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• Model estimates of annual recharge and
recharge ratio disagree across Africa

• Climate controlsmostly explain the spatial
variability in model recharge estimates

• Model similarity to ground-based esti-
mates varies inconsistently throughout
Africa
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Groundwater is an essential resource for natural and human systems throughout the world and the rates at which aqui-
fers are recharged constrain sustainable levels of consumption. However, recharge estimates from global-scale models
regularly disagree with each other and are rarely compared to ground-based estimates. We compare long-term mean
annual recharge and recharge ratio (annual recharge/annual precipitation) estimates from eight global models with
over 100 ground-based estimates in Africa. We find model estimates of annual recharge and recharge ratio disagree
significantly across most of Africa. Furthermore, similarity to ground-based estimates between models also varies con-
siderably and inconsistently throughout the different landscapes of Africa. Models typically showed both positive and
negative biases in most landscapes, which made it challenging to pinpoint how recharge prediction by global-scale
models can be improved. However, global-scale models which reflected stronger climatic controls on their recharge
estimates compared more favourably to ground-based estimates. Given this significant uncertainty in recharge esti-
mates from current global-scale models, we stress that groundwater recharge prediction across Africa, for both re-
search investigations and operational management, should not rely upon estimates from a single model but instead
consider the distribution of estimates from different models. Our work will be of particular interest to decision makers
and researchers who consider using such recharge outputs to make groundwater governance decisions or investigate
groundwater security especially under the potential impact of climate change.
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1. Introduction

Global groundwater resources dwarf all alternative sources of freshwa-
ter (Gleeson et al., 2016) and are used by billions of people worldwide for
drinking water, for securing global food production (Dalin et al., 2017),
and for industrial water supply. As a key component in determining sustain-
able groundwater use (Gleeson et al., 2020), understanding how groundwa-
ter recharge varies in space and time is essential for ensuring groundwater
security (Aeschbach-Hertig and Gleeson, 2012; MacDonald et al., 2021).
However, we cannot directly measure this critical variable across larger do-
mains (or arguably even at small scales); thus, continental and global-scale
investigations into groundwater security and variability rely on groundwa-
ter recharge estimates from commonly used global-scale models. Recharge
estimates from thesemodels have helped to investigate global groundwater
depletion (Döll et al., 2014; Wada et al., 2010), its key drivers (Dalin et al.,
2017; Döll, 2009), and alternative constraints on sustainable usage
(Gleeson et al., 2012; de Graaf et al., 2019). Similarly, de Graaf et al.
(2015) and Reinecke et al. (2019) used recharge outputs from a global-
scale model to drive global gradient-based groundwater models. Cuthbert
et al. (2019) used recharge estimates from a single global-scale model to ex-
plore global patterns in climate-groundwater interactions, though there
they also approximated the range of likely uncertainty in recharge by com-
parison to a second global recharge model data set.

However, recharge outputs from these models are poorly- or un-
constrained as such models are typically either uncalibrated or calibrated
against streamflow records (de Graaf et al., 2015; Döll and Fiedler, 2008).
Calibration of global-scale models to groundwater heads, as done by de
Graaf et al. (2017), suffers from commensurability issues due to scale differ-
ences between observations and modelled variables (Gleeson et al., 2021;
Reinecke et al., 2020). Furthermore, any model calibration is typically bi-
ased towards data-rich regions of the world such as the USA and Europe
(Döll and Fiedler, 2008). Therefore, in data-sparse regions such as Africa,
recharge estimates are more dependent upon choice of model structures
and uncalibrated parameterisations directly derived from global datasets
of relevant soils and other properties. Thus, such models typically reflect
a limited representation of those processes not easily captured in globally
available data (Wagener et al., 2021), e.g., subsurface heterogeneity pro-
duced by karst (Hartmann et al., 2017), or transmission losses in drylands
(Quichimbo et al., 2021). Uncertainties in these model structures and
parameterisations are then propagated into subsequent analyses, which
rarely quantify the influence of potentially divergent recharge estimates be-
tween models (Reinecke et al., 2021). Instead, authors usually select re-
charge outputs from a single model (Wada et al., 2010; de Graaf et al.,
2015; Reinecke et al., 2019). If recharge outputs from several models dis-
agree considerably, this likely suggests that our current understanding of
groundwater behaviour and security attained by subsequent analyses is un-
certain and possibly not robust.

Syntheses of ground-based estimates compiled from the literature could
help us understandwhether global model estimates appear reasonable or at
least plausible. Recharge rates in these ground-based studies are estimated
by an array of different methods with different strengths and weaknesses,
including environmental tracers, chloride mass balance, water table fluctu-
ations, soilmoisture balancemodels, water balancemodels, and groundwa-
ter models (Scanlon et al., 2002). Mohan et al. (2018), Moeck et al. (2020)
and MacDonald et al. (2021) have recently used literature compilation
datasets to understand how and why recharge rates vary across continental
to global scales. However, these ground-based estimates have rarely been
used to assess whether recharge outputs from global-scale models are
reasonable.

Döll and Fiedler (2008) provide an example of how such estimates can
be used to evaluate global-scale models, comparing annual recharge rates
estimated by the global hydrologic modelWaterGAP to those from 25 chlo-
ride profiles in arid and semi-arid regions. The authors found that
WaterGAP overestimated recharge in dry settings and subsequently ad-
justed the model in these environments to only allow recharge on days
when rainfall exceeded 10 mm. Jasechko et al. (2014) used ground-based
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estimates to evaluate another global model, PCR-GLOBWB, assessing
whether seasonal biases in recharge ratios (recharge/precipitation) agreed
with those identified using groundwater isotopes. However, neither study
evaluated the models according to their ability convert reasonable propor-
tions of rainfall into recharge. Doing so could highlight whether discrepan-
cies are associated with the partitioning of rainfall to recharge (i.e., model
structure) or perhaps differences in precipitation forcing.

In this study, we compare, for the first time, groundwater recharge esti-
mates of eight global hydrological models (Reinecke et al., 2021) with a re-
cently compiled dataset of over 100 ground-based estimates of
groundwater recharge across the African continent (MacDonald et al.,
2021). By comparing multiple models to ground-based estimates, we can
examine where different modelling frameworks seem plausible. We focus
on Africa as it is a data sparse region where the use of large-scale hydrolog-
ical models is particularly important and because groundwater is essential
for water security in many parts of the continent (MacDonald et al., 2012;
Calow et al., 2010). Three research questions guide our investigations
into how model structure uncertainty influences recharge estimates from
global-scale models in data-sparse regions.

• Where do model estimates of average annual recharge and recharge ratio
agree or disagree?

• Which environmental controls describe the recharge patterns produced
by the different models?

• How do model estimates compare to ground-based estimates compiled
from the literature?

2. Data and methods

In this sectionwe discuss the key datasets andmethods used in our anal-
ysis. This includes ground-based estimates of groundwater recharge from
the literature, groundwater recharge outputs from global-scale models
and the use of Random Forests to investigate the environmental controls
on recharge outputs from global-scale models.

2.1. Global models

We compare historical (1979–2005) recharge estimates from eight
global-scale models within the Inter-sectoral Impact Model Intercompari-
son Project (ISIMIP), simulation round 2b (Reinecke et al., 2021). ISIMIP
is a model intercomparison framework that enables the comparison of cli-
mate impact projections in different sectors (Frieler et al., 2017). We use
the recharge estimates available through this project, all of which are pro-
vided at the same 0.5° × 0.5° uniform grid (approx. 50 × 50 km at the
equator), and do not run the model simulations ourselves. Six of the eight
models incorporated time-varying historical land use and water abstrac-
tions in their simulations. Two took a different approach; for CLM 4.5, ab-
stractions and land use are fixed to 2005, and JULES-W1 does not model
any abstractions. Telteu et al. (2021) provide a complete description of all
the models included within ISIMIP and Reinecke et al. (2021) discuss
how each model calculates groundwater recharge. Below we summarize
the relevant model features reported in each paper (Table 1).

All model simulations used in this study are driven by the HadGEM2-ES
Global Circulation Model, developed by the UK Met Office Hadley Centre
(Collins et al., 2008). The Global Circulation Model was bias-adjusted by
Frieler et al. (2017) using a trend preserving algorithm and the EWEMBI
data as a baseline climate condition (Lange, 2018).

2.2. Ground-based groundwater recharge estimates

Ground-based recharge estimates in Africa were initially compiled from
the literature by (MacDonald et al., 2021) and are shown here in Fig. 4.
MacDonald et al. (2021) undertook a thorough quality assurance when
compiling the dataset which includes comprehensive meta-information
such as uncertainty ranges on the recharge estimates. For these reasons,



Table 1
List of ISIMIP 2b global-scale models included in our analysis with details about some structural properties, recharge definition and calibration procedure. Model type abbre-
viations stand for Global Hydrological Model (GHM), Land Surface Model (LSM) and Dynamic Global Vegetation Model (DGVM).

Model Model
type

PET scheme Runoff scheme Capil. rise Pref.
flow

Soil
layers

Total soil
depth

Recharge definition Calibration details

WaterGAP 2 GHM Priestley-Taylor
(Priestley and Taylor,
1972)

HBV (Bergström,
1976)

No No 1 4 m Fraction of runoff. In semi-arid,
arid, or coarse soils,
precipitation must exceed
threshold for recharge to occur.

Calibrated against mean
annual streamflow at
1319 GRDC stations

PCR-GLOBWB GHM Hamon (Hamon, 1963) ARNO (Dumenil and
Todini, 1992)

Yes No 2 1.5 m Net flux (percolation, capillary
rise) from lowest soil layer to
groundwater layer.

No calibration –
adjustment of some
parameters

MATSIRO LSM Monin-Obukhov (AET)
(Kumiko et al., 2003)

TOPMODEL (Beven
and Kirkby, 1979)

Yes No 13 100 m Net flux (gravitational drainage,
capillary rise) from layer where
water table sits.

No calibration –
adjustment of
parameters according to
vegetation and soil
properties

LPJmL DGVM Modified
Priestley-Taylor (Gerten
et al., 2004)

Bucket (Arnold et al.,
1990)

No No 6 13 m Percolation from bottom soil
later.

Calibrated against crop
yields from FAO data

JULES-W1 LSM Penman-Monteith (Best
et al., 2011)

TOPMODEL (Beven
and Kirkby, 1979)

No No 4 3 m Saturation excess water from the
bottom soil layer.

Calibrated against
biophysical processes

CWatM GHM Penman-Monteith (Allen
et al., 1998)

ARNO (Dumenil and
Todini, 1992)

Yes Yes 3 2 m Net flux (percolation,
preferential flow, capillary rise)
from lowest soil layer to
groundwater store.

Calibrated against
monthly and daily
streamflow data in 12
catchments

H08 GHM Bulk transfer coefficient
(Hanasaki et al., 2008)

Leaky bucket
(Manabe, 1969)

No No 1 1 m Same as WaterGAP 2. No calibration

CLM 4.5 LSM Monin-Obukhov (AET)
(Oleson et al., 2013)

TOPMODEL (Beven
and Kirkby, 1979)

Yes -via soil
matrix
potential

No 15 42.1 m Net flux (percolation, capillary
rise) to groundwater layer.
Applies Darcy's law across in the
groundwater layer.

No calibration –
adjustment of
parameters according to
vegetation and soil
properties
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and because of its focus on Africa, we selected this database above other
meta-datasets (Moeck et al., 2020; Mohan et al., 2018).

We further screened the dataset derived previously to only include
georeferenced and time-stamped findings between 1979 and 2005, en-
abling a comparison to global models. This meant that we ultimately use
124 (out of originally 134) ground-based estimates of annual recharge
across Africa. Our analysis of recharge ratio uses fewer data points, as
only 106 of these estimates report corresponding mean annual precipita-
tion values. Spatially, 28 of these estimates reflect recharge rates over spa-
tial scales <100 km2, a further 39, 29, and 28 are for spatial scales of
100–2500 km2, 2500–62,500 km2 and >62,500 km2, respectively.

2.3. Random forests and predictor variables

We used random forests to predict the simulated long-term annual re-
charge and recharge ratio estimates using environmental attributes
(Table A1 in the appendix) to assess environmental controls on modelled
outputs. A random forest is a supervised machine learning algorithm that
combines multiple trees to produce an ensemble of predictions (Breiman
et al., 1984; Breiman, 2001), which link predictor variables (environmental
attributes) to a response (global model outputs). As discussed by Addor
et al. (2018), the advantages of random forests include no relationship as-
sumptions, the allowance of non-linear relationships between multiple pre-
dictors, reduced risk of overfitting compared to individual regression trees,
and computational efficiency. Each regression tree in the ensemblemodel is
trained on observations (model grid cells) randomly selected with replace-
ment from a sub-sample of 70 % of the total observations (‘in-bag’ observa-
tions). In each forest, we use 250 trees, each of which canmake amaximum
of 400 decision splits. Greater numbers of trees or splits did not improve the
accuracy of the predictions.

To interpret the random forest models, we follow an approach taken by
Addor et al. (2018) and group predictor variables according to climate,
landcover, topography, soils and geology. Independent random forest
models are then developed for each predictor group when estimating re-
charge outputs from the global models. Determining the R2 values for the
‘out of bag’ (i.e., not training data) predictions from each ensemble model
3

then allows us to see how much of the variability in global model outputs
can be explained by either climate, landcover, topography, soils, or geol-
ogy; as well as jointly using all variables. Information about the predictor
variables/attributes in each predictor group and the datasets used to char-
acterise these variables can be found in Table A1 in the appendix.

3. Results and discussion

We organise the following results and discussion according to the three
research questions presented at the end of the introduction. For each ques-
tion, the results are presented and then immediately discussed.

3.1. Where do recharge estimates from global-scale models agree or disagree?

We assess the agreement of annual recharge and recharge ratio esti-
mates from the eight globalmodels by investigating the standard deviations
(using absolute values) and coefficients of variation (also called relative
standard deviation using normalized values) across the model outputs
(Fig. 1). In absolute values, we find that annual recharge estimates from
the eight models disagree considerably in wetter regions of Africa (Fig. 1.
a). Disagreements in annual recharge estimates are greatest in Central
Africa, the Ethiopian highlands, Madagascar, and along the west African
coastline, with 24 % of pixels having standard deviations above 100 mm/
year. In contrast, disagreements in annual recharge estimates are
<10 mm/year for 38 % of pixels, predominantly extending across dry re-
gions of the continent such as the Sahara, Southern Africa, and the Horn
of Africa. Though, even in some very dry regions, we find places where
annual recharge estimates disagree, predominantly along the river Nile
and irrigated agriculture regions of the Sahara. In these locations, CLM
4.5, CWatM, H08, LPJmL, MATSIRO all estimate recharge ratios greater
than one (Figs. S1 & S2), likely reflecting modelled transmission losses or
irrigation return flows.

Recharge ratio estimates disagree across both wet and dry regions
(Fig. 1.b). They disagree across much of the Sahara, with standard devia-
tions >0.1. However, most of this divergence derives from only one
model, PCR-GLOBWB, which estimates recharge ratios >0.2 for nearly all



Fig. 1.Maps show joint summary statistics of the variability in recharge estimates across Africa from the 8 global models listed in Table 1 and discussed in detail in Reinecke
et al. (2021). (a) the standard deviation of long-term average annual recharge rates (mm/year); (b) the standard deviation of long-term average recharge ratios (−). (c) the
coefficient of variation of long-term average annual recharge rates (%); (d) the coefficient of variation of long-term average recharge ratios (%). The colouring scheme we
have selected is intended to highlight where our understanding of recharge varies or converges. Lighter colours highlight where model estimates diverge and hence
where our understanding of recharge processes is incoherent (Wagener et al., 2021). Whereas darker colours show where models agree, though this does not mean they
are correct.
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Northern Africa (Fig. S2). The other seven models estimate recharge ratios
below 0.05 for most of the Sahara. Modelled recharge ratio estimates also
disagree throughout Central Africa and the Ethiopian Highlands, such
that 64 % of pixels have a standard deviation >0.1 for recharge ratio. For
32 % (5 %) of the pixels, standard deviations in recharge ratio estimates
from the eight models are below 0.05 (0.01), primarily distributed across
the Sahel, Southern Africa, and the Horn of Africa.

The picture changes if we compare estimates of mean annual recharge
(Fig. 1.c) and recharge ratio (Fig. 1.d) relative to their ensemble mean.
The relative disagreement between models is high where estimated re-
charge rates are low, and vice versa. Therefore, model differences tend to
be either high in magnitude (large standard deviation, small coefficient of
variation) or high relative to estimated recharge (small standard deviation,
large coefficient of variation). Identifying regions where model disagree-
ment is high relative to recharge flux is important, especially if a later
model use lies in the estimation of climate change impacts
(e.g., Hartmann et al., 2017). Here, the coefficient of variation
(i.e., relative standard deviation) between modelled estimates is >100 %
4

(200 %) for 66 % (29 %) of pixels in Africa, mostly occurring in Northern
and Southern Africa as well as the Horn of Africa. Whilst only 6 % of pixels
have a coefficient of variation <50 %. Furthermore, as relative differences
in modelled annual recharge estimates are equal to relative differences in
modelled recharge ratio estimate, they show the same spatial patterns
(Fig. 1.c & d). Hence highlighting how differences in annual recharge esti-
mates are caused by differences in precipitation-recharge conversion rates,
which could be attributed to varying model structures, parameterisation
schemes or datasets used to characterise the land surface. Further analysis
investigating model differences at the global scale are included in the sup-
plemental information (Figs. S3& S4), along with a discussion about previ-
ous model comparisons for groundwater recharge in other parts of the
world.

Fig. 2 shows that both absolute and relative differences in groundwater
recharge estimates vary strongly with long-termmean annual P-PET. In dis-
agreement with previous empirical studies (MacDonald et al., 2021; West
et al., 2022), recharge ratio estimates from PCR-GLOBWB and CWatM are
surprisingly high (>0.2) across desert regions where P-PET is low, leading

Image of Fig. 1


Fig. 2. Further analysis of the recharge estimates for Africa from the global models listed in Table 1 and shown in Fig. 1. (a) long-term average P-PET (mm/year) against the
standard deviation of long-term average annual recharge rates (mm/year); (b) long-term average P-PET (mm/year) against the standard deviation of long-term average re-
charge ratios; (c) long-term average P-PET (mm/year) against the coefficient of variation of long-term average annual recharge rate; (d) long-term average P-PET (mm/year)
against the coefficient of variation of long-term average recharge ratios.
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to large absolute model disagreements for recharge ratio throughout dry
and wet regions (Fig. 1.b & Fig. S2). The reasons for this deviation are
not obvious.

3.2. Which environmental controls describe the recharge patterns produced by
the different models?

We use random forest models to investigate which environmental con-
trols, as identified from datasets, with global coverage, describe the spatial
patterns evident in the recharge outputs fromglobal-scalemodels. The logic
is that recharge outputs from global-scale models should reflect similar pro-
cess controls towhat is being identified in continental to global-scale empir-
ical studies found in the literature. If global-scale models show very
different controls to what is being found through empirical studies, then
this may indicate that the model structures of global-scale models do not
adequately represent dominant recharge controls.

Climate variables explain most of the spatial variability in annual re-
charge and recharge ratio estimates from all eight models, with landcover
and soil properties also showing some explanatory power (Fig. 3). The
static descriptors of climate, landcover, and soils used in the random forest
models explain at least 80 % of the modelled spatial variability of annual
recharge and at least 70 % of the spatial variability of recharge ratio. Cli-
mate alone explains between 67 % and 89 % of the spatial variability in
long-term annual recharge estimates from the eight global-scale models.
For five of the models, climate also explains>70% of the spatial variability
in recharge ratio estimates. For the remaining threemodels (PCR-GLOBWB,
LPJmL, CWaTM), just over 50 % of the spatial variability of recharge ratio
can be explained by climate alone (53%, 65%, 51%). Landcover attributes
are second in explaining the spatial variability in recharge outputs from all
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eight globalmodels. These attributes explain on average 61% (56%) of an-
nual recharge (recharge ratio) estimates, whilst soil properties explain on
average 33 % (34 %) of their spatial variability.

Considering the interactions between climate, landcover, topography,
soils and geology allows us to explain only small additional proportions
of the spatial variability in both annual recharge and recharge ratio esti-
mates from the global models. For annual recharge (recharge ratio), the ad-
ditional explanatory power when considering interactions between all
predictor variables in contrast to climate controls alone, is on average
10% (13%) across each of the global-scale models. This might be expected
as the co-evolution of climate, landcover and soils causes these properties to
co-vary in space and form large-scale landscape patterns (Pelletier et al.,
2013; Troch et al., 2013). Therefore, using climate variables alone to pre-
dict modelled recharge outputs implicitly considers some information
about landcover and soils.

The importance of climate controls on global model outputs is consis-
tent with the findings of MacDonald et al. (2021) for ground-based re-
charge estimates. Their regression showed that ground-based annual
recharge estimates vary throughout Africa according to mean annual pre-
cipitation, which explains 82 % of this variability. Yet in contrast to our
global model findings, they do not find that including additional variables
beyond climate improve their prediction of ground-based recharge esti-
mates across Africa, though they suggested that it could be important lo-
cally. The low level of predictability of climate controls on recharge
estimates from PCR-GLOBWB, LPJmL and CWaTM, shows that these
models are inconsistent with the controls found for ground-based estimates
in Africa (MacDonald et al., 2021). Other empirical studies, analysing an-
nual recharge rates globally, do however highlight the importance of vege-
tation and soils for partitioning precipitation to recharge (Kim and Jackson,

Image of Fig. 2


Fig. 3. Coefficient of determination when predicting global model estimates for Africa of (a) long-term average annual recharge and (b) recharge ratio. Out of bag predictions
using random forest models were performed for individual predictor groups (climate, landcover, topography, soils, and geology) as well as by considering the interaction
between all predictor attributes (all). Random forest models are an ensemble of 250 regression trees each with a maximum of 400 decision splits. When predicting recharge
ratios, we excluded pixels with estimates greater than one as their inclusion led to very low coefficient of determination scores when using all predictor attributes. Percentage
of pixels excluded when predicting recharge ratio estimates were <0.5 % for all models. Horizontal lines highlight the three models which consistently reflect the strongest
levels of climate, vegetation and soil controls on their annual recharge and recharge ratio estimates.
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2012; Mohan et al., 2018). The differences between these global analyses
and MacDonald et al. (2021) could highlight particularly strong climate
controls on the spatial variability of recharge in Africa. Whereas precipita-
tion gradients in other regions may not be as great as those in Africa, which
may explain why landcover and soil properties have helped to explain the
variability of recharge globally. It may also be attributed to spatial patterns
becoming more emergent in larger (>600 datapoints) datasets covering
more environments or more rigorous data quality assurance by
MacDonald et al. (2021). Quality assurance procedures by MacDonald
et al. (2021) led to the removal of 182 (from an initial 316) data points,
whichmay have reduced the variability in recharge estimates and therefore
produced a clearer climatic control.

3.3. How do model estimates compare to ground-based estimates compiled from
the literature?

Ground-based recharge estimates are distributed unevenly across the
African continent and are predominantly located in dryland landscapes
whilst wet tropical landscapes are underrepresented (Fig. 4). For desert,
dryland, wet tropical, and wet tropical forest landscapes we have 21 (16),
71 (61), 29 (26), and 3 (3) ground-based estimates of annual recharge (re-
charge ratio), respectively. We compare these estimates to those from the
global-scale models for the relevant period. A description of how we delin-
eated the four landscapes is provided by West et al. (2022).

Discrepancies between global-scale model and ground-based estimates
of annual recharge and recharge ratio are larger in wetter than in drier re-
charge landscapes, though relative discrepancies are similar across the dif-
ferent environmental settings (Fig. 4). The median magnitude of
discrepancies in annual recharge (recharge ratio) in desert, dryland, wet
tropical and wet tropical forest landscapes are 0.4 mm/year (0.007),
4.26 mm/year (0.01), 31.7 mm/year (0.02) and 105 mm/year (0.06), re-
spectively when looking across all eight global models. In contrast, the me-
dian magnitude of relative discrepancies in annual recharge (recharge
ratio) in desert, dryland, wet tropical and wet tropical forest landscapes
are 23 % (30 %), 29 % (30 %), 29% (22%) and 12% (30%), respectively.
Furthermore, relative discrepancies in annual recharge estimates are often
similar if not identical to relative discrepancies in recharge ratio. For each
6

model, linear correlations between the relative discrepancies in annual re-
charge and recharge ratio vary between 0.96 and 0.99 (Fig. S5).

Landscape specific discrepancies between global models and ground-
based recharge estimates are more noticeable for several global models.
CLM 4.5 and CWatM show the greatest overpredictions in wet tropical for-
est landscapes, while H08, JULES, and WaterGAP 2 significantly
underpredict in this domain. PCR-GLOBWB and CWatM show the largest
overpredictions in terms of recharge ratios in desert landscapes. Climate
controls on recharge ratio estimates from these two models were less dom-
inant than for the othermodels (Fig. 4), which together with generally large
overestimations in recharge ratio suggests that they do not represent re-
charge controls in desert regions adequately. CLM 4.5 also displays larger
overpredictions in recharge ratio in wet tropical forest landscapes. It is
also interesting to note that in some model and landscape combinations,
discrepancies to ground-based estimates show very little bias but a lot of
variability, whilst in others the bias can be high but withmuch less variabil-
ity. This is likely due to the modelling decisions made by each of the model
development groups, such as model structure, calibration procedures and
dataset selection (Telteu et al., 2021). However diagnosing which of these
decisions are responsible for our findings is non-trivial and will likely re-
quire further discussion and assessment between and by model developers
(Gudmundsson et al., 2012). Additionally, comparing global model outputs
to ground-based information also raises questions about how comparable
the model spatial resolution is to the representative area of the ground-
based data. However, we did not find a clear relationship between themag-
nitude of global model discrepancies and the varying spatial scales of
ground-based recharge estimates (Fig. S6).

We find that model similarity to ground-based estimates varies consid-
erably and inconsistently throughout the different Recharge Landscapes
of Africa (Fig. 4). Even though six models predominantly underestimate
mean annual groundwater recharge rates, this is not a consistent pattern,
with over-estimates present for most models and in each landscape
(Fig. 5). JULES-W1 appears to be the exception to this, as 87 % (92 %) of
its annual recharge (recharge ratio) estimates are below ground-basedfind-
ings. Across all eight models, we found that 56% (55%) of annual recharge
(recharge ratio) discrepancies are underestimates, 18 % (18 %) are overes-
timates, and 26 % (27 %) fell within the uncertainty range of the ground-

Image of Fig. 3


Fig. 4.Map of Africa organised into four recharge landscapes (West et al., 2022) with the distribution of ground-based annual recharge and recharge ratio (annual recharge/
annual precipitation) estimates superimposed. Discrepancy between global model and ground-based estimates of (b) annual recharge (mm/year) and (c) recharge ratio (−)
organised according to these recharge landscapes. Discrepancy is defined as global model estimate - ground-based estimate. Relative discrepancy between global model and
ground-based estimates of (d) annual recharge (%) and (e) recharge ratio (%) organised according to these recharge landscapes. Relative discrepancy is defined as 100 X
(global model estimate - ground-based estimate)/ground-based estimate. Scatter points show the individual relative discrepancies and boxplots show the inter-quartile
range of relative discrepancies in each landscape. Scatter points show the individual discrepancies or relative discrepancies, and boxplots show their inter-quartile range
in each landscape. Some ground-based estimates have uncertainty ranges. If global model estimates fall within this range the discrepancy and relative discrepancy is zero.
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Fig. 5. The percentage of data points in a given recharge landscapewhere global-scalemodels either over or underestimate ground-based annual recharge estimates orwhere
there is no bias (i.e., the global-scale model estimate is within the uncertainty range of the ground-based estimate).
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based estimate. Similar over and underestimation statistics for recharge
rates and recharge ratios, reflect that overestimation (underestimation) in
annual recharge mostly corresponds to overestimation (underestimation)
in recharge ratio. The tendency to underestimate recharge rates is particu-
larly noticeable in dryland recharge landscapes, where 60 % of the global
model estimates are below ground-based estimates. Though this varies
from 28 % to 92 % across each of the models.

Global models which reflect the strongest levels of climate controls on
their recharge outputs agree with ground-based estimates more than the
other models. Recharge outputs from H08, MATSIRO, and WaterGAP 2,
consistently reflect more climate controls than the other models and show
lower average discrepancies. The median absolute discrepancies in annual
recharge (recharge ratio) for these three models are 0.36 mm/year (0),
1.56 mm/year (0.006) and 2.9 mm/year (0.006), respectively, in contrast
to between 5 mm/year and 10 mm/year (0.016 and 0.03). This agrees
with previous empirical analyses of ground-based recharge estimates by
MacDonald et al. (2021) and West et al. (2022) who both found climate
to be the dominant controls on spatial variability in Africa. Moreover,
Zaherpour et al. (2018) found these three models performed better than
others when estimating mean annual runoff at 40 catchments distributed
throughout the world. Hence potentially suggesting the greater plausibility
of these model structures for long-term hydrological partitioning (Troch
et al., 2013). Median absolute discrepancies for each model are generally
low as >70 % of datapoints are in desert or dryland landscapes. Interest-
ingly, the median absolute discrepancy in annual recharge (recharge
ratio) estimates for the ensemble mean of the models is 1.11 mm/year
(0.005), which is similar to H08, MATSIRO and WaterGAP 2.

Based on these findings, we suggest predicting groundwater recharge
across continental scales for research or operational management should
not rely on one specificmodel (Fletcher et al., 2019). Nomodel consistently
compares well with ground-based estimates in a given landscape and there-
fore we cannot rely upon individual global models to estimate recharge. If
groundwater governance in wet landscapes depends on recharge estimates
from one global-scale model, this could potentially lead to large over or
under-utilization of groundwater resources, as absolute discrepancies be-
tween global models and ground-based estimates are often large in these
settings. Although absolute discrepancies between global model and
ground-based estimates are often small in dry and desert landscapes, rela-
tive to the ground-based estimate and to the total available water resources
of the region, these discrepancies are often large. It is perhaps not surprising
that global models are unreliable in wet tropical regions as so few studies
have investigated recharge processes in these settings (Mohan et al.,
2018; Moeck et al., 2020; MacDonald et al., 2021). Nonetheless, recharge
studies are much more common in dry settings, and this is still not leading
towards improved recharge estimation in relative terms, by global-scale
models. Hence highlighting the need to advance recharge estimation by
global-scale models across a wide range of environmental settings. Interest-
ingly, the performance in absolute terms of the ensemble mean of the
global-scalemodels is like that of the individually better performingmodels
8

(H08, MATSIRO and WaterGAP 2), for both annual recharge and recharge
ratio. This is perhaps not surprising as these models reflect the greatest
level of climate controls, and by taking the ensemble mean across all the
global-scale models, we essentially de-emphasize how individual models
partition water at the land surface and instead emphasize the climate
forcing.

However, it is still unclear howwe can improve recharge estimation by
global-scale models as their discrepancies to ground-based estimates are in-
consistent, with both over and under-estimates by models in a given land-
scape. If biases were systematically either positive or negative this could
help guide further diagnostic model evaluation considering other hydro-
logic fluxes (Niraula et al., 2017), but this is not the case. Previous compar-
ison studies have shown that the development of consistent modelling
protocols that harmonise model inputs, parameter estimation, initial condi-
tions etc. is very difficult even for simple models (Ceola et al., 2015). In the
long-run, modular modelling approaches will enable a better implementa-
tion of different model structures for global hydrologic models. Such strat-
egies have been widely used for lumped hydrologic models at the
catchment scale (e.g. Clark et al., 2008; Knoben et al., 2019; Leavesley
et al., 2002; Wagener et al., 2001). However, developing such frameworks
for distributed global-scale models will not be straightforward and would
best be done as a large-scale collaboration between different modelling
groups. Successful implementation would exceed the levels of diagnostic
analysis currently possible in existing model intercomparison projects,
such as ISIMIP. Further still, if this modular framework facilitated spatially
variable model structures, this would allow the simultaneous implementa-
tion of landscape-specific models (Hartmann et al., 2017; Quichimbo et al.,
2021), which may be more plausible than models which uniformly apply
the same model structure over entire continents or globally. Developing a
sensible separation of the landscape for specific models and capturing the
expert understanding of how these different systems function is an interest-
ing current challenge (Gleeson et al., 2021). Using expert knowledge to de-
velop more plausible models is particularly important, as even a direct
calibration of models to available data may not improve recharge estima-
tion due to sparsity of recharge data (see Section 2 of the supplemental in-
formation for further discussion).

4. Conclusions

We set out to examine where and how global-scale model estimates of
groundwater recharge agree or disagree with one another and with
ground-based estimates across the African continent. We did so using the
outputs of eight global models that were previously run within the ISIMIP
framework (Frieler et al., 2017; Reinecke et al., 2021) and over 100
ground-based estimates of recharge compiled from the literature
(MacDonald et al., 2021).

We found that global-scale model estimates of long-term mean annual
recharge rates and recharge ratio disagree significantly throughout much
of Africa. In absolute terms (using standard deviation), models disagree

Image of Fig. 5
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more in wet tropical regions and agree more in dry regions, whilst in rela-
tive terms (using coefficient of variation) the opposite is true. However, ab-
solute model disagreement for recharge ratios is also high throughout the
Sahara Desert, though this is mostly attributed to surprisingly high
estimates by PCR-GLOBWB and CWatM in this region. When investigating
controls on global-scale model recharge outputs for Africa using Random
Forests, we found that climate controls on average explain 75 % and
68 % of the spatial variability of annual recharge and recharge ratio
estimates, respectively. However, climate controls only explained approxi-
mately 60 % of the spatial variability in recharge estimates from PCR-
GLOBWB and CWatM, which is significantly less than the 82 % reported
by MacDonald et al. (2021) in their empirical analysis. H08, MATSIRO
andWaterGAP 2, reflected the strongest level of climate control on their re-
charge outputs and show the greatest similarity to ground-based estimates.
Using the ensemble mean of all eight global-scale models performed simi-
larly to these three best performing models.

Our work adds further evidence to previous studies which showed that
the robustness of global hydrologic model simulations can vary consider-
ably, suggesting that we should be aware of these problems when utilizing
these model outputs for subsequent studies. Studies regularly use the out-
put of such models (and often just one of them) as input in their follow-
up analysis, only with the occasional caveat in the discussion section
about potential limitations and robustness issues in the model predictions.
Rather, highlighting where model robustness is low and where models de-
viate fromour current perception of hydrologic systems are important strat-
egies to guide future research towards areas of greatest knowledge gaps
(Wagener et al., 2021).
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Appendix A
Table A1

List of environmental attributes used in analysis organised by predictor groups (i.e., climate, landcover, topography, soils, geology), along with information about the global
datasets used to characterise attributes.
Attribute
 Description
 Units
 Period
 Data source
 Reference
limate attributes

-PET
 Mean annual precipitation minus mean annual PET.
 mm/year
 1979–2005
 1. MSWEP v1.2

(Precipitation)
Spatial res.: 0.25°
Temporal res.: Daily

2. CRU v4
(PET)
Spatial res.: 0.5°
Temporal res.: Monthly
1. (Beck et al., 2017)

2. (Harris et al., 2020)
-PET in
season
Mean annual volume of precipitation in excess to PET in
months considered in-season. A month is considered in-season
when P exceeds PET.
mm/year
 1979–2005
(P-PET)
 The standard deviation of monthly P-PET
 mm/month
 1979–2005
10

The average volume of rainfall per year on days with at
least 10 mm of rain.
mm/year
 1979–2005
opography attributes

levation
 Elevation referenced to WGS84 EGM96 geoid
 m
 –
HydroSHEDS
Spatial res.: 15″
(Lehner et al., 2013)

ope
 Geodesic slope of the DEM using a 3 by 3 moving window.
 degrees
 –
AND

Height Above Nearest Drainage. Height above nearest river pixel
when following D8 flow directions.
m

ndcover/use
veg

Vegetation coefficient related to transpiration. Vegetation-specific
annual values (Gordon et al., 2005) applied to a landcover classification.
Mean value from 1992 to 2005.
–
 1992–2005
 ESA-CCI v2.0.7
Spatial res.: 300 m
Temporal res.: Yearly
(Defourny et al., 2017)

et
 Extent of areas with LCCS class of 20, 160, 170 or 180
 –
 1992–2005

aterbodies
 Extent of areas with LCCS class 210
 –
 1992–2005
I
 Mean leaf area index (based on 12 monthly means from 1981 to 2015)
 –
 1981–2015

GIMMS-LAI3g v2
Spatial res.: 0.25°
Temporal res.: Monthly
(Mao and Yan, 2019)
rigation

Area equipped for irrigation multiplied by the fractional area actually
irrigated.
km2
 2005

Global Map of Irrigation
Areas
Spatial res.: 5′
(Siebert et al., 2013)
(continued on next page)
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able A1 (continued)
Attribute
So

Sa

C

Sa

G
D

D

K

Description
10
Units
 Period
 Data source
 Reference
il attributes
nd

Proportion (by weight) of sand particles (>0.05 mm) in the fine earth fraction of
the upper 2 m of the subsurface. Take the depth weighted harmonic mean across
intervals of 0-5 cm, 5-15 cm, 15-30 cm, 30 cm–60 cm, 60-100 cm, 100-200 cm.
%
 –
SoilGrids250m
Spatial res.: 250 m
(Hengl et al., 2017)

lay
Proportion (by weight) of clay particles (<0.002 mm) in fine earth fraction of the
upper 2 m of the subsurface. Take the depth weighted harmonic mean across
intervals of 0-5 cm, 5-15 cm, 15-30 cm, 30 cm–60 cm, 60-100 cm, 100-200 cm.
%
 –
nd/(Clay
+ Silt)
The ratio of sand to clay and silt in the top 2 m of the soil profile.
 –
 –
eology attributes

epth to
Bedrock
Depth to bedrock
 m
 –

Soil grids 1 km
Spatial res.: 1 km
(Hengl et al., 2014)
epth to
bedrock 2
Average soil and sedimentary deposit thickness. Maximum of 50 m.
 m
 –
Gridded thickness of soil,
regolith and sedimentary
deposit layers
Spatial res.: 30″
(Pelletier et al., 2016)
arst
 Extent of carbonate rock outcrop areas.
 –
 –

World Map of Carbonate
Rock Outcrops V3.0
(Williams and Ford,
2006)
Appendix B. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2022.159765.
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