 1994) and can use this knowledge in word segmentation (e.g., Mattys &
Jusczyk, 2001). Nevertheless, we also ran all of our simulations on syllabified
input (see Method section) because infants may initially perceive syllables as
basic linguistic units (e.g., Bertoncini & Mehler, 1981).

As with CLASSIC, items that co-occur often will have more opportunities
to be chunked together by CLASSIC-UB. This facilitates subsequent segmen-
tation in two ways. First, when a word is frequent in the input, its sublexical
components will have more opportunities to be chunked together, reaching a
whole-word representation faster. This makes the model frequency sensitive,

Language Learning 73:3, September 2023, pp. 942–975 948
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

even though frequency is not explicitly tracked (unlike in other chunking mod-
els, such as PUDDLE (Phonotactics from Utterances Determine Distributional
Lexical Elements; Monaghan & Christiansen, 2010; see Appendix S1 in the
Supporting Information online for a detailed description of this model). Sec-
ond, learning words that share phonological material with other words will be
facilitated by the reuse of existing chunks (e.g., learning just can make the se-
quence ust available to subsequently learn crust). Other models, such as PUD-
DLE, do not include this mechanism and rely on frequency information alone.

The number and size of chunks changes as more input is processed.
CLASSIC-UB processes input incrementally (i.e., one utterance at a time),
as do other segmentation models (e.g., French et al., 2011; Monaghan &
Christiansen, 2010; Perruchet & Vinter, 1998). As Figure 1 shows, each ut-
terance is encoded from left to right by using existing chunks present in the
model lexicon. Consistent with previous chunking models (e.g., Batchelder,
2002; French et al., 2011; Perruchet & Vinter, 1998), preference is given to
encoding larger chunks over shorter ones. For example, the chunk AED ê that
contains a boundary marker is preferred over the shorter chunk AED that does
not contain a boundary marker. At the same time, new/larger chunks are stored
in the model lexicon by joining adjacent encoded items together, facilitating
subsequent segmentation. This makes the learning process plausible because
children’s learning happens incrementally as a function of their accumulating
knowledge of the language (e.g., Jones et al., 2021).

Crucially, selecting larger chunks over shorter ones means that chunks
formed by sublexical sequences and utterance-boundary markers are dispre-
ferred to words, thus avoiding oversegmentation. At the same time, the pres-
ence of utterance-boundary markers prevents the model from building large
undersegmented chunks. Together, these two mechanisms favor segmentation
at the (intermediate) word level. However, there is no explicit rule defining
when the model should stop building chunks of increasing size. In fact, at later
stages, the model stores multiword chunks, which is consistent with represen-
tation of multiword sequences from 11 months of age (e.g., Jones, Cabiddu,
& Avila-Varela, 2020; Skarabela et al., 2021). Notably, such longer chunks
can include multiple boundary markers, which means the model can repre-
sent multiword sequences while also retaining knowledge of the individual
words composing a sequence. For example, an utterance such as I’ll do it later
could be encoded using the two chunks ê I’ll ê do ê it ê and later ê. In
sum, CLASSIC-UB learns chunks including both phonological and utterance-
boundary information. Chunks gradually increase in size, facilitating subse-
quent segmentation.

949 Language Learning 73:3, September 2023, pp. 942–975
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Evaluation of Naturalistic Speech Segmentation
Corpus-based evaluations of segmentation models usually compare models’
output to segmented transcriptions of child-directed speech (e.g., Monaghan &
Christiansen, 2010). Precision and recall are two widely used measures. Preci-
sion is the number of words segmented by a model divided by the total number
of items segmented, including segmentation errors (i.e., how many of the items
found are words). Recall is the number of words segmented by a model divided
by the total number of words in the input (i.e., how many words present in the
input are found). In these two measures, chunking models perform better than
do models that segment speech randomly (e.g., Bernard et al., 2020; Monaghan
& Christiansen, 2010), which is in line with results from computational stud-
ies capturing artificial language learning (e.g., French et al., 2011). For exam-
ple, in Larsen et al.’s (2017) study, the chunking model PUDDLE showed the
highest performance, reaching 82% for precision and 80% for recall. In con-
trast, another class of models that track sound transitional probabilities (see
Appendix S1 in the Supporting Information online for a detailed description)
perform better than the random baseline models (e.g., Bernard et al., 2020) but
less well than chunking models (e.g., 43% for precision and 51% for recall in
Larsen et al.’s, 2017, study).

Although these measures capture how accurately models segment the in-
put, they do not capture their developmental plausibility. The use of segmented
input to evaluate model performance makes the implicit assumption that in-
fants segment speech in an adult-like way. However, as discussed by Larsen
et al. (2017), this assumption is likely to be wrong, given evidence that infants’
initial protolexicons contain words and frequent phonotactically legal nonword
sequences (e.g., Ngon et al., 2013). Addressing this problem is not straightfor-
ward because how infants segment speech in naturalistic settings is not known.
Larsen et al.’s (2017) solution was to link model accuracy to word age of ac-
quisition. For example, dog was understood by a higher proportion of children
at 13 months of age than was deer, and this should be reflected by a more ac-
curate segmentation of dog than deer (i.e., dog is correctly segmented on more
occasions). Theoretically, the reasoning behind using word learning as a proxy
for segmentation performance is that vocabulary knowledge (word–meaning
mapping) is facilitated by word segmentation (e.g., Estes et al., 2007; Hay
et al., 2011). For example, in Estes et al.’s (2007) study, infants were able to
extract, store, and recognize word forms previously presented in fluent speech
to successfully perform a label–object association task. In sum, words that are
acquired early must also be accurately segmented at earlier ages.3

Language Learning 73:3, September 2023, pp. 942–975 950
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We also capitalized on the link between vocabulary knowledge and seg-
mentation as suggested by Larsen et al. (2017), but instead of age of acquisition
derived from parental reports, we used age of first production derived from
child speech (Grimm et al., 2017). Looking at production rather than com-
prehension has drawbacks, but it also has important advantages. The words
children produce are, of course, not a direct reflection of their segmentation
abilities. Production involves additional variables related to recalling stored in-
stances from the lexicon and to articulation, and, of course, what children spon-
taneously produce at the time of recording does not reflect the entirety of their
comprehension vocabularies. Further, there are limitations inherent in estimat-
ing children’s knowledge from a small number of relatively short samples of
speech filtered through adult transcribers’ potentially biased judgement (e.g.,
leading to the omission of nonlexical productions). Nevertheless, using pro-
duction vocabularies has two key advantages. First, it dramatically increases
the number of words examined: The British communicative development
inventory (CDI; Alcock, 2020), a parent-report measure of age of acquisition,
contains only 330 words,4 lacking sufficient statistical sensitivity. Second, we
found that the CDI word sample has a word frequency distribution shifted
toward high-frequency words not reflecting the Zipfian input that infants hear,
that is, many low frequency and few high-frequency word types (Hendrickson
& Perfors, 2019).5 Using such a sample might bias results because transitional
probability models might perform well only because the distribution consid-
ered is less skewed toward low frequency words (Kurumada et al., 2013).

We have additionally proposed a new measure examining whether a
model can capture word-level characteristics of child vocabularies. Previous
measures did not examine whether a model capitalized on sublexical/lexical
regularities (similarly to how learning is evaluated in laboratory settings).
Traditional measures have focused on finding a mechanism that minimizes
segmentation errors, while the age of acquisition/production measure is
focused on the time course of acquisition. In contrast, with our final set of
analyses, we assessed whether the characteristics of the vocabulary learned by
a model reflected what children had produced in the language corpora. In other
words, we assessed whether the models and children were sensitive to input
characteristics in a similar way. We focused on three lexical measures—word
frequency, word length, neighborhood density—and one sublexical measure—
phonotactic probability. These characteristics have explained approximately
50% of variance in word learning (Stokes, 2010, 2014; Storkel, 2009). Finally,
although word comprehension as a marker of vocabulary growth has been pre-
dominant (e.g., Fernald & Marchman, 2012), the use of evaluation measures
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

based on early production was reasonable given both the relation between
early vocalizations and vocabulary growth (McGillion et al., 2017) and the
relation between early segmentation abilities and later expressive vocabularies
(Newman et al., 2006, 2016).

In summary, we asked whether a novel chunking account of word segmen-
tation could scale up to naturalistic speech in a developmentally plausible way
by comparing CLASSIC-UB to PUDDLE, a model that has shown high per-
formance in traditional measures of naturalistic segmentation, and to backward
and forward transitional probability models that might account for a high pro-
portion of variance in child word knowledge (Larsen et al., 2017). We also
asked whether utterance-initial edges play a role in segmentation beyond final
edges by comparing two different implementations of CLASSIC-UB. Finally,
we asked whether transitional probability models could capture developmen-
tal data better than chunking accounts by comparing PUDDLE to transitional
probability models to test whether we had replicated previous results (Larsen
et al., 2017) using different corpora and performance measures.

Method

Computational Models
We compared CLASSIC-UB to forward and backward transitional probability
(Saksida et al., 2016), PUDDLE (Monaghan & Christiansen, 2010), and a ran-
dom baseline relying on a coin toss to place a boundary after each input unit
(Lignos, 2012). A full description of these models can be found in Appendix
S1 in the Supporting Information online. We implemented the models to pro-
cess syllables or phonemes as basic units (see Appendix S2 in the Supporting
Information online for details). Python and R scripts for preparing the input,
running the models, and analyzing the output are available at the project’s OSF
page (https://doi.org/10.17605/osf.io/kbnep).

Corpora
We used seven English corpora following Grimm et al.’s (2017) study (see
Appendix S2 in the Supporting Information online for input preprocessing
and characteristics). We downloaded the corpora from the CHILDES database
(MacWhinney, 2000). As target input for the models, we considered only tran-
scripts of children aged 2 years. While infants start segmenting speech much
earlier than 2 years of age, our choice to focus on this age group was moti-
vated by the much smaller size of corpora of speech directed at children of
younger ages (e.g., 54,274 utterances at age 1 year vs. 604,000 utterances
at age 2 years). As we show in Appendix S2 in the Supporting Information
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

online, this limits the representativeness of input directed at children of
younger ages. In total, the input to models contained 604,000 utterances (mean
length of utterance = 4.39) from 332 different speakers, directed to 53 target
children. Such input was 3 to 60 times larger than input used in previous stud-
ies (Christiansen et al., 1998; Daland & Pierrehumbert, 2011; Larsen et al.,
2017; Monaghan & Christiansen, 2010; Saksida et al., 2016).

Measures of Model Performance
Precision and Recall
We compared the models’ performance by looking at the pairwise differences
in mean precision and recall scores (e.g., Monaghan & Christiansen, 2010). We
tested the last 10,000 utterances of output because the models’ performance
was stable (see Figure 2) and because testing the entire output (i.e., 604,000)
would have led to significant results even for trivial differences. We used a
Welch’s t test for unequal variances, with p values and bootstrap 95% confi-
dence intervals corrected for multiple comparisons using Holm’s correction.

Word Age of First Production
We used the mean length of utterance for transcripts as a proxy of word age of
first production following Grimm et al.’s (2017) study (see Appendix S3 in the
Supporting Information online for details). Mean length of utterance is a useful
estimator of child gross linguistic skills (i.e., developmental stage), controlling
for the fact that children with a similar age might be far apart in their language
development. The sample contained 5,480 words. We fitted linear regression
models predicting word age of first production as a function of the log10 num-
ber of times a target word was correctly segmented by each algorithm (Larsen
et al., 2017). We weighted the number of times a word was correctly segmented
by dividing it by input word frequency before fitting the regression models as
the two variables correlated highly (e.g., for a random baseline, r = .92). Word
frequency correlates highly with the age of word acquisition (e.g., Morrison
et al., 1997), therefore failing to control for its effect might have led to results
that were an artifact of frequency. Indeed, input frequency tended to strongly
affect models’ performance; for example, for the random model, the correla-
tion between the number of correct segmentations and age of first production
dropped from .58 to .20 after we controlled for frequency. Therefore, control-
ling for input frequency allowed us to assess the performance of each segmen-
tation algorithm over and above the fact that words that appear more often are
acquired earlier.
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

Since previous studies had not used weighting by word frequency, we also
included analyses for the unweighted measure in Appendix S6 in the Sup-
porting Information online to facilitate comparison. To foreshadow our find-
ings, differences between models were consistent when we used either the
weighted or unweighted measure, with only one exception pertaining to transi-
tional probability models that we address in the Discussion section. We based
comparisons between models on pairwise differences in adjusted R2 from the
regression models; we bootstrapped the 95% confidence interval of the differ-
ence between coefficients and corrected the interval using Holm’s correction
(Grimm et al., 2017). We concluded that two coefficients differed significantly
from one another if the corrected 95% confidence interval did not include 0.

Word-Level Measures
We compared the distributions of unique words discovered by each model to
children’s actual vocabulary (i.e., the words produced by children in the cor-
pus) for phonemic length, word frequency, neighborhood density, and phono-
tactic probability. According to Jones et al. (2021), the distribution of words
relative to sublexical and lexical characteristics should be similar between chil-
dren and model if the model’s learning mechanism is developmentally plausi-
ble. As in previous studies (e.g., Storkel, 2009; Swingley & Humphrey, 2018;
Vitevitch & Luce, 1998), word length referred to the number of phonemes in
a word; word frequency was the log10 frequency of a word across the input;
phonotactic probability was the mean probability of a phoneme pair’s appear-
ing in a word; neighborhood density was the raw count of phonemic words that
differed from a target word by one phoneme (i.e., by deletion, insertion, or sub-
stitution). We left phonotactic probability and neighborhood density unmarked
for stress to be consistent with previous work (e.g., Storkel, 2009; Swingley &
Humphrey, 2018).

We carried out a chi-square goodness of fit test to compare observed prob-
abilities of a word’s being of a certain length (in the output of a segmentation
model) to the expected probabilities in children’s utterances; we focused on
lengths of two to eight phonemes due to the low number of words at other
phonemic lengths. We defined probabilities as the proportion of types at each
length. We then looked at the pairwise differences in chi-square test statistics,
using bootstrap confidence intervals as we described in the previous section.
In other words, this analysis first looked at how close each model was to chil-
dren’s performance and then used the estimates of such distance to compare
models to one another.
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

For word frequency, neighborhood density, and phonotactic probability,
which are continuous measures, we followed a similar procedure to the one
that we used for word-level measures, but we used a Kolmogorov–Smirnov
test statistic. Following Piantadosi et al.’s (2012) study, we divided each of
these measures by word length. Word length tends to be anticorrelated with
word frequency (e.g., Zipf, 1936) and neighborhood density (Storkel, 2004)
and positively correlated with phonotactic probability (Storkel, 2004). In our
dataset, the correlations varied from moderate to strong: length and frequency
(rs = −.37), length and neighborhood density (rs = −.86), and length and
phonotactic probability (rs = .42).

Results

We first report results for precision/recall and age of first production and finally
for word-level measures. For ease of readability, in each subsection we give
only a discursive presentation of key results and point to statistical results in
the appendices in the Supporting Information online. We have included both
CLASSIC-UB initial and CLASSIC-UB initial-final in this section; however,
for reasons of space, we have provided a discursive comparison between the
two models in Appendix S11 in the Supporting Information online.

Precision and Recall
All models showed rapid learning (see Figure 2), reaching a ceiling in per-
formance after approximately 40,000 utterances and indicating that the quan-
tity of the input did not affect their performance (consistent with Daland &
Pierrehumbert, 2011). We have provided pairwise statistical comparisons for
the models in Appendix S4 in the Supporting Information online. All models
segmented the input above chance (baseline), except for the transitional prob-
ability models when the input was syllabified (see Panel B in Figure 2 and
Appendix S4 in the Supporting Information online).

In line with Larsen et al.’s (2017) findings, PUDDLE showed the best per-
formance, outperforming the baseline, transitional probability, and CLASSIC-
UB models. When we used phonemic input, PUDDLE found 73% of items
were words for the precision measure and 79% of items were words for the
recall measure. This model’s accuracy was higher when segmenting syllabified
input, reaching 85% for the precision measure and 89% for the recall measure.
CLASSIC-UB’s performance lay between the PUDDLE and the transitional
probability models, with CLASSIC-UB initial-final reaching 50% for preci-
sion and recall with phonemic input, and 66% for precision and 58% for recall
with syllabified input.
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

Figure 2 Mean precision and recall performance with phonemic (Panel A) and syllabic
(Panel B) input. The figure shows the random baseline, backward transitional probabil-
ity (BTP) and forward transitional probability (FTP), CLASSIC-UB with utterance-
final and initial-final markers, PUDDLE. Performance was averaged every 1,000 ut-
terances (Stage). Only the first 120 stages are shown to better appreciate changes in
performance and because the performance of the models was stable. Grey confidence
bands indicate the 95% confidence interval around the mean.
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

Table 1 Adjusted R2 for linear regression models predicting word age of first produc-
tion as a function of weighted log10 number of times a word was correctly segmented
by each model

Phonemic input Syllabified input

Model R2
adjusted 95% CI R2

adjusted 95% CI

Baseline .036 [.023, .052] .041 [.027, 057]
Backward transitional probability .044 [.030, .059] .000 [.000, .002]
Forward transitional probability .046 [.030, .060] .013 [.007, .021]
CLASSIC-UB final .079 [.062, .100] .021 [.012, .030]
CLASSIC-UB initial/final .084 [.066, .103] .038 [.025, .051]
PUDDLE .078 [.060, .097] .061 [.043, .078]

Note. Heteroskedasticity-robust standard errors were computed using a HC2 estimator.
The 95% confidence intervals indicate lower and upper limits of bootstrap confidence
intervals around the estimate based on 1,000 iterations. Holm’s correction was applied
by expanding the confidence intervals.

Overall, the models segmented naturalistic speech above chance. How-
ever, while traditional measures examined models’ accuracy, they told us noth-
ing regarding whether a model’s segmentations reflected how infants segment
speech, and we were not able to make any claim regarding the plausibility of
one model compared to another. To address this issue, we turned to the next set
of measures that related model performance to child data.

Word Age of First Production
Table 1 shows the adjusted R2 estimates for all linear regression models.
Although the sizes of the estimates were small, they were in line with the
results of Larsen et al. (2017), who, for example, showed that PUDDLE
explained .067 of variance in child age of acquisition.6After carrying out
all pairwise comparisons between adjusted R2 estimates (see Appendix S5
in the Supporting Information online), we found that only CLASSIC-UB
initial-final, CLASSIC-UB final, and PUDDLE—and only when we ran the
models on phonemic input—outperformed the baseline at predicting word
age of first production. Surprisingly, when the models were run on syl-
labic input, none of them passed the baseline test (see Appendix S5 in
the Supporting Information online). We discuss this unexpected finding in
Appendix S13 in the Supporting Information online. Also, the results that we
have reported above were based on weighting the predictor measure by fre-
quency as we explained in the Method section. We have reported the results
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

for the unweighted measure in Appendix S6 in the Supporting Information
online.

Crucially, while CLASSIC-UB had lower precision and lower recall scores
compared to PUDDLE (see Figure 2), the two models explained the same pro-
portion of variance in child word age of first production (about 8%), suggesting
that achieving lower segmentation accuracy might not necessarily lead to lower
developmental plausibility. Nevertheless, age of first production did not con-
sider the characteristics of the model’s vocabulary, nor did it answer questions
about whether model and children are sensitive to similar sublexical and lexi-
cal characteristics. The following fine-grained word-level measures addressed
these questions.

Word-Level Measures
In line with the previous analysis, the models approximated children’s vocab-
ularies better than the baseline only when we ran them on phonemic input.
Therefore, in the following sections we report results for the phonemic analy-
sis. We have included the results of the syllabic analysis in Appendices S7–S10
in the Supporting Information online, and we also discuss this finding in Ap-
pendix S13 in the Supporting Information online.

Phonemic Length
Qualitatively, all models learned more short than long words (see Figure 3)
as children do (e.g., Storkel, 2009). However, CLASSIC-UB (both initial and
initial-final) approximated the proportion of long words learned by children
better than either PUDDLE or the transitional probability models did. The
two CLASSIC-UB models were also the only ones to outperform the baseline
(see Appendix S7 in the Supporting Information online). Finally, PUDDLE’s

Figure 3 Proportion of word types produced by children and discovered by each model
by phonemic length when phonemic input was used.
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

performance at approximating children’s vocabularies by phonemic length did
not differ from forward and backward transitional probability models.

Word Frequency
Children’s vocabularies are Zipfian like the input that they receive (e.g.,
Hendrickson & Perfors, 2019), and as such their vocabularies contain more
low frequency words than high frequency words. We found no significant
difference between PUDDLE and CLASSIC-UB at approximating child vo-
cabularies by word frequency (see Figure 4 and Appendix S8 in the Supporting
Information online), but chunking models outperformed transitional proba-
bility models. This result was in line with empirical evidence showing that
chunking models are better than transitional probability models at capturing
lexical effects (e.g., Frank et al., 2010).

Figure 4 Gaussian kernel density estimate of the distribution of unique words in chil-
dren’s speech (Children) and discovered by each model, by log10 word frequency
(weighted by dividing a word frequency value by its phonemic length). Phonemic in-
put was used. The area under each curve represents 100% of data points. Curve peaks
represent the mode of each distribution.

Neighborhood Density
In line with the fact that the majority of words in the language have zero or few
lexical neighbors (e.g., Vitevitch, 2008), child vocabularies are populated by
a high number of low-neighborhood words. In this measure, only CLASSIC-
UB final outperformed the baseline at approximating child vocabularies by
neighborhood density, and this model performed significantly better than all
other models (see Figure 5 and Appendix S9 in the Supporting Information
online).

Phonotactic Probability
As Figure 6 shows, child vocabularies are populated by words with low in-
ternal predictability (e.g., Storkel, 2009). All models were equally good at
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

Figure 5 Distribution of unique words in child speech (Children) and discovered by
each model, by neighborhood density (weighted by dividing a word neighborhood den-
sity value by its phonemic length). Phonemic input was used.

Figure 6 Distribution of unique words in child speech (Children) and discovered by
each model by phonotactic probability (weighted by dividing a word phonotactic prob-
ability value by its phonemic length). Phonemic input was used.

approximating child vocabularies, in line with evidence showing that both
chunking and transitional probability models are sensitive to sublexical reg-
ularities in the speech input. However, the models’ performance did not differ
statistically from the baseline model (see Appendix S10 in the Supporting In-
formation online), suggesting that this measure might not have provided suffi-
cient sensitivity for evaluating segmentation models.

Discussion

We compared CLASSIC-UB, a word segmentation model that uses natural-
istic input, to another chunking model (PUDDLE) as well as to nonchunking
accounts of word segmentation. We broadened the assessment of model
developmental plausibility by introducing new measures that related model
performance to child corpus data. We found that CLASSIC-UB acquired a
vocabulary that more closely captured child vocabularies than did all other
models; for example, both children and CLASSIC-UB learned a higher
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

proportion of long and low-neighborhood words compared to other models.
We discuss each of these findings in turn.

Measures of Developmental Plausibility
In line with Larsen et al.’s (2017) study, we found that the results of traditional
evaluation measures can be inconsistent with those of measures based on child
speech. In fact, overall, CLASSIC-UB performed better than PUDDLE at
predicting measures based on child speech despite segmenting approximately
30% fewer word tokens. One reason for this finding might be that traditional
measures represent an adult benchmark. Infants might not segment speech
into the same units as adults but might, at least initially, segment and store
a protolexicon made of both word and frequent nonword units (Ngon et al.,
2013). This is also consistent with different accounts (e.g., Cutler et al., 2012;
Pinker, 1994) that have predicted that learners should commit segmentation
errors based on the same cues that allow them to segment speech (e.g.,
rhythmic structure of the language, possible-word constraint, phonotactic
constraints). Although researchers still do not know which specific errors—
and more importantly in which proportion—infants make when segmenting
naturalistic speech over the course of development, our findings nevertheless
suggest that carrying out an in-depth examination of the kind of vocabulary
built by models might be a first step toward assessing models’ developmental
plausibility.

In Larsen et al.’s (2017) study, transitional probability models explained a
higher proportion of variance in age of acquisition than did chunking models.
Using our adapted production measure, we showed that this result might
depend on controlling for the role of word frequency. Namely, if one controls
for frequency, transitional probability models do not actually perform above
chance (see transitional probability models vs. the baseline model in Ap-
pendix S5 in the Supporting Information online). This means that the higher
performance of transitional probability models might be largely driven by
input frequency. This finding is not dependent on using a production measure;
in a supplementary analysis (see CDI addendum in the project’s OSF profile),
we examined the models’ ability to predict age of acquisition based on the UK
CDI (a comprehension-based measure). When the comprehension measure
was not frequency-weighted, we replicated Larsen et al.’s (2017) results. But
importantly, when the measure was frequency-weighted, CLASSIC-UB again
performed better than the other models (consistent with the production-based
analyses reported here).
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We suggest that our proposed set of word-level measures might provide a
richer and more nuanced method for evaluating the developmental plausibility
of segmentation models. First, findings from word-level measures were in line
with the age of first production results, with chunking models outperforming
transitional probability and models run on syllabified input performing at
chance (see Appendices S7–S10 in the Supporting Information online). In
line with previous findings capturing in-laboratory data (e.g., French et al.,
2011; Kurumada et al., 2013), word-level measures also showed that, while
both transitional probability and chunking models closely approximated child
vocabularies at the sublexical level (phonotactic probability), chunking models
performed better when lexical measures were considered (word length, word
frequency, neighborhood density).

Second, word-level measures provided a more detailed test of the models’
lexical characteristics, highlighting performance differences that might be
attributed to architectural differences across models. Indeed, CLASSIC-
UB’s learning mechanism facilitated the discovery of words that overlap
phonologically with previously discovered words. This allowed the model to
approximate a greater proportion of children’s long/low-neighborhood words
than did competing models (see Figures 3 and 5). Therefore, uniquely relying
on mechanisms that privilege highly probable sequences (e.g., PUDDLE,
transitional probability models) makes it difficult to capture a portion of
long/low-neighborhood words that are generally more difficult to learn but
that children nevertheless learn and that CLASSIC-UB can learn by exploit-
ing phonological overlap. Interestingly, this feature of CLASSIC’s learning
mechanism also means that the model can account for nonword repetition
effects (Jones, 2016) that are due to phonological overlap across word and
nonword sequences. Similarly, it is possible that CLASSIC-UB captures
additional processes of storage and recall involved in word production (i.e.,
going beyond aspects of segmentation) and that this sensitivity explains
its superior performance in approximating the characteristics of children’s
productions.

Although CLASSIC-UB more accurately represented the make-up of chil-
dren’s early lexicons, its accuracy in segmenting words was not quite as good as
that of PUDDLE (i.e., PUDDLE has a larger vocabulary). One could therefore
argue that, at earlier stages in PUDDLE’s learning, word-level characteristics
may match those of CLASSIC-UB and that it is only the subsequent increase in
PUDDLE’s vocabulary that skews the distribution of the word-level character-
istics. We conducted additional analyses (see Appendix S12 in the Supporting
Information online.) to evaluate this possibility. These analyses showed that
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Cabiddu et al. CLASSIC Utterance Boundary Chunking-Based Model

differences in vocabulary size did not explain the differences in word-level
measures.

Finally, to support our claim regarding the role of overlapping phonological
sequences in CLASSIC-UB, we conducted an additional exploratory analysis
showing that CLASSIC-UB’s ability to better approximate children’s vocab-
ulary in word length and neighborhood density increased as word frequency
increased (see Appendix S12 in the Supporting Information online.). This
is in line with recent work showing that frequent words are more likely to
share phonological material with previously learned words, therefore boosting
child learning compared to learning less frequent words (Jones et al., 2023).
Our result was also in line with evidence showing an effect of overlapping
phonological sequences on vocabulary learning at around 2 years of age (e.g.,
Jones et al., 2023; Stokes, 2010; Storkel, 2009) but no effect at 12–15 months
(Swingley & Humphrey, 2018), suggesting that children first build a diverse
repertoire of phonological chunks that later boost word learning (for a compu-
tational test of this idea using CLASSIC, see Jones & Rowland, 2017).

Overall, our results speak in favor of models that exploit phonological
overlap between sequences in word segmentation (e.g., French et al., 2011;
Perruchet et al., 1998) and add to previous work which highlighted the signifi-
cant role of the overlap between sequences in word processing and acquisition
(Gathercole, 1995; Jones et al., 2021).

Limitations and Future Directions

We have shown that chunking might play a significant role in early word
segmentation by comparing our new chunking-based segmentation model
CLASSIC-UB to two other influential models: transitional probability and
PUDDLE models. However, there are additional models that we did not con-
sider. One important class of Bayesian models assumes that infants formulate
hypotheses on the possible segmentations of utterances, ultimately prefer-
ring those segmentations that contain few frequent and short chunks (e.g.,
Goldwater et al., 2006, 2009). Another account is that infants form chunks
based on both frequency and transitional probabilities (forward and backward)
of syllable sequences, such as through mutual information-based clustering
(Swingley, 2005). Given that these accounts are primarily driven by frequency
information, future comparisons to CLASSIC-UB are important for support-
ing our conclusion that phonological overlap between sequences plays a role
in the segmentation process in addition to frequency. Such comparisons would
also be important because one influence does not exclude the other. As we
argued above, CLASSIC-UB’s encoding efficiency uniquely increased when
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items became connected to others, that is, the more opportunities to chunk
sublexical items the faster lexical representations were formed. However,
once CLASSIC-UB has extracted a word representation from the input, it
could further benefit from tracking its frequency in the input (e.g., see Jones,
Justice, et al., 2020, for how a frequency-tracking mechanism might improve
CLASSIC’s performance).

Moreover, it is highly likely that early naturalistic segmentation involves
the use of a combination of cues. Indeed, the results of this study indicate
that chunking alone might not be enough to discover items that are very
long (Figure 3), occur very infrequently (Figure 4), receive no facilitation
from word neighbors (Figure 5), and are made up of improbable sequences
of sounds (Figure 6). This suggests that CLASSIC-UB might need to have
access to additional cues to word boundary to be able to account for children’s
ability to learn these words. We know that infants use a wide range of cues
when segmenting speech such as prosodic salience of phrase edges (Gout
et al., 2004), alternative ways to pronounce specific phonemes (i.e., allophonic
variation; Hohne & Jusczyk, 1994), stress patterns (Jusczyk et al., 1999),
degree of coarticulation of speech sounds (Johnson & Jusczyk, 2001), and
others. Such cues could be considered in future work.

An alternative (and nonmutually exclusive) possibility is that long, infre-
quent items with few neighbors might be learned via generalization of lin-
guistic structures at different levels, including the syntactic level (Lippeveld &
Oshima-Takane, 2020). For example, in Abend et al.’s (2017) study, an ideal
Bayesian learner performed one-shot learning (i.e., formation of new word rep-
resentations from a single exposure) by leveraging the mapping of words to
their syntactic categories. Examining the role of syntactic categories would be
important in future work as infants’ development of grammatical knowledge
appears to start in parallel with the acquisition of phonology and the lexicon
(e.g., Marino et al., 2020).

Aside from our focus on a single word segmentation cue, another limita-
tion is that we did not consider the models’ ability to capture the role of addi-
tional variables in word segmentation and learning. For example, Swingley and
Humphrey (2018) showed that word concreteness, word frequency in isolation
(i.e., frequency with which a word occurs in a single-word utterance), and syn-
tactic category predict word learning at 12 and 15 months of age. These predic-
tors could be included in the statistical models of age of acquisition/production
alongside our word-level predictors to see how they moderate models’ accu-
racy (i.e., number of correct word segmentations). Alternatively, our word-
level evaluation measure could be extended to examine whether segmentation
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models can capture the distributions of these additional word-level features in
children’s vocabularies. We would expect models to better capture characteris-
tics to which they are sensitive, for example, in the sense that chunking models
would show sensitivity to word frequency in isolation (Kurumada et al., 2013).

Moreover, including these additional variables would be important because
they differently impacted word comprehension and production in Swingley and
Humphrey’s (2018) study; word concreteness only predicted word comprehen-
sion, and the effect of word frequency in isolation was moderated by syntactic
category type only in word comprehension. Although we have highlighted
limitations in using comprehension measures to investigate how well segmen-
tation models perform, methods that look at comprehension and production
should be considered complementary. Comparing comprehension and produc-
tion would also allow researchers to test the extent to which CLASSIC-UB
captures processes that are uniquely involved in production (such as recall and
articulation).

We would also like to highlight limitations deriving from the use of
phoneme-based input adopted in our study. The models did not have to deal
with the complex problem of gradually abstracting phonological categories.
Under an early phonetic learning approach (e.g., Werker, 2018), infants have
to learn the relations between different realizations of phonemes based on con-
textual variation or lexical contrast (e.g., aspirated stops and unreleased stops
are allophones of the phoneme /t/). Addressing this limitation in future work is
important for increasing the developmental plausibility of the investigations.
Alternatively, under more recent approaches, the goal of infant speech percep-
tion may not be to learn discrete phonetic categories but instead be to represent
continuous dimensions of raw speech (e.g., spectral energy) that are relevant
to the native language (i.e., perceptual space learning; Feldman et al., 2021;
McMurray, 2022). This implies that future work would need to consider more
gradient units of speech perception. For example, recent work by Schatz et al.
(2021) showed that a distributional learner can learn to discriminate phonetic
contrasts by clustering auditory features into categories that are significantly
smaller and more variable than traditional phonetic categories. Finally, we ac-
knowledge that the early phonetic learning approach used in our work was also
in contrast to other accounts that do not assume phonemes as basic units of
perception, for example, work that has argued for gradient units dependent on
the temporal unfolding of speech (e.g., Browman & Goldstein, 1992; Bybee,
2001; Mowrey & Pagliuca, 1995; Port & Leary, 2005) or others that have ar-
gued for features or morphophonemic forms (e.g., Chomsky & Halle, 1965;
Postal, 1968).
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Conclusion

Our goal in this study was to test whether a chunking-based mechanism that has
previously been successful in capturing early vocabulary learning might play a
significant role in infant word segmentation. We then constructed CLASSIC-
UB, which forms chunks of phonological and utterance-boundary material.
Our simulations make three important contributions: They offer proof that
(a) utterance boundaries exist and carry useful information for word seg-
mentation, (b) age of production and word-level measures can sensibly be
used to evaluate model performance, and (c) CLASSIC can be augmented
to form the segmentation model CLASSIC-UB, consistent with the hypoth-
esis that chunking might be an important mechanism in early naturalistic word
segmentation.

Final revised version accepted 9 December 2022
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Notes

1 For ease of exposition, the example uses IPA phonetic transcription. However, in
our simulations, we used a transcription based on the CMU Pronouncing
Dictionary (Lenzo, 2007; see an example in Figure 1).

2 However, CLASSIC’s encoding does not allow partial activation of chunks unlike in
Baayen et al.’s (2011) study.

3 Interestingly, when Larsen et al.’s (2017) measure was used, transitional probability
models performed better than chunking models despite their discovering fewer
words in the input as we mentioned above. For example, a transitional probability
model explained 19% of variance in age of acquisition (the highest performance in
the study), while the chunking model PUDDLE explained only 7% (Larsen et al.,
2017).

4 The CDI words and gestures includes 373 phonological words (not considering
homophone duplicates) typically acquired by infants between 8 and 18 months of
age. Our final sample contained 330 words after filtering for those CDI words
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present in the child-directed input that the segmentation models received (i.e., CDI
words that the models had the opportunity to learn).

5 A discussion about the effect of sample size reduction when using the age of
acquisition measure from the CDI can be found in the file CDI_addendum at the
project’s OSF page (https://doi.org/10.17605/osf.io/kbnep).

6 Adjusted R2 estimates cannot typically be directly compared to R2 estimates.
However, because of our large sample size, adjusted R2 and R2 estimates and
confidence intervals were identical, allowing us to compare our adjusted R2

estimates to Larsen et al.’s (2017) R2 estimates. In fact, as sample size increases
expected R2 estimates become less biased and approach adjusted R2 unbiased
estimates of the population explained variance (Karch, 2020).
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