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Challenges of harmonising phenotype data 

Measuring and rating psychopathology 

The individual studies that form DRAGON-Data were designed using standard protocols for 

psychiatric research, and collected similar phenotypic data. However, they also used a range of 

different interviews, rating scales and questionnaires. This creates well-known challenges for 

data harmonisation1. In general, it should be noted that caution has to be exercised when 

amalgamating data from different studies even when these claim to use the same measures. 

Potential differences can include: 

• Versioning: Measures can differ considerably between versions, with items being added 

or removed and definitions changing. 

• Rating definitions: Ordinal scales can be named (e.g. 1=“mild”, 2=“moderate”, etc) 

resulting in a categorical or integer variable depending on study protocol. Some scales 

(e.g. OPCRIT2) can include items for which decimal point rating is acceptable, which 

could be transformed into continuous variables. 

• Rating timeframes: Symptom and event data can be evaluated over different timeframes 

spanning weeks, months or years; and recorded as current, worst or lifetime 

occurrences. When integrating adult and child studies, it should be considered that 

events defined for the “lifetime” are not directly comparable due to intrinsic differences 

in this period of assessment. Measures that evaluate personality and behavioural traits 

might also not be completely consistent given the changes in these throughout the 

lifetime3.  

• Sources of information: A difference between adult and child studies is that the latter 

are more likely to use multiple informants (participants, their siblings, parents and 

teachers). Harmonising all these reports can be difficult and might also require a prior 

compatibility assessment4. 

The considerations above apply to individual studies, but they can add particular difficulty to 

reflect complex outcomes in a larger harmonised dataset. As an example, we highlight the 

different ratings of suicidal ideation across the DRAGON-Data studies (Supplementary Table 

1). Note that these studies differed in whether they considered single versus multiple suicide 

attempts, duration of suicidal ideation or seriousness of attempts. This is likely to reflect the 

existence of different definitions of suicidal behaviour used in different research contexts5, and 

illustrates one of the challenges that can be faced when merging data from different studies. 

To mitigate these challenges, we created a record of the interviews or ratings scales used by 

each study, along with the time period covered (e.g. lifetime, current), to facilitate the 

identification of comparable variables for analysis. This information is available within the 

DRAGON-Data dictionary. We also ensured that the coding of variables was consistent across 

comparable measures. Where possible, we derived comparable measures from existing data. 

For example, if some studies had collected “number of months of antidepressant use” and 

others had collected “ever taken antidepressants”, we would use the data from the first set of 

studies to create an “ever taken antidepressants” variable thereby ensuring that consistent 
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variables were available across all datasets. It should be noted that this approach can be 

reductive, as the finer detail in variables are lost in favour of binary measures. For this reason, 

we also retained the original variables in DRAGON-Data. Given the volume of data in 

DRAGON-Data, we intend to continue deriving variables on a needs basis, working with 

researchers using the datasets to build on the data repository and generate coding scripts to 

facilitate variable derivation and analysis. 

Sampling from the Population 

Recruitment strategies and inclusion criteria can affect the characteristics of the samples, 

creating differences between them and making them unrepresentative of the population from 

which they are drawn. It has been suggested that participants enrolled in research studies of 

serious mental illness display better functional outcomes than are typical for those with the 

disorders in the wider population6, when compared against naturalistic samples from outpatient 

services7. Population cohort studies also suggest that those with more severe psychopathology 

and higher genetic loading for psychiatric disorder are more likely to drop out, leading to under-

representation particularly in longitudinal samples8. The media used to approach these 

participants can also play a role in the sample characteristics, with internet-based recruitment 

engaging larger proportions of ethnic minorities and highly-educated female individuals than 

traditional face-to-face settings9. For most studies in DRAGON-Data, recruitment was based 

on clinically ascertained, prevalent cases and therefore they are likely to have over-sampled 

participants with severe, chronic illness and under-sampled individuals who recovered and/or 

were discharged from services. Additionally, in common mental health conditions such as 

depression and anxiety, this might also over-represent women who are more likely to access 

help than affected males10. A special case in terms of sample composition also concerns the 

DEFINE, ECHO and IMAGINE studies, which specifically recruited carriers of ND-CNVs 

and represent a novel genetics-first approach whereby participants are ascertained based on 

known genetic risk rather than psychiatric phenomenology11. Including these samples might 

have important implications for research examining genotype-phenotype associations in the 

combined dataset, as improperly accounting for their genotype-led recruitment would bias 

calculations on the prevalence of genetic or environmental risk factors. However, it is important 

to integrate genetic and phenotype approached to enable comparative research into the role of 

these risk factors in people with and without highly penetrant genetic variants12. 

Study Protocol Differences 

Samples were recruited using a mix of longitudinal and cross-sectional designs. The existence 

of a follow-up period in longitudinal studies establishes a temporal order for symptom and 

event measures, which provides another level of detail over the broader definitions found in 

cross-sectional designs. The cross-sectional studies collected a mixture of current, worst 

episode and lifetime symptom measures. As it has been previously described in the context of 

causal inference13, it is not advisable to combine longitudinal measures into or with “lifetime 

ever” variables, since this assumes that the events they reflect did not occur outside of the study 

assessment periods. Other issues that can affect the compatibility of different designs are 
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attrition (in longitudinal studies), participant issues in completing assessments (e.g. length of 

time required) and the mode in which the study was conducted. Within DRAGON-Data most 

studies were conducted face to face with participants but also utilised telephone interviews, 

postal questionnaires and online data collection. This could affect how questions are interpreted 

and in turn, the likelihood and content of participants’ responses. In addition, there is evidence 

that participants may be more willing to disclose sensitive information in interview or face to 

face settings than in others14. 

An advantage of DRAGON-Data is that the studies were conducted within the same 

department, and many used similar protocols for sample recruitment and data collection. As 

part of our data curation, we recorded what measures each study had used and what time period 

was covered, allowing us to identify commonalities in protocols across the studies. This 

information was then incorporated in the DRAGON-Data dictionary. The data dictionary 

indicates which measures are comparable across the studies. For example, CardiffCOGS, F-

Series, Sib-Pairs, Bulgarian Case-Control and Family studies, BDRN, DeCC/DeNt and NCMH 

(subsample) all used the Schedules for Clinical Assessment in Neuropsychiatry (SCAN) 

interview to collect lifetime clinical data. The studies also used similar recruitment protocols 

and focused on recruiting adults with a history of psychiatric diagnosis from secondary 

psychiatric services. This meant we were able to identify many variables across the studies that 

had been collected using standardised questions and were comparable. Therefore, the creation 

of DRAGON-Data can facilitate cross-disorder analysis of thousands of participants with 

psychosis, bipolar disorder and depression. Similarly, the studies of childhood and adolescent 

mental health used the same interview (Child and Adolescent Psychiatric Assessment, CAPA) 

and thus, we have comparable measures for children and adolescents with ADHD, those at risk 

of depression and those who are ND-CNV carriers. 

Diagnosis 

Due to the different focus of individual DRAGON-Data studies, there were differences in the 

ways that diagnoses were made. Most studies used standardised interviews and medical records 

(where available) to derive consensus research diagnoses, with CLOZUK validating their 

ascertainment (based on prescription of the antipsychotic clozapine) against research 

interviews15. The NCMH population sample used self-report, asking participants to report 

diagnoses that they had been given by a health professional. This is an approach taken by other 

large studies such as the UK Biobank16. While data obtained via self-reports can be of poorer 

resolution than that from a structured interview, this approach has the advantage of allowing 

faster recruitment of larger samples17. The accuracy of self-report diagnoses needs also to be 

considered, which may differ by diagnosis. Self-reported diagnoses of specific, chronic mental 

health conditions that require involvement with secondary psychiatric services, such as 

schizophrenia, may be more accurate than reports of common mental health conditions, such 

as depression, that typically encompass a wide range of presentations and can be diagnosed 

and treated in a variety of health settings. This can introduce variability in defining phenotypes 

with impacts on study results. Research attempting to estimate the heritability of depressive 
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disorders using inconsistent diagnostic criteria classically demonstrated this18; and recent work 

employing samples with broad, self-report definitions of depression to identify genetic risk loci 

have also resulted in signals that are not specific to this condition19. To ameliorate these 

problems, the studies included in DRAGON-Data have focused on categorical diagnoses rated 

according to the Diagnostic and Statistical Manual of Mental Disorders (DSM) or International 

Statistical Classification of Diseases (ICD) criteria. The most commonly used criteria by the 

studies were DSM-IV followed by ICD-10, with some studies using both. We separated the 

diagnosis variables according to diagnostic criteria in our DRAGON-Data dictionary (see 

Table 1), as the same diagnosis across the two sets of criteria may not be comparable. This has 

been demonstrated in a study comparing ICD-10 and DSM-IV in a cross-disorder sample, 

which showed that the two diagnostic systems have high concordance for depression, substance 

dependence, generalised anxiety disorder but low concordance for post-traumatic stress 

disorder and substance harmful use or abuse20.  

Another consideration is that all the studies predated the publication of ICD-11 and most 

predated the publication of DSM-5, which may impact how any findings using the data 

translate to current psychiatry practice. Whilst only small changes were made to some 

diagnostic criteria from ICD-10 to ICD-11, other diagnostic criteria received more substantial 

changes21. For example, the threshold for diagnosis of post-traumatic stress disorder (PTSD) 

was raised such that patients now need three core symptoms (re-experiencing the traumatic 

event, avoidance of thoughts/reminders of the event, persistent perception of heightened threat) 

to receive a diagnosis. This means that some of the research participants with a diagnosis of 

PTSD in DRAGON-Data may not meet the new threshold in ICD-11, and those who do are 

likely to have a more severe presentation22. An advantage of DRAGON-Data is the inclusion 

of data covering individual symptoms, onset and duration of illness, episodes and illness 

course. This data could be used to derive diagnoses according to ICD-11 and DSM-5 criteria. 

While ICD and DSM are standard criteria, it has been proposed that a better approach to 

diagnostic classification may be to focus on dimensional measures of psychopathology, such 

as the National Institute for Mental Health’s Research Domain Criteria (RDoC23). This 

approach may be adopted in the future as it could facilitate combining datasets to conduct cross-

disorder research, given that many symptoms overlap diagnostic boundaries, such as the 

overlapping mood and psychotic symptoms observed in both schizophrenia and bipolar 

disorder24. DRAGON-Data could facilitate research in this area given the shared symptom 

measures used across the studies, particularly amongst the studies examining mood and 

psychotic disorders.  

Challenges of harmonising genotype data 

Format and genome assembly standardisation 

To maximise the number of SNPs available for imputation, we performed alignment of local 

genotype data against the Haplotype Reference Consortium (HRC) panel v.1.125 using 

Genotype Harmoniser v1.4226. Genotype Harmoniser is a Java-based application that compares 
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SNP information in the user data against a reference dataset such as an imputation panel. Where 

discordant SNP information is present, for example due to allele mismatches, strand flips or 

different SNP identifiers, the user genotype data is updated to match that of the reference panel. 

We have observed that differences in genome build between the original and reference dataset 

result in Genotype Harmoniser discarding large numbers (e.g. more than 50%) of the original 

SNPs. If present, instances of this behaviour are flagged by our pipeline and solved via a local 

implementation of the widely-used Liftover Tool27 to retrieve physical coordinates in the 

appropriate b37/hg19 format.   

In DRAGON-Data, a variety of genotyping arrays were used both within and between studies. 

This presents challenges for merging and imputing datasets. All the genotyping arrays analysed 

have a large set of common variants (a “GWAS backbone”), with most differences due to the 

inclusion of custom markers tagging rare exonic variation. The accuracy of genotype 

imputation is improved with larger sample sizes, plateauing around 2,000 samples28, though 

there must also be sufficient numbers of genotyped markers (at least 200,000 SNPs29) that 

overlap with the imputation reference panel after genotype quality control. We, therefore, 

grouped datasets that were genotyped on the same, or similar arrays. This resulted in four 

separate imputation batches for samples genotyped on the OmniExpress, PsychChip/Illumina 

HumanCoreExome, Illumina 610 Quad/Illumina HumanHap550 and Affymetrix5 platforms.  

Sex-based quality control 

We performed checks for discordant phenotypic and biological sex using the “sex-check” 

function in PLINK v1.9. This function is reliant on the presence of at least one sex 

chromosome. Discordant findings in the absence of complementary information from the 

individual (e.g. a disclosure of gender transitioning) are suggestive of either a sample mix-up 

during genotyping or an inaccurately recorded phenotype. If no resolution can be reached these 

samples are excluded from further analysis. Where no sex information is present in the original 

dataset, the sample is retained. If genotype calls from both sex chromosomes are present, call 

rates at the Y chromosome are used to assess the presence of individuals with sex-linked 

chromosomal disorders such as Turner (X0) or Klinefelter (XXY) syndromes30. Individuals 

with suggestive sex-linked chromosomal disorders are flagged for further investigation.  

Call-rate quality control 

We removed SNPs with low call rates (<0.95), individuals with low genotyping rates (<0.95), 

markers that fail the Hardy-Weinberg Equilibrium test (mid-p<10-6) and those with a minor 

allele frequency (MAF) < 0.01. Only autosomal SNPs were retained. Duplicated individuals 

were removed unless they belong to known monozygotic twin pairs; however, first degree 

relatives are retained for studies with trio or family designs. This is the final step of the pre-

imputation QC. Afterwards genotypes are converted to VCF format using PLINK, sorted using 

vcftools v0.11631 and compressed to .gz format.  

Assessment of population structure 
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While not strictly part of a QC process, the generation of principal components (PCs) using 

genotype data is needed to identify and account for population and ancestral substructures that 

can bias the results of association studies32. Our pipeline addresses this by generating PCs using 

the GENESIS suite, implemented in R. Within it, the PC-AiR33 function allows us to process 

both unrelated and family-based datasets, as it accounts for known or cryptic relatedness via 

the calculation of genotype relatedness matrices (GRMs). PCs generated by this method can 

readily be used to correct for population structure in regression-based analyses. 

A more detailed ancestry analysis is also performed on each dataset, following a similar 

procedure to that described in Legge et al. 201934. First the available SNPs are restricted to 

those on the set of 167 ancestry informative markers (AIMs) contained in the 

EUROFORGEN35 and 55-AISNP36 forensic panels, many of which are common across the 

different Illumina genotyping platforms. Afterwards, the dataset is merged with a public 

reference panel with known ancestries, a combination of the Human Genome Diversity Project 

(HGDP)37 and South Asian Genome Project (SAGP)38 datasets. This reference contains 1108 

samples from 62 worldwide populations, which have been subdivided in 7 biogeographical 

ancestries39 (“Subsaharan African”, “North African”, “European”, “Southwest Asian”, “East 

Asian”, “Native American” and “Oceanian”). In order to perform the ancestry inference, a 

number of PCs, determined using the Tracy-Widom test for eigenvalues32, are then derived 

solely on the reference panel, and a prediction model is trained using Fisher’s Linear 

Discriminant Analysis algorithm. The samples with unknown ancestries are then “projected” 

onto the reference panel PCs40, and their ancestry is estimated using the prediction model. At 

least 80% probability of a given ancestry is required to automatically assign an individual to it, 

though the admixture patterns of individuals not achieving this probability can still be manually 

examined.  

Genotype imputation 

The Michigan Imputation Server (MIS) is a cloud-based resource that facilitates haplotype pre-

phasing and genotype imputation41. The MIS also houses the HRC panel, containing genotypes 

of over 60,000 individuals across multiple ancestral backgrounds25. There are substantial 

improvements in imputation quality using the HRC reference over 1000 genomes, particularly 

at lower MAF thresholds42. The MIS also performs some SNP quality control before phasing, 

including removal of SNPs if they contain irregular allele codes, duplicate IDs, indels, 

monomorphic SNPs, discordant alleles between the user and population reference panel alleles 

and low call rates of < 0.9. Though other options are available, our dataset is processed via 

Eagle v2.3 pre-phasing43 and MiniMac3 imputation41 using HRC v1.1 as the reference panel.   

After genotype imputation, imputed data is stored in .vcf.gz format, with accompanying info 

files containing information about the quality of imputed variants. Data is converted into .pgen 

format using PLINK v2 and subsequently into standard .bed/.bim/.fam format. Specifically, we 

remove SNPs where individual genotype probabilities are < 0.9, MAF <1%, genotyping rate < 

0.95 and HWE < 1E-4. SNPs can be extracted at various imputation quality thresholds (R2). A 
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conversion to best-guess genotypes is also performed in PLINK v2, after applying imputation 

quality thresholds (INFO < 0.3). 

Copy Number Variant Calling 

Most of the samples in DRAGON-Data include raw genotype information, enabling us to 

perform copy number variant (CNV) calling. We developed an in-house CNV QC pipeline to 

facilitate standardised procedures for all aspects of this procedure (Supplementary Figure 1), 

available at https://github.com/CardiffMRCPathfinder/NeurodevelopmentalCNVCalling.  

First, we extract b-allele frequencies and logR ratios for each sample using Illumina Genome-

Studio v2.05. CNV calling is performed using PennCNV v1.05 with genomic control 

correction44. CNVs are subsequently merged if the total distance between CNVs is less than 

50% of their combined length. Appropriate population frequency of the B allele (PFB) and 

guanine/cytosine (GC) content files are generated as recommended by PennCNV. Filters are 

applied to remove CNVs with fewer than 20 probes, less than 20KB in length or with 

confidence scores < 5. Individuals are excluded if they have more than 30 CNVs, large logR 

ratios > 0.35 or high or low wavefactor (less than -0.03 or greater than 0.03), however, for 

future uses, these parameters might have to be re-examined and modified depending on the 

genotyping platform used.       

Initially, CNVs called using this pipeline are cross-referenced against a list of 54 pathogenic 

CNVs known to confer increased risk of schizophrenia, autism, intellectual disability and major 

depressive disorder45. There are several advantages to prioritising these CNVs: First, they are 

typically large (>100KB) and are more reliably called across different genotyping platforms. 

Second, these CNVs are pleiotropic and lack complete penetrance for specific disorders, 

meaning they are good candidates for investigating associations with psychiatric cross-disorder 

phenotypes. 

Batch effects after accounting for different genotyping platforms 

We observed substantial batch effects in the pairwise comparison of samples after undergoing 

routine QC. Further inspection of the data revealed this was caused by palindromic SNPs 

(AT/TA or CG/GC genotypes), which resulted in erroneous allele frequencies which differed 

across datasets when the minor allele frequency was high (> 0.4). This issue was only apparent 

after merging datasets, which mirrors the experience of the eMERGE consortium46.  Removal 

of these SNPs resulted in the loss of obvious batch effects across the first 10 PCs tested.  

Dataset-wide duplicate samples 

It is not uncommon for the same individual to be recruited into more than one psychiatric 

research study. Unless the individual voluntarily reports they have participated in a known 

existing study, this information would not be known to researchers in other groups. We 

identified 1909/41957 duplicate individuals (4.5%) across the entire dataset using genetic 

relatedness checks as implemented in PLINKv2 and retained the sample with the highest 

number of high quality imputed markers.  

https://github.com/CardiffMRCPathfinder/NeurodevelopmentalCNVCalling
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Processing of public GWAS summary statistics 

When performing genetic analyses such as polygenic risk scoring, LD score regression or other 

analyses, multiple GWAS summary statistics are required. Despite some proposals for 

standardisation47, the output from GWAS software is still highly variable and even lacks 

consistent headings across individual studies. Processing of these files is thus not user-friendly, 

typically requiring manual curation, for example filtering by imputation quality, allele 

frequency or changing header names to match the required format of specific programs. To 

address these issues, we developed an R pipeline (summaRygwasqc) that automatically 

processes GWAS summary statistics files and performs quality control filtering, aligns SNP 

information against the HRC reference panel and converts summary data to a standardised 

format that is compatible with PRSICE248 , PRScs49 and LDSC50 (Supplementary Figure 2). 

This code is available at https://github.com/CardiffMRCPathfinder/summaRygwasqc. 

  

https://github.com/CardiffMRCPathfinder/summaRygwasqc
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Supplementary Table 1 

Rating scales for suicidal ideation across the studies 

Study Suicidal Ideation: Rating Scale 

CoMPaSS 

0. Absent 

1. Tedium Vitae 

2. Suicidal Ideation 

3. Attempt unlikely to result in death 

4. Attempt likely to result in death 

5. Multiple attempts likely to result in death 

NCMH 

0. Absent 

1. Tedium vitae 

2. Suicidal ideation 

3. Attempt unlikely to result in death 

4. Attempt likely to result in death 

5. Multiple attempts unlikely to result in death 

6. Multiple attempts likely to result in death 

ECHO, IMAGINE, SAGE & 

EPAD (children only) 

Binary variables (yes/no) covering: 

• Thoughts about death or suicide 

• Suicide attempts 

• Non-suicidal self-harm 

EPAD (parents only) 

Suicide attempt or self-harm: 

1. Mild 

2. Moderate 

3. Severe 

PTSD Registry 

Question covers suicide attempts and self-harm in the context 

of borderline personality disorder: 

1. Inadequate information 

2. False or absent 

3. Sub-threshold 

4. Threshold or true 

Sib-Pairs & F-series 

0. None 

1. 1 week duration or one attempt 

2. 2 weeks duration 

3. At least one month 

Bulgarian Trios (family and case 

data) 

0. Not present 

1. Thoughts but no attempts 

2. Attempt at suicide 

3. Serious attempt 

4. Multiple serious attempt 

BDRN 

Suicidal ideation: 

1. Yes 

2. No 

3. Unknown 
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DeCC/DeNt 

1. Deliberately considered but no attempt 

2. Injured self or made attempt but no serious harm 

3. Suicide attempt resulting in serious harm 

4. Suicide attempt designed to result in death 

5. Uncertain 

Note: No variable for suicidal ideation or attempts in DEFINE 
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Supplementary Figure 1 

 

DRAGON-Data pipeline for CNV Calling. 
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Supplementary Figure 2 

 

DRAGON-Data pipeline for standardising external genome-wide association study (GWAS) 

summary statistics. 
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