
J. Math. Pures Appl. 170 (2023) 96–135
Contents lists available at ScienceDirect

Journal de Mathématiques Pures et Appliquées

journal homepage: www.elsevier.com/locate/matpur

Spectral analysis and domain truncation for Maxwell’s equations

S. Bögli a, F. Ferraresso b, M. Marletta b,∗, C. Tretter c

a Department of Mathematical Sciences, Durham University, Upper Mountjoy, South Road, Durham, DH1 
3LE, UK
b School of Mathematics, Cardiff University, Abacws, Senghennydd Road, Cathays, Cardiff, CF24 4AG, 
UK
c Mathematisches Institut, Universität Bern, Sidlerstrasse 5, Bern, 3012, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 February 2022
Available online 16 December 2022

MSC:
35Q61
35P05
35P15
47A10
47A58

Keywords:
Maxwell equations
Eigenvalue bounds
Resolvent estimate
Essential spectrum
Domain truncation
Spectral approximation

We analyse how the spectrum of the anisotropic Maxwell system with bounded 
conductivity σ on a Lipschitz domain Ω is approximated by domain truncation. 
First we prove a new non-convex enclosure for the spectrum of the Maxwell system, 
with weak assumptions on the geometry of Ω and none on the behaviour of the 
coefficients at infinity. We also establish a simple criterion for non-accumulation 
of eigenvalues at iR as well as resolvent estimates. For asymptotically constant 
coefficients, we describe the essential spectrum and show that spectral pollution 
may occur only in the essential numerical range We(L∞) ⊂ R of the quadratic 
pencil L∞(ω) = μ−1

∞ curl2 −ω2ε∞, acting on divergence-free vector fields. Further, 
every isolated spectral point of the Maxwell system lying outside We(L∞) and 
outside the part of the essential spectrum on iR is approximated by spectral points 
of the Maxwell system on the truncated domains. Our analysis is based on two 
new abstract results on the (limiting) essential spectrum of polynomial pencils and 
triangular block operator matrices, which are of general interest. We believe our 
strategy of proof could be used to establish domain truncation spectral exactness 
for more general classes of non-self-adjoint differential operators and systems with 
non-constant coefficients.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r é s u m é

Nous analysons l’approximation du spectre du système de Maxwell anisotrope à 
conductivité bornée σ sur un domaine lipschitzien Ω, par troncature de domaine. 
Nous démontrons d’abord une nouvelle envelope non convexe pour le spectre 
du système de Maxwell, avec des hypothèses faibles sur la géométrie de Ω et 
sans hypothèses sur le comportement des coefficients à l’infini. Nous établissons 
également un critère simple de non-accumulation des valeurs propres vers l’axe 
iR ainsi que des estimés du résolvant. Pour des coefficients asymptotiquement 
constants, nous décrivons le spectre essentiel et montrons que la pollution spectrale 
ne peut se produire que dans l’image numérique essentielle We(L∞) ⊂ R du faisceau 
quadratique L∞(ω) = μ−1

∞ curl2 −ω2ε∞, agissant sur des champs vectoriels sans 
divergence. De plus, chaque point spectral isolé du système de Maxwell situé à 
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l’extérieur de We(L∞) et à l’extérieur de la partie du spectre essentiel sur iR
est approximé par des points spectraux du système de Maxwell sur les domaines 
tronqués. Notre analyse est basée sur deux nouveaux résultats abstraits sur le 
spectre essentiel (limitant) des faisceaux polynomiaux et des matrices triangulaires 
par blocs d’opérateurs, qui sont d’intérêt général. Nous croyons que notre stratégie 
de démonstration pourrait être utilisée pour établir l’exactitude spectrale de la 
troncature de domaine pour des classes plus générales d’opérateurs différentiels non 
auto-adjoints et de systèmes à coefficients non constants.
© 2022 The Author(s). Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a possibly unbounded domain Ω ⊂ R3 with Lipschitz boundary, and an increasing sequence of 
bounded Lipschitz domains Ωn ⊂ Ω exhausting Ω, we are interested in the spectral properties of the 
anisotropic Maxwell system

−iσE + i curlH = ωεE

−i curlE = ωμH
in Ω, ν ×E = 0 on ∂Ω, (1.1)

and in its spectral approximation via the sequence of problems

−iσEn + i curlHn = ωεEn

−i curlEn = ωμHn

in Ωn, ν ×En = 0 on ∂Ωn, n ∈ N. (1.2)

Here ω is the spectral parameter, ε the electric permittivity, μ the magnetic permeability and σ the con-
ductivity; ν is the outward unit normal vector to the boundary. We allow the coefficients ε, μ, σ to be 
non-constant and symmetric real-tensor-valued, bounded on Ω with non-negative matrix values; for some re-
sults, e.g. involving the essential spectrum, we assume ε = ε∞ id, μ = μ∞ id and σ = 0 at infinity.

We denote by V (·) and Vn(·) the operator pencils associated with problem (1.1) and (1.2) in L2(Ω, C3) ⊕
L2(Ω, C3) and L2(Ωn, C3) ⊕ L2(Ωn, C3), respectively, given by the same matrix differential expression

V (ω) =
(

−iσ i curl
−i curl0 0

)
− ω

(
ε 0
0 μ

)
, ω ∈ C, (1.3)

on their respective domains which are independent of ω, see (2.4) below. Here curl0 indicates that curl is 
considered with the boundary condition in (1.1).

An important feature of our Maxwell systems is that the conductivity σ is assumed to be non-trivial, 
making the problem dissipative rather than self-adjoint, see e.g. [1–4]. Furthermore, we avoid any hypotheses 
on the permeability, permittivity and conductivity, or upon the geometry, which would allow the use of TE-
and TM- mode reductions to second order operators of Schrödinger or conductivity type. This lack of 
simplifying hypotheses introduces significant additional hurdles in the analysis compared to the self-adjoint 
case, some of which were already apparent in the paper [4] on the essential spectrum (see also [5] for bounded 
domains). The non-convexity of the essential spectrum, consisting of a part which is purely real and a part 
which is purely imaginary, might be expected to lead to much more spectral pollution.

In the self-adjoint case, this phenomenon is well known when variational approximation methods are 
used, see e.g. [6]: following discretisation, the spectral gaps may fill up with eigenvalues of the discretised 
problem which are so closely spaced that it may be impossible to distinguish the spectral bands from 
the spectral gaps. For finite element approximations to Maxwell systems on bounded domains, this may 
be avoided by the use of appropriate conforming elements, see [7]. The study of which finite element bases 
pollute for a given class of problems has been taken up by many authors: see, e.g. [8] for self-adjoint Maxwell 
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systems on bounded, convex domains; [9] for an application to Maxwell resonances; and [10] for self-adjoint 
Dirac and Schrödinger equations. Unfortunately, in our non-self-adjoint context, elegant techniques such as 
quadratic relative spectrum [11] or residual-minimisation algorithms [12,13] are not available. For Maxwell 
systems on infinite domains with coefficients which are constant outside a compact set, one may also use 
domain decomposition and boundary integral techniques. These approaches are extensively researched, 
see e.g. [14–16]; they result in bounded-domain problems with non-local boundary conditions depending 
analytically upon the spectral parameter, presenting a whole new set of challenges, particularly in the 
non-selfadjoint case.

For particular differential operators on infinite domains or with singularities, spectral pollution caused 
by domain truncation is also well studied. To avoid it one may, for instance, devise non-reflecting boundary 
conditions [17,18], or resort to the complex scaling method [19], which reappeared as the perfectly matched 
layer (PML) method in the computational literature [20]. In fact this technique replaces a self-adjoint 
problem by a non-self-adjoint one.

In our opinion the clearest way to think about these methods, and about dissipative barrier methods 
more generally, is that they replace the underlying operator by one whose essential numerical range [21]
does not contain the eigenvalues of interest. The results in [21] then give a unified explanation of why such 
methods work, within a wide operator-theoretic framework which also allows a uniform treatment of many 
of the finite element approximation schemes.

The Maxwell system, however, presents some additional challenges: for a start, (1.3) defines a pencil of 
operators, for which fewer results on spectral pollution are available. We generalise the concept of limiting 
essential spectrum, presented in [22], to sequences of pencils of closed operators Tn : C → C(H) with 
domains dom(Tn(λ)) independent of λ for each n ∈ N, by means of the formula

σe

(
(Tn)n∈N

)
:=

{
λ ∈ C : ∃ I ⊂ N, I infinite, ∃xn ∈ dom(Tn), ‖xn‖ = 1, n ∈ I,

with xn ⇀ 0, ‖Tn(λ)xn‖ → 0
}
.

This generalisation is important because the best results on spectral pollution come not from considering 
the linear Maxwell pencil (1.3), but rather by eliminating the magnetic field H to obtain a quadratic pencil
L(·) whose numerical range is not convex. Another key ingredient is the operator matrix structure of the 
pencil L(·) induced by the Helmholtz decomposition.

Our main result, see Theorem 2.4, establishes a surprisingly small enclosure for the set of spectral pollution 
of the domain truncation method for (1.1), which is much smaller than the one given by the essential 
numerical range We(V ), a convex set enclosing the essential spectrum, see [21,23]. In fact, Theorem 2.4 goes 
beyond what can be achieved using essential numerical ranges, whether for pencils or operators: it relies on 
new results which we develop in Sections 6 and 8 on limiting essential spectra of sequences of polynomial 
operator pencils and operator matrices. To the best of our knowledge, the domain truncation results we 
present here for the Maxwell system in unbounded domains are new even in the self-adjoint setting.

Much of the proof of Theorem 2.4 relies on new, non-convex enclosures for the spectra of Maxwell 
problems, which we present in Theorem 2.1. These are valid for the original problem (1.1) on Ω, for all the 
truncated problems (1.2) on Ωn and, if they exist, for corresponding ‘limiting problems at ∞’. In particular, 
they provide what are, to our knowledge, the first enclosures for the essential spectrum if the coefficients do 
not have limits at ∞, and novel bounds for the non-real eigenvalues. The non-convexity of our enclosures 
allows them to be much tighter than bounds obtained from the numerical range, which is a horizontal strip 
below the real axis. In fact, apart from the imaginary axis, the new spectral enclosures are contained in a 
strip whose width is half that of the numerical range. They also provide an incredibly simple criterion for 
non-accumulation of the spectrum at iR, including non-accumulation at 0.

The paper is organised as follows. In Section 2 we present our main results, illustrate our new spectral 
enclosure and give some examples showing e.g. that the latter is sharp. Section 3 contains the proof of the 
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spectral enclosure theorem and some auxiliary results such as resolvent estimates. In Section 4 we study the 
relations between the spectra and essential spectra of the Maxwell pencil V (·) and the quadratic operator 
pencil L(·). This enables us to explicitly characterise the essential spectrum of the Maxwell pencil in terms 
of the asymptotic limits of the coefficients ε, μ and σ in Section 5. In Section 6 we prove abstract results 
on spectral pollution, limiting approximate point spectrum and limiting essential spectrum for polynomial 
operator pencils. In Section 7 we investigate the limiting essential spectrum of the Maxwell pencil V (·) via 
the associated quadratic operator pencil L(·). As a consequence, we prove absence of spectral pollution for 
domain truncation outside the union of two sets on the real and the imaginary axis, the essential numerical 
range of the self-adjoint limiting quadratic operator pencil L∞(·) on the real axis and the convex hull of 
the essential spectrum on the imaginary axis. Section 8 and the Appendix contain the abstract results 
on essential spectra for upper triangular operator matrices and computational details for the example in 
Section 2, respectively.

2. Main results and examples

As explained in the introduction, we are interested in domain truncation methods for the anisotropic 
Maxwell system (1.1). We assume that the coefficients ε, μ and σ are non-negative symmetric matrix valued 
functions in L∞(Ω, R3×3) such that, for some constants εmin, εmax, μmin, μmax, σmin, σmax,

0 < εmin ≤ η · εη ≤ εmax,

0 < μmin ≤ η · μη ≤ μmax,

0 ≤ σmin ≤ η · ση ≤ σmax,

η ∈ R3, |η| = 1. (2.1)

The magnetic field H and electric field E lie respectively in the function spaces

H(curl,Ω) := {u ∈ L2(Ω)3 : curlu ∈ L2(Ω)3},

H0(curl,Ω) := {u ∈ H(curl,Ω) : ν × u|∂Ω = 0},

with the canonical norm ‖u‖H(curl,Ω) := (‖u‖2 + ‖curlu‖2)1/2. Unless stated otherwise, our function spaces 
consist of complex-valued functions and so we write, for example, L2(Ω) = L2(Ω, C) for short.

We associate two operators with the symmetric differential expression curl in L2(Ω)3, first, the operator 
curl on its maximal domain dom curl = H(curl, Ω) and, secondly, the adjoint curl0 = curl∗ of the operator 
curl, given by curl on the domain dom curl0 = H0(curl, Ω).

We now recall the definitions of other function spaces used in the sequel. The homogeneous Sobolev spaces 
Ḣ1

0 (Ω) and Ḣ1(Ω) are defined as the completions of the Schwartz spaces D(Ω) and D(Ω), respectively, 
with respect to the seminorm ‖u‖Ḣ1(Ω) := ‖∇u‖L2(Ω). These spaces are in general strictly bigger than 
the usual Sobolev spaces H1

0 (Ω) and H1(Ω) if Ω does not have finite measure or if |Ω| < ∞ but fails to 
have quasi-resolved boundary in the sense of [24, Sect. 4.3, p. 148-150] (note that Lipschitz domains have 
quasi-resolved boundary).

The spaces ∇Ḣ1
0 (Ω) and ∇Ḣ1(Ω) are the images of Ḣ1

0 (Ω) and Ḣ1(Ω), respectively, under the gradient. 
Further, we define

H(div,Ω) := {u ∈ L2(Ω)3 : div u ∈ L2(Ω)}, (2.2)

H(div 0,Ω) := {u ∈ L2(Ω)3 : div u = 0 in Ω}. (2.3)

Here we equip the space H(div, Ω) with the canonical norm ‖u‖H(div,Ω) := (‖u‖2 + ‖div u‖2)1/2 and 
H(div 0, Ω) is considered as a closed subspace of L2(Ω)3 with the L2-norm which coincides with ‖ · ‖H(div,Ω)
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on H(div 0, Ω). Finally, we equip the space H(curl, Ω) ∩H(div, Ω) with the norm ‖u‖H(curl,Ω)∩H(div,Ω) :=
‖u‖H(curl,Ω) + ‖u‖H(div,Ω).

We are now able to state our first new result, which yields non-convex spectral enclosures for dissipative 
Maxwell systems. This enclosure yields the first bounds for both the essential spectrum and the non-real 
eigenvalues.

Theorem 2.1. The Maxwell operator pencil in L2(Ω)3 ⊕ L2(Ω)3 given by

V (ω) :=
(

−iσ i curl
−i curl0 0

)
− ω

(
ε 0
0 μ

)
, dom(V (ω)) := H0(curl,Ω) ⊕H(curl,Ω), (2.4)

for ω ∈ C satisfies the spectral enclosure

σ(V ) ⊂ i
[
− σmax

εmin
, 0

]
∪
{
ω ∈ C \ iR : Imω ∈

[
− 1

2
σmax

εmin
,−1

2
σmin

εmax

]
,

(Reω)2 − 3(Imω)2 + 2σmax

εmin
| Imω| ≥ λΩ

min
εmaxμmax

}
where λΩ

min := min σ(curl curl0 |H(div 0,Ω)) ≥ 0. In particular, if λΩ
min > 0, then

σ(V ) ∩
((

−
( λΩ

min
εmaxμmax

)1/2
, 0

)
∪
(
0,

( λΩ
min

εmaxμmax

)1/2))
= ∅, (2.5)

and if λΩ
min > 1

3
σ2
maxεmaxμmax

ε2min
, then σ(V ) ∩ iR ⊂ i

[
− σmax

εmin
, 0

]
is isolated from σ(V ) \ iR.

Remark 2.2. The enclosure in Theorem 2.1 becomes larger when the domain Ω does, provided we choose 
the optimal values εΩ

min, μΩ
min, σΩ

min and εΩ
max, μΩ

max, σΩ
max for Ω as the bounds in (2.1). In this case, εΩ

min, 
μΩ

min, σΩ
min and λΩ

min are decreasing with Ω, while εΩ
max, μΩ

max, σΩ
max are increasing. The threshold λΩ

min may 
be strictly positive, e.g. for a problem on a waveguide such as in Example 2.6 below, or on certain quasi-
cylindrical domains (cf. [25, Sect. X.6]), while λΩ

min = 0 in any domain for which a Poincaré inequality does 
not hold.

The possible different shapes of the above non-convex spectral enclosure are illustrated in Fig. 1 below, 
see Remark 3.1 for details. While in all cases accumulation of spectrum at iR is excluded at the complex 
interval i

[
− σmax

εmin
, −1

2
σmax
εmin

]
, accumulation is also excluded successively i) near 0, ii) near −i12

σmax
εmin

and iii) 
everywhere at iR at the following thresholds for λΩ

min,

i) λΩ
min > 0, ii) λΩ

min >
1
4
σ2

maxεmaxμmax

ε2
min

, iii) λΩ
min >

1
3
σ2

maxεmaxμmax

ε2
min

. (2.6)

The proof of Theorem 2.1 is given in Section 3.
For non-self-adjoint problems, it is crucial not only to establish spectral enclosures, but also resolvent 

estimates. The resolvent bounds below which we prove in Section 3 also apply in the cut strip {z ∈ C \ iR :
−σmax

εmin
≤ Im z < −1

2
σmax
εmin

} inside of the closure of the numerical range of the Maxwell pencil.

Theorem 2.3. For ω ∈ {z ∈ C \ iR : Im z < −1
2
σmax
εmin

}, we have

‖V (ω)−1‖ ≤ 1
min{εmin, μmin}

1
| Imω| − 1 σmax

(
1 +

(1
2
σmax
εmin

)2

(Reω)2

)
,

2 εmin
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Fig. 1. Spectral enclosure in Theorem 2.1 (yellow) in cases i) (top), ii) (middle), iii) (bottom) of (2.6) for σmin = 0; the dashed 
lines are the boundary curves (Reω)2 − 3(Imω)2 + 2σmax

εmin
| Imω| = λΩ

min
εmaxμmax

. (For interpretation of the colours in the figure(s), the 
reader is referred to the web version of this article.)

and hence, for ω ∈ {z ∈ C : Im z < −σmax
εmin

},

‖V (ω)−1‖ ≤ 1
min{εmin, μmin}

min
{

1
| Imω| − 1

2
σmax
εmin

(
1 +

(1
2
σmax
εmin

)2

(Reω)2

)
,

1
| Imω| − σmax

εmin

}
.

Note that the last resolvent bound in Theorem 2.3 follows since in the half-plane {z ∈ C : Im z < −σmax
εmin

}
also the classical resolvent bound in terms of the numerical range of V (·) applies (see Fig. 2).
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Fig. 2. Level curves of the resolvent norm bound in Theorem 2.3 for the case εmin = μmin = 1, σmax = 2, also for regions inside the 
numerical range W (V ) = {z ∈ C : Im z ∈ [−2, 0]} of the Maxwell pencil.

The next group of new results concerns approximations of the Maxwell pencil. Since Ω is a Lipschitz 
domain, we may assume that there exists a strictly increasing sequence1 of bounded Lipschitz domains 
(Ωn)n∈N such that 

⋃
n∈N Ωn = Ω.

It is clear that if Ω = R3, or Ω has smooth boundary, we may choose Ωn to be smooth domains for 
every n ∈ N. We note that sequences of domains (Ωn)n∈N as described above can always be constructed 
by setting Ωn = Ω ∩B(0, n), n ∈ N.

Define Vn(·) to be the Maxwell pencil in L2(Ωn)3 ⊕ L2(Ωn)3 with domain

dom(Vn(ω)) = H0(curl,Ωn) ⊕H(curl,Ωn), ω ∈ C, n ∈ N,

and the set of spectral pollution for the domain truncation method (Vn)n∈N as

σpoll((Vn)n∈N) := {ω ∈ C : ω ∈ 
(V ),∃ωn ∈ σ(Vn) : ωn → ω}. (2.7)

For approximations of an abstract linear pencil A −λB, λ ∈ C, spectral pollution for the domain truncation 
method was localised inside its essential numerical range in [23, Thm. 3.5]. For the Maxwell pencil V (·), it 
is not difficult to show that the essential numerical range We(V ) is contained in the closed horizontal strip 
{z ∈ C : −σmax

εmin
≤ Im z ≤ 0}.

Our second main result improves this enclosure substantially if we assume that the coefficients ε, μ, σ
have limits at ∞. It shows that, in fact, spectral pollution is confined to the real axis, with possible gaps 
on either side of 0.

Theorem 2.4. Suppose that Ω is an unbounded domain and that ε −ε∞ id, μ −μ∞ id and σ vanish at infinity 
for some ε∞, μ∞ > 0, i.e.

lim
R→∞

{
sup

‖x‖>R

max
(
‖ε(x) − ε∞ id ‖, ‖μ(x) − μ∞ id ‖, ‖σ(x)‖

)}
= 0. (2.8)

Let L∞ be the operator pencil in the subspace H(div 0, Ω) of L2(Ω)3 defined by

L∞(ω) := curlμ−1
∞ curl0 −ω2ε∞,

dom(L∞(ω)) := {E ∈ H0(curl,Ω)∩H(div 0,Ω) : curlE ∈ H(curl,Ω)},

1 We use N to denote the positive integers {1, 2, . . .} and N0 := N ∪ {0}.
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and let W(·) be the operator pencil in L2(Ω)3 defined by W(ω) := −ω(ωε + iσ), ω ∈ C. Then, with 
λΩ
e,min := min σe(curl curl0 |H(div 0,Ω)) ≥ 0,

σpoll
(
(Vn)n∈N

)
⊂ We(L∞) =

(
−∞,−

( λΩ
e,min

ε∞μ∞

)1/2 ]
∪
[( λΩ

e,min

ε∞μ∞

)1/2
,∞

)
⊆ R;

and for every isolated ω ∈ σp(V ) outside We(L∞) ∪ σe(P∇W(·)|∇Ḣ1
0 (Ω)), and hence outside We(L∞) ∪

i
[
− σmax

εmin
, 0

]
, there exists a sequence ωn ∈ σ(Vn), n ∈ N, such that ωn → ω as n → ∞.

The proof of Theorem 2.4 which relies on a combination of analytic and operator theoretic tools is given 
at the end of Section 7.

Remark 2.5. The enclosure for spectral pollution in Theorem 2.4 is a subset of the spectral enclosure in 
Theorem 2.1 on the real axis, see (2.5), since λΩ

e,min ≥ λΩ
min ≥ 0 and ε∞ ≤ εmax, μ∞ ≤ μmax.

Note that, depending on Ω, it may happen that λΩ
min > 0 or λΩ

e,min > λΩ
min ≥ 0; in the former case, both 

enclosures for the spectrum and spectral pollution have a gap on either side of 0, in the latter case, the 
enclosure for spectral pollution has a gap on either side of 0 and thus eigenvalues in these gaps are safe from 
spectral pollution.

As far as we know, Theorem 2.4 is new even in the self-adjoint case, see also Theorem 7.7. In the 
general case, it yields spectral exactness for every non-real, isolated eigenvalue of the Maxwell system and, 
if λΩ

e,min > 0, also for the real eigenvalues in the gaps of the essential spectrum to either side of 0.
The following examples illustrate our results on spectral enclosure, the essential spectrum and spectral 

pollution. The first example also provides an idea of the complex spectral structure that may arise even for 
rather simple Maxwell systems (1.1).

Example 2.6. We consider the semi-infinite cylinder Ω = (0, ∞) ×(0, L2) ×(0, L3) and suppose that ε = μ = id
everywhere, and σ = id if x1 ∈ (0, 1), else σ = 0, i.e. σ = χK id with K := (0, 1) × (0, L2) × (0, L3), so that 
the Maxwell pencil V (·) is non-self-adjoint with piecewise constant coefficients.

In the Appendix we show how Fourier expansion for E together with [4, Thm. 6], or Theorem 5.5 below, 
can be used to deduce that the essential spectrum of V in the infinite half-cylinder Ω coincides with the 
essential spectrum for the infinite cylinder R × (0, L2) × (0, L3) and hence satisfies

σe(V ) = (−∞,−π/L] ∪ [π/L,+∞) ∪ (−i{0, 1/2, 1}), L := max{L2, L3}. (2.9)

Now we truncate the domain to Ωn := (0, Xn) × (0, L2) × (0, L3), with Xn � 1 and let Vn(·) be the 
corresponding Maxwell pencil in (1.2). It turns out that ω ∈ C is an eigenvalue of Vn(·) if and only if, for 
some n = (n2, n3) ∈ N2

0 with |n| > 0,

αn(ω) coth(αn(ω)) + βn(ω) coth(βn(ω)(Xn − 1)) = 0, n ∈ N; (2.10)

the construction of the eigenfunctions is given in the appendix. Here

αn(ω) :=
√

π2n2
2/L

2
2 + π2n2

3/L
2
3 − ω(ω + i),

βn(ω) :=
√
π2n2

2/L
2
2 + π2n2

3/L
2
3 − ω2,

(2.11)

where the branch of the square root is taken with non-negative real part. Note that there are no square root 
singularities since z �→ z coth(z) is a meromorphic function.
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Fig. 3. Spectrum of V in Ω = (0, ∞) × (0, 1) × (0, 2). The essential spectrum is in red, the eigenvalues in blue. The yellow region is 
the enclosure in Theorem 2.1 for the eigenvalues away from iR and R.

Fig. 4. Eigenvalues of V in Ω50 = (0, 50) × (0, 1) × (0, 2), ε = μ = id, σ(x) = χ(0,1)(x1). The yellow area is the spectral enclosure 
given by Theorem 2.1. The picture below is a zoom in the area [0, 32π] + i[−0.1, 0].

A little change in the Fourier ansatz allows us to also compute the eigenvalues of the problem in the 
whole domain Ω = (0, ∞) × (0, L2) × (0, L3); the eigenvalue equation for ω ∈ σp(V ) becomes

αn(ω) coth(αn(ω)) + βn(ω) = 0, n = (n2, n3) ∈ N2
0 , |n| > 0, (2.12)

which is also obtained from (2.10) in the limit Xn → ∞.
The solutions to equations (2.12) and (2.10) can be plotted using a standard computational routine, 

see Figs. 3 and 4. There are many isolated eigenvalues in the region R × −i[0, 1/2] that seem to lie along 
determined curves, see Fig. 3. Let us give a brief idea of what these curves are. Provided that αn(ω) �= 0
and ω �= 0, we rewrite the eigenvalue equation (2.12) in the form

coth(αn(ω)) = −βn(ω)
αn(ω) = −

√
1 + iω

π2n2
2/L

2
2 + π2n2

3/L
2
3 − ω2 − iω .

We follow an eigenvalue branch (ωk)k which we write as ωk = μk+i(−1/2 +δk) with μk ∈ R and δk ∈ [0, 1/2]. 
We show that, if |μk| → ∞, then there exists a subsequence for which δk → 0 as k → ∞. Without loss 
of generality, let μk → ∞. We assume that lim infk→∞ δk > 0 and show that this leads to a contradic-
tion. Clearly,
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ωk(ωk + i) = (ωk + i/2)2 + 1/4 = μ2
k + 1/4 − δ2

k + i2μkδk;

note that the corresponding n for which ωk satisfies (2.12) may depend on k. If we abbreviate ck :=
π2n2

2/L
2
2 + π2n2

3/L
2
3 > 0, then

αn(ωk) =
√
ck − μ2

k − 1/4 + δ2
k − i2μkδk,

coth(αn(ωk)) = −
√

1 + 1/2 − δk + iμk

ck − μ2
k − 1/4 + δ2

k − i2μkδk
.

If |ck − μ2
k| � μk, then coth(αn(ωk)) → −1 as k → ∞ and

Reαn(ωk) ∼

⎧⎨⎩
√
ck − μ2

k if ck − μ2
k → ∞,

μkδk√
|ck−μ2

k|
if ck − μ2

k → −∞;

note that coth(αn(ωk)) → −1 requires Reαn(ωk) → −∞, but in both cases we have Reαn(ωk) > 0 asymp-
totically. It remains to consider the case |ck−μ2

k| = O(μk). By the assumption lim infk→∞ δk �= 0, there is a 
subsequence on which ck−μ2

k−1/4 +δ2
k− i2μkδk ∼ Cμk with ImC �= 0. Then coth(αn(ωk)) → −

√
1 + i/C. 

But Reαn(ωk) ∼ Re(
√
C)√μk → ±∞ implies that coth(αn(ωk)) → ±1. The obtained contradiction proves 

lim infk→∞ δk = 0.
For this example, we therefore see that the presence of the compactly supported conductivity generates 

infinitely many eigenvalues, both in unbounded and bounded domains. These eigenvalues are approxi-
mated without spectral pollution due to our result Theorem 2.4, since in this example We(L∞) and 
σe(P∇W(·)|∇Ḣ1

0 (Ω)) are subsets of the essential spectrum of V .
Moreover, one can verify that λΩ

min = π2/L2. This and the fact that the eigenvalues approach the line 
Imω = −1/2 as |x| → ∞ show that our spectral enclosure in Theorem 2.1 is sharp.

Example 2.7. In the case of zero conductivity the Maxwell pencil is self-adjoint. Taking the same domain 
Ω as in Example 2.6, but now with coefficients μ = id, σ = 0 and ε = (1 + δ) id with constant δ > 0 if 
x1 ∈ (0, 1), else ε = id, i.e. ε = (1 + δ χK) id with K as in Example 2.6, we lose the imaginary part of the 
essential spectrum from Example 2.6, leaving just

σe(V ) = (−∞,−π/L] ∪ {0} ∪ [π/L,+∞), L = max{L2, L3}. (2.13)

By calculations similar to those which led to equation (2.12), the eigenvalues are the real zeros of the set of 
analytic functions

ω �→ α̃n(ω) coth(α̃n(ω)) + βn(ω), n = (n2, n3) ∈ N2
0 , |n| > 0, (2.14)

in which now α̃n(ω) =
√

π2n2
2/L

2
2 + π2n2

3/L
2
3 − (1 + δ)ω2. Taking L2 = 1, L3 = 2 and δ = 10, we have 

σe(V ) = (−∞, −π/2] ∪{0} ∪ [π/2, +∞). Elementary numerics show that the gap (−π/2, π/2) contains four 
eigenvalues, given approximately by ±1.4622 (both simple) and ±1.5643 (both multiplicity 2). These eigen-
values can be approximated without pollution using a domain truncation method: this follows immediately 
from Theorem 2.4, by verifying that λΩ

e,min = π2/4 and since σe(P∇W(·)|∇Ḣ1
0 (Ω)) = {0} ⊂ σe(V ). It may 

also be seen from the fact that, just as in Example 2.6, the functions (2.14), whose zeros are the eigenvalues, 
are the locally uniform limits as n → ∞ of the functions

ω �→ α̃n(ω) coth(α̃n(ω)) + βn(ω) coth(βn(ω)(Xn − 1)),
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whose zeros are the eigenvalues for the truncated domains. Thus we have a total absence of spectral pollution 
in this self-adjoint example despite the fact that, by [21, Thm. 3.8], it has We(V ) = R.

3. Proofs of the spectral enclosure result and resolvent estimate

In this section we prove the spectral enclosure in Theorem 2.1 and the resolvent estimate in Theorem 2.3. 
We also show some auxiliary results that are used for the spectral pollution result.

Since ε and μ are bounded and uniformly positive, the linear Maxwell pencil V (·) in (2.4) admits the 
factorisation

V (ω) =
(
ε1/2 0
0 μ1/2

)
(A− ωI)

(
ε1/2 0
0 μ1/2

)
, (3.1)

in which

A :=
(

−iε− 1
2σε−

1
2 −iε− 1

2 curlμ−1/2

iμ−1/2curl0ε−
1
2 0

)
,

dom(A) := ε1/2H0(curl,Ω) ⊕ μ1/2H(curl,Ω).
(3.2)

Proof of Theorem 2.1. Since the matrix multiplication operators ε and μ are bounded and uniformly posi-
tive, V (ω) is bijective if and only if so is A − ω, and hence σ(V ) = σ(A). Observe that

A− ω =
(
−iε−1/2σε−1/2 − ω iε−1/2 curlμ−1/2

−iμ−1/2 curl0 ε−1/2 −ω

)
=:

(
−iQ B
B∗ 0

)
− ω; (3.3)

note that (μ−1/2 curl0 ε−1/2)∗ = ε−1/2 curlμ−1/2 since μ−1/2 is bounded and ε−1/2 is bounded with range 
equal to the whole space, see [26]. Since A is a bounded perturbation of the self-adjoint off-diagonal part of 
A, it is obvious that both the upper and lower half-plane contain at least one point of the resolvent set of 
A. Hence it suffices to prove the claimed enclosures for the approximate point spectrum σapp(A).

So let ω ∈ σapp(A). Then there exists a sequence ((fn, gn)t)n∈N ⊂ dom(B∗) ⊕dom(B), ‖fn‖2+‖gn‖2 = 1, 
with

(−iQ− ω)fn + Bgn =: hn → 0, n → ∞, (3.4)

B∗fn − ωgn =: kn → 0, n → ∞. (3.5)

If ω = 0, there is nothing to show. Hence we can suppose that ω �= 0. In this case fn �= 0 for sufficiently 
large n ∈ N since otherwise (3.5) would imply the contradiction gn → 0, n → ∞; hence, without loss of 
generality we can assume that fn �= 0, n ∈ N.

If we decompose gn = g1
n+g2

n with g1
n ∈ (kerB)⊥, g2

n ∈ kerB = (ranB∗)⊥, then we have ‖g1
n‖

2 +‖g2
n‖

2 =
‖gn‖2 ≤ 1, n ∈ N. Now we take the scalar products with g1

n and g2
n, respectively, in (3.5), to conclude that

〈B∗fn, g
1
n〉 − ω〈g1

n, g
1
n〉 = 〈kn, g1

n〉 → 0, n → ∞, (3.6)

−ω〈g2
n, g

2
n〉 = 〈kn, g2

n〉 → 0, n → ∞. (3.7)

Taking the scalar product with fn in (3.4), we arrive at

〈(−iQ− ω)fn, fn〉 + 〈Bg1
n, fn〉 = 〈hn, fn〉 → 0, n → ∞. (3.8)

If we subtract the real part of (3.8) from the real part of (3.6), it follows that
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−Reω‖g1
n‖

2 − Re〈(−iQ− ω)fn, fn〉 = Re
(
〈kn, g1

n〉 − 〈hn, fn〉
)
→ 0, n → ∞.

Since Q = ε−1/2σε−1/2 is a self-adjoint matrix multiplication operator, this implies

Reω
(
‖fn‖2 − ‖g1

n‖
2) → 0, n → ∞. (3.9)

If we add the imaginary parts of (3.6) and (3.8), we obtain

− Imω‖g1
n‖

2 + Im〈(−iQ− ω)fn, fn〉 = Im
(
〈kn, g1

n〉 + 〈hn, fn〉
)
→ 0, n → ∞,

and hence

(Imω)
(
‖g1

n‖
2 + ‖fn‖2) + 〈Qfn, fn〉 → 0, n → ∞. (3.10)

Since ‖fn‖2+‖g1
n‖

2+‖g2
n‖

2 = ‖fn‖2+‖gn‖2 = 1 and ‖g2
n‖

2 → 0, n → ∞, by (3.7), we have ‖fn‖2+‖g1
n‖

2 → 1, 
n → ∞; hence we can assume without loss of generality that ‖fn‖2 + ‖g1

n‖
2 ≥ c1 > 0 with c1 ∈ (0, 1].

Since ω �= 0, either (3.9) or (3.10) shows that fn → 0, n → ∞, implies the contradiction ‖g1
n‖ → 0, 

n → ∞. Hence, if ω �= 0, we can assume without loss of generality that ‖fn‖ ≥ c2 > 0 with c2 ∈ (0, 1]. Then 
(3.10) can be equivalently written as

‖fn‖2

‖g1
n‖

2 + ‖fn‖2︸ ︷︷ ︸
∈[0,1]

〈Qfn, fn〉
‖fn‖2︸ ︷︷ ︸
∈W (Q)

→ − Imω, n → ∞. (3.11)

Since Q is self-adjoint, its numerical range W (Q) := {〈Qf, f〉 : f ∈ L2(Ω)3, ‖f‖ = 1} satisfies W (Q) =
conv σ(Q) ⊂

[
0, σmax

εmin

]
and thus (3.11) implies

Imω ∈ −conv
(
W (Q) ∪ {0}

)
=

[
− σmax

εmin
, 0

]
,

which proves the claimed estimate on the imaginary axis.
Now suppose that ω ∈ C \ iR, i.e. Reω �= 0. Then (3.9) implies that

‖fn‖2 − ‖g1
n‖

2 → 0, n → ∞. (3.12)

Noting that 
(
‖fn‖2 +‖g1

n‖
2)−2‖fn‖2 = ‖g1

n‖
2−‖fn‖2 → 0, n → ∞ (due to (3.12)) and using this in (3.10), 

we obtain that

2 Imω‖fn‖2 + 〈Qfn, fn〉 → 0, n → ∞, (3.13)

and hence

−1
2
〈Qfn, fn〉
‖fn‖2︸ ︷︷ ︸
∈W (Q)

→ Imω, n → ∞.

This proves that

ω ∈ C \ iR =⇒ Imω ∈ −1
2W (Q) ⊂

[
− 1

2
σmax

εmin
,−1

2
σmin

εmax

]
. (3.14)
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In order to prove the second inequality for ω ∈ C \ iR, we use the reduced minimum modulus of a closed 
linear operator T , defined by

γ(T ) := inf
x∈domT

‖Tx‖
dist(x, kerT ) ,

see e.g. [27, Thm. IV.5.2, p. 231]. Note that γ(T ) > 0 if and only if ranT is closed; in this case γ(T ) = ‖T+‖−1

where T+ is the Moore-Penrose inverse of T , γ(T ) = γ(T ∗), see [28, Cor. IV.1.9], and, if T �≡ 0,

γ(T )2 = min
(
σ(T ∗T ) \ {0}

)
= min σ(T ∗T |dom(T∗T )∩(kerT )⊥), (3.15)

cf. [29] for the bounded case. In the unbounded case, T ∗T is self-adjoint and its dense domain dom(T ∗T ) is 
a core for T , see [27, Thm. V.3.24]. Hence

γ(T )2 = inf
x∈domT∩(kerT )⊥

‖Tx‖2

‖x‖2 = inf
x∈domT∗T∩(kerT )⊥

‖Tx‖2

‖x‖

= inf
x∈domT∗T∩(kerT )⊥

(T ∗Tx, x)
‖x‖2 = min σ(T ∗T |dom(T∗T )∩(kerT )⊥).

For B = iε−1/2 curlμ−1/2, we have domB = μ1/2H(curl, Ω), kerB = μ1/2 ker curl and thus

γ(B) = inf
x∈μ1/2H(curl,Ω)

‖ε−1/2 curlμ−1/2x‖
dist(x, μ1/2 ker curl)

= inf
u∈H(curl,Ω)

‖ε−1/2 curlu‖
dist(μ1/2u, μ1/2 ker curl)

≥ 1
εmax1/2 inf

u∈H(curl,Ω)

‖ curlu‖
dist(μ1/2u, μ1/2 ker curl)

≥ 1
εmax1/2μmax1/2 inf

u∈H(curl,Ω)

‖ curlu‖
dist(u, ker curl)

= 1
εmax1/2μmax1/2 γ(curl) = 1

εmax1/2μmax1/2 γ(curl0).

Here, we have used γ(T ) = γ(T ∗) to replace curl by curl0 at the last step. Also, in the second estimate, we 
have used the equality

dist
(
μ1/2u, μ1/2 ker curl

)
= inf

y∈ker curl

∥∥μ1/2u− μ1/2y
∥∥ ≤ μmax

1/2dist(u, ker curl).

If λΩ
min = 0, then ran curl0 is not closed and hence γ(curl0) = 0. If λΩ

min > 0, then ran curl0 is closed and 
thus (ker curl0)⊥ = ran curl ⊂ H(div 0, Ω). Hence, by (3.15), in both cases, it follows that

γ(B) ≥ 1
εmax1/2μmax1/2λ

Ω
min

1/2
. (3.16)

Now we can estimate

γ(B)2‖fn‖2 = γ(B)2‖g1
n‖

2 − γ(B)2
(
‖g1

n‖
2 − ‖fn‖2) ≤ ‖Bg1

n‖2 − γ(B)2
(
‖g1

n‖
2 − ‖fn‖2)

and further, since g2
n ∈ kerB and ‖fn‖ ≥ c2 because ω �= 0,

γ(B)2 ≤ ‖Bgn − (−iQ− ω)fn‖2

‖fn‖2 + ‖(−iQ− ω)fn‖2

‖fn‖2 − γ(B)2 ‖g
1
n‖

2 − ‖fn‖2

‖fn‖2 . (3.17)
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For the middle term on the right-hand side we have

‖(−iQ− ω)fn‖2

‖fn‖2 = ‖Qfn‖2

‖fn‖2 + 2 Imω
〈Qfn, fn〉
‖fn‖2 + |ω|2. (3.18)

Using that Q is self-adjoint, we can estimate

‖Qfn‖2

‖fn‖2 = 〈Qfn, Qfn〉
‖fn‖2 ≤ ‖Q‖〈Qfn, fn〉

‖fn‖2 , n ∈ N. (3.19)

Altogether, by (3.17), (3.18), (3.19) and since Imω ≤ 0 by (3.14), we arrive at

γ(B)2 ≤
(
‖Q‖ − 2| Imω|

) 〈Qfn, fn〉
‖fn‖2 + |ω|2 + ‖Bgn − (−iQ− ω)fn‖2

‖fn‖2 − γ(B)2 ‖g
1
n‖

2 − ‖fn‖2

‖fn‖2 .

If we use (3.13) and that by (3.4)and (3.12), the last two terms tend to 0, we obtain

γ(B)2 ≤
(
‖Q‖ − 2| Imω|

)
2| Imω| + |ω|2 = 2‖Q‖| Imω| − 3| Imω|2 + |Reω|2.

Now the remaining claimed inequality follows from ‖Q‖ = ‖ε−1/2σε−1/2‖ ≤ σmax
εmin

and (3.16). �
The following remark details the three different possible shapes of the spectral enclosure near the imagi-

nary axis and the corresponding thresholds of λΩ
min.

Remark 3.1. Theorem 2.1 shows that σ(V ) \ iR cannot approach σ(V ) ∩ iR ⊂ i
[
− σmax

εmin
, 0

]
in the lower half 

i
[
− σmax

εmin
, −1

2
σmax
εmin

]
and that there are three thresholds of λΩ

min for where σ(V ) \ iR may approach the upper 

half i
[
− 1

2
σmax
εmin

, 0
]
, see Fig. 1:

i) if λΩ
min > 0, then σ(V ) \ iR does not approach i

[
− 1

2
σmax
εmin

, 0
]

near 0;

ii) if λΩ
min >

σ2
maxεmaxμmax

4ε2min
, then σ(V ) \ iR does not approach i

[
− 1

2
σmax
εmin

, 0
]

near −i12
σmax
εmin

;

iii) if λΩ
min >

σ2
maxεmaxμmax

3ε2min
, then σ(V ) \ iR does not approach i

[
− 1

2
σmax
εmin

, 0
]

at all.

The following special case in Theorem 2.1 of constant matrix functions ε, σ, but still varying μ, is useful 
e.g. for ‘limiting problems at ∞’ if they exist.

Corollary 3.2. If the matrix functions ε and σ are constant multiples of the identity, ε ≡ ε∞ id > 0, 
σ ≡ σ∞ id ≥ 0, then εmin = εmax = ε∞, σmin = σmax = σ∞ and thus

σ(V ) ⊂ i
[
− σ∞

ε∞
, 0

]
∪
{
ω ∈ C \ iR : Imω = −1

2
σ∞
ε∞

, (Reω)2 + 1
4
σ2
∞

ε2
∞

≥ λΩ
min

ε∞μmax

}
;

in particular, σ(V ) ∩ iR ⊂ i
[
− σ∞

ε∞
, 0

]
is isolated from σ(V ) \ iR if λΩ

min > 1
4
σ∞μmax

ε∞
.

Next we prove Theorem 2.3 providing a resolvent norm estimate of V (·).

Proof of Theorem 2.3. Let ω ∈ C \ iR, Imω < −1
2
σmax
εmin

or ω ∈ iR, Imω < −σmax
εmin

. Then ω ∈ 
(V ) = 
(A)
by Theorem 2.1 and ‖V (ω)−1‖ ≤ 1

min{εmin,μmin}‖(A − ω)−1‖ due to the factorisation (3.1) where A is 
the operator matrix in (3.3). In order to estimate the resolvent of A, we continue to use the notation 
Q = ε−1/2σε−1/2, B = ε−1/2 curlμ−1/2 introduced in (3.3).
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qmax
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− qmax
2

−qmax

x

S

ϕ

ϕ

ϕ ϕ

γ

z

z + iqmax

ω

ϕ

Re

Im

Fig. 5. The geometry in the proof of Theorem 2.3: The blue line measures the distance of ω = x + iy to ∂S; since the lines meet at 
a right angle, the angle between the blue and the vertical dashed lines is also ϕ.

Since A is a self-adjoint operator perturbed by the bounded operator diag(−iQ, 0) and W (Q) ⊂ [0, qmax]
with qmax := σmax

εmin
, a numerical range argument for A yields the resolvent estimate ‖(A −ω)−1‖ ≤ 1

| Imω|−qmax

for all ω ∈ C, Imω < −qmax.
Now let ω = x +iy with x > 0, y < − qmax

2 ; the proof is analogous if x < 0. Let ϕ ∈ (0, π2 ) be the argument 
of x + i qmax

2 . Let B = diag(e−iϕ, eiϕ) in L2(Ω)3 ⊕L2(Ω)3, and let S := {z ∈ C : arg(z − γ) ∈ (−π + ϕ, −ϕ)}
be the open sector with vertex γ := x − iqmax/2 and semi-angle π2 − ϕ. Note that ω ∈ S.

We claim that S∩W (BA, B) = ∅, where W (BA, B) := {z ∈ C : 0 ∈ W (BA− zB)}. Then [23, Thm. 4.1 ii)]
implies S ⊂ 
(A) with

‖(A− z)−1‖ ≤ 1
cos(ϕ) dist(z, ∂S) , z ∈ S.

By means of Fig. 5, one can check that for z = ω we have dist(z, ∂S) = (|y| − qmax
2 ) cos(ϕ) and cos2(ϕ) =

x2/(x2 + ( qmax
2 )2), which implies

‖(A− ω)−1‖ ≤ 1
|y| − qmax

2

(
1 +

( qmax
2 )2

x2

)
.

To prove that S ∩W (BA, B) = ∅, assume that there exists z ∈ S ∩W (BA, B). This implies that there 
is a normalised sequence ((fn, gn)t)n∈N ⊂ dom(A) with 

〈
B(A − z)(fn, gn)t, (fn, gn)t

〉
→ 0 as n → ∞; in 

particular, the sequence also converges to 0 if we take imaginary parts. Let tn := ‖fn‖2 ∈ [0, 1]. Then one 
can write 〈Qfn, fn〉 = antn for some an ∈ W (Q) ⊂ [0, qmax]. We obtain

Im
(
tne−iϕ(ian + z) + (1 − tn)eiϕz

)
→ 0, n → ∞.

Note that we take convex linear combinations of points in e−iϕ(z + i[0, qmax]) and {eiϕz}. Using that z ∈ S, 
one can see that both of these compact sets are in the open lower complex half-plane, so no sequence 
of convex linear combinations of points therein can converge to the real line. This contradiction proves 
S ∩W (BA, B) = ∅. �
4. Spectral relations between V and L

In this section we establish the intimate relations between the spectra of the linear Maxwell pencil V (·)
in the product space L2(Ω, C3) ⊕ L2(Ω, C3) and of a quadratic operator pencil L in the first component 
L2(Ω, C3). They will be used later for our description of the essential spectrum and for our results on 
spectral pollution for the original Maxwell problem.
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The quadratic operator pencil L in L2(Ω)3 appears naturally in the matrix representation of the resolvent 
of V (·), see Theorem 4.5, and is defined by

L(ω) := curlμ−1curl0 − ω(ωε + iσ),

dom(L(ω)) := {E ∈ H0(curl,Ω) : μ−1 curlE ∈ H(curl,Ω)}.
(4.1)

For studying the relations between the Maxwell pencil V (·) and L we require some technical lemmas.

Lemma 4.1. In L2(Ω)3 we define the operators T0 := μ−1/2curl0, domT0 = H0(curl, Ω), and W(ω) :=
−ω(ωε + iσ), ω ∈ C. Then C∞

c (Ω)3 is a core of (T ∗
0 T0 + I)1/2, dom((T ∗

0 T0 + I)1/2) = H0(curl, Ω), and, for 
all ω ∈ C,

L(ω) = (T ∗
0 T0 + I)1/2

(
I + (T ∗

0 T0 + I)−1/2(W(ω) − I
)
(T ∗

0 T0 + I)−1/2
)

(T ∗
0 T0 + I)1/2;

further, for all t ≥ ε
−1/2
min , L(it) is boundedly invertible,∥∥∥(I + (T ∗

0 T0 + I)−1/2(W(it) − I
)
(T ∗

0 T0 + I)−1/2
)−1∥∥∥ ≤ 1,

‖L(it)−1‖ ≤ 1.
(4.2)

Proof. Since T ∗
0 T0 is self-adjoint and non-negative, the square-root (T ∗

0 T0 + I)1/2 ≥ I is self-adjoint, uni-
formly positive and boundedly invertible with

‖(T ∗
0 T0 + I)−1/2‖ ≤ 1 (4.3)

and, e.g. by [30, Prop. 3.1.9], dom((T ∗
0 T0 + I)1/2) = dom((T ∗

0 T0)1/2) = dom(|T0|) = domT0 = H0(curl, Ω). 
By the second representation theorem [27, Thm. VI.2.23], a subspace of L2(Ω)3 is a core of (T ∗

0 T0 + I)1/2
if and only if it is a core of the associated quadratic form

t[u, v] = 〈T0u, T0v〉 + 〈u, v〉, dom t = domT0 = H0(curl,Ω).

Since C∞
c (Ω)3 is a core of T0, the first claim follows. The second claim, i.e. the operator factorisation of 

L(ω), is obvious since W(ω) is bounded.
For all ω = it with t ≥ ε

−1/2
min , we have W(it) − I ≥ 0 and hence

I + (T ∗
0 T0 + I)−1/2(W(it) − I

)
(T ∗

0 T0 + I)−1/2 ≥ I, (4.4)

which implies the first estimate in (4.2); the latter and (4.3) yield the last estimate. �
Lemma 4.2. Let ω ∈ 
(L). Then curl0 L(ω)−1 is a bounded operator in L2(Ω)3 and L(ω)−1 curl, 
curl0 L(ω)−1 curl are closable operators with bounded closures in L2(Ω)3.

Proof. The operator curl0 L(ω)−1 is bounded in L2(Ω)3 since dom(L) ⊂ dom(curl0) = H0(curl, Ω) and L(ω)
is a closed operator. Since (L(ω)−1 curl)∗ = curl0 L(ω)−∗ is bounded by the same argument, L(ω)−1 curl has 
a bounded closure in L2(Ω)3. The boundedness of curl0 L(ω0)−1 curl for ω0 = it with t ≥ ε

−1/2
min follows from 

Lemma 4.1 using that curl0(T ∗
0 T0 + I)−1/2 and (T ∗

0 T0 + I)−1/2 curl are bounded. For a general ω ∈ 
(L)
the boundedness then follows from

curl0 L(ω)−1 curl = curl0 L(ω0)−1 curl + curl0 L(ω)−1(W(ω) −W(ω0))L(ω0)−1 curl

since W(ω) = −ω(ωε + iσ) is a bounded operator. �
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Remark 4.3. The claims in Lemma 4.2 continue to hold if we replace L(ω)−1 by (L(ω) +K)−1 for any bounded 
operator K in L2(Ω)3. In fact, if we choose t ≥ ε

−1/2
min (1 +‖K‖)1/2 in Lemma 4.1, then Re (W(it) +K− I) ≥

t2εminI + ReK − I ≥ (1 + ‖K‖)I − (I −ReK) ≥ 0. Hence the numerical range of the modified operator on 
the left-hand side of (4.4) satisfies

dist
(
0,W

(
I + (T ∗

0 T0 + I)−1/2(W(it) + K − I
)
(T ∗

0 T0 + I)−1/2)) ≥ 1

which implies the first estimate in (4.2) with W(it) replaced by W(it) + K. Now the proof of Lemma 4.2
can be completed if we note that W(ω) + K is still bounded.

Remark 4.4. The resolvent estimate in Lemma 4.1 for the quadratic operator pencil L can be made more 
precise and extended to the whole region 

{
z ∈ C : Im z /∈

[
0, −1

2
σmax
εmin

, 
]}

\ i
[
0, −σmax

εmin

]
, e.g. on i(0, ∞) by

‖L(it)−1‖ ≤ 1
t2εmin

, t ∈ (0,∞). (4.5)

Since we focus on the Maxwell pencil V (·) in this paper, we restrict ourselves to the properties in Lemmas 4.1
and 4.2 which we need in order to investigate absence of spectral pollution for V (·).

Theorem 4.5. The Maxwell pencil V (·) in (2.4) and the quadratic pencil L in (4.1) satisfy


(V ) \ {0} = 
(L) \ {0}, σ(V ) \ {0} = σ(L) \ {0}, (4.6)

and the resolvent of V (·) is given by

V (ω)−1 =
(

ωL(ω)−1 iL(ω)−1 curlμ−1

−iμ−1 curl0 L(ω)−1 ω−1(−μ−1 + μ−1curl0 L(ω)−1 curlμ−1)

)
(4.7)

for ω ∈ 
(V ). Moreover,

σp(V ) \ {0} = σp(L) \ {0}, σc(V ) \ {0} = σc(L) \ {0}, σr(V ) = σr(L) = ∅,

and σek(V ) = σek(L) and 0 ∈ σek(V ) for k = 1, 2, 3, 4.

Proof. Suppose that ω ∈ 
(L) \ {0}. Then, by Lemma 4.2, all entries in the operator matrix on the right-
hand side of (4.7) are bounded and it is easy to check that the latter is a two-sided inverse for V (ω). This 
proves ω ∈ 
(V ) \ {0}. Vice versa, let ω ∈ 
(V ) \ {0}. Then, for arbitrary f ∈ L2(Ω)3, there is a unique 
(u, v)t ∈ dom(V (ω)) = H0(curl, Ω) ⊕H(curl, Ω) such that V (ω)(u, v)t = (f, 0)t or, equivalently,

(−iσ − ωε)u + i curl v = f,

−i curl0 u− ωμv = 0.

Since μ is strictly positive and ω �= 0, we can solve the second equation for v to obtain v = −iω−1μ−1 curl0 u. 
Since v ∈ H(curl, Ω), the latter yields u ∈ domL(ω) and, inserted in the first equation,

ω−1L(ω)u =
(
− iσ − ωε + ω−1 curlμ−1 curl0

)
u = f.

Because f ∈ L2(Ω)3 and u was unique, it follows that ω ∈ 
(L) \ {0}.
If we set f = 0 in the above reasoning, it follows that dim kerV (ω) ≤ dim kerL(ω). Conversely, if 

u ∈ kerL(ω) and we set v := −iω−1μ−1 curl0 u, then the above relations show that (u, v)t ∈ kerV (ω). 
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Altogether this proves that dim kerV (ω) = dim kerL(ω) for ω �= 0 and hence, in particular, the identity for 
the point spectra.

The claim on the residual spectra follows from [25, Lemma III.5.4] since V (ω) and L(ω) are J-self-adjoint 
with respect to complex conjugation J in L2(Ω)3 ⊕ L2(Ω)3 and L2(Ω)3, respectively. Then σc(V ) \ {0} =
(σ(V ) \ σp(V )) \ {0} = (σ(L) \ σp(L)) \ {0} = σc(L) \ {0}.

Due to [25, Thm. IX.1.6], the J-self-adjointness also implies that all σek(V ), k = 1, 2, 3, 4, and all σek(L), 
k = 1, 2, 3, 4, coincide. The last claim is proved if we show that σek(V ) = σej(L) for any j, k ∈ {1, 2, 3, 4}. 
Here we show that σe2(V ) ⊃ σe2(L) and σe4(V ) ⊂ σe4(L). First we consider ω ∈ C \ {0}.

To show σe2(V ) ⊃ σe2(L), suppose that ω ∈ σe2(L) \ {0}. Then, by [25, Thm. IX.1.3] there ex-
ists a singular sequence (un)n∈N ⊂ domL(ω) of L(ω) in 0, i.e. ‖un‖ = 1, n ∈ N, un ⇀ 0 and 
L(ω)un → 0 for n → ∞. If we set vn := −iω−1μ−1 curl0 un, n ∈ N, then vn ∈ H(curl, Ω) and the 
sequence with elements wn := (un, vn)t/

√
‖un‖2 + ‖vn‖2 ∈ domV (ω) satisfies ‖wn‖ = 1, n ∈ N, and 

V (ω)wn = (ω−1L(ω)un, 0)t/
√

‖un‖2 + ‖vn‖2 → 0 for n → ∞. In addition, for any ω0 ∈ 
(L),

vn = −iω−1μ−1 curl0 L(ω0)−1L(ω0)un

= −iω−1μ−1 curl0 L(ω0)−1 (L(ω)un + (ω(ω + iσ) − ω0(ω0ε + iσ))un) ⇀ 0;

here we have used L(ω)un → 0, un ⇀ 0 and that curl0 L(ω0)−1 is bounded by Lemma 4.2. Now √
‖un‖2 + ‖vn‖2 ≥ ‖un‖ = 1 yields wn ⇀ 0. This proves ω ∈ σe2(L) \ {0}.
To show σe4(V ) ⊂ σe4(L), assume that ω /∈ σe4(L) \ {0}. Then, by [25, Thm. IX.1.4] there exists a 

compact operator K in L2(Ω)3 such that 0 ∈ 
(L(ω) +K). If we set K := diag(K, 0), then K is compact in 
L2(Ω)3⊕L2(Ω)3 and, using Remark 4.3, we conclude that the operator matrix obtained from the right-hand 
side of (4.7) by replacing L(ω)−1 by (L(ω) + K)−1 is bounded and a two-sided inverse for V (ω) + K and 
hence 0 ∈ 
(V (ω) + K). Now [25, Thm. IX.1.4] yields that 0 /∈ σe4(V (ω)), as required.

Finally, it remains to consider ω = 0. It is not difficult to see that V (0)(0, H)t = 0 for all H ∈ ker curl
and hence {0} ⊕∇Ḣ1

0 (Ω) ⊂ kerV (0). This proves 0 ∈ σe2(V ). Further, L(0) = curlμ−1 curl0 is self-adjoint 
with ∇Ḣ1

0 (Ω) ⊂ ker curl0 = kerL(0) and hence also 0 ∈ σe2(L). �
5. The essential spectrum of the Maxwell problem

In this section we determine the essential spectrum of V (·) via the essential spectrum of the quadratic 
operator pencil L. Here we assume that Ω is an infinite domain and that σ, μ, ε have limits 0, ε∞ id, μ∞ id
in the sense of (2.8) at infinity, as in Theorem 2.4; note that ε∞, μ∞ > 0 by assumption (2.1).

To this end, we work in the Helmholtz decomposition L2(Ω) = ∇Ḣ1
0 (Ω) ⊕H(div 0, Ω), see e.g. [4, Lemma 

11], and denote by Pker(div) the corresponding orthogonal projection from onto H(div 0, Ω). We begin with 
a general result which applies in a wider context.

Proposition 5.1. Let m : Ω → C3×3 be a tensor-valued function with

lim
R→∞

sup
‖x‖>R

‖m(x)‖ = 0. (5.1)

Then mPker(div) is compact from (H(curl, Ω), ‖·‖H(curl,Ω)) to (L2(Ω)3, ‖·‖L2(Ω)3).

Proof. For any δ > 0 we can write m = mc + mδ where mδ is a bounded multiplication operator with 
‖mδ‖ < δ and mc has compact support in some domain ΩR := Ω ∩ B(0, R) for sufficiently large R > 0. 
We show that mcPker(div) is compact for every δ > 0. Since ‖mPker(div) −mcPker(div)‖B(H(curl,Ω),L2(Ω)3) ≤ δ

vanishes as δ → 0, we deduce that mPker(div) is the norm limit of the compact operators mcPker(div) and 
hence compact.
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Let χR be a smooth cut-off function with χR = 1 on supp(mc) ⊂ ΩR and χ = 0 outside ΩR. Then there 
exists a constant CR > 0 such that, for all u ∈ H(curl, Ω),

‖(χRPker(div)u)|ΩR
‖H(curl,ΩR)∩H(div,ΩR) ≤ CR‖u‖H(curl,Ω),

where we use that div(χRPker(div)u) = ∇χR ·Pker(div)u and curl(χRPker(div)u) = ∇χR×Pker(div)u +χR curlu
since curlPker(div)u = curlu. The compactness of mcPker(div) follows from the compactness of the composi-
tion

mcPker(div)u = mcι(χRPker(div)u)|ΩR
;

here ι is the compact embedding of H0(curl,ΩR) ∩H(div, ΩR) in L2(ΩR)3, see [31]. �
Definition 5.2. We define quadratic pencils of closed operators acting in the Hilbert space H(div 0, Ω)
equipped with the L2(Ω)3-norm by

Lμ(ω) := curlμ−1 curl0 −ε∞ω2 id,
dom(Lμ(ω)) := {u ∈ H0(curl,Ω)∩H(div 0,Ω) : μ−1 curlu ∈ H(curl,Ω)},

ω ∈ C,

and

L∞(ω) := curlμ−1
∞ curl0 −ε∞ω2 id,

dom(L∞(ω)) := {u ∈ H0(curl,Ω)∩H(div 0,Ω) : curlu ∈ H(curl,Ω)},
ω ∈ C;

note that L∞ can be regarded as a special case of Lμ, namely when μ = μ∞ id.

Lemma 5.3. The following are true.

(i) The operator Lμ(ω)−1 curl is closable with bounded closure from L2(Ω)3 to H(div 0, Ω).
(ii) For ω = it with t ≥ ε

−1/2
min , the operator curl0 L∞(ω)−1 is bounded in H(div 0, Ω), and also as an 

operator from H(div 0, Ω) to H(curl, Ω) with

‖ curl0 L∞(ω)−1‖B(H(div 0,Ω),H(curl,Ω)) ≤
(

μ∞
ε∞|ω|2 + μ2

∞

)1/2

. (5.2)

Proof. The boundedness claims follow analogously as in Lemma 4.2, using that u ∈ H(div 0, Ω) satisfies 
‖u‖H(div,Ω) = ‖u‖. It remains to prove (5.2). Noting that ‖L∞(ω)−1‖ ≤ 1/(ε∞t2) ≤ 1/(ε∞|ω2|), we estimate, 
for u ∈ L2(Ω)3,

‖ curl0 L∞(ω)−1u‖2 = μ∞
〈
curlμ−1

∞ curl0 L∞(ω)−1u, L∞(ω)−1u
〉
|

= μ∞
〈
(I − ε∞t2L∞(ω)−1)u, L∞(ω)−1u

〉
≤ μ∞

〈
u, L∞(ω)−1u

〉
≤ μ∞

1
ε∞|ω|2 ‖u‖

2

and, since 0 ≤ I − ε∞t2L∞(ω)−1 ≤ I,

‖ curl curl0 L∞(ω)−1‖B(L2(Ω)3,L2(Ω)3) = μ∞ sup
u∈L2(Ω)3
‖u‖=1

〈
(I − ε∞t2L∞(ω)−1)u, u

〉
≤ μ∞.

Together, this implies the claimed resolvent norm bound. �
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Note that unless μ is differentiable, the intersection between the (operator) domains of the pencils Lμ, L∞
could be trivial. Nevertheless they have the same form domain, and the following result holds.

Proposition 5.4. If σ, ε and μ satisfy the limiting assumption (2.8) and Lμ, L∞ are as in Definition 5.2, 
then σek(Lμ) = σek(L∞) ⊂ R for k = 1, 2, 3, 4, 5, and hence

σek(Lμ) \ {0} =
((

− 1
(ε∞μ∞)1/2

σek(curl curl0)1/2
)
∪
( 1

(ε∞μ∞)1/2
σek(curl curl0)1/2

))
\ {0}.

Proof. Let ω ∈ C and set z := ε∞ω2. Then ω ∈ σek(Lμ) if and only if z ∈ σek(Cμ) and ω ∈ σek(L∞) if and 
only if z ∈ σek(C∞) where Cμ := curlμ−1 curl0 and C∞ := curlμ−1

∞ curl0 are self-adjoint in H(div 0, Ω). 
Thus it suffices to show that σek(Cμ) = σek(C∞) for some k ∈ {1, 2, 3, 4, 5}. Since the associated quadratic 
forms cμ and c∞ have the same domain, dom cμ = dom c∞ = H0(curl, Ω), the second resolvent identity 
takes the form

(Cμ − z)−1 − (C∞ − z)−1 =
(
curl0(Cμ − z)−1)∗(μ−1

∞ − μ−1) curl0(C∞ − z)−1 (5.3)

for z ∈ C \R. In fact, for arbitrary u, v ∈ L2(Ω)3 and z ∈ C \R, we can write〈(
(Cμ − z)−1 − (C∞ − z)−1)u, v〉 =

〈
(Cμ − z)−1u, v

〉
−

〈
u, (C∞ − z)−1v

〉
=

〈
(Cμ − z)−1u, (C∞ − z)(C∞ − z)−1v

〉
−

〈
(Cμ − z)(Cμ − z)−1u, (C∞ − z)−1v

〉
= (c∞ − cμ)

[
(Cμ − z)−1u, (C∞ − z)−1v

]
;

together with cμ = 〈μ−1 curl0 ·, curl0 ·〉 and analogously for c∞, the identity (5.3) follows. The first factor on 
the right-hand side of (5.3) is bounded since domCμ ⊂ dom curl0. By assumption (2.8), the tensor-valued 
function (μ−1−μ−1

∞ ) id satisfies condition (5.1) of Proposition 5.1 and thus the operator (μ−1−μ−1
∞ ) idPker div

is compact from H(curl, Ω) to H(div 0, Ω) ⊂ L2(Ω)3. By Lemma 5.3 (ii), curl0(C∞ − z)−1 = curl0 L∞(ω)−1

is bounded from H(div 0, Ω) to H(curl, Ω). Altogether, we see that

(μ−1
∞ − μ−1) curl0(C∞ − z)−1 = (μ−1

∞ − μ−1) idPker div curl0(C∞ − z)−1

is compact. Hence, by (5.3), the resolvent difference of Cμ and C∞ is compact and, by [25, Thm. IX.2.4], 
σek(Cμ) = σek(C∞) follows for all k = 1, 2, 3, 4, and for k = 5 since Cμ, C∞ are self-adjoint. �

Now we can characterise the essential spectrum of the Maxwell pencil V (·) and show that it lies on the 
real axis and on some bounded purely imaginary interval below 0.

Theorem 5.5. Suppose that σ, ε and μ satisfy the limiting assumption (2.8). Let P∇ := id−Pker div be 
the orthogonal projection from L2(Ω)3 = ∇Ḣ1

0 (Ω) ⊕ H(div 0, Ω) onto ∇Ḣ1
0 (Ω) and recall that W(ω) :=

−ω(ωε + iσ), ω ∈ C, in L2(Ω)3. Then

σek(L) = σek(L∞) ∪ σek(P∇W(·)|∇Ḣ1
0 (Ω)), k = 1, 2, 3, 4,

with σek(L∞) ⊂ R given in Proposition 5.4 and σek(P∇W(·)|∇Ḣ1
0 (Ω)) ⊂ i[−σmax

εmin
, 0].

Proof. Let ω ∈ C. By Proposition 5.1, M(ω) := (ω(ωε + iσ) − ω2ε∞)Pker(div) in L2(Ω)3 is curl0-compact 
and hence T0-compact with T0 = μ−1/2 curl0. Since L(ω) = T ∗

0 T0 + W(ω) where W(ω) = −ω(ωε + iσ), 
bounded sequences whose L(ω) graph norms are bounded have bounded T0 graph norms. Hence M(ω) is 
L(ω)-compact which yields σe(L(ω)) = σe(L(ω) + M(ω)).
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Since ∇Ḣ1
0 (Ω) ⊂ ker(curl0) = kerT0 and hence T0P∇ = P∇T ∗

0 = 0, ∇Ḣ1
0 (Ω) is a reducing subspace for 

T ∗
0 T0. Therefore the operator

T (ω) := L(ω) + M(ω) = T ∗
0 T0 − ω(ωε + iσ)(P∇ + Pker div) + (ω(ωε + iσ) − ω2ε∞)Pker(div)

= T ∗
0 T0 − ω(ωε + iσ)P∇ − ω2ε∞Pker(div) (5.4)

which is a bounded perturbation of T ∗
0 T0 admits an operator matrix representation with respect to the 

decomposition L2(Ω)3 = ∇Ḣ1
0 (Ω) ⊕H(div 0, Ω) given by

T (ω) =
(

P∇T (ω)|∇Ḣ1
0 (Ω) P∇T (ω)|H(div 0,Ω)

Pker divT (ω)|∇Ḣ1
0 (Ω) Pker divT (ω)|H(div 0,Ω)

)
=

(
P∇(−ω(ωε + iσ))|∇Ḣ1

0 (Ω) 0
Pker div(−ω(ωε + iσ))|∇Ḣ1

0 (Ω) Pker div(T ∗
0 T0 − ω2ε∞)|H(div 0,Ω)

)
=

(
P∇W(ω)|∇Ḣ1

0 (Ω) 0
Pker divW(ω)|∇Ḣ1

0 (Ω) Lμ(ω)

)
(5.5)

with domain dom(T (ω)) = ∇Ḣ1
0 (Ω) ⊕dom(Lμ(ω)). Apart from Lμ(ω), the other two matrix entries in T (ω)

are bounded and everywhere defined, and σe2(Lμ(ω)) = σ∗
e2(Lμ(ω)). Thus Theorem 8.1 in Section 8 below 

and Proposition 5.4 yield that

σe2(T (ω)) = σe2(Lμ(ω)) ∪ σe2(P∇W(ω)|∇Ḣ1
0 (Ω)) = σe2(L∞(ω)) ∪ σe2(P∇W(ω)|∇Ḣ1

0 (Ω))

and hence, since ω ∈ C was arbitrary,

σe2(L) = σe2(L + M) = σe2(T ) = σe2(L∞) ∪ σe2(P∇W(·)|∇Ḣ1
0 (Ω)).

Finally, the inclusion σek(P∇W(·)|∇Ḣ1
0 (Ω)) ⊂ i[−σmax

εmin
, 0] follows since the spectrum of P∇W(·)|∇Ḣ1

0 (Ω) is 
contained in the closure of its numerical range, and hence in the closure of the numerical range of W(·), 
which is a subset of i[−σmax

εmin
, 0]. �

Remark 5.6. Whenever the coefficients ε and σ are constant in a non-empty open set O, the corresponding 
value ω := −iσε is an eigenvalue of P∇W(·)|∇Ḣ1

0 (Ω) (and hence of L) of infinite multiplicity, since (ωε +
iσ)∇φ ≡ 0 for every smooth φ with support in O.

Remark 5.7. Theorem 5.5 generalises [4, Thm. 6] since we do not suppose [4, Ass. 14] on Ω, which requires 
the subspaces KN (Ω) of H(div 0, Ω) and KT (Ω) of H0(div 0, Ω) to be finite dimensional. If the latter holds, 
see [4, Prop. 15] for a list of sufficient conditions, then both Theorem 5.5 and [4, Thm. 6] apply and we 
obtain the interesting equality

σek

(
P∇W(·)|∇Ḣ1

0 (Ω)
)

= σek(div(W(·)∇)) k = 1, 2, 3, 4, (5.6)

where P∇W(ω)|∇Ḣ1
0 (Ω) is a bounded operator in L2(Ω; C3), while div(W(ω)∇) is defined as a bounded 

operator from Ḣ1
0 (Ω) to Ḣ−1(Ω) in [4]. In fact, (5.6) follows from the identity

σek(L∞) ∪ σek

(
P∇W(·)|∇Ḣ1

0 (Ω)
)

= σek(L) = σek

(
V 0

(·)

)
∪ σek(div(W(·)∇))

where V 0
(·) is the Maxwell pencil iV (·) with constant coefficients ε∞, μ∞ and σ ≡ 0 defined in [4, Thm. 6], 

by observing that σek

(
V 0

(·)

)
= {0} ∪ σek(L∞) ⊂ R, k = 1, 2, 3, 4, and that the sets in (5.6) lie on iR and 

both contain {0}.
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Note that, in concrete examples, identity (5.6) is useful to explicitly determine the purely imaginary part 
of the essential spectrum of the Maxwell pencil. In fact,

σek(div(W(·)∇)) = {ω ∈ C : 0 ∈ σek(div((ωε + iσ)∇))} ∪ {0}

= {iν ∈ iR : 0 ∈ σek(div((νε + σ)∇))} ∪ {0}.

Fredholm properties of operators div(a∇) with non-definite coefficients a also arise when studying Maxwell 
equations in dielectric media with sign-changing permittivity and/or magnetic permeability, see e.g. [32–34]
or [35,36] for relations to spectra of Neumann-Poincaré operators.

6. Abstract results for polynomial pencils

Before proceeding with the analysis of the spectral pollution for the domain truncation method applied 
to L we need some abstract results providing an enclosure for the set of spectral pollution of sequences of 
polynomial pencils.

Let H0 be a Hilbert space, H, Hn ⊂ H0, n ∈ N, be closed subspaces. Let P : H0 → H, Pn : H0 → Hn

be the corresponding orthogonal projections and assume that Pn → P strongly in H0, which we write as 
Pn

s→ P . For fixed M ∈ N, let Aj , j = 0, . . . , M , be densely defined operators in H and, for n ∈ N, let 
Aj,n, j = 0, . . . , M , be densely defined operators in Hn. We assume that Aj , j �= 0, are bounded and Aj,n, 
j �= 0, are uniformly bounded in n ∈ N; in particular, only A0 and A0,n may be unbounded.

In addition, we assume that there exists a ray eiγ(−∞, c) ⊂
⋂

n∈N 
(A0,n) ∩
(A0) with c ∈ R, γ ∈ (−π, π]
such that

lim
t∈eiγR,e−iγt→−∞

‖(A0 − t)−1‖ → 0, lim
t∈eiγR,e−iγt→−∞

sup
n∈N

‖(A0,n − t)−1‖ → 0. (6.1)

This assumption is satisfied e.g. if A0 and A0,n, n ∈ N, are m-accretive (then with γ = 0) or self-adjoint 
(then with γ = π

2 or −π
2 ). In the sequel we assume, without loss of generality, that γ = 0.

Consider the pencils of operators acting in H and Hn, respectively, given by

T (λ) :=
M∑
j=0

λjAj , domT (λ) := dom(A0) ⊂ H,

Tn(λ) :=
M∑
j=0

λjAj,n, domTn(λ) := dom(A0,n) ⊂ Hn, n ∈ N.

The boundedness of all higher order coefficient operators implies that all derivatives T (k)(λ), T (k)
n (λ), n ∈ N, 

k = 1, 2, . . . , M , are bounded operators and that

T ∗(λ) := T (λ)∗ =
M∑
j=0

λjA∗
j , domT ∗(λ) = domA∗

0,

T ∗
n(λ) := Tn(λ)∗ =

M∑
j=0

λjA∗
j,n, domT ∗

n(λ) = domA∗
0,n, n ∈ N.

We define the region of boundedness of the sequence (Tn)n∈N by

Δb((Tn)n∈N) :=
{
λ ∈ C : ∃n0 ∈ N with λ ∈ 
(Tn), n ≥ n0, sup ‖Tn(λ)−1‖ < ∞

}
;

n≥n0
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note that, for the case of monic linear operator pencils Tn(λ) := λ −A0,n, λ ∈ C, with unbounded A0,n, this 
notion coincides with the region of boundedness of the operator sequence (A0,n)n∈N , see [37, Def. 2.1 (iii)].

Lemma 6.1. i) Let λ ∈ Δb

(
(Tn)n∈N

)
with λ ∈ 
(Tn) for n ≥ nλ. Then there exist rλ, mλ > 0 such that 

Brλ(λ) ⊂ Δb

(
(Tn)n∈N

)
with

∀μ ∈ Brλ(λ) : μ ∈ 
(Tn), ‖Tn(μ)−1‖ ≤ mλ, n ≥ nλ.

ii) Let K ⊂ Δb

(
(Tn)n∈N

)
be a compact subset. Then there exist nK ∈ N, mK > 0 with

∀μ ∈ K : μ ∈ 
(Tn), ‖Tn(μ)−1‖ ≤ mK , n ≥ nK .

Proof. i) Let λ satisfy the assumptions and let n ≥ nλ. By a Neumann series argument, the operator

Tn(μ) =
(
I +

M∑
k=1

(μ− λ)k

k! T (k)
n (λ)Tn(λ)−1

)
Tn(λ), n ≥ n0,

is boundedly invertible if μ ∈ Brλ(λ) and rλ > 0 is so small that

cλ :=
M∑
k=1

rkλ
k! sup

n≥nλ

‖T (k)
n (λ)Tn(λ)−1‖ < 1.

Note that, for every k = 1, . . . , M , the operators T (k)
n (λ) =

∑M
j=1

j!
(j−k)!λ

j−kAj,n, are bounded uniformly in 
n ∈ N. We obtain that Brλ(λ) ⊂ 
(Tn) for every n ≥ nλ, with

‖Tn(μ)−1‖ ≤
supn≥nλ

‖Tn(λ)−1‖
1 − cλ

, μ ∈ Brλ(λ).

ii) By i), the compact set K can be covered by open disks (around each λ ∈ K) on which μ �→
supn≥nλ

‖Tn(μ)−1‖ is uniformly bounded. Since K is compact, there exists a finite covering of such disks. 
Now the claim is easy to see. �
Proposition 6.2. No spectral pollution occurs in Δb

(
(Tn)n∈N

)
.

Proof. Let λ ∈ Δb

(
(Tn)n∈N

)
. Lemma 6.1 i) implies that Brλ(λ) ⊂ 
(Tn) for n ≥ nλ, and so, in the limit 

n → ∞, points in σ(Tn) cannot accumulate at λ. �
Lemma 6.3. Assume that there exists λ0 ∈

⋂
n∈N 
(Tn) ∩ 
(T ) with

Tn(λ0)−1Pn
s→ T (λ0)−1P, n → ∞, (6.2)

and that Aj,nPn
s→ AjP for j = 1 . . . , M . Then for every λ ∈ Δb

(
(Tn)n∈N

)
∩ 
(T ),

Tn(λ)−1Pn
s→ T (λ)−1P, n → ∞.

Proof. Let λ ∈ Δb

(
(Tn)n∈N

)
∩ 
(T ). Define the bounded operators

S(λ) := T (λ) − T (λ0) =
M∑

(λj − λj
0)Aj ,
j=1
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Sn(λ) := Tn(λ) − Tn(λ0) =
M∑
j=1

(λj − λj
0)Aj,n, n ∈ N.

Assumption (6.1) together with the boundedness of the operators Aj,n, n ∈ N, j = 1, . . . , M , implies that, 
by a Neumann series argument, there exists t0 ∈ R such that (−∞, t0) is contained in the (operator) region 
of boundedness Δb ((Tn(λ0))n∈N), see [37, Def. 2.1 (iii)], and in 
(T (λ0)), with

lim
t∈R,t→−∞

‖(T (λ0) − t)−1‖ = 0, lim
t∈R,t→−∞

sup
n∈N

‖(Tn(λ0) − t)−1‖ = 0. (6.3)

Then (6.2) and [37, Prop. 2.16 i)] imply that, for t ∈ (−∞, t0),

(Tn(λ0) − t)−1Pn
s→ (T (λ0) − t)−1P, n → ∞.

By the assumptions, Sn(λ)Pn
s→ S(λ)P as n → ∞. This and (6.3) show that the perturbation result [37, 

Cor. 3.5], applies to T (λ) = T (λ0) +S(λ), Tn(λ) = Tn(λ0) +Sn(λ), n ∈ N, and yields that, for all sufficiently 
negative t ∈ (−∞, t0),

(Tn(λ) − t)−1Pn
s→ (T (λ) − t)−1P, n → ∞.

By the choice of λ we have 0 ∈ Δb ((Tn(λ))n∈N) ∩
(T (λ)), and hence another application of [37, Prop. 2.16 i)]
implies the claim. �
Proposition 6.4. Suppose that the assumptions of Lemma 6.3 are satisfied. Then, for each λ ∈ σp(T ) such 
that for some ε > 0 we have

Bε(λ)\{λ} ⊂ Δb

(
(Tn)n∈N

)
∩ 
(T ), (6.4)

there exists a sequence of elements λn ∈ σ(Tn), n ∈ N, with λn → λ, n → ∞.

Proof. Let λ ∈ σp(T ) and ε > 0 satisfy (6.4). Assume the claim does not hold. Then there exists a δ ∈ (0, ε)
and an infinite subset I ⊂ N with dist(λ, σ(Tn)) ≥ 2δ, n ∈ I. Define bounded operators Q and Qn, n ∈ N, 
by the contour integrals

Q := 1
2πi

∫
|z|=δ

T (λ + z)−1
M−1∑
k=0

zk

(k + 1)!T
(k+1)(λ) dz,

Qn := 1
2πi

∫
|z|=δ

Tn(λ + z)−1
M−1∑
k=0

zk

(k + 1)!T
(k+1)
n (λ) dz, n ∈ I;

recall that the sums on the right-hand side are bounded operators since all higher order coefficients of T
were assumed to be bounded. Since z �→ Tn(λ + z)−1 is holomorphic in B2δ(0), we have Qn = 0, n ∈ I. 
Since λ ∈ σp(T ), there exists x ∈ dom(T ) with ‖x‖ = 1 and T (λ)x = 0. Using this in the Taylor expansion 
of T in λ, we conclude that

T (λ + z)x =
M∑
k=1

zk

k! T
(k)(λ)x, z ∈ B2δ(0),

and hence
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1
z
x = T (λ + z)−1

M−1∑
k=0

zk

(k + 1)!T
(k+1)(λ)x, z ∈ B2δ(0) \ {0}.

Now Cauchy’s integral formula implies that

Qx =

⎛⎜⎝ 1
2πi

∫
|z|=δ

1
z

dz

⎞⎟⎠x = x �= 0. (6.5)

For every n ∈ I, define the function fn : {z ∈ C : |z| = δ} → [0, ∞) by

fn(z) :=
∥∥∥T (λ + z)−1

M−1∑
k=0

zk

(k + 1)!T
(k+1)(λ)Px− Tn(λ + z)−1

M−1∑
k=0

zk(λ)
(k + 1)!T

(k+1)
n Pnx

∥∥∥.
Then

‖QPx−QnPnx‖ ≤ 1
2π

∫
|z|=δ

fn(z) d|z|, n ∈ I.

The assumptions together with Lemma 6.3 imply that fn(z) → 0, n → ∞, for every z ∈ C with |z| = δ. 
Note that fn, n ∈ N, are uniformly bounded by the compactness of the circle {z ∈ C : |z| = δ} and by 
Lemma 6.1 ii). Lebesgue’s dominated convergence theorem implies ‖QPx −QnPnx‖ → 0 as n ∈ I, n → ∞. 
Since Qn = 0, n ∈ I, it follows that QPx = 0. However Px = x since x ∈ dom(T ) ⊂ H and P is a projection 
onto H. Thus Qx = 0, a contradiction to Qx = x �= 0, see (6.5). �

Next we define the limiting approximate point spectrum by

σapp
(
(Tn)n∈N

)
=

{
λ ∈ C : ∃ I ⊂ N, I infinite,∃xn ∈ dom(Tn), ‖xn‖ = 1, n ∈ I,with ‖Tn(λ)xn‖ → 0

}
and the limiting essential spectrum by

σe

(
(Tn)n∈N

)
:=

{
λ ∈ C : ∃ I ⊂ N, I infinite, ∃xn ∈ dom(Tn), ‖xn‖ = 1, n ∈ I,

with xn ⇀ 0, ‖Tn(λ)xn‖ → 0
}
.

It is easy to see that, as in the operator case, see [22, Lemma 2.14 ii)],

C\Δb

(
(Tn)n∈N

)
= σapp

(
(Tn)n∈N

)
∪ σapp

(
(T ∗

n)n∈N
)∗
. (6.6)

Proposition 6.5. Suppose that the assumptions of Lemma 6.3 are satisfied. Then

σapp
(
(T ∗

n)n∈N
)∗ ⊂ σe

(
(T ∗

n)n∈N
)∗ ∪ σp(T ∗)∗.

Proof. Let λ ∈ σapp
(
(T ∗

n)n∈N
)∗. By definition, there exist an infinite subset I ⊂ N and xn ∈ dom(T ∗

n), 
n ∈ I, with ‖xn‖ = 1 and ‖Tn(λ)∗xn‖ → 0 as n → ∞. The sequence (xn)n∈N ⊂ H0 is bounded and thus 
has a weakly convergent subsequence (xn)n∈I2 with infinite I2 ⊂ I; denote its weak limit by x ∈ H0. If 
x = 0, then λ ∈ σe

(
(T ∗

n)n∈N
)∗.

Now assume that x �= 0. Define yn := Tn(λ)∗xn, n ∈ I2. Then yn → 0 as n → ∞. Note that, if 
z ∈ Δb((Tn)n∈N) ∩ 
(T ), then Lemma 6.3 implies Tn(z)−1Pn

s→ T (z)−1P , and
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Tn(z)∗xn =
M∑
k=1

(z − λ)k

k! T (k)
n (λ)∗xn + yn, n ∈ I2.

Thus

xn = Tn(z)−∗
M∑
k=1

(z − λ)k

k! T (k)
n (λ)∗xn + Tn(z)−∗yn, n ∈ I2. (6.7)

Let w ∈ H0 be arbitrary. The convergence assumptions, yn → 0 as n → ∞ and T (k)(λ) = PT (k)(λ) imply 
that

〈xn, w〉 =
M∑
k=1

(z − λ)k

k!

〈
xn, T

(k)
n (λ)Tn(z)−1Pnw

〉
+

〈
yn, Tn(z)−1Pnw

〉
→

M∑
k=1

(z − λ)k

k!

〈
x, PT (k)(λ)T (z)−1Pw

〉

=
〈
T (z)−∗

M∑
k=1

(z − λ)k

k! T (k)(λ)∗Px,w
〉

as n → ∞. By the uniqueness of the weak limit, we obtain that

x = T (z)−∗
M∑
k=1

(z − λ)k

k! T (k)(λ)∗Px ∈ dom(T (z)∗) ⊂ H,

hence Px = x and

T (z)∗x =
M∑
k=1

(z − λ)k

k! T (k)(λ)∗x.

The uniqueness of the Taylor expansion of T (·)∗ in λ implies that 0 = T (λ)∗x = T ∗(λ)x. Since x �= 0, we 
conclude that λ ∈ σp(T ∗)∗. �

Now we prove the main result of this section.

Theorem 6.6. Assume that there exists λ0 ∈
⋂

n∈N 
(Tn) ∩ 
(T ) with

Tn(λ0)−1Pn
s→ T (λ0)−1P, Tn(λ0)−∗Pn

s→ T (λ0)−∗P.

If also Aj,nPn
s→ AjP and A∗

j,nPn
s→ A∗

jP for every j = 1, . . . , M , then spectral pollution is contained in

σe

(
(Tn)n∈N

)
∪ σe

(
(T ∗

n)n∈N
)∗
, (6.8)

and for every isolated λ ∈ σp(T ) not belonging to σe

(
(Tn)n∈N

)
∪ σe

(
(T ∗

n)n∈N
)∗ there exist λn ∈ σ(Tn), 

n ∈ N, with λn → λ.

Proof. First note that Δb

(
(Tn)n∈N

)
= Δb

(
(T ∗

n)n∈N
)∗, see (6.6). The latter and Proposition 6.5 imply that(

C\Δb

(
(Tn)n∈N

))
∩ 
(T ) =

(
σapp

(
(Tn)n∈N

)
∪ σapp

(
(T ∗

n)n∈N
)∗) ∩ 
(T )

⊂ σe

(
(Tn)n∈N

)
∪ σe

(
(T ∗

n)n∈N
)∗;
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note that λ ∈ σp(T ∗)∗ implies that {0} �= kerT (λ)∗ = ranT (λ)⊥ and hence λ /∈ 
(T ). Now the claims follow 
from Propositions 6.2 and 6.4. �
7. Limiting essential spectrum

In this section, along with the linear Maxwell pencil V (·) in L2(Ω)3 ⊕ L2(Ω)3, see (1.3), the associated 
operator matrix A in L2(Ω)3⊕L2(Ω)3, see (3.2), and the quadratic operator pencil L(·) in L2(Ω)3, see (4.1), 
we now consider their analogues Vn(·) and An in L2(Ωn)3 ⊕ L2(Ωn)3 and Ln(·) in L2(Ωn)3, respectively. 
The objective of this section is to determine the limiting essential spectrum σe((Ln)n∈N) and then to prove 
Theorem 2.4.

Note that all our results in Sections 3 on spectral enclosures and resolvent estimates for V (·) and A as well 
as in Section 4 on the relations between the spectral properties of V (·) and L(·) hold for both bounded and 
unbounded domains, and thus cover, when applied on the domains Ωn, n ∈ N, equally Vn(·), An and Ln(·).

For convenience, we briefly recall that, in line with (3.1), (3.2) and (4.1),

Vn(ω) =
(
ε1/2 0
0 μ1/2

)
(An − ωI)

(
ε1/2 0
0 μ1/2

)
,

domVn(ω) = H0(curl,Ωn) ⊕H(curl,Ωn),
(7.1)

in which

An :=
(

−iε− 1
2σε−

1
2 −iε− 1

2 curlμ−1/2

iμ−1/2curl0ε−
1
2 0

)
,

domAn := ε1/2H0(curl,Ωn) ⊕ μ1/2H(curl,Ωn),
(7.2)

and

Ln(ω) := curlμ−1curl0 − ω(ωε + iσ),

dom(Ln(ω)) := {E ∈ H0(curl,Ωn) : μ−1 curlE ∈ H(curl,Ωn)}.
(7.3)

In the sequel, we define the orthogonal projection Pn : L2(Ω)3 → L2(Ωn)3 by Pnu = χΩn
u for u ∈ L2(Ω)3. 

Note that L2(Ωn) is understood as a subspace of L2(Ω) by extending each function by zero.

Proposition 7.1. Let ω = it with t ≥ ε
−1/2
min . Then Ln(ω)−1Pn

s→ L(ω)−1 as n → ∞.

Proof. In the sequel we use Lemma 4.1 applied to both L(·) and to its truncated analogues Ln(·); the 
truncated analogues of T0 = μ−1/ curl0, domT0 = H0(curl, Ω), and of W(ω) = −ω(ωε + iσ), ω ∈ C, in 
L2(Ω)3, are operators in L2(Ωn)3 which we denote by T0,n = μ−1/2 curl0, domT0,n = H0(curl, Ωn), and 
Wn(ω) = −ω(ωε + iσ).

Because Ω =
⋃

n∈N Ωn and C∞
c (Ω)3 is a core of (T ∗

0 T0 + I)1/2, see Lemma 4.1, it follows that for every 
u there exists Nu ∈ N such that suppu ⊂ Ωn for all n ≥ Nu. Then (T ∗

0 T0 + I)1/2u = (T ∗
0,nT0,n + I)1/2Pnu

for n ≥ Nu. By Lemma 4.1 supn∈N ‖(T ∗
0,nT0,n + I)−1/2‖ ≤ 1 < ∞ and hence [37, Thm. 3.1] yields that

(T ∗
0,nT0,n + I)−1/2Pn

s→ (T ∗
0 T0 + I)−1/2, n → ∞.

It is easy to see that (Wn(ω) − I)Pn
s→ W(ω) − I as n → ∞ for all ω ∈ C. Since the product and sum 

of strongly convergent operators are strongly convergent, we obtain that
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(
I + (T ∗

0,nT0,n + I)−1/2(Wn(ω) − I)(T ∗
0,nT0,n + I)−1/2

)
Pn

s→ I + (T ∗
0 T0 + I)−1/2(W(ω) − I)(T ∗

0 T0 + I)−1/2, n → ∞.
(7.4)

Now let ω = it with t ≥ ε
−1/2
min . Then Lemma 4.1 implies that∥∥∥∥(I + (T ∗

0 T0 + I)−1/2(W(ω) − I)(T ∗
0 T0 + I)−1/2

)−1
∥∥∥∥ ≤ 1,

sup
n∈N

∥∥∥∥(I + (T ∗
0,nT0,n + I)−1/2(Wn(ω) − I)(T ∗

0,nT0,n + I)−1/2
)−1

∥∥∥∥ ≤ 1 < ∞.

(7.5)

Hence, by [37, Lemma 3.2], the inverses in (7.4), converge strongly as well,

(
I + (T ∗

0,nT0,n + I)−1/2(Wn(ω) − I)(T ∗
0,nT0,n + I)−1/2

)−1
Pn

s→
(
I + (T ∗

0 T0 + I)−1/2(W(ω) − I)(T ∗
0 T0 + I)−1/2

)−1
, n → ∞.

Altogether, we arrive at

Ln(ω)−1Pn = (T ∗
0,nT0,n + I)− 1

2

(
I + (T ∗

0,nT0,n + I)− 1
2 (Wn(ω) − I)(T ∗

0,nT0,n + I)− 1
2

)−1
(T ∗

0,nT0,n + I)− 1
2Pn

s→ (T ∗
0 T0 + I)− 1

2

(
I + (T ∗

0 T0 + I)− 1
2 (W(ω) − I)(T ∗

0 T0 + I)− 1
2

)−1
(T ∗

0 T0 + I)− 1
2 = L(ω)−1. �

Applying Theorem 6.6 to the quadratic pencils Ln and using that Ln is J-self-adjoint with respect to 
conjugation for all n ∈ N so that σe((L∗

n)n∈N)∗ = σe((Ln)n∈N), we immediately obtain

σpoll((Ln)n∈N) ⊂ σe((Ln)n∈N) ∪ σe((L∗
n)n∈N)∗ = σe((Ln)n∈N). (7.6)

Proposition 7.2. Suppose that σ, ε and μ satisfy the limiting assumption (2.8). Denote by Tn(ω) the triangular 
operator matrices given by (5.5) with Ω replaced by Ωn, i.e. acting in L2(Ωn)3 = ∇Ḣ1

0 (Ωn) ⊕H(div 0, Ωn). 
Then the limiting essential spectra of (Ln)n∈N and (Tn)n∈N are equal,

σe((Ln)n∈N) = σe((Tn)n∈N).

Proof. The proof is closely modelled on the proofs of Theorem 5.5 and Proposition 5.1. Let ω ∈ C be fixed. 
Let Mn(ω) := (ω(ωε +iσ) −ω2)Pker(div,Ωn) in L2(Ωn)3. Then Tn(ω) is the operator matrix representation of 
Ln(ω) +Mn(ω) in L2(Ωn)3 = ∇Ḣ1

0 (Ωn) ⊕H(div 0, Ωn). First note that, for any un ∈ dom(Ln), ‖un‖ = 1, the 
sequence (‖Ln(ω)un‖)n∈N is bounded if and only if the sequence (‖(Ln(ω) + Mn(ω))un‖)n∈N is bounded.

Now we argue that it suffices to show the following claim: if any of the above two sequences is bounded, 
then for any infinite subset I ⊂ N the sequence (Mn(ω)un)n∈I ⊂ L2(Ω)3 has a convergent subsequence. 
To see that this claim proves the theorem, assume that un ⇀ 0 and Ln(ω)un → 0 as n → ∞, i.e. ω ∈
σe((Ln)n∈N). Then, by the claim together with un ⇀ 0, and the uniqueness of the weak limit, we get 
Mn(ω)un → 0 as n → ∞, whence ω ∈ σe((Ln + Mn)n∈N). The proof is analogous if we start with 
ω ∈ σe((Ln + Mn)n∈N).

To prove the claim, let (‖Ln(ω)un‖)n∈N be bounded. Then (‖un‖H(curl,Ωn))n∈N is bounded as well, and 
thus the property that, for any infinite subset I ⊂ N, (Mn(ω)un)n∈I ⊂ L2(Ω)3 has a convergent subsequence 
is equivalent to

Mn(ω)Pker div : (H(curl,Ωn), ‖ · ‖H(curl,Ωn)) → (L2(Ωn)3, ‖ · ‖L2(Ωn)3), n ∈ N,
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being a discretely compact sequence, see [38, Def. 3.1.(k)] or [37, Def. 2.5]. As in the proof of Proposition 5.1, 
for any δ > 0 we can write Mn(ω) = Mc,n(ω) +Mδ,n(ω) where Mδ,n(ω) is a bounded multiplication operator 
with ‖Mδ,n(ω)‖ < δ vanishing uniformly in n as δ → 0 and Mc,n(ω) has compact support in some domain 
ΩR,n := Ωn ∩ B(0, R) ⊂ Ω ∩ B(0, R) = ΩR for sufficiently large R > 0. Since the uniform limit of a 
discretely compact sequence is discretely compact, see [37, Prop. 2.9], the sequence (Mn(ω))n∈N is discretely 
compact if each sequence (Mc,n(ω))n∈N , δ > 0, is discretely compact. To show the latter, let I ⊂ N be 
an infinite subset. Let χR be the same cut-off function as in the proof of Proposition 5.1 and let ι be the 
compact embedding of H0(curl, ΩR) ∩H(div, ΩR) in L2(ΩR)3, see [31]. Then, for all sufficiently large n ∈ I, 
suppMc,n(ω) ⊂ ΩR,n ⊂ Ωn and

Mc,n(ω)Pker divun = Mc,n(ω)ι(χRPker divun)|ΩR,n
.

As in the proof of Proposition 5.1, we now deduce that (Mc,n(ω)un)n∈I ⊂ L2(Ω)3 has a convergent subse-
quence. �
Proposition 7.3. Suppose that σ, ε and μ satisfy the limiting assumption (2.8). Let Lμ,n and L∞,n be defined 
in the same way as Lμ and L∞, see Definition 5.2 with Ω replaced by Ωn. Then

σe((Lμ,n)n∈N) = σe((L∞,n)n∈N).

Proof. Recall that Lμ,n(ω) = Cμ,n − ε∞ω2 id, L∞,n(ω) = C∞,n − ε∞ω2 id, n ∈ N, ω ∈ C, are closed 
operators acting in the Hilbert space H(div 0, Ωn) � L2(Ωn)3, endowed with the L2(Ωn)3-norm, and Cμ,n =
curlμ−1 curl0, C∞,n = curlμ−1

∞ curl0 are self-adjoint therein.
The proof is modelled on that of Proposition 5.4. Here it suffices to prove σe((Lμ,n(ω))n∈N) =

σe((L∞,n(ω))n∈N for only one ω ∈ C, which we choose as ω = it with t ≥ ε
−1/2
min , or equivalently 

σe((Cμ,n)n∈N) = σe((C∞,n)n∈N). By [22, Thm. 2.5] the limiting essential spectrum has the spectral mapping 
property for the resolvent. Due to [22, Thm. 2.12 (ii)] it is then enough to show that, for z = ε∞ω2 ≤ −1,

Kn(z) := (Lμ,n(ω))−1 − (L∞,n(ω))−1 = (Cμ,n − z)−1 − (C∞,n − z)−1

is such that (Kn(z))n∈N is discretely compact and (Kn(z)∗Pn)n∈N is strongly convergent. The strong 
convergence follows from Proposition 7.1 which yields that

Kn(z)∗Pn = (Lμ,n(ω))−1Pn − (L∞,n(ω))−1Pn
s→ (Lμ(ω))−1 − (L∞(ω))−1.

Applying (5.3) in the proof of Proposition 5.4 on Ωn, we deduce that

Kn(z) =
(
curl0(Cμ,n − z)−1)∗(μ−1

∞ − μ−1) curl0(C∞,n − z)−1. (7.7)

By Lemma 5.3 (ii) on Ωn, the operators curl0(C∞,n − z)−1 = curl0(L∞,n(ω))−1 are bounded from 
H(div 0, Ωn) to H(curl, Ωn) with uniformly bounded operator norms,

sup
n∈N

‖ curl(L∞,n(ω))−1‖B(H(div 0,Ωn),H(curl,Ωn)) ≤
(

μ∞
ε∞|ω|2 + μ2

∞

)1/2

< ∞.

By Lemma 5.3 (i) on Ωn, the operators (curl0(Cμ,n − z)−1)∗ = (Lμ,n(ω))−1 curl are bounded from L2(Ωn)3
to H(div 0, Ωn). Moreover, they are strongly convergent, (Lμ,n(ω))−1 curlPn

s→ (Lμ(ω))−1 curl as n → ∞, 
since for every u ∈ H(curl, Ω) we have Pnu ∈ H(curl, Ωn) with curlPnu = Pn curlu as curl is a local 
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operator, and since (Lμ,n(ω))−1Pn
s→ (Lμ(ω))−1 as n → ∞, which follows by analogy with the proof of 

Proposition 7.1. Analogously to the proof of Proposition 7.2 for Mn(ω), one can show that

(μ−1 − id)Pker(div,Ωn) : (H(curl,Ωn), ‖·‖H(curl,Ωn)) → (L2(Ωn)3, ‖·‖L2(Ωn)3), n ∈ N,

form a discretely compact sequence of operators. Now (7.7) and [37, Lemma 2.8 i), ii)] imply that (Kn(z))n∈N
is a discretely compact sequence. �
Lemma 7.4. For every n ∈ N, the closure of Vn = C∞

c (Ωn)3 ∩H(div 0, Ωn), with respect to the H(curl, Ωn)-
norm equals Hn = H0(curl, Ωn) ∩H(div 0, Ωn).

Proof. The subspace Hn of H0(curl, Ωn) equipped with the norm ‖ ·‖H(curl,Ωn) is closed since H0(curl, Ωn) ∩
H(div 0, Ωn) with its norm ‖ · ‖H(curl,Ωn) +‖ · ‖H(div,Ωn) is closed and the norms ‖u‖H(curl,Ωn) +‖u‖H(div,Ωn)
and ‖u‖H(curl,Ωn) are equivalent for u ∈ H0(curl, Ωn) ∩H(div 0, Ωn). Consequently, Hn is a Hilbert space. 
Since Vn ⊂ Hn, the statement is equivalent to proving that Hn∩V ⊥

n = {0} where the orthogonal complement 
is taken with respect to the inner product 〈·, ·〉 + 〈curl ·, curl ·〉. Let h ∈ Hn ∩ V ⊥

n . Then

〈h, v〉 + 〈curlh, curl v〉 = 0, v ∈ Vn. (7.8)

First we claim that every ϕ ∈ C∞
c (Ωn)3 can be represented as ϕ = ∇ξ + v with ξ ∈ C∞

c (Ωn), v ∈ Vn. 
Indeed, the Dirichlet problem

−Δξ = − divϕ in Ωn, ξ = 0 on ∂Ωn

has a unique solution ξ ∈ C∞
c (Ωn) and we can set v = ϕ − ∇ξ ∈ Vn. Using ϕ = ∇ξ + v, curl∇ξ = 0, 

〈h, ∇ξ〉= −〈div h, ξ〉 = 0 and (7.8), we conclude

〈h, ϕ〉 + 〈curlh, curlϕ〉 = 〈h, v〉 + 〈curlh, curl v〉 = 0, ϕ ∈ C∞
c (Ωn)3. (7.9)

Since C∞
c (Ωn)3 is dense in (H0(curl, Ωn), ‖ · ‖H(curl,Ωn)), equality (7.9) also holds for all ϕ ∈ H0(curl, Ωn). 

Thus we can choose ϕ = h ∈ H0(curl, Ωn) in (7.9) to obtain

0 ≤ ‖curlh‖2 = −‖h‖2 ≤ 0,

so all the inequalities are equalities and hence h = 0. �
Theorem 7.5. Suppose that σ, ε and μ satisfy the limiting assumption (2.8). Let W(ω) := −ω(ωε + iσ), 
ω ∈ C, in L2(Ω)3 and Wn(ω) correspondingly in L2(Ωn)3. Then the limiting essential spectrum of (Ln)n∈N
satisfies

σe((Ln)n∈N) ⊂ σe((L∞,n)n∈N) ∪ σe

(
(P∇Wn(·)|∇Ḣ1

0 (Ωn))n∈N
)

⊂ We(L∞) ∪ σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
.

Proof. By Proposition 7.2 we have σe((Ln)n∈N) = σe((Tn)n∈N). Since Tn(ω) is a diagonally dominant 
operator matrix of order 0 for all n ∈ N, ω ∈ C, with bounds a = ‖W(ω)|∇Ḣ1

0 (Ω)‖, b = 0 in (8.8) uniform in 
n, Theorem 8.6 in Section 8 below implies that its limiting essential spectrum is the union of the limiting 
essential spectra of its diagonal entries,

σe((Tn)n∈N) ⊂ σe((Lμ,n)n∈N) ∪ σe

(
(P∇Wn(·)|∇Ḣ1(Ω ))n∈N

)
.

0 n
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By Proposition 7.3 it follows that σe((Lμ,n)n∈N) = σe((L∞,n)n∈N) ⊂ R. Next we show

σe((L∞,n)n∈N) ⊂ We(L∞).

If ω ∈ σe((L∞,n)n∈N), then, by definition there exist wn ∈ domL∞,n(ω) ⊂ H0(curl, Ωn) ∩H(div 0, Ωn), 
‖wn‖ = 1, n ∈ N, wn ⇀ 0 and L∞,n(ω)wn → 0 as n → ∞. Taking the scalar product with wn, we find that

〈L∞,n(ω)wn, wn〉 = ‖μ−1/2
∞ curl0 wn‖2 − ε−1

∞ ω2 → 0

as n → ∞. By Lemma 7.4, for each n ∈ N there exists vn ∈ C∞
c (Ωn)3∩H(div 0, Ωn) with ‖vn−wn‖2 ≤ 1/n, 

‖curl(vn − wn)‖2 ≤ 1/n. Let v0
n ∈ H0(curl, Ω) ∩H(div 0, Ω) be the extension of vn to Ω by zero for n ∈ N. 

Then

|‖μ−1/2
∞ curl v0

n‖
2 − ε−1

∞ ω2‖v0
n‖

2| ≤ |‖μ−1/2
∞ curlwn‖2 − ε−1

∞ ω2‖wn‖2| + 1 + ε−1
∞ ω2

n
→ 0

as n → ∞. Since ‖v0
n‖ → 1 as n → ∞, upon renormalisation of the elements v0

n, we obtain ω ∈ We(L∞).
Finally, it remains to be proved that σe

(
(P∇Wn(·)|∇Ḣ1

0 (Ωn))n∈N
)

⊂ σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
. If ω ∈

σe

(
(P∇Wn(·)|∇Ḣ1

0 (Ω))n∈N
)
, there exist un ∈ Ḣ1

0 (Ωn), ‖∇un‖ = 1, n ∈ N, such that ∇un ⇀ 0 and

‖P∇Ḣ1
0 (Ωn)ω(ωε + iσ)∇un‖ → 0, n → ∞.

Let u0
n ∈ Ḣ1

0 (Ω) be the extension of un ∈ Ḣ1
0 (Ωn) to Ω by zero for n ∈ N. By standard properties of Sobolev 

spaces, ∇u0
n = (∇un)0. Hence the sequence (u0

n)n∈N ⊂ Ḣ1
0 (Ω) is such that ‖∇u0

n‖ = 1, n ∈ N, ∇u0
n ⇀ 0

and

‖P∇Ḣ1
0 (Ωn)ω(ωε + iσ)∇u0

n‖ → 0, n → ∞.

Now the claim follows if we observe that P∇Ḣ1
0 (Ω)f = P∇Ḣ1

0 (Ωn)f for all f ∈ L2(Ω)3 with supp f ⊂ Ωn. �
Remark 7.6. In fact, σe

(
(P∇Wn(·)|∇Ḣ1

0 (Ωn))n∈N
)

= σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
; here the inclusion ‘⊃’ follows 

by [22, Prop. 2.7] since P∇W(·)|∇Ḣ1
0 (Ω), P∇Wn(·)|∇Ḣ1

0 (Ωn), n ∈ N, are bounded and P∇Wn(·)|∇Ḣ1
0 (Ωn)

s→
P∇W(·)|∇Ḣ1

0 (Ω) as n → ∞, see [37, Lemma 3.2].

Proof of Theorem 2.4. Due to Theorem 4.5, we have 0 ∈ σe(V ) = σe(L) and hence 0 /∈ σpoll((Vn)n∈N), 
0 /∈ σpoll((Ln)n∈N). Then, by (4.6) and (2.7), it follows that

σpoll((Vn)n∈N) = σpoll((Vn)n∈N) \ {0} = σpoll((Ln)n∈N) \ {0} = σpoll((Ln)n∈N). (7.10)

Now (7.6) and Theorem 7.5 imply that

σpoll((Ln)n∈N) ⊂ σe((Ln)n∈N) ⊂ We(L∞) ∪ σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
. (7.11)

Since Theorems 5.5 and 4.5 yield that

σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
⊂ σe(L) = σe(V ) ⊂ σ(V ),

we easily deduce that σpoll((Vn)n∈N) ∩ σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
= ∅. This, together with (7.10), (7.11) shows 

that σpoll((Vn)n∈N) ⊂ We(L∞), as required.



S. Bögli et al. / J. Math. Pures Appl. 170 (2023) 96–135 127
The approximation of isolated eigenvalues outside of σe((Ln)n∈N) ∪ σe((L∗
n)n∈N)∗ = σe((Ln)n∈N), and 

hence outside of We(L∞) ∪ σe

(
P∇W(·)|∇Ḣ1

0 (Ω)

)
by (7.11), is a consequence of Theorem 6.6. �

If σ = 0, we can improve the spectral approximation part in Theorem 2.4 to all spectral points in σ(V ).

Theorem 7.7. Assume that σ = 0. In addition to the conclusions of Theorem 2.4, for every ω ∈ σ(V ) there 
exists a sequence ωn ∈ σ(Vn), n ∈ N, with ωn → ω as n → ∞.

Proof. When σ = 0, the spectral problems for V and L reduce to classical spectral problems for 
the self-adjoint operator matrix A in (3.2). We therefore have a domain truncation problem for a se-
quence of self-adjoint operators converging in strong resolvent sense, (An − ω)−1Pn

s→ (A − ω)−1, 
where Pn := diag(Pn, Pn). In fact, the strong convergence Vn(ω)−1Pn

s→ V (ω)−1 follows from (4.7) and 
Proposition 7.1; here we need that L2(Ω)3 ⊕ μ1/2H(curl, Ω) is dense in L2(Ω)3 ⊕ L2(Ω)3 and that, for 
u ∈ μ1/2H(curl, Ω), Pnu ∈ μ1/2H(curl, Ωn) with curlμ1/2Pnu = Pn curlμ1/2u since curl is a local operator. 
Then (An−ω)−1Pn

s→ (A −ω)−1 by (3.1) and (7.1). The spectral approximation now follows from classical 
results, see e.g. [39, Thm. VIII.24 (a)]. �
8. Abstract results for essential spectra and limiting essential spectra of triangular operator matrices

In this section we prove the abstract results on essential spectra and limiting essential spectra of trian-
gular operator matrices used in Theorems 5.5 and 7.5 and employed to prove our main result on spectral 
approximation, Theorem 2.4. The results below are more general than what we needed there since we also 
admit unbounded off-diagonal entries. Thus we decided to present them in a separate section.

In a product Hilbert space H = H1 ⊕H2 we consider lower triangular 2 × 2 operator matrices

A =
(
A 0
C D

)
(8.1)

such that A, D are densely defined, C, D are closable, dom(A) ⊂ dom(C) and 
(A) �= ∅. Then, e.g. by [40, 
Thm. 2.2.8], A is closable with closure

A =
(
A 0
C D

)
.

The Schur Frobenius factorisation [40, (2.2.10)] of A simplifies to

A− λ =
(

I 0
C(A− λ)−1 I

)(
A− λ 0

0 D − λ

)
, λ ∈ 
(A), (8.2)

and the first factor therein is bounded and boundedly invertible since C is closable and A is closed. Therefore,

σek(A) \ σ(A) = σek(D), k = 1, . . . , 5.

In the sequel we study the relation between σek(A) and the union σek(A) ∪ σek(D), mainly for k = 2. Here 
we denote the set of semi Fredholm operators with finite nullity and finite defect by Φ+ and Φ−, respectively, 
see [25, Sect. I.3].

Note that even for diagonal operator matrices A = diag (A, D), i.e. C = 0, equality does not prevail for 
every k ∈ {1, . . . , 5}; in fact, by [25, IX. (5.2)],



128 S. Bögli et al. / J. Math. Pures Appl. 170 (2023) 96–135
σe1(diag (A,D)) ⊃ σe1(A) ∪ σek(D),

σek(diag (A,D)) = σek(A) ∪ σek(D), k = 2, 3, (8.3)

σek(diag (A,D)) ⊂ σek(A) ∪ σek(D), k = 4, 5.

It is well-known that, for C �= 0, the assumption dom(A) ⊂ dom(C) is essential to have the inclusion 
σek(A) ⊂ σek(A) ∪ σek(D), k = 1, . . . , 5. In fact, if A, D = 0 and C is boundedly invertible with dense 
domain dom(C) � H1, then σek(A) = σe1(A) = C �= {0} = σek(A) = σek(D) for k = 1, . . . , 5.

On the other hand, certain relative compactness assumptions may ensure equality; e.g. if for some μ ∈

(A) ∩ 
(D) the operator (D − μ)−1C(A − μ)−1 is compact, then, by [40, Thm. 2.4.8],

σe3(A) = σe3(A) ∪ σe3(D).

For the case k = 2, we now describe the difference between σe2(A) and the union σe2(A) ∪ σe2(D) and 
establish criteria for equality. Here, for a closed linear operator T , set σ∗

e2(T ) := {λ ∈ C : ran(T − λ)
closed, codim ran(T − λ) < ∞}; note that then λ ∈ σ∗

e2(T ) if and only if λ ∈ σe2(T ∗); see [25, Sect. IX.1].

Theorem 8.1. Let A be as in (8.1), i.e. A, D are densely defined, C, D are closable, dom(A) ⊂ dom(C) and 

(A) �= ∅. Then (

σe2(A) \ σ∗
e2(D)

)
∪ σe2(D) ⊂ σe2(A) ⊂ σe2(A) ∪ σe2(D), (8.4)

and hence

σe2(A) ∪
(
σe2(A) ∩ σ∗

e2(D)
)

= σe2(A) ∪ σe2(D);

in particular, if σ∗
e2(D) = σe2(D) or if σe2(A) ∩ σ∗

e2(D) = ∅, then

σe2(A) = σe2(A) ∪ σe2(D).

Proof. First we prove the left inclusion in (8.4). The enclosure σe2(D) ⊂ σe2(A) is trivial; we just add a zero 
first component to a singular sequence coming from D. Now let λ ∈ σe2(A) \σ∗

e2(D). Then D−λ ∈ Φ− and 
hence D−λ has an approximate right inverse Rλ ∈ B(H2), see [25, Thm. I.3.11], i.e. (D−λ)Rλ = IH2 +Fλ

with Fλ ∈ B(H2) of finite rank. Since λ ∈ σe2(A), there exists (xn)n∈N ⊂ domA, ‖xn‖ = 1, xn ⇀ 0, 
(A − λ)xn → 0, n → ∞. This implies that (Axn)n∈N is bounded. Since C is closable and domA ⊂ domC, 
C is A-bounded and hence (Cxn)n∈N is bounded as well.

Now set yn := −RλCxn, n ∈ N. Then (yn)n∈N is bounded and, for n ∈ N,

Cxn + (D − λ)yn = Cxn − (D − λ)RλCxn = Cxn − (IH2 + Fλ)Cxn = −FλCxn.

Since (Cxn)n∈N is bounded and Fλ ∈ B(H2) has finite rank, upon choosing a subsequence, we may assume 
that

Cxn + (D − λ)yn = −FλCxn → 0, n → ∞.

It remains to be shown that yn = −RλCxn ⇀ 0 for n → ∞. To this end, let μ ∈ 
(A) (�= ∅). Then 
C(A − μ)−1 is bounded since C is closable and A is closed. Thus

Cxn = C(A− μ)−1( (A− λ)xn︸ ︷︷ ︸+(λ− μ) xn︸︷︷︸ ) ⇀ 0, n → ∞,
→0 ⇀0
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and hence, since Rλ is bounded, yn ⇀ 0 for n → ∞, as required. Finally, if we set vn := (xn, yn), n ∈ N, 
and normalise vn, we obtain a singular sequence for A at λ and hence λ ∈ σe2(A).

In order to prove the second inclusion in (8.4), let λ /∈ σe2(A) ∪ σe2(D), i.e. A − λ, D − λ ∈ Φ+. For 
arbitrary μ > 0, set

Aμ := M−1
μ AMμ =

(
A 0
μC D

)
, Mμ :=

(
μI 0
0 I

)
. (8.5)

Then σe2(A) = σe2(Aμ) because Mμ is bounded and boundedly invertible. Due to the stability of semi-
Fredholmness, see [25, Thm. I.3.22, Rem. I.3.27], and since diag (A − λ, D − λ) ∈ Φ+, we can choose μ > 0
so small that Aμ − λ ∈ Φ+ and thus λ /∈ σe2(A).

Finally, the last two claims are obvious from (8.4). �
Remark 8.2. For the second inclusion in (8.4), in the same way as in the proof of Theorem 8.1, one can also 
show that σek(A) ⊂ σek(A) ∪ σek(D) for k = 3, 4, 5. Here the Fredholm stability results [25, Thm. I.3.22 
and Rem. I.3.27] for Φ± and hence Φ, together with the stability of the index therein, give the inclusions 
for k = 3, 4, while for k = 5 the stability of bounded invertibility [27, Thm. IV.1.16] is used.

The first inclusion in (8.4) also holds for k = 3, i.e. σe3(A) ∪
(
σe3(A) ∩ σ∗

e3(D)
)

= σe3(A) ∪ σe2(D), 
whereas for k = 4 the difference between σe4(A) and σe4(A) ∪ σe4(D) has a much less elegant description.

Corollary 8.3. Let A be as in (8.1). If D is J -self-adjoint for some conjugation J in H2, i.e. J 2 = IH2 , 
(J x, J y) = (x, y) for x, y ∈ H2, then

σek(A) = σek(A) ∪ σek(D), k = 2, 3, 4.

Proof. We prove the claim for k = 2; the proof for k = 3, 4 is left to the reader. Since D is J -self-adjoint, 
dim ker(D− λ) = dim ker(D∗ − λ) for λ ∈ C by [25, Lemma III.5.4]. Hence, either ran(D− λ) is not closed 
or dim ker(D − λ) = dim ran(D − λ)⊥ so that D − λ is a Fredholm of index 0 for λ ∈ C. This proves that 
σe2(D) = σ∗

e2(D) and hence Theorem 8.1 yields the claim. �
The following counter-examples show that, in general, neither of the inclusions in (8.4) is an equality, 

even when all entries of A are bounded.

Example 8.4. Let D ∈ B(H2) be a bounded linear operator in some Hilbert space H2 such that 0 ∈
σ∗
e2(D) \σe2(D), e.g. dim kerD < ∞ and dim(ranD)⊥ = ∞. For example, we can choose D : �2(N) → �2(N)

given by Dek := e2k, k ∈ N.
i) If A in H1 = H2 is compact with σe2(A) = {0}, C = A and D is as above, then, for A as in (8.1),

0 /∈
(
σe2(A) \ σ∗

e2(D)
)
∪ σe2(D) = σe2(D), 0 ∈ σe2(A);

for the latter note that since 0 ∈ σe2(A), there exists a singular sequence (xn)n∈N for A and then, since 
C = A, it follows that ((xn, 0))n∈N is a singular sequence for A. This example shows that the first inclusion 
in (8.4) is not an equality.

ii) If P(ranD)⊥ is the orthogonal projection on (ranD)⊥ = kerD∗, A = I − P(ranD)⊥ in H1 = H2 and 
C = P(ranD)⊥ , then kerA = (ranP )⊥ so that 0 ∈ σe2(A) and, for A as in (8.1),

0 /∈ σe2(A), 0 ∈ σe2(A) ∩
(
σ∗
e2(D) \ σe2(D)

)
⊂ σe2(A)∪σe2(D).

To prove the former, suppose to the contrary that 0 ∈ σe2(A). Then there would exist a sequence hn =
(xn, yn)t ∈ H1 ⊕H1 such that ‖hn‖ = 1, hn ⇀ 0 for n → ∞, and
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(I − P(ranD)⊥)xn → 0,

P(ranD)⊥xn + Dyn → 0,
n → ∞. (8.6)

The second relation in (8.6) implies P(ranD)⊥xn → 0 and Dyn → 0 as n → ∞. Together with the first 
relation in (8.6), we conclude that xn → 0 and hence ‖yn‖ → 1 for n → ∞; hence upon choosing a 
subsequence we can assume that yn �= 0, n ∈ N. Since hn ⇀ 0 for n → ∞ implies that yn ⇀ 0 for n → ∞, 
we conclude that ŷn := yn/‖yn‖, n ∈ N, is a singular sequence for D, a contradiction, since 0 /∈ σe2(D). 
This example proves that the second inclusion in (8.4) is not an equality.

Remark 8.5. We mention that Theorem 8.1, see also Corollary 8.3, provides a direct proof of [4, Prop. 25]
on Maxwell’s equations. Indeed, our results apply to the lower triangular operator matrix Ṽω in [4, (26)]
therein whose entries Aω, Cω, Dω are 2 ×2 operator matrices themselves with unbounded entries. Standard 
computations show that σe2(Dω) = σ∗

e2(Dω) and hence Theorem 8.1 yields the equality σe2(Ṽω) = σe2(Aω) ∪
σe2(Dω), which had to be proved in [4, Prop. 25] for the concrete operators therein.

Finally, we provide some results on the limiting essential spectrum of sequences of lower triangular 
operator matrices. The first results of this kind were established in the thesis [41, Sect. 2.3] without the 
assumption of triangularity for bounded off-diagonal corners.

Let H0 = H1,0 ⊕ H2,0 be a Hilbert space, Hi, Hi,n ⊂ Hi,0 be closed subspaces for n ∈ N and i = 1, 2. 
Let Pi : Hi,0 → Hi, Pi,n : Hi,0 → Hi,n, n ∈ N, be the corresponding orthogonal projections and assume 
that Pi,n

s→ Pi in Hi,0.
In addition to A as in (8.1), in the subspaces Hn = H1,n⊕H2,n of H0 = H1,0 ⊕H2,0, n ∈ N, we consider 

the lower triangular operator matrices

An =
(
An 0
Cn Dn

)
(8.7)

satisfying analogous assumptions as A, i.e. An, Dn are densely defined, Cn, Dn are closable, dom(An) ⊂
dom(Cn) and 
(An) �= ∅.

While the assumptions ensure that each Cn is An-bounded, we suppose that the operator sequence 
(Cn)n∈N is uniformly (An)n∈N-bounded, i.e. there exist a, b > 0 and N ∈ N such that

‖Cnx‖2 ≤ a‖x‖2 + b‖Anx‖, x ∈ dom(An), n ∈ N, n ≥ N. (8.8)

Theorem 8.6. Let An be defined as in (8.7), n ∈ N, and assume that (Cn)n∈N is uniformly (An)n∈N-bounded, 
i.e. (8.8) holds. Then

σe2((Dn)n∈N) ⊂ σe2((An)n∈N) ⊂ σe2((An)n∈N) ∪ σe2((Dn)n∈N).

Proof. The proof is similar to the proof of the respective parts of the proof of Theorem 8.1; note that, due to 
assumption (8.8), we can choose μ > 0 in the transformation of An, see (8.5), independently of n ∈ I ⊂ N. 
The proof is also analogous to the proof of [41, Prop. 2.3.1 i)] if we observe that the sequence Bn = 0 of zero 
operators is discretely compact and we replace the uniform boundedness property of (‖Cn‖)n∈N therein by 
(8.8). We leave the details to the reader. �
Data availability

All data are contained in the text.
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Appendix A. Computations for Example 2.6

In this appendix we provide the computations for Example 2.6 where we considered the semi-infinite 
cylinder Ω = (0, ∞) × (0, L2) × (0, L3) and supposed that ε = μ = id everywhere, and σ = id if x1 ∈ (0, 1), 
else σ = 0, i.e. σ = χK id with K := (0, 1) × (0, L2) × (0, L3).

With this choice of the coefficients the Maxwell system in Ω in (1.1) becomes

curl2 E = ω(ω + i)E, 0 < x1 < 1,

curl2 E = ω2E, 1 < x1 < Xn,

with the condition that E and curlE are continuous across the interface x1 = 1. The boundary condition 
in (1.1) was ν × E = 0 on the boundary ∂Ω. We use the notation n = (n2, n3) ∈ N2

0 .
Case 1, x1 ∈ (0, 1): For this range of x1, if we set

αn(ω) :=
√

π2n2
2/L

2
2 + π2n2

3/L
2
3 − ω(ω + i),

the correct ansatz to use for the solution of this problem by Fourier expansions is

E1(x1, x2, x3) =
∑

n∈N2

Ê1(n) sin
(
πn2

L2
x2

)
sin

(
πn3

L3
x3

)
cosh(αn(ω)x1)
cosh(αn(ω)) ,

E2(x1, x2, x3) =
∑

n∈N0×N

Ê2(n) cos
(
πn2

L2
x2

)
sin

(
πn3

L3
x3

)
sinh(αn(ω)x1)
sinh(αn(ω)) ,

E3(x1, x2, x3) =
∑

n∈N×N0

Ê3(n) sin
(
πn2

L2
x2

)
cos

(
πn3

L3
x3

)
sinh(αn(ω)x1)
sinh(αn(ω)) .

Case 2, x1 ∈ (1, Xn): For this range of x1, if we set

βn(ω) :=
√
π2n2

2/L
2
2 + π2n2

3/L
2
3 − ω2,

the correct ansatz to use for the solution of this problem by Fourier expansions is

E1(x1, x2, x3) =
∑

n∈N2

Ê1(n) sin
(
πn2

L2
x2

)
sin

(
πn3

L3
x3

)
cosh(βn(ω)(Xn − x1))
cosh(βn(ω)(Xn − 1)) ,

E2(x1, x2, x3) =
∑

n∈N0×N

Ê2(n) cos
(
πn2

L2
x2

)
sin

(
πn3

L3
x3

)
sinh(βn(ω))(Xn − x1))
sinh(βn(ω)(Xn − 1)) ,

E3(x1, x2, x3) =
∑

n∈N×N0

Ê3(n) sin
(
πn2

L2
x2

)
cos

(
πn3

L3
x3

)
sinh(βn(ω)(Xn − x1))
sinh(βn(ω)(Xn − 1)) .
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In the definition of αn(ω) and βn(ω) we choose the branch of the square root with non-negative real part. 
The above two ansätze ensure the continuity of E across the interface x1 = 1. To ensure continuity of 
curlE across this interface, a direct calculation shows that the first component of curlE is automatically 
continuous across the interface x1 = 1; it is therefore ν× curlE for ν = (1, 0, 0) that gives rise to non-trivial 
conditions. Direct calculations using the formulae above yield the condition that for some n ∈ N2

0 with 
|n| > 0,

αn(ω) coth(αn(ω)) + βn(ω) coth(βn(ω)(Xn − 1)) = 0.

Next we prove equation (2.9), namely

σe(V ) = (−∞,−π/L] ∪ [π/L,+∞) ∪ (−i{0, 1/2, 1}), L = max{L2, L3}.

Indeed, due to [4, Thm. 6], see also Remark 5.7, we have

σe(V ) = σe(V 0) ∪ σe(div(W(·)∇)), W(ω) := −ω(ω + iχK), ω ∈ C,

where V 0 is the Maxwell pencil iV (·) with σ = 0 and div(W(ω)∇) acts from Ḣ1
0 (Ω) to its dual Ḣ−1(Ω) for 

each ω ∈ C. Clearly, σe(divW(·)∇)) = {0} ∪ σe(div(U(·)∇)) with U(ω) := −(ω + iχK), ω ∈ C. We start by 
showing

σe(div(U(·)∇)) = −i{0, 1/2, 1}. (A.1)

By inspection, one has the inclusion σe(divU(·))∇)) ⊂ −i[0, 1]. The values ω = 0 and ω = −i are both easily 
seen to be eigenvalues of infinite multiplicity, with eigenfunctions which are C∞

c -functions supported entirely 
outside K (for ω = 0 where U(0) = −iχK) or in the interior of K (for ω = −i where U(−i) = −iχΩ\K). It 
remains to examine whether any other ω ∈ −i[0, 1] have the property that 0 lies in the essential spectrum 
of the Dirichlet operator − div((ω + iχK)∇). Since the coefficient ω + iχK takes only the values ω + i and 
ω, whose ratio is 1 + i/ω, the results in [42] suggest that the only value of ω for which this may happen is 
ω = −i/2, which has the property that 1 + i/ω = −1. Unfortunately the hypotheses in [42] do not quite 
cover our case, so we outline a proof by direct calculation. By Glazman decomposition, one shows that

− div((ω + iχK)∇) is invertible ⇐⇒ (−iω + 1)ΛL − iωΛR is invertible,

where ΛL and ΛR are the left- and right-hand Dirichlet to Neumann maps on the interface x1 = 1. Take 
a basis of transverse eigenfunctions (ψn(x2, x3))n∈N , e.g. some ordering of sin

(
n2π
L2

x2

)
sin

(
n3π
L3

x3

)
, with 

strictly positive eigenvalues (κ2
n)n∈N . In such a basis, both ΛL and ΛR are represented by diagonal matrices,

ΛL = diag((κn coth(κn))n∈N), ΛR = diag((κn)n∈N).

Putting ω = −iν with ν ∈ (0, 1), we find

(−iω + 1)ΛL − iωΛR = diag((κn((1 − ν) coth(κn) − ν))n∈N).

If 0 < ν < 1/2, then this infinite matrix has a bounded, positive inverse, so no ω ∈ −i(0, 1/2) lies in the 
essential spectrum. If 1/2 < ν < 1, then the matrix has (at worst) a finite-dimensional kernel, but is still a 
finite-rank perturbation of a matrix with bounded inverse. From this fact and the Glazman decomposition, 
one is able to argue that 0 lies outside the essential spectrum of − div((ω + iχK)∇) for ω ∈ −i(1/2, 1). It 
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remains only to show that ω = −i/2 does indeed have the property that 0 lies in the essential spectrum of 
− div((ω + iχK)∇). We prove this by directly verifying that the functions

un(x1, x2, x3) :=
{

(1 − (x1 − 1)κn(coth(κn) − 1))ψn(x2, x3) sinh(κnx1)
sinh(κn) , x1 ∈ (0, 1),

ψn(x2, x3) exp(−κn(x1 − 1)), x1 > 1,

form a Weyl singular sequence for − div((−i/2 + iχK)∇) acting from Ḣ1
0 (Ω) to Ḣ−1(Ω). They satisfy the 

compatibility conditions across x1 = 1 and, by direct calculation,

− div((−i/2 + iχK)∇un) = ±(i/2)Δun

with − for x1 < 1 and + for x1 > 1. Since Δun = 0 for x1 > 1, we have

−div((−i/2 + iχK)∇un) = −(i/2)Δun

in all cases, and it suffices to show that

‖Δun‖Ḣ−1(Ω)

‖un‖Ḣ1
0 (Ω)

→ 0, n → ∞. (A.2)

Since the Dirichlet Laplacian in Ω has spectrum [κ2
1, ∞), we have Δ ≥ κ2

1 and thus, by testing with C∞
c (Ω)

functions, one may show that

‖Δun‖Ḣ−1(Ω) ≤
1
κ1

‖Δun‖L2(Ω).

By direct calculation, Δun is non-trivial only for x1 ≤ 1, and

Δun = −2κ2
n(coth(κn) − 1)ψn(x2, x3)

cosh(κnx1)
sinh(κn) .

It follows from elementary estimates that, for n → ∞,

‖Δun‖L2(Ω) ≤ O(κ2
n(coth(κn) − 1)) ‖ψn‖L2((0,L2)×(0,L3)),

‖∇un‖L2(Ω) ≥ ‖∇un‖L2((1,∞)×(0,L2)×(0,L3)) ≥ O(κ1/2
n ) ‖ψn‖L2((0,L2)×(0,L3)),

and hence

‖Δun‖Ḣ−1(Ω)

‖un‖Ḣ1
0 (Ω)

≤ 1
κ1

‖Δun‖L2(Ω)

‖∇un‖L2(Ω)
= O(κ3/2

n (coth(κn) − 1)).

This completes the proof of (A.2) and hence of (A.1).
Regarding σe(V 0), we can use the Fourier expansion

E1(x1, x2, x3) =
∑

n∈N2

Ê1(n) sin
(
πn2

L2
x2

)
sin

(
πn3

L3
x3

)
cos(ξx1),

E2(x1, x2, x3) =
∑

n∈N0×N

Ê2(n) cos
(
πn2

L2
x2

)
sin

(
πn3

L3
x3

)
sin(ξx1),

E3(x1, x2, x3) =
∑

n∈N×N0

Ê3(n) sin
(
πn2

L2
x2

)
cos

(
πn3

L3
x3

)
sin(ξx1).
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In the new Fourier coordinates the matrix differential expression 
(
−iω curl
curl iω

)
corresponds to

V(ω, ξ, n2, n3) =

⎛⎜⎜⎜⎜⎜⎜⎝

−iω 0 0 0 πn3
L3

−πn2
L2

0 −iω 0 −πn3
L3

0 −ξ
0 0 −iω πn2

L2
ξ 0

0 −πn3
L3

πn2
L2

iω 0 0
−πn3

L3
0 −ξ 0 iω 0

−πn2
L2

ξ 0 0 0 iω

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then we have

detV(ω, ξ, n2, n3) = ω2
(
ξ2 + π2n2

2
L2

2
+ π2n2

3
L2

3
− ω2

)2

.

As in [4, Ex. 10] the essential spectrum is the set of ω ∈ C such that for some ξ ∈ R and (n2, n3) �= (0, 0), 
one has detV(ω, ξ, n2, n3) = 0. This yields

σe(V 0) = {0} ∪
{
ω ∈ R : ω2 ≥ π2

max{L2
2, L

2
3}

}
.
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