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a b s t r a c t 

Targeted memory reactivation (TMR) is a technique in which sensory cues associated with memories during wake 
are used to trigger memory reactivation during subsequent sleep. The characteristics of such cued reactivation, 
and the optimal placement of TMR cues, remain to be determined. We built an EEG classification pipeline that 
discriminated reactivation of right- and left-handed movements and found that cues which fall on the up-going 
transition of the slow oscillation (SO) are more likely to elicit a classifiable reactivation. We also used a novel 
machine learning pipeline to predict the likelihood of eliciting a classifiable reactivation after each TMR cue using 
the presence of spindles and features of SOs. Finally, we found that reactivations occurred either immediately 
after the cue or one second later. These findings greatly extend our understanding of memory reactivation and 
pave the way for development of wearable technologies to efficiently enhance memory through cueing in sleep. 
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. Introduction 

Memories are neurally replayed during sleep, and this process is
ssociated with consolidation ( Rasch and Born, 2013 ; Squire et al.,
015 ; Ólafsdóttir et al., 2018 ). Targeted memory reactivation (TMR)
s a technique in which sensory cues are paired with learned material
uring wake, then re-presented during subsequent sleep in order to trig-
er reactivation of the associated material ( Cellini and Cappuzo, 2018 ;
u et al., 2020 ). This procedure leads to memory benefits for reacti-
ated material in Non-REM (NREM) sleep (see Hu et al., 2020 for a
ecent meta-analysis). Importantly, several studies have confirmed the
einstatement of learning related brain activity after TMR cues in NREM
leep (see Lewis and Bendor, 2019 for a review). Studies have looked at
he neural structures involved in reactivation ( van Dongen et al., 2011 ;
hanahan et al., 2018 ), and found both positive ( Shanahan et al., 2018 ;
airney et al., 2018 ; Schreiner et al., 2018 ; Wang et al., 2019 ), and
egative ( Murphy et al., 2018 ) relationships between the extent of re-
ctivation and subsequent memory benefits. 

Cortical activity during slow wave sleep (SWS) is characterised by
igh amplitude slow oscillations (SOs) in which neurones oscillate be-
ween hyperpolarization with neuronal silence ( “down-state ”) and de-
olarisation with sustained firing ( “up-state ”). Depolarised SO up-states
rive memory reactivation in the hippocampus via interactions with tha-
amic sleep spindles (SS) and hippocampal sharp wave ripples (SWRs)
 Diekelmann and Born, 2010 ). Studies have shown that stimulation dur-
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ng the up-going SO phase is associated with greater memory benefit
ompared to the down-going phase ( Göldi et al., 2019 ; Shimizu et al.,
018 ), and that stimulating the up-going phase produces a higher event-
elated potential (ERP) response compared to the down-going phase
 Schabus et al., 2012 ). This could be due to the fact that neurones are in
he process of depolarisation and are thus moving closer to the thresh-
ld for firing during the up-going phase. Furthermore, fast spindles,
hich have been linked to both memory consolidation ( Nishida and
alker, 2007 ) and reactivation ( Cairney et al., 2018 ), typically occur

n the up-going phase ( Born and Wilhelm, 2012 ; Siclari et al., 2014 ). 
TMR is thought to prime a memory trace for reactivation ( Lewis and

endor, 2019 ), and has been shown to trigger SO-spindle complexes
 Cairney et al., 2018 ; Schreiner et al., 2015 ; Oyarzún et al., 2017 ). We
redict that application of such priming during the up-going phase of the
O just prior to a spindle event may lead to reactivation. On the other
and, application of stimulation during the down-going phase of the
scillation when fast spindles rarely occur and excitability is reduced, is
ess likely to produce reactivation. 

SOs vary in terms of generation locus as well as shape, for instance
aving different periods, trough depths, and peak to trough slopes.
hese varied morphologies are thought to relate to the degree of syn-
hronisation across neural populations in the cortex ( Siclari et al., 2014 ;
ernardi et al., 2018 ). Given these differences, some SOs are likely to fa-
ilitate reactivation more efficiently than others. We hypothesise that it
ay be possible to predict this efficiency based on features of the ongo-
ellahi), LewisP8@cardiff.ac.uk (P.A. Lewis) . 
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Fig. 1. Experimental design. (a) Participants spent two nights in the lab, Firstly, an adaptation night during which EEG recordings were acquired and tones were 
presented to the participants during SWS. Secondly, in the experimental night, participants completed the serial reaction time task (SRTT), followed by motor imagery 
task. In the imagery task, participants were cued with pictures and sounds but were told to only imagine performing the finger presses without moving. Afterwards, 
participants slept in the lab and TMR cues were presented during SWS. After waking up, participants completed the motor imagery and then the SRTT, and finally 
an explicit recall task in which they marked the locations of the images as they had appeared in the sequences as accurately as they could. (b) In the SRTT, images 
are presented in two different sequences each with a different set of tones. Each image is associated with a unique tone and requires a specific button press. In the 
imagery task, participants hear the tones and see the images as in the SRTT but only imagine pressing the buttons. (c) The sounds of only one learned sequence 
(cued/reactivated sequence) were re-played during SWS sleep, with a 20 s pause between repetitions. 
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ng oscillatory structure of sleep, with specific reference to SOs and spin-
les, in the time period directly before stimulation. This would not only
ptimise stimulation, but also allow more targeted stimulation, minimis-
ng the number of sound cues needed to influence consolidation. 

In the current work, we set out to characterise memory reactivation
fter TMR in NREM sleep and to determine whether TMR on the up-
oing phase is more likely to elicit reactivation compared to the down-
oing phase. Additionally, we ask whether we can predict the optimal
ime for TMR stimulation using ongoing morphology of SOs and spin-
les. We use a serial reaction time task (SRTT). In the SRTT, partici-
ants respond to audio-visual cues by pressing four buttons, one per
nger, with two fingers on each hand ( Fig. 1 ). Each press was cued by
 picture-sound pair, and tones associated with the task were replayed
uring SWS on the post-training night to elicit memory reactivation. Im-
ortantly, prior to performing the task, participants were exposed to the
ones during an adaptation night. The addition of this adaptation night
rovided control data during which tones could not have evoked mem-
ry reactivation, as they were not yet linked to the task. We then trained
 classifier to identify neural responses associated with left- and right-
anded presses in wake and applied it after each TMR tone in SWS on
oth adaptation and experimental nights. We also used the features of
he ongoing oscillation to train another classifier to determine whether
MR applied at a given time in the oscillatory sequence would elicit
etectable reactivation. 

. Results and discussion 

.1. TMR improved sequence memory 

Prior work has shown that the SRTT is facilitated by TMR in SWS
 Cousins et al., 2014 ; Cousins et al., 2016 ; Schönauer et al., 2014 ). Con-
idering only the participants that were included in the classification
2 
 n = 12), our data show an improvement for the reactivated sequence
Wilcoxon signed rank test, n = 12, p = 0.006, z = 2.75), and no im-
rovement for the non-reactivated sequence (Wilcoxon signed rank test,
 = 12, p = 0.084, z = 1.73). However, the difference between the im-
rovements on these two sequences is not significant (Wilcoxon signed
ank test, n = 12, p = 0.071, z = 1.8). See ( Koopman et al., 2020 ) for
n analysis of the full dataset of 15 participants, which does show a
ifference between reactivated and non-reactivated sequences. 

An explicit test for sequence memory at the end of the data collection
dopted the same approach as that in ( Cousins et al., 2014 ) where an
tem is considered correct if it is in the correct position in the sequence
nd is part of a segment of more than two such correct items. A Wilcoxon
igned-rank test showed no difference in the explicit knowledge between
eactivated and non-reactivated sequences (Wilcoxon signed rank test,
 = 12, p = 0.932, z = − 0.085). This could be due to the fact that partic-
pants were much more highly trained on the sequences, as compared
o prior investigations of this question, e.g., Cousins et al. (2014) which
id not involve an imagery condition. 

.2. Multiple reactivations detected after TMR 

Prior work ( Cairney et al., 2018 ; Schreiner et al., 2018 ) has suggested
 recurrent pattern of reactivation after a TMR cue, with a reinstatement
f the target memory immediately after the cued memory followed by
 later reinstatement, see Lewis and Bendor (2019) for a discussion.
uilding on this work, we examined the time course of classification
fter TMR for evidence of a similar pattern. Our results revealed a sig-
ificantly higher classification performance in the experimental night
han in the adaptation night, with two different effects described by
wo clusters after TMR onset ( Fig. 2 a). An early cluster ( p = 0.02) oc-
urred immediately after TMR onset and a late cluster ( p = 0.01) oc-
urred ∼1 s later. Results were corrected for multiple comparisons with
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Fig. 2. Detected reactivations and their characteristics. (a) Classification results for both nights. The blue curve represents the area under the ROC curve (AUC) 
across time for the experimental night (with the mean represented by a solid curve and standard error shaded around it), red curve represents results of the adaptation 
night. TMR sounds were presented at the beginning of sleep trials, ‘early’ and ‘late’ are used to mark early and late reactivations. Classification results show two 
significant effects expressed by two clusters, (early cluster, p = 0.02, and late cluster, p = 0.01). (b) Proportions of correct trials with only early reactivation (46.2%), 
only late reactivation (45.1%), and reoccurring reactivations (8.7%). (c) Percentage of correct trials with the TMR cue falling on different SO phase transitions for 
the two nights. Each circle represents data from one participant and the shown curve is a simplified cartoon representation of the phase of a SO, the two SO phases 
are marked on the x-axis and the y-axis represents the proportions of correct trials. The preferred phase for early reactivation is when the sound falls on the up-going 
transition of the SO (Wilcoxon signed rank test, n = 12, P = 0.019, Z = 2.4) compared to down-going. 
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luster-based permutation (see methods for details), trial duration in
leep was 1500 ms. 

To test whether this was due to recurrent reactivation of the same
esponse, we examined each trial to see whether it included an early
eactivation, a late reactivation, or both. We then looked at whether
he same trials were classified correctly at both early and late peaks
3 
 Fig. 2 b). This revealed that the majority of trials contained one re-
ctivation, either early or late, and only 8.7% of trials showed reoc-
urring reactivation by classifying correctly during both early and late
eaks. Comparison of reoccurring reactivation to chance level showed
hat it was below chance (Wilcoxon signed rank test, n = 12, p = 0.002,
 = − 3.06) (see methods for details, Fig. 2 b). 
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Fig. 3. Predicting reactivation using pre-cue features. (a) Classification results 
of the SO-based classifier for the experimental vs. the adaptation night for early 
reactivation (Wilcoxon signed rank test, n = 12, P = 0.015, Z = 2.43). (b) Classi- 
fication results of the spindle-based classifier for the experimental vs. the adap- 
tation night for late reactivation (Wilcoxon signed rank test, n = 12, P = 0.04, 
Z = 2.04). 
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Overall, these results suggest that the reactivations we are detecting
re not recurrent, but instead commonly occur just once after each cue:
ither early or late within our trial duration. It is possible that this may
lso have been the case in the prior human studies ( Cairney et al., 2018 ;
chreiner et al., 2018 ), as they reported the performance across many
rials and did not examine individual trials. 

.3. Preferred TMR phase for reactivation 

There is evidence that TMR may be more effective when applied
o the up-going phase of the SO ( Göldi et al., 2019 ; Göldi et al.,
017 ; Ngo et al., 2013 ). Moreover, fast rhythms, such as spindle, and
amma activity are more prominent in the SO up-going state than in
he SO down-going state ( Mölle et al., 2002 ; Valderrama et al., 2012 ;
iantoni et al., 2013 ), also there are changes to the ERP when the
uditory stimulation is applied during the up-going phase of the SO
 Schabus et al., 2012 ). Building on the extensive literature relating to
eactivation during rodent sharp-wave ripples ( Kudrimoti et al., 1999 ;
akashiba et al., 2009 ; O’Neill et al., 2008 ), data from human epilepsy
atients has shown that the SO up-going state shows more sharp-wave
ipples and gamma oscillations ( Van Quyen et al., 2010 ). Sharp-wave
ipples have been shown to carry reactivation ( Zhang et al., 2018 ), on
he other hand, they are suppressed during the SO down-going state
 Clemens et al., 2007 ). Thus, the up-going SO phase appears to be the
referred time for stimulation to improve memory ( Göldi et al., 2019 ). 

Given this background, we predicted that TMR would more effec-
ively trigger reactivations if applied to the up-going phase of the SO.

e tested this by calculating the percentage of correct trials that got
MR on the up-going phase. Thus, we divided the number of correct tri-
ls that received TMR on the up-going phase by the number of correct
rials on both up-going and down-going phases. For early reactivation
n the experimental night, this showed a significantly higher percent-
ge of correct trials when TMR was applied on the up-going compared
o the down-going SO transition, (Wilcoxon signed rank test, n = 12,
 = 0.019, z = 2.4, Fig. 2 c). As a control, we compared the percentage
f correct trials from the adaptation night for up-going and down-going
O phases and chance level (Wilcoxon signed rank test, n = 12, p = 0.24,
 = − 1.18). We also repeated all analyses for late reactivation but found
o difference between up-going and down-going phase transitions for
oth nights ( p > 0.07). Raw traces for both correct and incorrect trials
re provided as examples in Supplementary Fig. 4. 

This analysis shows that TMR cues which fall on the up-going transi-
ion of the SO, are more likely to lead to a classifiable early reactivation,
han TMR cues that fall on the down-going phase supporting the idea
hat SOs interact with reactivation in some functional way. This could
lso be important for optimisation of TMR cueing in order to successfully
rigger reactivation. 

.4. Predicting reactivation using pre-cue SO features 

While the literature suggests that reactivation is modulated by SOs
 Rasch and Born, 2013 ; Inostroza and Born, 2013 ), the mechanism for
his modulation remains to be understood. We were interested to de-
ermine whether the features of the ongoing SO prior to stimulation,
ould predict whether a given TMR cue would produce a classifiable re-
ctivation. In other words, we wanted to know whether some points in
he oscillatory pattern are more optimal than others for delivering TMR,
nd if so, which features of the ongoing oscillatory structure determine
his. To examine this, we performed a second classification analysis, this
ime by training our classifiers on pre-cue SO features. We wanted to see
f we could discriminate between correct and incorrect trials (based on
he results of our main reactivation classifier, Fig. 2 a). To this end, we
xtracted SO features from Fz electrode during the two seconds of data
efore the onset of TMR. 

The extracted features are described in Supplementary Table 1.
hese features were fed to decision tree classifiers ( Gordon et al., 1984 )
4 
hich were trained on two classes: correctly classified, and incorrectly
lassified from the main classifier, see methods for details. As a con-
rol, we compared the results obtained from the SO-based classifier of
he experimental night to the SO-based classifier trained and tested us-
ng the adaptation night ( Fig. 3 a). The performance of the experimental
ight classifier was significantly higher than that of the adaptation night
or predicting the early reactivation (Wilcoxon signed rank test, n = 12,
 = 0.015, z = 2.43) and higher than chance level (Wilcoxon signed rank
est, n = 12, p = 0.006, z = 2.75), but not for predicting the late reacti-
ation ( p > 0.2). This indicates that it is possible to predict classifiable
arly reactivation in the experimental night when learned information
ould actually be reactivated, compared to the control condition in the
daptation night when the task had not been learned yet. This result
hows that we can use SO features to predict the optimal time to deliver
MR, in order to maximise the probability of producing a classifiable
arly reactivation. 

In addition to the ongoing pattern of SO oscillations, we were inter-
sted in how spindles might impact upon the ability of TMR to elicit
lassifiable reactivations. We therefore repeated the above analysis, but
ow using spindle features not SOs. We thus trained a spindle-based
lassifier to predict whether we could use these higher frequency os-
illations to determine whether TMR would produce a correct classifi-
ation, using features from channels around the motor area (C5, CP3,
6, and CP4). We thus extracted a binary value representing whether
here was a spindle in the 1.5 s duration pre-cue (0: no spindle, 1: has
pindle), and used this in a decision trees classifier, see methods for
etails. This showed that we can discriminate correctly classified and
ncorrectly classified trials, only in the experimental night and not the
daptation night (Wilcoxon signed rank test for experimental vs. adap-
ation, n = 12, p = 0.04, z = 2.04 and Wilcoxon signed rank test for
xperimental vs. chance, n = 12, p = 0.015, z = 2.43), Fig. 3 b. Subse-
uently, we analysed the trials of each participant to determine whether
t was the presence or absence of spindles that predicted the correct
lassification by the reactivation classifier. This showed that trials with
ewer pre-cue spindles are more likely to have late reactivation (Sup-
lementary Fig. 3). This is in keeping with a study which showed that
ignificant post-cue reactivation was observed in trials with low pre-cue
igma power ( Wang et al., 2019 ). Spindles have been shown to have a
eriodicity of about 4 s ( Antony et al., 2018 ), thus, it is possible that
he occurrence of pre-cue spindles which prevented post-cue spindles
nd reactivation in that study ( Antony et al., 2018 ) also prevented late
eactivation in our study. For early reactivation, there was a difference
etween classification performance and chance level (Wilcoxon signed
ank test, n = 12, p = 0.028, z = 2.2), however, it was not significant
ompared to the adaptation night (Wilcoxon signed rank test, n = 12,
 = 0.14, z = 1.5), generally, the sign of the difference was the same as
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(  
hat of late reactivation showing that trials with fewer pre-cue spindles
re more likely to have early reactivation. Overall, these results suggest
hat we can use features from spindles to predict when to deliver TMR
n order to trigger a classifiable reactivation. 

.5. Characteristics of detected reactivations 

Because this is a motor task, we wanted to know whether classifi-
ation of reactivation was derived from the channels over the motor
rea. We therefore analysed the selected features that were included for
lassification after the feature selection step (see methods for details).
his showed that the selected features always came from the motor area
hannels (C5, CP3, C6, CP4), with 66.7% of features being chosen from
he right motor channels and 33.3% from left. This shows that the activ-
ty patterns in wake and sleep arise from the motor area and are related
o the motor task. 

Because sleep is characterised by relatively low frequencies such as
Os (0.5 – 1.5 Hz), delta waves (1.5 – 4 Hz), and theta (4 – 8 Hz), we hy-
othesised that these would be the most important for our classification.
o investigate this, we applied a low pass filter with cut-off frequency
f 10 Hz without smoothing the signals. The resulting classification pat-
ern was similar to the result without this filter in Fig. 2 a (early cluster,
 = 0.01, and late cluster, p = 0.03). To determine if classification was
riven by a narrower frequency range inside the < 10 Hz band, we em-
loyed a filter bank approach and analysed the classification in different
requency ranges. We thus analysed (4 – 8 Hz, 2 – 4 Hz), < 2 Hz, and
 4 Hz. Interestingly, we found a similar classification pattern to that
btained in Fig. 2 a when examining just the low frequency ranges: <
 Hz, and < 4 Hz, Supplementary Fig. 5. This supports the role of SOs
n memory reactivation. 

As shown in Fig. 2 a, we found that reactivation could occur at either
f the two different timepoints - either early after the onset of the cue, or
pproximately one second later. This demonstrates the temporal charac-
eristics of reactivations within trial duration. We also wanted to exam-
ne the characteristics of reactivations occurring at these two different
imes across the time course of stimulation. Our prior work on this task
uggested that classification performance decreases as the number of
timulations in a night increases ( Belal et al., 2018 ). We tested whether
orrect trials preferably occur before or after the middle of the stimula-
ion time. Thus, we indexed the correctly classified trials for early/late
eactivation to range from 0 (first trial in stimulation) to 1 (last trial)
or every participant. We then compared the indices to 0.5 (middle of
timulation) across participants. This revealed that reactivations could
e detected to a similar extent at any time during stimulation and was
ot more prevalent at the beginning or end of stimulation time. Neither
eactivations which occurred right after the TMR tone, nor reactiva-
ions which occurred ∼1 s after the TMR tone, differed significantly from
he middle of the stimulation time (Wilcoxon signed rank test, n = 12,
 = 0.39, z = 0.86, and p = 0.58, z = 0.55 for early and late reactivations,
espectively). 

We were also interested in determining whether our method could
etect temporally compressed reactivation given the rodent literature
howing that reactivation in NREM is compressed in comparison to wake
 Ji and Wilson, 2007 ; Lee and Wilson, 2002 ; Euston et al., 2007 ). To ad-
ress this, we compressed the EEG signals of wake data that trained our
lassification models and then applied the sliding window approach to
leep to check for reactivation. We repeated this for different compres-
ion factors (length of wake / length of compressed version of wake).
he results are shown in Supplementary Fig. 6. This analysis showed
imilar patterns of results occur for all compressions of wake trials as
hen we use the uncompressed data. Interestingly however, when tested
gainst the adaptation night and corrected for multiple comparisons us-
ng cluster-based permutations these results are only significant for 5x
ompression. Notably, when wake trials are compressed and we look
or a similar pattern in sleep, any temporal shifts between trials in the
iming of reactivation will weaken the effect. This would happen be-
5 
ause the length of the sliding window is now shorter compared to no
ompression. Thus, the significant effect in the compression factor of 5x
ight be due to the fact that this compression factor was closer to the
on-compressed version relative to the other compression factors. This
as confirmed by classification of 2.5x compression, which showed a
attern of significance very similar to the non-compressed data, Supple-
entary Fig. 6i. Given this, it will be difficult to draw firm conclusions

bout the exact compression of reactivation given the small temporal
hifts that may happen in trials. 

Finally, we wanted to examine how the performance of early and
ate reactivations varied across the night of stimulation. Thus, we ob-
ained a performance curve across stimulation time for both early and
ate peaks by observing the changes of classification performance during
he time of that peak throughout trials of stimulation (Supplementary
ig. 1). We used a 50-trial block to calculate classification performance,
nd slid this forward by one trial, to progress along the stimulation time.
e then normalised the stimulation time to have the range (0 to 1), with
 being the first stimulation in the night and 1 the last stimulation. In-
erestingly, classification performance between the two peaks differed
round approximately 0.6, that is, at 60% of the way through stimu-
ation time, with early reactivation more likely to occur at this time
Supplementary Fig. 1). 

.6. The relationship between behaviour and classification performance 

Some prior reports have shown a positive relationship between
etectable reactivation after TMR tones and the extent of TMR re-
ated behavioural benefit ( Cairney et al., 2018 ; Schreiner et al., 2018 ;
endor and Wilson, 2012 ). We searched for this relationship in our data,
y testing for correlations between classification and behavioural per-
ormance. Because different trials classified correctly at early and late
imepoints after the cue, and because such temporally distinct reactiva-
ion may potentially also have distinct functional characteristics, we per-
ormed correlations twice, using the classification rate at the early peak
nd then at the late peak. This revealed a negative correlation between
re-sleep reaction time for the reactivated sequence, and classification
UC for the early peak (Spearman r = − 0.60, uncorrected p = 0.04),
ig. 4 a. Notably, this did not survive correction for multiple compar-
sons (Bonferroni correction, p = 0.16). In other words, faster pre-sleep
erformance was associated with a higher classification rate immedi-
tely after the TMR cue. This could index a stronger representation that
ould reactivate more easily, or in a more classifiable form. 

Interestingly, the late peak showed quite different associations from
he early peak. Here, classification AUC negatively predicted the extent
o which responses on the reactivated sequence sped up across the night
f sleep (performance just before sleep – performance early post-sleep,
pearman r = − 0.72, uncorrected p = 0.01), Fig. 4 b. We refer to this
s overnight improvement, however, this change is related to reaction
ime and not improvement in sequence learning, since our measure of
equence learning involves comparison to the random sequence and this
easure does not. The AUC of the late peak also predicted slower re-

ction times for the non- reactivated sequence after sleep (Spearman
 = 0.68, uncorrected p = 0.02), Fig. 4 c. Thus, the stronger the late
eak, the slower the non-reactivated sequence was performed imme-
iately after sleep. These results could suggest that when reactivation
ccurs late ( ∼1 s after the TMR cue), it somehow disrupts both sponta-
eous and cued consolidation of the task for both the non-reactivated
nd reactivated sequences. The idea that late reactivation could have
his disruptive property is in-line with a study showing a negative cor-
elation between reactivation and improvement ( Murphy et al., 2018 ). 

.7. The relationship between lateralized sleep spindles and classification 

erformance 

Sleep spindles have been strongly linked with memory reactivation
 Rasch and Born, 2013 ; Klinzing et al., 2019 ; Antony et al., 2019 ).
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Fig. 4. Correlation of classification performance with behavioural results and sigma power. (a) Negative correlation between the classification performance (AUC) 
of the early peak and the average reaction time (RT) of the last four blocks before sleep for the reactivated (R) sequence (spearman correlation = − 0.60, uncorrected 
p = 0.04). (b) The late peak correlated negatively with the overnight improvement of the reactivated sequence (spearman correlation = − 0.72, uncorrected p = 0.01). 
(c) The late peak predicted slower reaction times after sleep for the non-reactivated (NR) sequence (spearman correlation = 0.68, uncorrected p = 0.019). (d) 

Correlation of lateralized sigma power (z-transformed) with classification performance for the early peak (Spearman correlation = − 0.69, p = 0.016). 
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or instance, work in rodents shows that replays correlate with spin-
les ( Peyrache et al., 2012 ). Furthermore, lateralized spindle density
uring cue periods has been shown to predict TMR-related benefit
 Cousins et al., 2014 ). We tested for a relationship between sigma power
t (11 to 16 Hz) and classification performance. We found that, even
hough participants used both hands in this task, the lateralized sigma
ower was negatively associated with the early classification peak,
Spearman r = − 0.69, p = 0.016) as shown in Fig. 4 d. Thus, the more
he lateralized spindles right before the stimulus compared to after, the
ore likely we were to classify reactivation immediately after the TMR

ue (more details about power calculation in methods). This is interest-
ng in light of a prior analysis of our behavioural data showing TMR-
elated improvement in the weaker left, but not the stronger right hand
ver sleep ( Koopman et al., 2020 ). 

. Discussion 

This study shows that TMR cues are more likely to result in classi-
able reactivation when applied during the up-going phase of the SOs.
e also show that the pattern of ongoing SOs and spindles before a TMR

ue can be used to predict whether each cue will produce a classifiable
eactivation. Importantly, the resultant reactivations did not reoccur af-
er the TMR cue, instead occurring either early or late. These findings
arkedly deepen our understanding of neural reactivations after TMR

ues in sleep and may lead to improved methods for efficient boosting
f memory via the TMR manipulation. 
6 
.1. Timing of reactivation after the cue 

The delay between TMR onset and triggered reactivation, is a mat-
er of current interest. Rodent work showing a rapid reverberation of
eactivation between cortex and hippocampus at the millisecond scale
as led to the idea that replays may ‘echo back’ again and again after
MR ( Rothschild et al., 2017 ). Other work in rodents ( Bendor and Wil-
on, 2012 ) suggests that TMR cued replay can continue to repeat for up
o 10 s after the offset of the auditory cue, but a second cue can interrupt
his replay. In humans, one study showed evidence of reactivation about
wo seconds after TMR, with a suggestion of earlier reactivation imme-
iately after the cue ( Cairney et al., 2018 ). Another study showed recur-
ent reactivation after TMR, with the response occurring both immedi-
tely after the cue and about two seconds later ( Schreiner et al., 2018 ).
ur findings are in keeping with this work, since they suggest that reac-

ivation can occur either immediately after the cue or around one second
ater. Because our inter-trial interval was only 1500 ms, it is possible that
eactivations could occur even later, but the next TMR cue would likely
ave prevented this in our current design. Notably, although we saw
o evidence of recurrent reactivation in the timescale of seconds, this
oes not rule out the idea of extremely rapid recurrence of reactivation
t the millisecond timescale, as suggested in Rothschild et al. (2017) .
apid recurrence would be difficult to see in our current data given that
e used EEG and there might be small temporal shifts between trials
hich yielded a smoothed mean effect. An early reactivation could be

elated to quick reactivation of the memory in some circumstances. For
nstance, the negative correlation which we observed between early re-
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ctivation and pre-sleep reaction time ( Fig. 4 a) suggests that the brains
f participants who were quick at the task before sleep also responded
uickly to TMR cues with an early reactivation. On the other hand, late
eactivation at ∼1 s relates to spindles as shown in the analysis of the
pindle-based classifiers ( Fig. 3 b). Furthermore, our analysis of this echo
hows that reactivation occurs either late or early (but not both) in the
ast majority of trials ( ∼91%). 

Since our data show that reactivations can be identified either early
r late after the cue, we must ask whether such differences in timing
re functionally important. Early reactivation was positively related to
re-sleep behavioural performance, while late reactivation was instead
egatively related to the extent of overnight improvement. It is diffi-
ult to interpret these findings, but one possible explanation could be
hat a strongly encoded memory of the task leads to more immediate
eactivation after a TMR cue while a weaker memory trace leads to late
eactivation which might actually disrupt consolidation of the task if
emories become distorted during the delay. 

.2. Optimal timing of TMR cues 

The exact mechanisms by which TMR triggers reactivation are un-
nown, but the up-going phase of the SO is more reactive to stimulation
han the down-going phase, after all, neurones are preparing to fire as
he oscillation approaches its peak and beginning a silent period as it en-
ers the trough. Auditory stimulation after the negative peak of the SO,
uring the up-going phase, has been shown to produce a higher ampli-
ude ERP than stimulating during the down-going phase ( Schabus et al.,
012 ). TMR can therefore also be expected to have different impact in
he up- vs. down- going phase of the SO. 

Cortical SOs, thalamo-cortical spindles and sharp wave ripples are
hought to be key for memory consolidation, with the up-going SO driv-
ng spindle-ripple events with reactivation ( Diekelmann and Born, 2010 ;
irota and Buzsáki, 2005 ; Khodagholy et al., 2017 ). TMR to the up-going
hase of the SO has been shown to improve memory ( Göldi et al., 2019 ;
himizu et al., 2018 ). This relationship between SO phase and reacti-
ation is clear in the current work, as we show that stimulating the SO
p-going phase maximises detectability of reactivation. 

SOs are highly heterogeneous, differing both in locus of generation
nd shape. For instance, SOs differ in period, trough depth, and peak to
rough slope ( Siclari et al., 2014 ; Bernardi et al., 2018 ). Importantly, the
O down-state is thought to be required for the generation of a thalamic
own-state which triggers a spindle ( Mak-McCully et al., 2017 ). Given
he association between memory reactivation and spindles, along with
he fact that spindle initiation requires a sharp SO trough, it is reason-
ble to suppose that TMR stimulation of some SOs may be more likely to
rigger reactivation than TMR stimulation of others. For instance, SOs
ith a deeper trough or steeper slope, or some combination of these
ight be more likely to carry reactivation-bearing spindles. Such dif-

erences could explain why we were able to predict which stimulations
ould be successful based on the features of the ongoing SO before the
MR cue, although, notably, the combination of features was necessary
nd no single SO feature was sufficient for this prediction. 

We found that trials with fewer pre-cue spindles are more likely to
ave late reactivation (Supplementary Fig. 3). This is in good keeping
ith work from Wang and colleagues showing that lower pre-cue sigma
ower predicted more post-cue reactivation, and that such reactivation
egins around one second after the onset of the cue ( Wang et al., 2019 ).
uch predictive analysis could potentially be used to boost the efficacy
f TMR by ensuring that stimulation occurs only at the times when it
s most likely to be effective. This could minimise any potential dis-
urbance from TMR, which does often lead to arousals when delivered
ndiscriminately. Such increased precision of cue delivery could be im-
ortant for translation of the TMR technique from lab to the home en-
ironment. 
7 
.3. Control analyses 

Our control for detecting memory reactivation was two-fold. Firstly,
e encapsulated the identity of a memory using its EEG pattern during
ake and used this as a guidance for detecting the reactivation of this
emory in sleep after TMR cues. We achieved this by training our clas-

ification models on EEG from wake during wakeful encoding and test-
ng them in sleep. This procedure ensures that classification strength is
aused by the reinstatement of the same encoded memories and related
o genuine re-processing of memories during sleep. Our work builds on
aradigms showing the discriminability of cued categories in sleep data
ithout the inclusion of wake ( Cairney et al., 2018 ; Schönauer et al.,
017 ), as well as an approach that includes only the features that caused
ategory discrimination in wake ( Wang et al., 2019 ). Secondly, we use
n adaptation night to ensure that our classification results from the ex-
erimental night are not caused by sound induced noise in EEG. Notably,
e excluded all EEG segments that showed signs of arousals. Further-
ore, stimulation late in the night was just as effective at eliciting reac-

ivation as stimulation early in the night as shown in the analysis where
e examined classification rates across stimulation time (Supplemen-

ary Fig. 1). This suggests that habituation to the tone across multiple
timulations did not reduce the extent to which the tone could elicit
eactivation. 

.4. Considerations for future studies 

The current classification pipeline is suitable for our current dataset
ith this particular task in mind and the aim of investigating memory

eactivation. This pipeline is unfortunately not suitable for all sleep data
n general. In the current work, we looked at the prediction of reactiva-
ion using SO and spindle features, future studies could also look at the
oupling between SOs and spindles given the importance of this cou-
ling in carrying reactivation, e.g., Diekelmann and Born (2010) . 

.5. Summary 

In this study, we show that reactivations can occur either early or late
fter a sound cue, and appear to have different functional significance
epending on this timing. We also show that TMR delivered during the
O up-going transition is more likely to be associated with classifiable
eactivation, probably because it heralds the spindle-bearing upstate. Fi-
ally, we show that both pre-cue SO morphology and spindle incidence
an be used to predict TMR cued reactivation. This method will allow
ore efficient TMR stimulation, paving the way for the development of
earable devices to effectively stimulate memory consolidation in the
ome environment. 

. Methods 

.1. Participants 

The current study uses EEG from human participants ( n = 15), mean
ge: 23.4 years, 7 females. Participants spent an adaptation night in
he lab, then in the experimental night, they completed a SRTT be-
ore and after sleep. All participants were right-handed and none of
hem reported familiarity with the SRTT. All participants had normal or
orrected-to-normal vision, normal hearing, and no history of physical,
sychological, or neurological disorders. Participants were healthy and
ad no formally diagnosed sleep disorders. They were asked to answer
 shortened version of the Movement Imagery Questionnaire-3 (MIQ-
) to assess their ability to use internal visual and kinaesthetic imagery
 Williams et al., 2012 ) . They were also asked to answer a shortened ver-
ion of the Edinburgh Handedness Inventory (EHI) to assess their hand-
dness ( Veale, 2014 ). Their alertness was assessed using the Karolinska
leepiness Scale (KSS) ( Åkerstedt and Gillberg, 1990 ) and the Stanford
leepiness Scale (SSS) ( Hoddes et al., 1973 ) before they went to bed.
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heir responses in a pre-screening questionnaire reported no stressful
vents and no travel before commencing the study. Participants did
ot consume alcohol in the 12 h before the study and caffeine in the
4 h prior to the study or perform any extreme physical exercise or nap.
his study was approved by the School of Psychology, Cardiff University
esearch Ethics Committee, and all participants gave written informed
onsents ( Koopman et al., 2020 ). 

.2. Experimental design 

Participants were asked to sleep in the lab before doing the SRTT
raining. During this adaptation night, sounds were played with the
ame criteria as the actual experiment, but importantly they had not
et been associated with any task. During SWS, TMR cues of the reac-
ivated sequence (12-items) were presented to participants with a 20 s
ause between the presentation of each sequence. 

Participants performed a SRTT (adapted from ( Cousins et al., 2014 )).
ounds cued four different finger presses. We delivered the sound cues
uring SWS. Participants learned two 12-item sequences, A and B, A: 1
 1 4 2 3 4 1 3 2 4 3 and B: 2 4 3 2 3 1 4 2 3 1 4 1. The location indi-
ated which key on the keyboard needed to be pressed as quickly and
ccurately as possible: 1 – top left corner = left shift key; 2 – bottom left
orner = left Ctrl; 3 – top right corner = up arrow; 4 – bottom right cor-
er = down arrow. Sequences had been matched for learning difficulty;
oth contained each item three times. The blocks were interleaved so
hat a block of the same sequence was presented no more than twice in
 row, and each block contained three repetitions of a sequence. There
ere 24 blocks of each sequence (48 blocks in total), and each block
as followed by a pause of 15 s wherein feedback on reaction time (RT)
nd error-rate were presented. The pause could be extended by the par-
icipants if they wanted. After the 48 blocks of sequences A and B, par-
icipants performed four more blocks that contained random sequences.
hey contained the same visual stimuli and an ‘R’ displayed in the centre
f the screen. Two of these blocks were paired with the tone group of one
equence (reactivated in sleep), and the other two were paired with the
one group of the other sequence (non-reactivated). Participants were
ware that there were two twelve-item sequences, and each sequence
as indicated with ‘A’ or ‘B’ appearing in the centre of the screen, but

hey were not asked to learn the sequences explicitly. Counterbalancing
cross participants determined whether sequence A or B was the first
lock, and which of the sequences was reactivated during sleep. 

Each sequence was paired with a group of pure musical tones, ei-
her low tones within the 4th octave (C/D/E/F) or high tones within
he 5th octave (A/B/C#/D). These tone groups were counterbalanced
cross sequences. For each trial, a 200 ms tone was played, and at the
ame time a visual cue appeared in one of the corners of the screen.
articipants were instructed to keep individual fingers of their left and
ight hand on the left and right response keys, respectively. Visual cues
ere neutral objects or faces, (Supplementary Fig. 2), used in a previ-
us study ( Cousins et al., 2014 ), which appeared in the same position
or each sequence (1 = male face, 2 = lamp, 3 = female face, 4 = water
ap). Participants were told that the nature of the cues (objects/faces)
as irrelevant. Visual cues stayed on the screen until the correct key
as pressed, after which an 880 ms inter-trial interval followed. 

After completion of the SRTT, participants were asked to do the same
ask again, but were instructed to only imagine pressing the buttons. Im-
gery took place after the SRTT since participants had to be trained on
he task before they could meaningfully perform the imagery task. This
magery task consisted of 30 interleaved blocks (15 of each sequence),
resented in the same order as during the SRTT. Again, each trial con-
isted of a 200 ms tone and a visual stimulus, the latter being shown for
70 ms and followed by an 880 ms inter-trial interval. There were no
andom blocks during the imagery task and no performance feedback
as presented during the pause between blocks. 

In the morning following the experimental night, participants were
sked to perform the task again, motor imagery first, then SRTT. Eventu-
8 
lly, they were asked if they remembered the locations of images of the
wo sequences, to see if one sequence is recalled better than the other
ne. Motor imagery data set of each participant was used for classifica-
ion. The adaptation night was useful for eliminating the possibility that
 classifier could merely classify sound induced effects on the EEG. Thus,
f the classifier can classify the experimental night but not the adaptation
ight this suggests that it is classifying memory reactivations. 

Details regarding the number of stimulations in different conditions
nd which sequence was reactivated are provided in Supplementary Ta-
le 2. 

.3. Recording and pre-processing 

Data were extracted using 21 electrodes, following the 10–20 EEG
ystem. 13 of the electrodes were placed on standard locations, namely:
Z, CZ, PZ, F3, F4, C5, CP3, C6, CP4, P7, P8, O1, and O2, and they
ere referenced to the mean of the left and right mastoid electrodes.
ther electrodes were the left and right EOG, three EMG electrodes,
hich were placed on the chin, and the ground electrode placed on

he forehead. The impedance was < 5 k Ω for each scalp electrode, and
 10 k Ω for each face electrode. Recordings were made with an Embla
7000 amplifier and RemLogic 1.1 PSG Software (Natus Medical Incor-
orated). PSG recordings were scored by two trained sleep scorers and
nly the parts scored as SWS were kept for further analyses. Data were
ollected at a 200 Hz sampling rate. 

EEG signals were band pass filtered in the frequency range from (0.1
o 30 Hz). Subsequently, trials were cleaned based on statistical mea-
ures consisting of variance and mean. Trials were segmented from − 0.5
o 3 s relative to the onset of the cue. Trials falling two standard devia-
ions higher than the mean were considered outliers and rejected if they
ere categorised as outliers in more than 25% of channels. If trials were

ategorised as outliers in less than 25% of the channels, they were inter-
olated using triangulation of neighbouring channels. Thus, 11.7% and
1.9% of trials were considered outliers and removed from the experi-
ental night data and the adaptation night, respectively. Analyses were
one using FieldTrip ( Oostenveld et al., 2011 ) and Matlab 2018a. 

.4. Wake-to-wake classification and determining a time of high 

iscrimination 

We started the analysis by performing a wake-to-wake motor im-
gery classification. This was performed for each participant separately,
ith trials serving as observations and they were labelled according to

he hand they belonged to. EEG signals were pre-processed, and fea-
ures were extracted by calculating time-domain amplitude averages
f 80 ms (40 ms before and 40 ms after every time point). Subse-
uently, features were fed to a linear discriminant analysis (LDA) clas-
ifier ( Blankertz et al., 2011 ). Training and testing were done on wake
ata in a time x time fashion ( King and Dehaene, 2014 ). The classi-
er was trained on a specific time point and tested with all time points
sing a 5-fold cross-validation to build one row in the time x time clas-
ification plot, illustrated in Fig. 5 a. We assumed that if classification
erformance is not at a considerably high rate during wake then this
ould decrease the possibility of classifying sleep reactivation where
oise is higher. Consequently, we chose participants that had wake-to-
ake classification performance with area under the ROC curve (AUC)
 = 0.7, ( n = 13). One participant was neglected because of a technical
roblem during the collection of sleep data. The rest of the data was used
or classification ( n = 12). We also do realise the rich literature of mo-
or imagery classification with common spatial patterns (CSP) and other
ethods ( Blankertz et al., 2008 ; Lemm et al., 2005 ; Pfurtscheller et al.,
997 ; Pfurtscheller et al., 2006 ; Ramoser et al., 2000 ). However, given
he differences between wake and sleep data sets and their different na-
ure of noise and oscillations we decided to directly use time domain
eatures with our classifiers. 
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Fig. 5. Classification of left- vs. right-hand. (a) Grand average AUC values for left- vs. right-hand motor imagery classification using 80 ms smoothing window and 
LDA classifiers, dashed box represents the time of interest (TOI). (b) Illustration of classification procedure (training with wake and testing with sleep) which was 
applied for both the experimental night and adaptation night. A sliding window approach was used, wherein a classifier was tested on a window from sleep and the 
classification result replaced the centre of that window then the window was slid by one time point to construct a performance curve across trial time in sleep. 

9 
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Initial investigations revealed a higher classification performance for
eft- vs right-hand (where both fingers were aggregated into one class)
han for faces vs objects. Therefore, we conducted the analysis on right-
s left-hand imagery. The trial length was defined as the duration be-
ween cue onsets (1.1 s in wake). Sound cues had a duration of 200 ms
nd were played from time 0 of trials. During sleep, trial length was
500 ms. 

Classification of motor imagery during wake showed a time period
ith maximum classification performance (marked with dashed box in
ig. 5 a). This time region should be useful for discriminating left hand
nd right hand. We defined this time period as the time of interest (TOI).
 TOI is a time window that has a high classification rate, indicating its
bility to discriminate between classes. It acts as a temporal marker of
xpected discrimination. To locate this window, we used a threshold of
.85 on the average classification AUC from all participants. 

.5. Wake-sleep classification 

Once we had built a classifier on wake data, we tested it on sleep
ata. We applied it on sleep using a sliding window approach, as shown
n Fig. 5 b. We employed a sliding window approach, classification was
pplied on the first testing window in sleep, for example: [0 to 0.38] s,
hich matched the length of the TOI. Then, classification performance
as placed at the centre time of this window, i.e., at 0.190 s. Subse-
uently, the sliding sleep window was shifted by one time point, and
he process was repeated. Thus, the results of classification consisted of
UC values across time. 

The wake-to-sleep classifiers used the concatenated averages inside
he TOI as features. These concatenated time points were reduced to the
ost informative contiguous time points using mutual information on
ake data for each participant. We reduced the features to the most in-

ormative time points since the reactivation might be temporally short
ompared to wake activation. Consequently, we slide a shorter window
hat contains the most informative features which enables the classifier
o detect the reactivation if it was temporally short or long. The most
nformative time points were chosen such that the time points were con-
iguous and contained the highest 10% of the mutual information val-
es. 

We devised a method for removing noisy trials with no TMR effect.
e assume noisy trials belong to a new ‘no effect’ class which does not

ontain discriminative features for right- vs left-hand. The feature val-
es of those trials should fall near the decision boundary in the feature
pace, in a region where the classifier is uncertain (corresponding to
 maximum posterior probability close to 0.5). Thus, we define trials
s ‘no effect’ if they fall in that area. We rejected noisy trials falling in
he area of uncertainty and used three hundred clean trials from every
articipant. Importantly, to avoid any bias, this cleaning process was
nsupervised, meaning that the information of the ground truth class
abels of sleep data was not used. Moreover, we verified that this clean-
ng process would not improve classification performance if the data we
ere trying to clean was random and contained no discriminative in-

ormation, which was the case with the adaptation night. It would also
ot improve classification performance if sleep data was not scattered
n the feature space in a similar way to wake samples because the de-
ision boundary position and orientation which are determined using
ake will then be meaningless for sleep samples. Thus, this cleaning
rocess only works if sleep data contains discriminative information.
mportantly, the exact same cleaning procedure was performed for both
he experimental and adaptation nights for completeness. 

Classification was assessed using the area under the ROC curve
AUC). Because each point in the AUC represents a different certainty
alue, and measures the true positive and false positive rates at that cer-
ainty value, this provided an indication of the performance of classifi-
ation at each level of certainty. The average certainty of classification
as represented by the posterior probabilities, this gave 0.86 with 0.1

tandard deviation. 
10 
.6. Preferred TMR phase analysis 

Phase information was extracted using Hilbert transform on the band
ass filtered signal (0.5 to 2 Hz) using FZ electrode. We divided phase
alues into two ranges: [0 to π] and ( π to 2 π], indicating the two transi-
ions: down-going and up-going, respectively. For each participant, we
etermined the number of correctly classified trials in which TMR fell
n either phase range in each night, then divided this by the number of
rials on the up-going and down-going transitions. Trials were deemed
correct’ when the prediction of the classifier was the same as the respec-
ive trial category. The same process was repeated for the adaptation
ight. 

.7. Lateralized sleep sigma power analysis 

The lateralized sigma power [11 16] Hz was calculated using the
hort time Fourier transform during the duration: [0 to 0.5] sec . relative
o cue onset which was around the early reactivation. Lateralized power
as calculated as the difference between left and right motor channels

C6, CP4, C5, CP3) and was baseline corrected ([ − 0.2 0] s. relative to cue
nset). Consequently, percentage change from baseline was calculated. 

.8. Reoccurrence of reactivation 

We statistically tested if one reactivation (early or late) was more
ikely to happen or whether reactivation was reoccurring after a sound
ue. Thus, we took the accuracy for recurring reactivation (i.e., the ratio
f correct trials during the time of both early and late reactivation si-
ultaneously) and compared it to the probability of both reactivations
appening simultaneously after a sound cue (the accuracy for early re-
ctivation multiplied by the accuracy for late reactivation) as a chance
evel. We performed this analysis for every participant and compared
he accuracy of reoccurring reactivation to chance level. 

.9. SO-based classification 

The SO-based classification consisted of 200 decision trees ensemble.
eave one out classification was used, wherein data from all participants
xcept one was used to train the classifier and the left-out participant
as used for testing the classifier. This gave a classification result for the

eft-out participant and the process was then repeated until the classi-
cation performance was calculated for all participants. Every decision
ree was trained on a random subset of trials from the training set and
ested on the testing set and the final result was the aggregated votes
rom all decision trees. The extraction of SO and spindle events followed
he implementation in ( Navarrete et al., 2020 ). Briefly, for spindles, sig-
als were filtered using a two-pass bandpass FIR filter between 11 and
7 Hz, subsequently, the root mean square (RMS) power was calculated
sing a window of 200 ms. A threshold on power of 86.639 (equiva-
ent to 1.5 standard deviation from the mean of a normal distribution)
as applied and spindles were defined as segments that exceeded that

hreshold and had duration > 300 ms and < 3 s. For SOs, two-pass FIR
andpass filtering was applied to the signals between 0.3 and 3 Hz. SOs
ere then extracted as segments with negative deflections that had con-

ecutive zero crossings between 0.25 and 1 s. Non-SOs that had < 75
icroV were excluded before classification. 

.10. Statistical testing 

To assess the statistical significance of the classification results,
e compared the classification performance of the experimental night
gainst the adaptation night. Sounds played during the adaptation night
ere the same sounds used in the experimental night but because the
daptation night was before participants had been trained on the exper-
mental task, these sounds were not yet associated with any memories.



M.E.A. Abdellahi, A.C.M. Koopman, M.S. Treder et al. NeuroImage 266 (2023) 119820 

T  

d
 

f  

(  

t  

0  

w

D

 

S  

h  

y

E

 

v  

f  

D

C

 

A  

i  

P  

d

D

A

 

E  

r  

s  

t

F

 

P

S

 

t

R

Å  

A  

A  

B  

B  

B  

 

B  

 

B  

 

B  

C  

 

C  

C  

C  

 

C  

 

D  

E  

 

G  

G  

 

G  

H  

 

H  

I  

J  

K  

 

K  

K  

K  

 

K  

 

L  

L  

 

L  

M  

 

M  

M  

 

N  

 

N  

 

N  

 

N  

O  

 

his control was used to make sure that classification was not derived
ue to sound induced features/noise in EEG. 

Statistical analysis was performed using the classification results
rom the two nights with cluster based permutation using FieldTrip
 Oostenveld et al., 2011 ). Monte Carlo was used with a sample-specific
est statistic threshold of 0.05, permutation test threshold for clusters of
.05, and 10,000 permutations. The correction window used in the test
as the whole length of sleep trial, i.e., [0 to 1.5] s. 
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