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Introduction: In the last decade researchers have attempted to investigate the

shared genetic architecture of longevity and age-related diseases and assess

whether the increased longevity in certain people is due to protective alleles in

the risk genes for a particular condition orwhether there are specific “longevity”

genes increasing the lifespan independently of age-related conditions’ risk

genes. The aim of this study was to investigate the shared genetic component

between longevity and two age-related conditions.

Methods: We performed a cross-trait meta-analysis of publicly available

genome-wide data for Alzheimer’s disease, coronary artery disease and

longevity using a subset-based approach provided by the R package ASSET.

Results: Despite the lack of strong genetic correlation between longevity and

the two diseases, we identified 38 genome-wide significant lead SNPs across

22 independent genomic loci. Of them 6 were found to be potentially shared

among the three traits mapping to genes including DAB2IP, DNM2, FCHO1,

CLPTM1, and SNRPD2. We also identified 19 novel genome-wide associations

for the individual traits in this study. Functional annotations and biological

pathway enrichment analyses suggested that pleiotropic variants are involved

in clathrin-mediated endocytosis and plasma lipoprotein and neurotransmitter

clearance processes.

Discussion: In summary, we have been able to advance in the knowledge

of the genetic overlap existing among longevity and the two most common

age-related disorders.

KEYWORDS

pleiotropy, Alzheimer’s disease, coronary artery disease, longevity, subset-based

analysis (ASSET)

1. Introduction

The average human life expectancy has increased in the last decades, but this

has not been accompanied by a similar increase in health span. Aging is the driving

factor of various age-related diseases (ARDs), including Alzheimer’s disease (AD) and

cardiovascular disorders, causing a significant burden on social and economic level.

Despite the well-known importance of age in our understanding of diverse diseases, the

molecular mechanisms by which aging exerts these effects are still mostly unknown (1).
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It has been suggested that aging and ARDs are part of a

continuum with the two extremes being (a) individuals who

suffered one or more ARDs at the age of 60 or 70 years

and show signs of accelerating aging, and (b) centenarians

who avoided ARDs or postponed their onset. Whether an

individual will manifest an ARD and follow a trajectory of

accelerated or decelerating aging depends on factors such as

the genetic background of the individual, their lifestyle, and

various environmental conditions (2). This concept fits well with

the idea of hormesis in aging in which lifelong low-intensity

exogenous factors/stressors stimulate maintenance and repair

mechanisms with beneficial effects for health, whereas the

increase of the intensity can overcome the capability of the

organism to adapt and end up with detrimental effects such

ARDs (3, 4).

Meanwhile, studies in older-aged cohorts and specifically

in centenarians have shown that the latter do not achieve

exceptional longevity due to the absence of variants that

predispose them to the risk of mortality-leading diseases, but

rather it seems that are enriched with protective genes related

to a reduced risk of e.g., cardiovascular diseases and metabolic

disorders (5). The genetic buffering mechanism has been

introduced in which many longevity genes, which are enriched

in centenarians, have the ability to buffer against the harmful

effects of deleterious genotypes via gene-gene interactions (6, 7).

In the last decade there were attempts to study the shared genetic

architecture of longevity andARDs to assess the latter hypothesis

and whether the increased longevity in certain people is due

to protective alleles in the risk genes for a particular condition

or whether there are specific “longevity” genes increasing the

lifespan independently of age-related conditions’ risk genes.

Sebastiani and co-authors (8) showed that 130 genes associated

with the human lifespan were enriched for several groups of

genes linked to both AD and Coronary Artery Disease (CAD)

including TOMM40/APOE and CDKN2A. On the contrary, in

study by Beekman et al. (9) the authors compared the cumulative

effect of risk alleles for cardiovascular disease, type 2 diabetes,

and cancer between individuals aged 85 years and older and

the middle-aged general population and found that longevity is

not compromised by this cumulative effect. This could be due

to an increased prevalence of protective alleles for the diseases

under study that could lead to the delay of disease onset or to

the decrease of the severity. Tesi et al. (10) explored the genetic

architecture between AD and longevity by studying the effect

of 38 AD-associated genetics variants on longevity, and they

showed that 74% of the AD risk alleles are associated with lower

odds of becoming a centenarian. Finally, in a recent study by

Martin and Fraser (11) the authors suggested that part of the

pathogenesis of the ARDs might be partly regulated by loci

that control gene expression over age. They managed to identify

genetic variants in the human brain that control messenger RNA

(mRNA), DNA methylation and microRNA (miRNA) levels in

an age-dependent manner.

In this study we aimed to utilize a pleiotropic meta-

analytic approach to comprehensively parse variance from

AD, CAD, and longevity focused genome-wide association

studies (GWASs) that might pinpoint differential biological

mechanisms and aid in understanding the effect of these

age-related diseases’ variants on longevity. These diseases

were chosen as they are most prevalent (and therefore best

studied) diseases (12, 13) representing neurodegenerative and

cardiovascular conditions in the population, and age is their

strongest factor related to their development and mortality.

Moreover, growing literature indicates that cardiovascular

disease risk factors, including high blood pressure, high

low-density lipoprotein cholesterol, diabetes and obesity are

associated with increased risk of AD, and its precursor,

cognitive decline (14). Finally, the current study could

shed some light into the validity of the cardiovascular

dementia hypothesis (15) in which aortic stiffness, a key

indicator of cardiovascular diseases, may result in brain

damage as well as heart failure due to the relation of

proximal aorta with both the heart and brain perfusion.

Thus, the understanding of a potential vascular etiology in

AD could have an important role in developing effective

preventive strategies.

2. Material and methods

2.1. Samples and summary statistics data

For the current analysis, we used publicly available GWAS

summary statistics for the three traits. For AD we used the

stage one meta-analysis data (N = 63,926) from Kunkle et al.

(16), for CAD the data from the CARDIoGRAMplusC4D

1,000 Genomes-based GWAS (N = 184,305) by Nikpay et al.

(17), and finally, for longevity we used the meta-analysis data

corresponding to the 90th survival percentile (N = 36,745)

by Deelen et al. (18). Detailed information about study

designs, quality-control and meta-analytic procedures were

reported by the authors to each publication, respectively. All

three datasets were harmonized to the same allele using as

a reference the 1,000 Genomes Project Phase 3 data (19).

Multi-allelic and ambiguous genetic variants were removed

from the datasets along with variants with minor allele

frequency (MAF) <0.01 as in 1,000 genomes. Moreover, as

the mean imputation information was available for CAD,

thus we additionally removed variants with imputation quality

score INFO <0.75 in that dataset. It should be noted that

the summary statistics data used for the analyses are not

taken from the largest, most recent GWASs; rather, we used

smaller GWASs that do not include the UK Biobank. We,

however verified our findings against the more recent studies

that have been published for AD (20–22), longevity (23) and

CAD (24).
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2.2. Estimation of the genetic correlation
among the traits

The genetic correlation (rg) describes the genetic similarity

of two traits by capturing the extent to which genetic factors

influence their covariance. The genetic correlation is expected to

reflect the existence of pleiotropy; however, these two concepts

do not have the same meaning (25). For example, an estimation

of rg close to zero does not necessarily imply that the two

phenotypes do not share risk loci. Thus, to capture the latter

scenario we estimated both the whole-genome and the local

correlation between the three traits.

2.2.1. Whole-genome correlations

Cross-trait LD score regression (LDSC) (26) (https://github.

com/bulik/ldsc) was used to test the genetic overlap among

each pair of traits using the HapMap3 (27) variants as proposed

by the developers. The key assumption behind this method

is that the variants with a high LD score - a measure of the

extend of the linkage disequilibrium (LD) between a variant

and its neighbor variants - are more likely to tag a causal single

nucleotide polymorphism (SNP) and have a higher χ2 statistics

than SNPs in a low-LD region (28). The analysis was performed

using the pre-computed European SNP LD scores (https://

data.broadinstitute.org/alkesgroup/LDSCORE/eur_w_ld_chr.

tar.bz2) and the major histocompatibility region (MHC) was

excluded as recommended.

2.2.2. Local correlations

The LAVA (Local Analysis of [co]Variant association) (29)

(https://github.com/josefin-werme/LAVA) was performed to

identify the pairwise local genetic correlations among the three

phenotypes. Since the LDSC only considers the average rg

across the entire genome, LAVA approach can detect scenarios

where the signal is confined to specific regions or in opposing

directions at different loci (25). The LAVA analysis used the

genetic covariance intercept from the LDSC analyses to adjust

for potential sample overlap and the local rg was tested within

the 2,495 genome-wide loci as constructed and described by

Werme et al. (29). Initially, a univariate analysis for each

trait at each locus was performed to ensure that sufficient

local heritability was present to perform bivariate local rg
analysis. Then for each trait pair, the bivariate analysis was

performed only for loci in which both phenotypes exhibited

univariate signal at p < 0.05/2,495 resulting in 16 bivariate tests

conducted in total. Bivariate analyses results were considered

significant when p < 0.05/16. To account for potential

samples overlap, LAVA requires the covariance intercept from

LDSC analysis. Furthermore, partial correlation analysis was

performed with LAVA to examine any conditional genetic

relationships in more detail for the LD blocks with significant

local rg.

2.3. Association analysis based on subsets

We applied a subset-based meta-analysis (30) using

the R package ASSET to identify pleiotropic SNPs. The

approach is specifically designed for detecting association

signals across multiple phenotypes accounting for subset-

specific and bidirectional effects of individual variants. ASSET

searches across all possible subsets of the input GWAS traits

to identify the strongest association signal in both positive

and negative directions and returns a p-value (multiple-

testing corrected) for the overall evidence of association

of a variant across phenotypes along with the best subset

of phenotypes that contributed to the overall association.

The method also allows to account for potential sample

overlap (30).

We combined the GWAS summary statistics from AD,

longevity and CAD by using ASSET function “h.traits” with

default parameters to perform a two-sided search to obtain

pleiotropic variants that may be associated with different

phenotypes in different directions of the association. Only

SNPs that were present for all three traits were retained

as inputs to the meta-analysis, resulting in 5,987,749 SNPs.

As above, inter-study correlations from LDSC were used to

account for sample overlap. After subset-based meta-analysis,

SNPs were considered statistically significant when (1) their

ASSET-derived overall p-value was lower than 5e-08, (2) both

p-values for the positively and negatively associated subsets of

traits were lower than 0.05, and (3) the p-values from the initial

GWASs input studies reached at least nominal significance

(p < 0.05).

2.3.1. Consolidation of independent loci and
functional annotation

Independent loci in the ASSET-derived results were

identified via LD-clumping using SNP2GENE pipeline from

the online platform FUMA (https://fuma.ctglab.nl) (31) on the

basis of the European 1,000 Genomes Project phase 3 reference

panel (19). Initially, independent significant SNPs with p-value

< 5e-08 and independent from each other at (r2 < 0.6) were

identified. Then, candidate SNPs, defined as all known SNPs of

with p-value < 0.05 and r2 ≥ 0.6 with one of the independent

significant SNPs, were identified for further annotations. Finally,

based on the candidate SNPs independent lead SNPs were

defined as the SNPs with the strongest association at a given

locus and with r2 < 0.1 from each other. Genomic risk loci

that were 250 kb or closer to each other were merged into

one locus.
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Functional consequences of the candidate SNPs in each

risk loci were obtained by performing ANNOVAR (32) using

Ensembl genes as described by FUMA’s developers (31). In

summary, these SNPs were first matched based on chromosome,

base pair position and reference allele to a database containing

functional annotations including the ANNOVAR categories

(32), combined annotation dependent depletion (CADD) scores

(33) and Regulome DB (RDB) scores (34). The ANNOVAR

categories were used to identify the function of the SNP,

and to locate its position within the genome (positional

mapping). CADD scores are a measurement used to determine

how deleterious genetic variation at the SNP is to protein

structure and function. Higher scores are indicative of a

more deleterious variant, with scores of >12.37 providing

evidence of pathogenicity (33). A Regulome DB score is

a categorical measurement based on data from expression

quantitative trait loci (eQTLs) as well as chromatin marks.

The RDB score ranges from 1a to 7 with lower scores

given to the variants with the greatest evidence for having

regulatory function.

2.3.2. Gene mapping and identification of novel
individual-trait associations

The functionally annotated SNPS were mapped in genomic

risk loci using two approaches: (a) positional mapping in

which SNPs are physically located within protein-coding genes

(10 kb windows are used) and (b) eQTL mapping in which all

independent significant SNPs and their proxies were mapped

to genes based on a significant eQTL association, by using

information from four data repositories; GTEx v8 (35) tissues

(Blood, Blood vessel, Brain, Heart), PsyENCODE (http://

resource.psychencode.org) (36), DICE (https://dice-database.

org) (37) and BRAINEAC (http://www.braineac.org/) (38). By

default, a false discovery rate (FDR) of 0.05 was applied to

define significant eQTL associations, and SNPs were mapped

to genes up to 1Mb apart. MHC region was excluded

from annotations.

Finally, to identify individual trait novel associations,

we investigated whether the pleiotropic SNPs

identified by ASSET were associated at genome-

wide level with any of the input traits (and

more) using GWAS Catalog (https://www.ebi.ac.uk/

gwas/).

2.3.3. Gene-based and gene-set analysis using
MAGMA

Both gene analysis and gene-set analysis were performed

using MAGMA (39) by the FUMA pipeline as described

in (31). In summary, for the SNP-wise gene-based

analysis, SNPs were mapped to protein-coding genes

(gene window: 0 kb) and the gene-based p-value was

estimated. For the gene set analysis under the competitive

model, the gene set p-value was computed using the

gene-based p-value for 4,728 curated gene sets (including

canonical pathways) and 6,166 GO terms obtained from

MsigDB v5.2 (40). Results were Bonferroni multiple

testing corrected.

2.3.4. Enrichment analysis of the mapped genes
in pre-defined pathways

To obtain insight into putative biological mechanisms

of the mapped genes (based on functional and eQTL

mapping), we used the GENE2FUNC process implemented

on the online platform FUMA to annotate these genes

in biological context. We conducted enrichment analysis

of the genes against gene sets from biological pathways

and functional categories obtained from MsigDB (40) and

WikiPathways (41).

3. Results

3.1. Genetic correlations

Consistent with previous studies (18, 42, 43), LDSC returned

negative genome-wide genetic correlations among the three

traits: AD-longevity rg =−0.18 (p= 0.16), AD-CAD rg =−0.11

(p = 0.11), CAD-longevity rg = −0.39 (p = 9.82e-09), with the

genetic correlation between CAD and longevity being the only

significant one.

LAVA analysis revealed only one significant local rg between

all traits at chr19:45,040,933–45,893,307. This region contains

the well-known APOE gene with which all three traits present a

strong association. As expected, the correlation of AD and CAD

traits with longevity was found to be negative (AD-longevity

local rg = −0.79 and p = 3.49e-55, CAD-longevity local

rg = −0.71 and p = 1.34e-11), whereas the rg between AD and

CAD in the region was found to be positive (rg = 0.54, p= 1.18e-

12). Notably, only 1 out of 15 loci with significant univariate local

heritability for at least two phenotypes had a bivariate significant

p-value, suggesting that strong local heritability can occur in the

absence of any local rg.

To further test the relationship at chromosome 19 region,

we performed conditional analysis using partial correlation to

determine whether any component of the rg between longevity

and AD remained once accounting for CAD and vice versa.

Conditioning on CAD, the partial correlation between longevity

and AD remained high (partial rg = −0.69, p = 5.87e-04 vs.

bivariate rg = −0.79). Similarly conditioning on AD, a sizeable

portion of the original association between longevity and CAD

remained high (partial rg = −0.55, p = 3.62e-04 vs. bivariate

rg =−0.71). These results indicate that the local rg between each

pair of traits is not driven by the third trait and thus, the local
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genetic signals for both AD and CAD confer a greater chance of

not reaching the 90th survival percentile.

3.2. Association analysis based on subsets

3.2.1. Identification of independent loci and
functional annotations

Despite the lack of strong genetic correlation between

longevity and the two age-related diseases, we performed

the two-sided ASSET cross-trait analysis with the intention

to boost the power to detect loci shared by at least

two of the three phenotypes. When doing so, the meta-

analysis revealed 10,662 SNPs with nominally significant p-

values (p < 0.05) for both the positively and negatively

associated subsets and the initial GWAS input studies.

After LD-clumping 38 lead SNPs across 22 independent

genomic loci (see Figure 1, Supplementary Figure S1, and

Supplementary Tables S1–S3) were identified. The three top lead

SNPs were rs34095326 in the intronic region of TOMM40

(pASSET = 0), rs2891168, a non-protein-coding RNA at

chromosome 9 (pASSET = 1.40e-98, CDKN2B-AS1) and

rs118039278 in the intronic region of LPA (pASSET = 4.38e-37)

(Supplementary Tables S3, S4). Both rs2891168 and rs118039278

were identified as pleiotropic for longevity and CAD, whereas

rs34095326 was shared between AD and longevity.

Four of the 22 genomic risk loci (or 6/38 independent

lead SNPs) were flagged as pleiotropic for the all the three

traits; two SNPs were included in the clusters Longevity|AD,

CAD and surprisingly, four in the cluster CAD|AD, Longevity

(Supplementary Table S3). More specifically, the two SNPs

located in chromosome 19 (82Kb and 34Mb away from

the APOE gene, respectively) were positively associated with

longevity and negatively associated with AD and CAD:

rs117261169-T ORcluster = 1.39, Pcluster = 1.20e-04 vs.

ORcluster = 0.78, Pcluster = 8.85e-09, and rs2043332-A

ORcluster = 1.05, Pcluster = 2.39e-02 vs. ORcluster = 0.95,

Pcluster = 2.48e-08, respectively. In other words, both alleles

are protective of developing AD and CAD leading to higher

chances of reaching the 90th percentile of aging. Interestingly,

the G allele of rs10774624 (locus 17, RP3-473L9.4), rs1964272

(locus 22, SNRPD2), rs10818576 (locus 13, DAB2IP), and

rs9630903 (locus 20, FCHO1) has the same direction of

association for AD and longevity and opposite for CAD despite

the negative genetic correlation between AD and longevity

(Supplementary Tables S3, S4).

In the pair-wise analysis between AD and longevity, 18

independent lead SNPs from 7 risk loci showed a pleiotropic

opposite effect with most of them being in the APOE/TOMM40

region (locus 21), verifying the local genetic correlation that was

reported in the previous section (Supplementary Table S3). The

rest of the SNPs were positionally mapped to CR1 (rs2093761,

locus 2), BIN1 (rs6733839, locus 3), HBEGF (rs11168036, locus

6), SPI1 (rs67472071, locus 14), AP001257.1 (rs583296, locus

15), and NTM (rs9787911, locus 16).

Pair-wise analysis of longevity and CAD found 11 lead

SNPs from 10 genomic loci with opposite direction of effect.

SNPs including rs118039278 and rs9457927 (locus 8), rs2107595

(locus 9), rs11556924 (locus 10), rs2980853 (locus 11), rs2891168

(locus 12), and rs56289821 (locus 19) have also been reported

to have pleiotropic effects on other cardiovascular diseases

and their risk factors such as myocardial infraction, systolic

blood pressure, hypertension, cholesterol levels and triglycerides

(Supplementary Table S5). Finally, two SNPs showed opposite,

pleiotropic effects between CAD and AD; both the rs116426890-

T (locus 4) and rs62118504-G (locus 21) were found to

increase the risk of CAD (OR = 1.13, P = 2.95e-13 and

OR = 1.03, P = 2.26e-03, respectively) and decrease the

risk of AD (OR = 0.95, P = 3.46e-02 and OR = 0.89,

P = 1.06e-11, respectively).

Functional annotation conducted in FUMA indicated that,

across the independent genomic loci found by ASSET analysis,

there was a significant overrepresentation of SNPs found in

introns (48%), ncRNA intronic regions (16%), UTR3 (2%),

downstream (2%), upstream and in UTR5 regions (0.7%)

(Figure 2). In intergenic regions the number of SNPs (26%) were

significantly underrepresented. Moreover, 110/1,943 (5.66%) of

the candidate SNPs had a Regulome DB Score <3, indicating

that variation at these SNPs is likely to affect gene expression

(Supplementary Table S4). Finally, 65/1,943 (3.35%) and 3.79%

had a CADD score of >12.37 indicating that variation at these

SNPs is deleterious (Supplementary Table S4).

3.2.2. Identification of novel associations

We assessed whether our meta-analysis identified loci have

been discovered in more recent and larger GWASs that have

been published for AD (20–22), longevity (23) and CAD

(24). Of the 22 shared risk loci identified, 11 have already

been reported as risk factors for the diseases contributing

to the association, according to GWAS Catalog, whereas the

rest could potentially be novel loci for at least one of the

traits (Supplementary Table S8). Our subset-basedmeta-analysis

indicated locus 4 (lead SNP rs116426890, pASSET = 3.40e-

13, ABI2), locus 13 (lead SNP rs10818576, pASSET = 3.49e-

09, DAB2IP), locus 16 (lead SNP rs9787911, pASSET = 9.95e-

09, NTM), locus 20 (lead SNP rs9630903, pASSET = 2.43e-08,

FCHO1) and locus 22 (lead SNP rs1964272, pASSET = 6.62e-10,

SNRPD2) to be potentially novel for AD with only rs116426890

reaching a nominal significance of p = 1.52e-06 in the

Bellenguez et al. study (22). Moreover, the lead SNP rs11168036

from locus 6 that was not significant in the input GWAS and

was suggested to be shared with longevity in our study, was

now found to be associated with AD (pstage_1+2 = 7e−09) in

a transethnic study (44). Regarding CAD, from the 15 loci that

were found to be shared with at least one of the other traits
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FIGURE 1

Summary results per genomic locus identified from the subset-based meta-analysis (ASSET) after LD clumping. The histograms display the size

of genomic loci, the number of both candidate SNPs and mapped genes, and the number of genes physically located within the locus.

FIGURE 2

Functional consequences of ASSET candidate SNPs on genes. The histograms display the proportion of SNPs (all SNPs in LD with independent

significant SNPs) which have corresponding functional annotation assigned by ANNOVAR. Bars are colored by log2 (enrichment) relative to all

SNPs in the selected reference panel. Enrichment is computed as (proportion of SNPs with an annotation)/(proportion of SNPs with an

annotation relative to all available SNPs in the reference panel). Proportion is the fraction of candidate SNPs with the corresponding annotation.

Fisher’s exact test (two side) is performed for each annotation. *p < 0.05; **p < 0.05/11.

in this study, nine SNPs (rs11723436, rs2980853, rs9583531,

rs117261169, rs1964272, rs10818576, rs2043332, rs9630903)

were not GWAS significantly associated with the disease input

GWAS; however, eight of them including rs62118504 (EXOC3L2

gene), rs1964272 (SNRPD2 gene), rs11723436 (RP11-170N16.1

gene), rs10818576 (DAB2IP gene), rs2980853 (RP11-136O12.2

gene), rs2043332 (DNM2 gene), rs9630903 mapped to FCHO1

and rs9583531 mapped to ING1, were found to be significant
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in a later and larger CAD GWAS study by van der Harst et al.

(24), again proving the utility of ASSET in discovering novel

risk loci. Finally, 36 SNPs from 21 loci reported by ASSET

were associated with longevity with only rs34095326 (locus

21) being significant in the original GWAS. Four risk loci

were found to be significant in a larger GWAS by Timmers

et al. (23) and another two SNPs were nominally significant

including rs11556924 (p = 3.3e-07, locus 10) and rs2980853

(p= 3.5e-05, locus 11).

3.2.3. MAGMA gene-based and gene-set
analysis

A gene-based analysis was conducted using MAGMA which

can increase the power to detect significant associations as

the signal across many SNPs (all within a gene) is combined

(39). Input SNPs were mapped to 1,117 protein-coding

genes and only 200 genes survived the Bonferroni correction

significance threshold of 4.476e-5 (P = 0.05/1,117) (as seen

in Supplementary Table S9). The competitive gene-set analysis

uses 63 significant GO biological processes, REACTOME and

curated gene-sets (detailed results in Supplementary Table S10).

Among these gene sets, there were six gene sets involved in

the immunity, including the negative regulation of adaptive

immune response (P = 1.31e-04) and the negative regulation

of leukocyte mediated immunity (P = 1.32e-04) and 6 involved

in oncogenic processes such as the roversi glioma copy number

up (P = 6.34e-11) and the oncogene induced senescence

(P = 9.76e-07).

3.2.4. Enrichment analysis of the mapped genes
in pre-defined pathways

Using both positional and eQTL mapping in

FUMA, we mapped our SNPs into 151 genes as seen

on Supplementary Tables S6, S7. Then we performed

overrepresentation analysis of the mapped (physically and

eQTL positioned) genes in Reactome DB and GO pre-

defined pathways created by the FUMA developers (as seen

in Supplementary Table S11) and GENE2FUNC tool. The

analysis highlighted two interesting biological processes

significantly enriched in the shared genes between the three

traits specifically those involve/related to endocytosis. These

include the clathrin coated endocytic vesicle (PFDR = 0.02) and

the clathrin coated endocytic vesicle membrane (PFDR = 0.03)

which have been implicated in the pathology of AD (45, 46)

and atherosclerosis (47). Among Reactome pre-defined

pathways, seven were found to be statistically enriched

including the neurotransmitter clearance (PFDR = 0.02),

the plasma lipoprotein clearance (PFDR = 0.03) and the

plasma lipoprotein assembly remodeling and clearance

(PFDR = 0.04).

4. Discussion

Through the current cross-trait meta-analysis of two age-

related diseases, AD and CAD, and longevity, we have been able

to advance in the knowledge of the genetic overlap between the

three phenotypes and show that one of the genetic mechanisms

for extreme longevity involves the avoidance of certain risk

alleles that predispose to common diseases. Specifically, our

meta-analysis identified 38 genetic variants from 22 risk loci

shared among subsets of the diseases under study, many of

which represent new individual-trait genetic risk loci.

Two of the five pleiotropic loci identified by Fortney

et al. (48) using data from centenarian cohorts for age-

related traits, TOMM40/APOE (shared by longevity and AD)

and CDKN2B-AS1 (shared by longevity and CAD), were also

returned by our subset-based meta-analysis (the SNPs mapped

in these genes in both studies were in LD).

We also found six independent lead SNPs from six loci

to be pleiotropic for the all the three traits. Three SNPs,

rs9630903-G, rs117261169-T, and rs1964272-G are spanning

chromosome 19 and were mapped to FCHO1, CLPTM1, and

SNRPD2, respectively. The SNP rs9630903-G was found to

be associated with a reduced risk of CAD in a larger van

der Harst et al. (24) study, verifying our association using a

smaller CAD GWAS. The rs9630903 was found to potentially

affect the expression of both FCHO1 and MAP1S genes by

eQTLmapping (Supplementary Table S7). FCHO1 is involved in

endocytosis via clathrin coated endocytic vesicle pathways (49)

binds APP and its missense mutation NM_001161357.1:c.557G

> A (rs147599881) approached significance in the cerebrospinal

fluid (CSF) biomarker data in a recent analysis of AD-affected

cousin pairs selected from high-risk pedigrees (50). CLPTM1

resides in the same region as APOC1 and CEACAM19 in close

proximity with APOE which is also flagged as a pleiotropic gene

associated with the three phenotypes. CLPTM1 plays a role in

the regulation of GABA receptor trafficking from the ER to

the plasma membrane, suggesting that CLPTM1 could regulate

inhibitory neurotransmission (51). Two recent transcriptome-

wide studies (TWASs) (52, 53) reported CLPTM1 to be

significantly associated with AD inCD14+monocyte expression

data from the Cardiogenics transcriptomics study and in the

hippocampal, the putamens and the nucleus putamens tissues,

respectively. Moreover, a genome-wide scan for SNPs involved

in exceptional longevity identified rs405509, (r2 = 0.62 with

rs117261169), which is a temporal expression eQTL (teQTL)

with the gene CLPTM1 (P = 4.8e-03; longevity increasing allele

increases expression over age). Furthermore, rs117261169-T has

been found to be associated with self-reported high cholesterol

(β = −0.03, P = 8.61e-17), a known cardiovascular mediator,

and self-reported AD/dementia in mothers (in the UK Biobank)

(β = −0.01, p = 5.05e-06), further solidifying its potential role

as a pleiotropic SNP. The rs1964272 SNP, which was found
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to be associated with CAD (β = 0.03, P = 1.31e-08) in a

later study by van der Harst et al. (24), was physically mapped

443kb downstream of SNRPD2 and to both SNRPD2 and

DNWD by eQTL mapping. SNRPD2 has been implicated in the

pathogenesis of both MCI and AD, with decreased expression

level (54) and also, AD was affected by the gene expression of

SNRPD2 in the hippocampus and putamen (53) proving that the

gene is likely to be pleiotropic.

The other three SNPs returned as pleiotropic for all

three phenotypes in our analysis were rs10818576 (DAB2IP),

rs10774624 (RP3–473L9.4), and rs2043332 (DNM2). The SNP

rs10818576 is intronic to DAB2IP, shows no significant with

the expression of any gene based on the eQTL mapping and

its G allele was reported as decreasing the risk of developed

of CAD (24). DAB2IP acts as a negative regulator of vascular

endothelial growth factor signaling and angiogenesis (55), a

tumor suppressor (56) and was found to be associated with

AD by a hippocampal TWAS study (57). Pleiotropic SNP

rs10774624 and locus 17 in general, are shared by phenotypes

such as CAD (24), rheumatoid arthritis (58), systolic blood

pressure (59), parental longevity (60) and various hematological

traits (61). It was mapped to ALDH2 by eQTL mapping

approach in GTExWhole Blood, brain nucleus accumbens basal

ganglia and artery aorta tissues whose inactivating mutation

has been linked to chronic excessive ethanol intake as potential

contributors to Alzheimer’s disease progression (58). Finally,

DNM2 intronic SNP rs2043332 has been linked to CAD (C allele:

β= 0.04, P= 2.63e-09) (24) verifying ASSET’s ability to discover

novel trait associations. DNM2, as shown by the enrichment

analysis in biological and functional categories, is involved in

endocytosis (via the clathrin coated endocytic vesicle pathway)

which is closely linked to the development of both Aβ and

tau pathologies (62). A study in Japanese population suggested

that DNM2 via its rs892086 is a susceptibility gene for AD in

non-APOE-ε4 carriers (63).

Interestingly, rs10818576-G, rs10774624-G, and rs1964272-

G were associated with higher odds of developing CAD and

lower odds of getting AD and surviving past 90 years old,

whereas rs9630903-G was found to be protective of CAD but

increasing the odds of developing AD and living longer. These

directions of effects seem unexpected, however a previous study

(10) reported ten similar variants whose unexpected direction

of effect was replicated for only two of the SNPs. The authors

suggested that these effects could be the result of interactions

among variants, known as epistasis. Similar directions of effect

have been reported in a study by Dato et al. (64) in which a SNP

in IP6K3 increased both lifespan and the risk of late-onset AD,

while SNPs in IPMK and UCP4 genes were associated with a

lower risk of both late-onset AD and shorter lifespan. Thus, it is

possible that SNP-SNP interactions may have different effects on

AD and longevity depending on the genetic architecture of these

traits and their associated underlying pathways. An alternative

explanation could be that these SNPs have an age-dependent

effect on traits; for example, hypertension at midlife increases

the risk of AD, but after the age of 85 high blood is protective of

AD (65).

The subset-based analysis also revealed variants that have

pairwise, opposite shared effects. Eighteen lead SNPs across

seven risk loci have potentially pleiotropic affects in both AD

and longevity. SPI1 (rs67472071, locus 14) is involved in the

regulation ofmany genes, including the aging-related geneWRN

(66). Various non-synonymous WRN coding region SNPs have

been associated with age-related pathologies in different ethnic

populations. For example, Kulminski and Culminskaya (67)

reported that subjects with one A allele at theWRN SNP 1133A

were associated with an earlier onset of cardiovascular diseases

and cancer (and thus decreased longevity) when compared with

individuals homozygous for a serine residue (S/S) at this SNP.

HBEGF was found to be genome-wide significant risk gene for

AD in a trans-ethnic study (44), is involved in Aβ clearance

(68) and it has been reported to play a role in the increase

of neurogenesis in the adult rat brain. Although neurogenesis

persists in the aged brain, its rate declines with age in both

rats and humans. Decreased hippocampal neurogenesis may be

involved in age-related cognitive deficits because of its proposed

role in learning and memory function (69). In addition, SNP

rs11168036 (locus 6) was found to be associated with the

expression of the PCDHA genes (Supplementary Table S7). The

5q31.3 region, which includes the genes PCDHA1-PCDHA10,

influences the expression of theWRD55 andARL4A genes in the

brain tissue (70). ARL4A have previously been associated with

maternal longevity in an epigenome-wide association study of

age and age-related phenotypes (71) indicating a possible link

between the 5q31.3 deletion and longevity. Finally, rs9787911

has been found to be nominally associated with AD in the

Japanese population (72). The mapped gene NTM at 11q25

encodes a protein that may promote neurite outgrowth and

adhesion via a hemophilic mechanism (73) and a linkage at

11q25 for AD has been discovered by two studies (74, 75).

Among the variants that found by ASSET to be shared

between CAD and longevity, ING1 (rs9583531, locus 18)

encodes a tumor suppressor protein that can induce cell growth

arrest and apoptosis, is responsible for implementation of

senescence and the reduced expression and rearrangement of

this gene have been detected in various cancers (76). Recent

evidence suggests that cellular senescence plays a regulatory

role in the aging process (77). Furthermore, another of the

pleiotropic genes, IL6R (rs4845619, locus 1), found to be

associated with CAD in a later GWAS (24). It is involved

in the pathophysiology of several age-related diseases such as

osteoporosis (78) and reduced IL6 signaling lowers the risk

of multiple cardiovascular disorders and is associated with

increased longevity (79).

Finally, two SNPs showed pleiotropic effects among AD

and CAD, namely rs116426890-T (locus 4) and rs62118504-

G (locus 21). Locus 4 shows pleiotropic effects on various
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cardiovascular traits and apolipoprotein B levels as seen in

Supplementary Table S5. SNP rs116426890 is intronic to ABI2

and is linked to the expression of CARF, ICA1L, FAM117B, and

NBEAL1 (Supplementary Table S7) which are associated with

both white matter hyperintensities and fractional anisotropy,

predictors of cerebral small vessel disease which is involved

in strokes and vascular dementia (80). Regarding ABI2, it is

part of the same family as ABI3 which is associated with

AD (81). ABI2’s protein has been found to be dysregulated

in the entorhinal cortex at different stages of neurofibrillary

tangle pathology compared with middle-aged individual and

contributes to the regulation of actin assembly at the tips

of neuron projections (82). SNP rs62118504-G, which is

associated with AD based on the input AD GWAS, mapped

to EXOC3L2/MARK4 genes. The whole locus 21 is pleiotropic

for various cardiovascular risk factors making it a strong

candidate for being a CAD-associated loci as indicated by our

cross-phenotype meta-analysis.

We acknowledge the limitations of our study. One limitation

is the possibility of survival bias. Individuals predisposed

to developing an age-related disease may not have survived

to old age, which may have underestimated any association

with these diseases. Moreover, the diagnosis of probable AD

excludes a prior history of cerebrovascular disease, leading

a reduced risk of overlap between the two diseases. It is

also plausible that individuals reaching an age over 90 yeas

carry a different genetic background to the general population

consisting of protective SNPs that predispose for extreme

longevity, which are not captured by our study. Furthermore,

the input GWASs were of different sample sizes and power.

Although the effects of such differences on the results are not

fully understood, ASSET is known to be the best available

approach to handling non-uniform distribution of sample

sizes. The limitations of the ASSET approach include that

its two-sided model can show a low accuracy due to the

extensive search for subsets in both directions and thus,

could lead to the identification of more false positive results

when the significant associations are all in the same direction.

However, in this study due to the negative genetic correlation

among all phenotypes involved in the analysis, we expect

associations to exist in opposite directions (as seen) which

improves the power to identify the correct subset of traits.

Moreover, the CARDioGRAMplusC4D contains some non-

European participants but no heterogeneity among the studies

was observed at any of the genome-wide significant variants

apart from 9p21 locus. Finally, the only tissues which we used

for mapping SNPs to genes, were those relevant to AD and CAD

by showing a significant eQTL association, which may limit the

number of mapped genes.

In summary, performing an association analysis by

subsets across AD, longevity, and CAD we discovered

novel (potentially) pleiotropic loci, and identify loci which

were reported for individual-trait risk in later and larger

GWAS studies. The latter suggests that increasing GWAS

sample sizes is likely to identify more pleiotropic loci

which are risk genes for more than one disease. Further

work will be required to fully explore the role of aging in

age-related diseases.
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