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Text input is a desired feature for AR glasses. While there already exist various input modalities (e.g., voice, mid-air gesture),

the diverse demands required by different input scenarios can hardly be met by the small number of fixed input postures offered

by existing solutions. In this paper, we present Handwriting Velcro, a novel text input solution for AR glasses based on flexible

touch sensors. The distinct advantage of our system is that it can easily stick to different body parts, thus endowing AR glasses

with posture-adaptive handwriting input. We explored the design space of on-body device positions and identified the best

interaction positions for various user postures. To flatten users’ learning curves, we adapt our device to the established writing

habits of different users by training a 36-character (i.e., A-Z, 0-9) recognition neural network in a human-in-the-loop manner.

Such a personalization attempt ultimately achieves a low error rate of 0.005 on average for users with different writing styles.

Subjective feedback shows that our solution has a good performance in system practicability and social acceptance. Empirically,

we conducted a heuristic study to explore and identify the best interaction Position-Posture Correlation. Experimental results

show that our Handwriting Velcro excels similar work [6] and commercial product in both practicality (12.3 WPM) and

user-friendliness in different contexts.
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1 INTRODUCTION

Text input is one of the essential functionalities in promoting the popularity of AR glasses amongst the mass
population. This task is important for applications such as instant messages and information editing on AR
glasses. In addition to input efficiency, the portability of AR glasses requires an input method to adapt to a wide
range of environments and user states, including indoor/outdoor scenes and moving/stationary postures in daily
life [62] (as illustrated in Fig. 1). However, such a demanding requirement to cope with diverse usage scenarios
has not been fully met so far.

Fig. 1. Our work provides handwriting input for augmented reality (AR) glasses, enabled by on-body flexible touch sensors.
Our method adapts to both personal writing styles and diverse user postures, offering accurate recognition performance and
a user-friendly experience.

Existing text input solutions on AR glasses include voice input [1], gaze tracking [3, 24, 37], mid-air gesture [10],
on-device touch bars [83, 86], and wearable accessories [6, 82]. Nevertheless, the diverse usage scenarios of
AR glasses pose challenges to each of these methods. Specifically, voice input is natural but highly selective to
external environments, i.e., not suitable for use in a quietly shared environment [14] or a noisy environment
[81]. Touch bars on AR glasses are ideal for simple menu operations, but their small size and number only allow
limited input expression and speed in the task of text input [14, 83]. Mid-air gestures can easily cause arm fatigue
[25] and might lead to misunderstood social cues [14]. Additionally, most of existing wearable accessory devices
restrict the interaction positions to the vicinity of the hand, such as finger [39, 79], arm [6], wrist [19], etc.
However, these novel wearable devices often implement interactive control and text input by designing different
touch gestures [51, 60] or finger combinations [6], thus often leading to low user affordance and additional
learning costs. Therefore, each of the above interaction paradigms have their own pros and cons. We consider
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Fig. 2. Handwriting Velcro in use (A) under four different postures (B-E). A close photo with a diagram (F) to show the layout
of sensing points and connection to the circuit.

our work as an additional contribution to the collection, with a specific focus on natural posture adaptability and
user-friendliness, which provides a robust input experience for common challenging input scenarios.
We propose a novel text input solution for AR glasses, Handwriting Velcro, using flexible touch sensors for

personalized and posture-adaptive handwriting input (Fig. 1). Our design rationale is inspired by the fact that
multi-posture adaptation is an inevitable step towards anywhere and anytime text input for AR glasses. Specifically,
the large number of AR text input scenarios (e.g., time, place, movement, etc., and their combinations) lead to
diverse demands that can hardly be met by a small number of fixed input postures (i.e., sitting or walking) offered
by existing solutions [22, 28, 40, 41, 70]. The flexible touch sensors employed in our work could fill this gap since
they can be easily attached to any positions of body surfaces (i.e., interaction positions) comfortably and naturally,
thereby giving users complete freedom to explore the best interaction positions and postures for different AR
text input scenarios. To make the most use of the flexible film, we choose the handwriting input paradigm. As
the original form of creating human-readable text [45], handwriting is highly user-friendly. However, being
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flexible implies shape deformation, which produces jerky signals and other nonlinear artifacts when monitoring
continuous position input [64]. To directly address the challenges in signal processing, we propose dedicated data
preprocessing methods and use a deep convolutional neural network (CNN) to implement handwritten character
recognition (Sec. 5). In order to cope with a personalized handwriting style, we introduce the łhuman-in-the-loopž
idea [26] and apply active learning [61] to implement personalized learning on a small labeled sample set for a
single user with minimal cost.

To summarize, our work makes the following contributions:

• We present Handwriting Velcro for multi-position and multi-posture AR text input, which can easily adapt
to diverse input scenarios (Fig. 2). In addition, our Handwriting Velcro uses flexible touch sensors for
handwriting input, allowing for a user-friendly input method on lightweight and flexible film that can be
less intrusively integrated into daily clothes.

• We introduce a novel method to learn a personalized handwritten character classifier for each single user
to cope with a personalized handwriting style. The experimental results show that, compared with the
non-personalized classifier, the total error rate of personalized classifiers for individual users (6 in total)
decreases by an average of 0.026 after six sessions, reaching 0.005.

• We designed and conducted extensive user experiments to obtain enlightening guidance and to evaluate the
performance of our system under various conditions of different users, postures, and interaction positions.
Subjective feedback shows that our solution has a good performance in system practicality and social
acceptance. We also compared the performance between our solution and the existing work (TEXTile
[6]) and commercial product (physical mini QWERTY keyboard) and linked our research to other similar
wearable text input schemes in the field (Table. 1). Results show that our method excels the existing
technique in both practicality (12.3 WPM) and user-friendliness in different daily contexts.

2 RELATED WORK

2.1 Text Input On AR Glasses

The small size of AR glasses does not allow the installation of a large-area touch screen. This severely limits the
tactile interaction of AR glasses and thus makes text input on AR glasses a tough problem [41, 72]. In this regard,
researchers have conducted numerous research on the text input mechanisms of smart glasses.

One group of methods aim to enter text through the limited interactive area of AR glasses. For example, Yu et
al. [83] proposed a one-dimensional writing gesture system, and SwipeZone [20] divides the touch interface of
Google Glass into two parts for letter selection. However, due to the small interaction area of AR glasses, the
interaction of such a method is not very convenient, highly limiting its typing speed.

In order to obtain a larger operating space, mid-air gesture interaction is still a commonly adopted solution. For
instance, HIBEY [42] achieves keyboard-like text input through vision-based freehand interactions. Meanwhile,
voice recognition [1] and eye tracking [3, 37] are also popular interaction means. For example, Hololens integrates
these three interaction methods at the same time. Hummer [24] introduces text entry by gaze and hum as a
novel hands-free text entry tool. However, these methods often have strict requirements on usage scenarios and
equipment as discussed in Sec. 1.

It is also common to use external wearable devices for text input, which have the advantages of being wearable,
mobile, and flexible. Most of existing works have focused on the interaction positions near the hand, such as
finger [49, 79, 82], arm [6], and wrist [19]. For example, TipText [79], RotoSwype [22] and FingerText [39] provide
finger-based gesture or typing input. In addition, the interaction on the forearm is also highly popular. For example,
GestureSleeve [60] is a fabric gesture recognition sleeve for smartwatches. Some studies like WrisText [19] also
chose the wrist as an interactive position. Inspired by these studies, we believe that fingers and forearms are
highly potential interactive spaces. Additionally, our work does not limit the interaction positions to the vicinity
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of the hand and has explored a variety of interactive positions, including the forearm, upper arm, thigh, abdomen,
etc.

There are also various research studies exploring the input methods in the VR field [31, 52, 80, 84], most of which
are based on a physical keyboard [9, 21] or virtual keyboard [2, 16] for interaction in virtual environments. Many
of these interaction methods can also be used in augmented reality [10, 17, 43, 76]. Meanwhile, researchers have
developed new keyboards [56] based on hybrid methods [31] and touch-sensitive physical keyboards [47, 52, 53].
Besides varieties of keyboards, external input devices [30, 84] have been explored as well, enriching the diversity of
interaction. More gesture-based [15], multi-modal [1] and hands-free [44, 77] input methods have been proposed
in order to adapt to various mobile usage scenarios.
In this article, we focus on a novel text input method for text entry on AR glasses by using handwriting

input based on flexible touch sensors. It is non-invasive, flexible, and easy to integrate with clothing. Another
work, TEXTile [6], shares a similar goal for text input on AR glasses, but fixes the interaction position only on
the forearm and lacks exploration of different interaction postures. At the same time, their complicated finger
combination also increases a user’s learning cost to a certain extent. In contrast, our method conforms with
writing habits and supports head-up text input while moving, and is applicable to both single- and two-handed
input. Most importantly, our work features personalized recognition and posture adaptability. In Sec. 7, we will
further compare our solution with TEXTile for system performance and subjective feedback.

2.2 Interaction On Flexible Touch Sensor

Flexible sensors have the advantages of being flexible and wearable [48]. Thus, they demonstrate potential
advantages over rigid sensors in application fields [27] such as human-computer interaction [59, 69], medical
health [29], and robotic haptics [66, 71]. In various input interaction methods, wearable touch input based on
flexible sensors is considered to have exceedingly high input expressiveness [14].
With the development of tactile sensor [67], numerous flexible touch sensors [73, 74] have appeared. Some

researchers use flexible sensors as wearable interactive interfaces to achieve interactive control of mobile smart
devices. Jacquard [57] and GestureSleeve [60] integrate touch textiles and sleeves, realizing the control of
smart earphones and watches through simple touch gestures. I/O Braid [50, 51] advances cord-based interfaces,
implementing both the continuous and discrete gesture control for headphones. Some other studies explore the
interaction modality on the skin [4, 85] and pocket [14, 68, 75] and combine touch with other modal interactions.
The zPatch [65] is an eTEXTile patch using both resistive and capacitive sensing, supporting hovering, touch, and
pressure input. The Project Tasca [75] is a pocket-based textile sensor integrating four distinct types of sensing
methods. These works all demonstrate the advantages and potential usages of flexible sensors.

In addition to simple interactive control, there are also various text input tasks based on flexible touch sensors.
Fingers [5, 34, 72] are the most common input position. In the case of the forearm, TEXTile [6] uses touch
(capacitive) textiles for text input on smart glasses.

Among various flexible touch sensors, pressure and strain sensors are the most popular categories [48, 54].
Pressure-based position input used in wearable systems is highly common [64], including on-body gesture input
[60], body posture classification [63], detection of advanced deformation gestures [55], etc. However, because the
pressure sensor matrix often encounters problems such as jitter, jumping, or other nonlinear artifacts in practice,
the current application of pressure matrix for precise and continuous position control is very rare [64]. This
might limit the wearable touch interaction to basic gestures [14] using pressure sensors.
Our work detects continuous position input on a flexible pressure touch sensor, using a resistive pressure

sensor matrix. We carry out a series of data preprocessing techniques to eliminate the signal quality problems
caused by the sensor acquisition process.
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2.3 Handwriting Input Recognition

Nowadays, research in mobile text entry is flourishing, and there are two main text entry technologies: typing and
handwriting [45]. In some human-computer interaction interfaces, some research has proven that handwriting
recognition is generally superior to an on-screen keyboard [11, 33]. Because handwritten text entry must be
coupled with a recognition technology, there have been a large number of open source handwritten text databases
[12, 13] and recognition algorithms [38]. The most widely known dataset is MNIST, which was first introduced
in 1998 by LeCun et al. [38]. Deep neural networks show consistently superior performance on the MNIST
dataset [13]. More specifically, a convolutional neural network (CNN) designed to handle 2D shape variability,
outperforming all other solutions [38]. Since MNIST contains only numerals, Cohen et al. propose EMNIST
(Extended MNIST) [12], constituting a more challenging classification task involving letters and numerals.

Although handwriting input is rather mature, few research studies have explored its use as a text input method
for wearable smart devices such as AR glasses. One of the difficulties is that AR glasses lack convenient and
suitable handwriting input media [41, 72]. For most text input methods, it is hard to meet the characteristics of
being wearable and flexible required by AR glasses simultaneously [18]. Thus, flexible touch sensors may provide
a suitable potential handwriting interface.

3 HARDWARE

Handwriting Velcro. As a handwriting input interface of AR glasses, our Handwriting Velcro (Fig. 2) consists of a
flexible touch sensor and a circuit for signal collection. We use an off-shelf flexible touch sensor provided by Legact.
The sensor is composed of flexible polyester films, highly-conductive materials, and nano-scale piezoresistive
materials. It is divided into the bottom and top layers of flexible pressure-sensitive films, which are bonded by
double-sided adhesive to isolate the pressure-sensitive areas of the upper and lower layers. When the sensing
area is under pressure, the two pressure-sensitive layers are in contact with each other, and the resistance output
value of the channel changes with different positions. The resistance value of each channel is represented with 12
bits and digitized into a value within [0, 4095]. The size of the sensing region is 8.36×8.36 cm2, and the resolution
is 44×44. This implies that the size of each sensing point is 1.6×1.6 mm2, and the distance between two sensing
points is 0.3 mm. To avoid data disruption, we discard the four sensing points along the edges and focus on the
central region. This reduces the resolution to 40×40. The sensing threshold is 20 grams and the response time is
<10 𝜇s, which are both sufficiently small for convenient and interactive handwriting.
The sensor is attached to the loop side of a velcro patch (Fig. 2F). The sensor weighs 30 grams and its thickness

is 0.2 mm, significantly smaller than a standard velcro strip (around 1 cm). The hook side of the velcro is placed
on three wearable strips with different lengths to fit the girths at different body locations. To facilitate flexible
and stable handwriting, we further use three adjustable strips (see Fig. 2 (F)) to secure our Velcro to the body.
The sensor is connected to an 80-pin self-designed circuit for signal collection. 40 pins are connected to the

horizontal channels (denoted as A1, A2, A3· · · ), and another 40 pins are connected to the vertical ones (denoted
as B1, B2, B3· · · ). For protection and portability, the circuit is covered by an aluminum shell (shown in Fig. 2A).
This circuit for signal collection can be purchased from the sensor vendor upon request. The sampling channel
for all sensing points is selected by a multiplexing micro-processing unit. Serial sensor data is collected and
transmitted to a computer via USB and processed by a dedicated program in real-time. The frequency of data
collection for all sensing points is 60 fps.

AR Glasses. The AR glasses in our work is a Rokid Glass 2, which has a field of view (FOV) of 40◦, a 1280×720
resolution screen, a touch bar (2cm wide), and an Android operating system supporting 4G, WIFI, and Bluetooth
connections. Only the right lens of the glasses is equipped with a visual screen, which will not block the user’s
vision. It weighs approximately 96 grams.
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Processing Unit. In our experiments, sensor data are collected by the circuit and transmitted to a computer (Intel
(R) Core (TM) i7-8700K CPU@ 3.70GHz, GTX 1080Ti, 16.0GB RAM) via USB. The program for both data collection
and recognition algorithm currently runs on the computer. The processed information is then transferred to the
AR glasses via a local wireless network.

4 HEURISTIC STUDY

4.1 Free Exploration of Interaction Positions

Previous works in touch interaction explored various interaction positions on the surfaces of different body parts,
including forearm [60], fingers [39], wrist [19], pocket [14], etc. Following this paradigm, we have conducted the
following free exploration experiment to gain insights into users’ preferred interaction positions in different
postures when using our Handwriting Velcro without guidance.

4.1.1 Participants. We recruited 10 participants (5 male, 5 female). One was left-handed while others were
right-handed. We have applied for IRB for all experiments of this work, and each participant in this work received
a gratuity of $10 for their contribution.

4.1.2 Task and Procedure. Prior to the experiments, we asked the participants to sign written consent forms and
introduced them to our Handwriting Velcro and AR glasses. They were informed of the experiment’s purpose,
as well as provided with a short tutorial on handwriting input. The participants were then instructed to freely
explore and try different interactive positions to place our Handwriting Velcro when they were performing four
postures, i.e., sitting, standing, walking and lying down. These four postures were selected based on heuristic
analysis and literature findings so as to cover most daily use scenarios [7].
During the experiments, we recorded the interaction positions tried by each participant and asked them to

demonstrate how they wore the Handwriting Velcro in the above-mentioned 4 postures, to explain why they
chose them, and to comment on their attempts.

(a) (b) (c)

Fig. 3. Results from the heuristic study. (a) The number of selections of different interaction positions tried by users in the
free exploration phase. (b) User satisfaction of the 4 candidate interaction positions in 4 postures. (c) Input speed of the 4
candidate interaction positions in 4 postures.

4.1.3 Results. As Fig. 3(a) shows, although the participants were guided to freely explore interaction positions,
these attempts were eventually gathered in the four most representative positions (i.e., upper arm, forearm,
abdomen, and thigh) and two outliers (i.e., palm and lower leg):
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Upper Arm. The position was attempted by 2 to 4 participants in different postures, respectively. All of them
verbally praised this choice, indicating that it could be a hidden gem. One participant who chose the upper arm
gave a high evaluation, łPossibly due to its large area, the experience of writing on the upper arm was better
than expected.ž Another participant said, łI didn’t choose the upper arm because it was too high and unnatural to
write on it.ž

Forearm. We think the forearm may be the most appropriate interaction position, since almost all the partici-
pants tried it in each of the postures. One of them said that it was as acceptable as wearing a watch. Another
participant said, łI was used to operating on my hand, so the forearm was the most appropriate choice.ž

Abdomen. The statistics of attempts for the abdomen in different postures show a large variance, 2 when sitting
and 8 when lying down, indicating that the abdomen may be especially suitable for the lying posture. As one
participant said, łit was really convenient and interesting to write on the abdomen while lying down, while in
other postures, it would be a little awkward.ž

Thigh. Similarly, the high variance in different postures indicates that the thigh is dedicated to the sitting
posture. Some participants said their hands rested naturally on their thighs when they sat. This natural posture
endows the thigh as a fine choice for handwriting in a sitting posture.

Palm and Lower Leg. We consider them outliers because in each pose, at most one participant tried them, and
expressed it was inconvenient to interact in these positions. They complained that the lower leg was too far
away, and it was weird to wear a Velcro on their palm, which would affect the activity of their hands.

4.1.4 Findings. As aforementioned, we observed that i) the forearm is the most popular interaction position in
all postures; ii) the thigh and abdomen are special-purpose positions for the sitting and lying down postures,
respectively; iii) the upper arm could be a hidden gem ignored by many participants; iv) the palm and lower leg
are unsatisfactory positions for flexible handwriting input. Accordingly, we identify four interaction positions:
upper arm, forearm, abdomen, and thigh, to be further studied in the following experiments.

4.2 Evaluation of Position-Posture Correlation

To find the best interactive positions for flexible handwriting input, we conducted another experiment to evaluate
user satisfaction and input speed when using the four common interaction positions (i.e., upper arm, forearm,
abdomen, and thigh) in four postures (i.e., sitting, standing, walking, and lying down).

4.2.1 Participants. We recruited 10 participants (6 male, 4 female). One was left-handed and others were right-
handed. All the participants were different from the ones involved in the previous experiment (described in
Sec. 4.1).

4.2.2 Task and Procedure. Prior to the experiments, we did the same preparation as described in Sec. 4.1.2. The
participants were asked to repeatedly input a sequence of 36 characters (A to Z and 0 to 9) one by one using
each of the four interaction positions in the four selected postures. Specifically, when the experiment began, the
participants were presented with the character sequence and started writing the first character by touching the
Handwriting Velcro. A no-input period of 0.4 seconds was treated as a łcompletionž event and the system emitted
a łbeepž tone. The participants could start writing the next character after hearing the sound.

Overall, each participant repeated the same character input task 16 times (4 postures × 4 interaction positions).
For each task, we recorded their associated metadata (e.g., participant ID, timestamps).

At the end of the experiment, we invited the participants to fill in a questionnaire and rate their satisfaction on
a scale between 0 and 5. The score serves as a subjective evaluation based on their perception of comfort and
ease-of-use.
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4.2.3 Results. In this section, we define the łinput speedž as the average number of characters entered per
minute (CPM), and łsatisfaction scorež as the average of user ratings for each task, and get the results as follows.

Input Speed. Overall, there is no much difference in the input speed across all (interaction position, posture)
pairs: all input speed values fall in a small range between 22 and 25 (Fig. 3(c)). Among them, the input speed of
the forearm is slightly slower than those of the other interaction positions. We ascribe such a slow speed to the
relatively small area of the forearm, which leads to a curved writing surface. In addition, the input speed of the
thigh is the fastest in the sitting posture.

Satisfaction. As Fig. 3(b) shows, in all four postures, the satisfaction scores of the forearm, upper arm, and
abdomen all ranged from 3.5 to 4.5 (forearm >upper arm >abdomen). Among them, the forearm ranks the highest
with an average score of 4.4. Interestingly, we observed that although the thigh has the lowest satisfaction scores
in standing, walking, and lying down postures, its score in the sitting posture is high as 4.16.

F
o

re
a

rm

T
h

ig
h

Standing Sitting Walking Lying down Sitting

Fig. 4. The design space of Handwriting Velcro inspired by Heuristic Study.

4.2.4 Findings.

Forearm. Although being slightly slower in the input speed, the forearm shows a good advantage over the
other interaction positions in user satisfaction scores in all postures.

Thigh. As expected, the thigh has the lowest satisfaction scores in the standing, walking, and lying down
postures due to the longer interaction distance between the thigh and the hand in these postures. However, when
it comes to the sitting posture, the thigh becomes a favorable interaction position, which enables fast handwriting
input due to its large and flat area within easy reach.

Upper Arm. Surprisingly, the upper arm achieves the second-highest satisfaction scores. This may originate
from its stability and relatively large area. However, it was a minority choice and we received feedback from
some participants complaining that its high position caused fatigue in the writing process.

Abdomen. As for the abdomen, although its input speed is slightly higher than those of the other interaction
positions in the walking and lying down postures, this advantage does not hold in the sitting and standing
postures. In addition, its satisfaction scores are mediocre in all postures.
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To sum up, the forearm is the best interactive position for standing, walking, and lying-down; the thigh is the
best interactive position for sitting. Thus, these two positions are selected for our design space (as shown in
Fig. 4) and used for the following experiments.

5 METHODOLOGY

Muti-posture
Classifer for

User A

Classifer for

User B

Classifer for

User C

Classifer for

User D

Finetune

Active Learning

Switch?

Y 𝑰𝒎𝒂𝒈𝒆𝑳𝒂𝒃𝒆𝒍

Recognition

User A

User C

User B

User D

Confirm Input
Representative

sample

Personalized 

Classifier

Fig. 5. Handwriting input processing pipeline, endowing personalized and posture-adaptive input for AR glasses. (Left:
Multi-posture handwriting input event monitoring (sitting, standing, lying down, and walking); Middle: Handwritten
character recognition using a variant of the ResNet18 [23, 36] deep residual CNN; Right: User-centered active learning for
personalization. As Sec. 5.3 described, we obtain łrepresentativež samples during users’ SWITCH process, so as to iteratively
fine-tune our model to match the user’s writing habits.)

5.1 Handwriting Input Event Monitoring

We monitor the continuous data stream collected frame by frame from the sensor in our Handwriting Velcro,
and represent each frame of data as a 40×40 matrix of pressure values. For each data matrix, we eliminate
outliers and noise by thresholding valid pressure values to a range of [250, 4095] and denote the elements with
pressure values in-between as łeffective pressing pointsž. The position coordinates and pressure values of all
łeffective pressing pointsž are recorded in real-time as an łeffective tracež and wirelessly transmitted to the AR
glasses. The łeffective tracež data is then rendered as real-time handwriting animation on the AR glasses display
interface, providing users with direct visual feedback. Note that the real-time visual feedback of our system
enables łhead-upž handwriting input.

5.2 Handwritten Character Recognition

Data Preprocessing. We first convert a complete sequence of łeffective pressing pointsž as an image to represent
the character. A set of łeffective pressing pointsž is constructed between their first appearance and the completion
sign (i.e., 0.4 seconds of data without a single łeffective pressing pointž). Specifically, we first identify the
coordinates of the point with the highest pressure value for each matrix in the data sequence. Then, a łdrawing
trajectoryž can be created by connecting the points with these coordinates one by one in a 2D plane. Note that
we cut the trajectory into two separate ones if the coordinate distance of two successive points is too large. For
example, the lower right point and the upper right point of character ‘X’ are not connected. Then, we employ the
Bresenham connection method to convert the trajectories into a rasterized grayscale image. Finally, we remove
small noises in the resulting image using an opening operation in morphology, and connect broken parts in the
image using a closing operation in morphology. In this way, we can convert each data sequence into an image
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𝑥𝑖 . Together with its corresponding character label 𝑦𝑖 , we can create our dataset 𝐷 = {𝑥𝑖 , 𝑦𝑖 }
𝑛
𝑖=1, where 𝑛 is the

number of samples in the dataset.
To reduce data variance and improve training, we eliminate the effect of different pressures among users by

binarising all images in our dataset 𝐷 . This ensures that only valid character structure information is retained for
input to the recognition neural network in Sec. 5.2.

Data Augmentation. To reduce overfitting and improve generalization, we perform data augmentation on our
training dataset. This helps to increase the diversity of writing styles covered during training and thus reduces
the potential domain gaps between the training and testing data. Specifically, we augment our training dataset
with a series of data augmentation techniques [32], including:

• Zooming, which randomly scales an image with a scaling factor between 0.6 and 1.1 on each independent
axis;

• Translation, which randomly translates an image by a value between -20% and +20% on the x- and y-axis
independently;

• Rotation, which randomly rotates an image in (−20◦, 20◦);
• Shearing, which randomly shears an image in (−16◦, 16◦).

These techniques are superimposed and applied to each image in random order. Note that we did not apply
augmentation techniques that disrupt the orientation or structure of character images and cause confusion (e.g.,
image flipping).

Model Architecture and Training. We formulate our handwritten character recognition task as a multiclass (i.e.,
36 classes, including A-Z and 0-9) classification problem. Note that we did not differentiate between upper and
lower cases of English letters, but instead provided flexible case selection in an Android text input application.
Users can switch between upper and lower cases freely on the AR glasses. Additionally, given the high similarity
between the two pairs (0/O, 2/Z), we decided to ignore the incorrect predictions in such conditions in the
subsequent experiments of accuracy evaluation. Users are offered the choice to select the correct label when
needed.
Accordingly, we build a variant of the ResNet18 [23, 36] deep residual CNN by adjusting its input layer to

match our input image size and its output layer to match our output dimension of 36. Then, we can train our
ResNet18 model in a supervised manner using our dataset 𝐷 . We implement this model in Python using the keras
framework. 1

5.3 User-centered Active Learning for Personalization

To further improve the recognition accuracy and smooth the user’s learning curve, we propose a novel personal-
ization method that adapts the character recognition classifier to each single user. Specifically, we borrow the
idea of łhuman-in-the-loopž and apply active learning [26] to iteratively fine-tune a pre-trained ResNet18 model
based on a specific user’s real-time feedback when using our Handwriting Velcro.

Interactive Input Modes. To obtain the user’s real-time feedback and realize the interactive active learning
process, we design 3 input modes on the text input app for AR glasses:

• CHAR. Default mode. In this mode, the user is free to do handwritten text input on Handwriting Velcro.
• SWITCH. Alternative mode. Mimicking the recommendation feature of English grammar checkers, we
provide the user with the top-5 candidate characters based on their classification confidence scores after
each input. If the top-1 candidate is incorrect, the user can correct it by selecting the correct character

1All the source code, dataset, and the trained model will be released to the public upon the acceptance of this paper.
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CHAR SWITCH COMPLETION
“Tap” (“Tap”)

(“Tap”)

(a) (b) (c) (e)(d)

Fig. 6. User enters the word łThež using three input modes.

from the rest candidates. The selection is implemented by handwriting the serial number (1-5) of the
corresponding correct candidate character on our Handwriting Velcro.

• COMPLETION. Completion mode. To improve the performance of our Handwriting Velcro in actual use, we
also design an auto-completion function similar to an existing IME (input method editor). Users can select
a complete word from the candidate words list, by handwriting the corresponding serial number (1-4) of
the word on our Handwriting Velcro.

The switching between different modes is achieved by a short tap, and the mode switching sequence is: CHAR
->SWITCH->COMPLETION->CHAR. In addition, after the user performs the corresponding selection operation
in the SWITCH or COMPLETION mode, it will automatically switch to the next mode.
Fig. 6 shows the switching flow of the three input modes and an example of a user entering the word łThež

using the three input modes. (a) CHAR mode. A recognition error occurs when the user handwrites łTž: the top-1
candidate is łIž. (b) Tap. Mode switching: CHAR -> SWITCH. (c) SWITCH mode. The user handwrites ł2ž to
correct the łIž in the text box to łTž. (d) Automatic Mode switching: SWITCH -> COMPLETION. The dotted line
indicates that if the corresponding switching/completion operation is performed in the previous mode, this mode
switching does not need to be performed manually, and the program will automatically switch to the next mode.
(e) COMPLETION mode. The user handwrites ł1ž to autocomplete the word łThež.

In addition, we design a "backspace" key to allow free modification, which is achieved by two consecutive Taps.

Active Learning Pipeline. Recognizing the fact that not all feedback is equally useful, we propose a querying
strategy that only extracts a small number of łrepresentativež samples from the continuous data stream collected
by our Handwriting Velcro to fine-tune the model. We implement our querying strategy by defining such
łrepresentativež samples as those with incorrect predictions:

• First, as mentioned above, the user can correct the input character by selecting the correct character from
the rest candidates in the SWITCH mode.

• Then, we record the error image and its correct label (i.e., the character selected by the user) when the user
corrects an input character. These (𝑖𝑚𝑎𝑔𝑒, 𝑙𝑎𝑏𝑒𝑙) pairs construct the łrepresentativež samples.

• Finally, we create a small dataset with these łrepresentativež samples to iteratively fine-tune our model to
match the user’s writing habits.
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Overall, a longer usage produces more łrepresentativež samples and leads to higher recognition accuracy with a
more personalized model. Please see Fig. 5 for an illustration of our user-centered active learning pipeline.

Remarks. As an alternative solution to our user-centered active learning, one can also collect a personalized
dataset and train a recognition model for each user respectively. However, this requires a long and tedious data
collection process, which is undesirable. In contrast, our human-in-the-loop strategy amortizes the data collection
cost to the fragmented uses of our device, and our solution is thus more user-friendly.

6 EXPERIMENT

6.1 Experimental Setup

Datasets. We used two datasets in our experiment:

• EMNIST dataset [12], which contains 533,933 images (in the category of łBy_Classž) of the same 36 types
of characters as those used in our task. Note that training our recognition neural network on EMNIST
alone yields poor testing performance (68.81% accuracy) on our data, due to the significant style differences
between EMNIST and our user data.

• Our dataset. Based on the conclusions of our heuristic study, we recruited two participants (one male
and one female, both right-handed) and collected their handwriting data for two interaction positions
(i.e., the forearm and the thigh) in the sitting posture. We asked them to repeatedly write each of the 36
characters for 100 times and obtained 2 people × 2 positions × 36 characters × 100 = 14,400 data points. We
further doubled the number of data points in our dataset to 28,800 using the data augmentation techniques
described in Sec. 5.3.

Training Details. We trained our character classifier in two stages: first, we trained the model on the EMNIST
dataset with a batch size of 128 for 20 epochs; second, we continued training the model on our dataset (after
data augmentation) with a batch size of 32 for another 20 epochs. The model trained on EMNIST serves as a
warm-up model for the subsequent training task on our dataset. We used the Adam optimizer [35] to train our
neural network, and set its initial learning rate to 0.001, 𝜖 = 10−8, 𝛽 = (0.9, 0.009).

6.2 Performance Evaluation of Handwriting Velcros

In this section, we conducted three experiments to evaluate the performance of our Handwriting Velcro among i)
different users, ii) different interactive positions, and iii) different postures. Each experiment was a within-subject
design. Noting that in this experiment: i) We did not conduct the active learning (SWITCH mode), which will be
further explored in Sec. 6.3. ii) COMPLETION mode was also not invoked since this experiment was conducted at
the character level.

6.2.1 Participants. Overall, we recruited 32 participants (16 male, 16 female; 2 left-handed) in the three experi-
ments. All the participants were different from the ones involved in the previous experiment (described in Sec. 4).
Gender-balance is guaranteed in all the experiments: i) 10 users (5 male, 5 female) participated in our łPerformance
vs. Usersž experiment; ii) 10 users (5 male, 5 female; 1 left-handed) participated in our łPerformance vs. Interaction
Positionsž experiment; iii) 12 users (6 male, 6 female; 1 left-handed) participated in our łPerformance vs. Posturesž
experiment. The participants in all three experiments are mutually exclusive.

6.2.2 Task and Procedure. Based on our heuristic study (Sec. 4), we designed the three experiments as follows:

• Performance vs. Users. 10 users × 1 łForearmž position × 1 łSittingž posture = 10 task units.
• Performance vs. Interaction Positions. 10 users × 2 interactive positions (Forearm and Thigh) × 1 łSittingž
posture = 20 task units.
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• Performance vs. Postures. 12 users × 1 łForearmž position × 4 postures (Sitting, Standing, Walking and

Lying down) = 48 task units.

All three experiments are within-subjects designs. To ensure counterbalance, in our łPerformance vs. Interaction
Positionsž experiment we divided the participants into two groups: A (Forearm first, then thigh) and B (Thigh
first, then forearm), according to the order of experiments. In our łPerformance vs. Posturesž experiment, we
constructed a Latin square to divide the participants into 4 groups.

In each task unit (i.e., 1 user × 1 interactive position × 1 posture), we instructed each participant to repeatedly
enter each of the 36 characters (A-Z, 0-9) 5 times. This experiment contains a total of 78 task units (Performance
vs. Users: 10 task units, Performance vs. Interaction Positions: 20 task units, and Performance vs. Postures: 48
task units).
Prior to the experiments, we did the same preparation as described in Sec. 4.1.2. During the experiments, we

collected sensor data of all 78 task units along with their metadata (e.g., participant ID and timestamps), collected
78 task units × 36 characters × 5 repetitions = 14,040 pieces of data. In this way, we constructed the total test set
𝐷𝑡𝑒𝑠𝑡 , including 3 sub-test sets, namely: 𝐷𝑡𝑒𝑠𝑡 = 𝐷𝑢𝑠𝑒𝑟

⋃
𝐷𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

⋃
𝐷𝑝𝑜𝑠𝑡𝑢𝑟𝑒 .

At the end of the experiments, we asked the participants for feedback about their overall satisfaction and
ease of use. Questionnaire responses were on a five-point Likert scale: the higher, the better. See Fig. 7(c) for the
statistics of the results.

6.2.3 Results and Discussions.

Performance vs. Users. As shown in Fig. 7(a), the average recognition accuracy of𝐷𝑢𝑠𝑒𝑟 is 97.21% (sd = 1.36×10−2).
The highest accuracy among all the participants was as high as 99.44%, and even the lowest one reached 95.56%.
We believe that the relatively low accuracy in some cases is rooted in the different writing styles of specific users.
This implies the demand for personalized classifiers in order to adapt to different writing styles. This will be
further addressed in Sec. 6.3.
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Fig. 7. Results of performance evaluation experiment. (a) Accuracy (%). (b) Input speed (CPM). (c) User feedback.

Performance vs. Interaction Positions. Both forearm and thigh average accuracy of 𝐷𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 are above 96%
(Fig. 7(a)), indicating good performance for both interaction positions. In terms of input speed, both forearm
(𝑚𝑒𝑎𝑛 = 49.45𝐶𝑃𝑀 , 𝑠𝑑 = 1.71) and thigh (𝑚𝑒𝑎𝑛 = 48.74𝐶𝑃𝑀 , 𝑠𝑑 = 1.67) reached close to 50 CPM (Fig. 7(b)).
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Regarding satisfaction and ease-of-use, all the scores are above 4 (Fig. 7(c)), indicating that our Handwriting
Velcro performed well and stably for both interaction positions. In addition, we performed the Levin test for
homogeneity of variances on each performance of the forearm and thigh positions to confirm that the variances
between the data of each performance at the two positions were homogeneous. Then we used one-way ANOVA
to test the significance of each performance at the positions of the forearm and thigh. The results show that the
interaction position has no significant effect on the recognition accuracy (F = 0.011, p = 0.920), input speed (F =
0.620, p = 0.446), user satisfaction (F = 0.300, p = 0.594), and ease-of-use (F = 0.120, p = 0.735). To conclude, the
two interaction positions of the forearm and thigh both performed well in the above four performances.

Performance vs. Postures. As Fig. 7(a) shows, the recognition accuracy of the sitting pose is about 99%, and
those for the other three postures are above 95%. We visually inspected the handwriting data for all postures
and observed that the characters written in the standing, walking, and lying down postures were slightly more
scribbled and irregular than those written in the sitting posture. This may account for the small performance drop.
These are also reflected in the satisfaction scores, ease-of-use scores, and input speed. In addition, we performed
the Levin test and used one-way ANOVA to test the significance of recognition accuracy (F = 5.042, p = 0.006),
input speed (F = 0.308, p = 0.819), user satisfaction (F = 1.657, p = 0.199), and ease-of-use (F = 1.072, p = 0.377) in
the different postures of sitting, standing, walking and lying down. For different postures, the variance of each
performance is not significant (p >0.05) except for accuracy, indicating that our Handwritten Velcro adapted well
to different postures.

Ablation Study on Data Augmentation. As discussed in Sec. 5.2, we applied data augmentation to reduce
overfitting and help the trained recognition model to generalize to testing data that are łunseenž during training.
To verify its effectiveness, we used 𝐷𝑡𝑒𝑠𝑡 (consisting of all 14,040 pieces of data) to evaluate the performance of
our recognition model with and without data augmentation:

• When data augmentation is not applied, although the training and validation accuracy of the trained model
achieve 99.95% and 98.70%, respectively, the testing accuracy is only 84.60%, indicating that the model
overfits to the training dataset and generalizes poorly to testing data.

• When data augmentation is applied, the testing accuracy increases by more than 10% and achieves 97.21%,
verifying the effectiveness of data augmentation.

Fig. 8 shows the confusion matrix of the prediction results when applying our recognition model (with data
augmentation) to the 𝐷𝑡𝑒𝑠𝑡 dataset.

6.3 Evaluation of Active Learning-based Personalization

As discussed above, although our character recognition model generally performs well, its performance may
be worse if a user’s writing style deviates too much from those in the training dataset. To address this issue,
we propose to personalize our model by adapting it to a single user in a łhuman-in-the-loopž manner (Sec. 5.3).
Empirically, we verify the effectiveness of this approach as follows. Note that during this experiment, the users
were free to use our different input modes (as described in Sec. 5.3) for text input, character correction, and word
completion.

6.3.1 Participants. We recruited 10 participants (5 male, 5 female; all right-handed) to participate in our person-
alization experiment. All of them were novices and did not participate in the previous experiments (described in
Sec. 4 and Sec. 6.2).

6.3.2 Task and Procedure. To simulate the actual use process, we asked each user to repeat a phrase repetition
task: complete 7 sessions, each involving repeated input of a 20-word phrase. The design and vocabulary were
taken from previous work [8, 39]. The phrase was łthe and you that is in of know not they get have were are bit
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Fig. 8. Confusion matrix of our trained model on the 𝐷𝑡𝑒𝑠𝑡 dataset.

quick fox jumps lazy onž (66 char). It contains all English letters and approximates monograms and bigrams.
The experiment was conducted in a representative task unit: łForearmž position in łSittingž posture. The first
repetition was discarded as an exercise. Prior to the experiment, we followed the same preparation as described
in Sec. 4.1.2.

As described in Sec. 5.3, łrepresentativež samples naturally generated in the SWITCH mode weresequentially
added to the representative dataset 𝐷𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 . Utilizing 𝐷𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 , our model was iteratively fine-tuned
to generate a personalized classifier adapted to the current user’s writing habits.
At the end of the experiment, we asked the participants to fill in a 20-point Likert scale for feedback about

łPerformancež, łComfortž, łEffort (ease-of-learning)ž, łFrustrationž, and łEase-of-usež. Higher scores are better.
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In the end, we invited the participants to fill in a questionnaire, which addressed social acceptance in different
locations and in front of different audiences as proposed by Rico [58] and Hsieh [28].
In order to measure the subjective feeling of social acceptance[28] when using the system in a public place,

and further strengthen the validity of the collected responses, the experimental site was chosen in a relatively
open public space: a coffee restaurant, surrounded by corridors, office areas, rest areas, toilet, etc.

6.3.3 Experimental Setup. We set the batch size=32. Whenever the size of 𝐷𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 > 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , we
iteratively fine-tuned our model with 𝐷𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒 for 5 epochs. Specifically, we froze the first 60 layers of the
model and only fine-tuned the neural network weights of the last 7 layers. Note that we optimized the model
using an Adam optimizer with a small learning rate of 0.0001 (10 times smaller than the one used in model
training), 𝜖 = 10−8, 𝛽 = (0.9, 0.009).
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Fig. 9. Results of active learning experiment in different sessions. (a) Total Error Rate (TER). (b) Input speed (WPM).

6.3.4 Quantitative Analysis. After the experiment, we recorded the user’s input error rate and input speed in
each session for statistical analysis and discussion. Four participants show a quite low error rate (≤ 0.010) in S1,
which indicates that the generalization classifier already has a good recognition performance for them. In order
to verify the improvement of the recognition performance of the personalized classifier for the users with high
initial error rates, we analyzed the data of the remaining six users (the error rate of S1 >0.010).

Error Rate. We distinguish three different degrees of error:

• Corrected Errors (CE): A recognition error resulted in the entry of a wrong character, but was corrected by
our SWITCH mode.

• Uncorrected Errors (UE): A recognition error resulted in the entry of a wrong character, which was not
corrected.

• Total Errors (TE): The sum of Corrected Errors (CE) and Uncorrected Errors (UE).

We observed that all participants consciously corrected all errors without being reminded, making UE always
0 (TE = CE). Fig. 9(a) shows the variation trend of the total error rate for multiple sessions in the experiment.
From S1 to S6, the TER of each user decreases by 0.026 on average (from 0.010 to 0.048). After 6 sessions, the TER



18 • Fang et al.

of 𝐷𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 finally reaches 0.005. (𝐷𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 =

∑6
𝑖=1 𝐷𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑,𝑖 ). Paired samples T-test shows that TER

of S6 (mean=0.005, sd=0.013) is significantly lower (p=0.009) than that of S1 (mean=0.031, sd=0.014). The above
results show that with the help of active learning, the recognition performance of the personalized classifiers for
each user improve significantly (p=0.009) over usage time. Our personalized classifier can adapt to the writing
style of different users, thus smoothing the users’ learning curve and improving the use experience.

Input Speed. As Fig. 9(b) shows, the user’s text input speed improves with sessions. Particularly, from S1 to S6, the
input speed of the 10 participants increased by an average of 2.45 WPM. This shows that our Handwriting Velcro
has a very friendly learning curve for łnovicesž, and after a few simple repetitions of sessions, the participants
could achieve more proficient input. The average text input speed of each participant finally reaches 16.49 WPM
after 6 sessions. One participant said the SWITCH and COMPLETION modes improved input efficiency.

Remark. Note that in practice, instead of collecting data in advance, we amortize the data collection and training
into users’ daily use with little additional cost. This design makes our method user-friendly.
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Fig. 10. Subjective feedback of evaluation experiment. (a) System performance feedback (20-point Likert scale, higher scores
are better). (b) Social acceptance in different locations and in front of different audiences.

6.3.5 Subjective Feedback.

System Performance Feedback. Fig. 10(a) shows various subjective scoring results of system performance.
Higher scores are better. For łPerformancež (𝑚𝑒𝑎𝑛 = 17.2, 𝑠𝑑 = 3.29), łComfortž (𝑚𝑒𝑎𝑛 = 15.6, 𝑠𝑑 = 3.50), łEffortž
(𝑚𝑒𝑎𝑛 = 18.8, 𝑠𝑑 = 1.93) and łEase-of-usež (𝑚𝑒𝑎𝑛 = 15.6, 𝑠𝑑 = 5.15), all received high ratings above 15 points.
This shows that our system has usability and comfort while being easy to learn. łFrustrationž (𝑚𝑒𝑎𝑛 = 14.4,
𝑠𝑑 = 4.30) is slightly lower, which may be caused by limitations such as the linearity of the current hardware,
which we will further improve in future research.

Social Acceptance. The measuring of social acceptance follows the method proposed by Rico [58] and Hsieh
[28]. Each question provides three answer options: łYes, I would use the system in that situationž, łNo, I wouldn’t
use the system in that situation,ž and łI don’t knowž. The percentage of positive, negative, and uncertain responses
with respect to each situation can be seen in Fig. 10(b).

Overall, the participants expressed positive attitudes toward the possibility of using Handwriting Velcro in
both private and public places. 80% of the respondents will use Velcro in cafes, and 70% will use it at home,
corridor, bus, and sidewalks respectively. Some participants said that the reason they were less inclined to use
Velcro on sidewalks was due to the bumps in the process of vehicle driving and the safety of the sidewalk, rather



Handwriting Velcro: Endowing AR Glasses with Personalized and Posture-adaptive Text Input using Flexible Touch Sensor • 19

than social acceptance. The above results show that the respondents have a positive attitude towards using the
system at work and in private situations (on average, yes: 72%, no: 24%). The łAudiencesž survey shows that
only 15% of the participants explicitly oppose the use of the system in front of others, and most of them show a
positive attitude towards using the system in front of people with different levels of intimacy (on average, yes:
81.67%, neutral: 3.33%). This shows that the system has a quite high acceptance for different groups. Among them,
the participants’ use attitude when using alone or facing acquaintances (yes: 85%, no: 12.5%) is more positive
than that of colleagues or strangers (yes: 75%, no: 20%).

6.3.6 Discussions. In general, Handwriting Velcro exhibits practical, reliable, and friendly performance in both
quantitative and qualitative analysis of the experimental results.
After 6 sessions, the TER of each user decreases by 0.026 on average and finally reaches 0.005. The results of

Paired samples T-test show that with the help of active learning, the recognition performance of the personalized
classifier for a single user improves significantly (p=0.009). The average text input speed of each participant
finally reaches 16.49 WPM in S6, which indicates our system has practical input efficiency.

In the meanwhile, Handwriting Velcro has received highly positive reviews from the users’ subjective feedback.
The first is the system performance: the results of the 20-point Likert scale show that the system is practical
and comfortable. Second, findings on social acceptance reveal that the participants express positive attitudes
towards the possibility of using Handwriting Velcro in both private and public places. Moreover, only 15% of
the participants explicitly object to using the system in front of others with different levels of intimacy, and the
system has a broad social acceptance.

7 COMPARISON WITH EXISTING BASELINES

We compared our Handwriting Velcro with two baselines selected from the literature and commercial products
respectively:

• TEXTile: Thewearable touch text input work proposed by Belkacem et al [6] provides a text input technology
for smart glasses based on eight touched or released finger combinations. We chose TEXTile as the baseline
due to its highly similar method to our work: similar wearable flexible sensing media, similar touch text
input approaches, and similar mobile input scenarios. However, its interaction is restricted to the forearm,
whereas our Handwriting Velcro allows for handwriting interaction in multi-position/posture.

• Physical Mini QWERTY Keyboard: As a naive solution using existing commercial products, we replace our
Handwriting Velcro with a Physical Mini QWERTY Keyboard (114𝑚𝑚 × 60𝑚𝑚 × 9𝑚𝑚, Bluetooth) attached
to the user’s body.

For TEXTile, we obtained its performance data metrics from [6]. To make a fair comparison, we follow [6]
and restrict the use of our Handwriting Velcro to the "forearm" position and "standing" posture. For the Physical
Mini QWERTY Keyboard, we perform a stress test in which we compare it with our Handwriting Velcro on four
common challenging contexts: obstacle walking, dim, one-hand, and hidden, which has been shown to be a key
factor in the ultimate viability of any wearable text input technology [40]. To make a fair comparison, the active
learning module (SWITCH mode) of our Handwriting Velcro is disabled. However, users are allowed to use the
łbackspacež key and COMPLETION mode to assist with handwriting.

7.1 Comparison with TEXTile

7.1.1 Context Setup. To ensure the consistency of experimental conditions, we restrict the interaction position
to "forearm" and the interaction posture to "standing" in this experiment.

7.1.2 Participants. We recruited 10 participants (8 male, 2 female, all right-handed) to participate in this compar-
ison. All the participants were novices and had not participated in our previous studies.
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7.1.3 Task and Procedure. We asked each user to repeat a phrase repetition task: complete 10 sessions, each
involving repeated input of 4 phrases (total 22 words, 97 characters) randomly selected from MacKenzie &
Soukoreff phrase set [46]. Prior to the experiment, we followed the same preparation as described in Sec. 4.1.2.
During the experiment, we encouraged the participants to write as łfastž and łaccuratelyž as possible, and
recorded the input speed and error rate of the current session when each session was completed.
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Fig. 11. Results of comparison with TEXTile. (a) Error rate comparison between Handwriting Velcro and TEXTile. (b) Input
speed (WPM) comparison between Handwriting Velcro and TEXTile.

7.1.4 Results.

Error Rate. We define three types of errors in the same way as in Sec. 6.3.4: Corrected Error Rate (CER),
Uncorrected Error Rate (UER), and Total Error Rate (TER). Note that in the comparison experiment, error
correction was done through the łbackspacež key (two łTapsž) similar to TEXTile. The error rates of the two
methods are shown in Fig. 11(a). We observed that i) all the participants consciously corrected all errors without
being reminded, making UER always 0 (TER = CER); ii) TER shows a decreasing trend with sessions, and achieves
higher accuracy than TEXTile from S4 onwards; iii) over the 10 sessions, our Handwriting Velcro achieved an
average TER of 4.02% (𝑠𝑑 = 2.2 × 10−2), outperforming TEXTile (mean = 5.53%) by 1.51%.

Input Speed. As Fig. 11(b) shows, Handwriting Velcro’s input speed increases with sessions, reaching amaximum
of 13.34 WPM in S8. The rate increases according to the Power Law of Learning, fitting to the curves at 𝑅2

= 0.697
(Fig. 11(b)). Over the 10 sessions, Handwriting Velcro’s average input speed was 12.32 WPM (sd=0.77), higher
than TEXTile’s average input speed of 6.73 WPM (sd=1.13). To verify whether there is a significant difference
between the input speeds of the two solutions, we performed the Levin test and one-way ANOVA. The results
indicate that our Handwriting Velcro is significantly faster (p=0.00) than TEXTile in terms of input speed. This
shows that our system outperforms in input efficiency.

7.1.5 Discussions. In terms of recognition accuracy, Handwriting Velcro achieves an average error rate of 4.02%
(𝑠𝑑 = 2.2 × 10−2) in 10 sessions, which is 1.51% lower than TEXTile (mean = 5.53%). The average input speed of
Handwriting Velcro in 10 sessions (mean=12.32 WPM, sd=0.77) is significantly higher (p=0.00) than TEXTile
(mean=6.73 WPM, sd=1.13). Such performance is sufficient for short text input tasks. In the meanwhile, compared
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with TEXTile, this system has a smoother and more friendly learning curve: users can directly use traditional
handwriting input instead of additionally learning complex finger combinations, and the use fatigue is also
reduced.

7.2 Comparison with Physical Mini QWERTY Keyboard

7.2.1 Context Setup. To demonstrate the superiority and robustness of our Handwriting Velcro in various
application scenarios, we conduct a stress test in which we compare the performance of the Physical Mini
QWERTY Keyboard and our Handwriting Velcro in four common but challenging contexts:

• Obstacle Walking. Users were asked to walk at a normal walking speed (about 1𝑚/𝑠) around a path of
about 50𝑚 × 20𝑚, with 1 to 2 obstacles set in the way, and complete the input task while walking.

• Dim. To simulate input scenarios of no light or traveling at night, we asked users to complete the input
task in low visibility. Note that in this case, the characters on the keys of the mini keyboard cannot be
clearly seen in the "sitting" posture.

• One-hand. Users were asked to complete text input with a tote bag in their left hand to simulate a
one-handed input scenario.

• Hidden. Since hidden input protects the privacy and is more socially acceptable [28], we asked users to
complete input tasks in the łthighž position and łsittingž posture (at a desk) to simulate a hidden input
scenario. The users were asked to use only peripheral vision for the input task.

The forearm was chosen as the default interaction location for all contexts, except for the hidden context where
the device was attached to the thigh. As described in Sec. 3, the AR glasses used in this study do not block the
user’s vision, which will allow users to see the keyboard through the glasses clearly. In addition, there were no
other visual obstructions other than those due to the experimental scenarios.

7.2.2 Participants. We recruited 12 participants for this experiment, all of whom were novices and had not
participated in any of our previous studies.

7.2.3 Task and Procedure. Participants were randomly divided into four groups to participate in the studies
in four contexts respectively. The study in each context used a within-participant design with Device (our
Handwriting Velcro, physical mini QWERTY keyboard) and Session (1-10) as independent variables.
Same as Sec. 7.1, we asked each user to repeat a phrase input task using both devices in the corresponding

context. The phrase to be entered was displayed on the interface of the AR glasses. We collected 1 context × 2
devices × 10 sessions × 22 words = 440 words/person for a total of 5280 acquisitions. To ensure that we are testing
the performance of novices, we introduced the users how to use the device before the start of the experiment,
with no additional practice. Users could apply for breaks between experiments. To ensure counterbalance, we
grouped users equally according to the order in which the different devices were used. When switching between
devices, we ensure users are well rested to remain in a similar state to that at the start of the experiment.
We recorded two quantitative metrics: total error rate (TER) and input speed (WPM), and collected subjective

feedback after the experiment to analyze users’ preferences for using the two devices in each context.

7.2.4 Results and Discussions.

Total Error Rate. As shown in Fig. 12(a), our Handwriting Velcro achieves a high accuracy (TER ≤ 5%) in all
four contexts. The results of the Levin test and one-way ANOVA showed that "Context" has no significant effect
on the TER (F = 1.003, p = 0.440) of our Velcro, indicating the superiority and robustness of our Handwriting
Velcro against challenging contexts. It is worth noting that the "eyeless" nature of our Handwriting Velcro allows
for accurate and stable text input when the line of sight is obstructed and hidden (Dim and Hidden). Specifically,
our Velcro achieves low average TERs of 4.31% and 2.22% in Dim and Hidden respectively, outperforming those
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Fig. 12. (a-c) Comparison of Total Error Rate, Input speed (WPM), and User Preferences with physical mini QWERTY
keyboard in different contexts. (d) Per-character response time for all participants.

(4.71% and 3.23%) of the physical mini QWERTY keyboard. This has been verified by the participants’ comments,
e.g., "The mini keyboard is difficult to use when you can’t see it clearly, especially when the keys are still small.
While Velcro only needs to determine the approximate location of the device and can write without looking.
The glasses screen will provide visual feedback." For obstacle walking and one-hand contexts, the physical mini
keyboard is slightly more accurate due to users’ established proficiency in keyboard interaction and visual aids.
However, with more practice (20mins) on our Handwriting Velcro, users can achieve comparable or even lower
TER.

Input Speed. Our Handwriting Velcro achieves an average input speed (12.34 WPM) higher than the physical
mini keyboard (11.04 WPM) for all the participants in all the contexts over the 10 sessions. The results of the
Levin test and one-way ANOVA showed that "Context" had no significant effect on the input speed (F = 0.706,



Handwriting Velcro: Endowing AR Glasses with Personalized and Posture-adaptive Text Input using Flexible Touch Sensor • 23

p = 0.575) of our Velcro as well, indicating the efficiency and robustness of our Handwriting Velcro against
challenging contexts. Specifically, the input speeds of our Handwriting Velcro in the Walking (11.83WPM), Dim
(13.15WPM) and Hidden (12.26WPM) contexts are faster than those of the mini keyboard in the corresponding
contexts (10.39WPM, 11.16WPM and 6.85WPM, respectively). While in one-hand context, the mini keyboard
achieves a higher input speed than our Handwriting Velcro. We attribute this to the good input conditions unique
to the one-hand context: standing posture, sufficient light, no need to move, etc., which are difficult to meet
in many complex real-world contexts. For example, suppose that a businessman is sitting in a busy and noisy
bus on his way home late at night and needs to text his family privately, then the mini keyboard might not be
as effective as we have demonstrated its drawbacks in Dim and Hidden. Nevertheless, our Handwriting Velcro
shows good adaptability across challenging input conditions.

Response Time. The response time for interacting with our Handwriting Velcro consists of three components:

• writeTime. The amount of time the user actually touches the Velcro for handwriting.
• emptyTime. The no-input waiting time after a character is handwritten.
• recTime. The program processing time for handwritten character recognition and result output.

Fig. 12(d) shows the means and sds of per-character response time for all the participants in this experiment.
It can be observed that: i) the writeTime (mean=0.621s) is the longest, ii) emptyTime (mean=0.409s) takes 0.4s
fixedly, iii) recTime (mean=0.224s) is the shortest, about 0.2s. Thus, it can be concluded that the total response
time for the input of a single character is approximately 1.2s (about 50CPM), indicating the high input efficiency
of our Handwriting Velcro. Note that the emptyTime can be further reduced by choosing a more appropriate
shorter fixed value, and recTime can be further reduced by using more computationally powerful devices.

User Preference. At the end of the experiment, we recorded the participants’ preferences for the use of the
two devices in each context. As shown in Fig. 12(c), the participants showed a very positive preference for our
Handwriting Velcro. Among the 12 participants, only one expressed a preference for the mini keyboard in the
one-hand context. We interviewed the participants to find out their reasons for their choices: i) Four participants
mentioned that łeyeless, mobile inputž is a major advantage for our Handwriting Velcro. They said that our
Velcro only requires a rough location of the device for handwriting, while the keyboard requires constant visual
attention. ii) Some participants complained that łHanging the keyboard on the arm is too strangež, showing the
superiority of our Velcro as a flexible wearable device in comfort and social acceptance. iii) Some participants
were bothered with the too-small keys on the keyboard, łsometimes two keys were pressed at the same time,ž
they complained. iv) The only participant who chose the mini keyboard said that using the keyboard while
standing was in line with their daily use habits.

8 DISCUSSIONS

8.1 Comparison with Previous Literature

As Table 1 shows, in addition to the comparison with the baselines in Sec. 7, we further demonstrate the superiority
of our Handwriting Velcro to other relevant works in terms of input speed and total error rate (TER). To make the
comparison more concise and informative, we focus on one-hand wearable text input for smart glasses.

Input Speed. As Sec. 7.1 shows, our Handwriting Velcro achieves a high average WPM of 12.32, which out-
performs i) TEXTile (6.73 WPM), which uses similar flexible fabric for touch input; ii) Haptic Glove [28] (5.39
WPM), TipText [79] (11.9 WPM), Thumb-to-Finger [41] (5.12 WPM), and ThumbText [34] (7.5 - 9 WPM), which
use different types of wearable devices (e.g., gloves, ring) for one-hand mobile text input. We attribute the faster
input speed of our Handwriting Velcro to its larger interaction area and the user-friendliness of handwriting. On
the other hand, FingerText [40] uses fingernails for text input, and achieves a higher average WPM of 22.38 - 31.3
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Table 1. Comparison with relevant works in previous literature. ł∼ž: values inferred from the figures and data in the original
papers. ł(l𝑋 )ž: the mean of the last 𝑋 session(s) as reported in the original papers.

Method Average WPM Last WPM Average TER% Practice Time

Velcro 12.32 12.63 4.02% 20 mins
TEXTile[6] 6.73 8.11 5.53% 120 mins
Haptic Glove[28] 5.39 (l4) 5.42 5.45% 20 mins
TipText[79] 11.90 13.30 4.89% 40 mins
Thumb-to-Finger[41] 5.12 6.47 10.35% ∼ 30 mins
FingerText[40] (l3) 22.38 - 31.3 ∼ 23 - 31 (l3) ∼ 4% - 12% 90 mins
ThumbText[34] ∼ 7.5 - 9 8.46 - 11.41 ∼ 10% ∼ 60 mins

than our Handwriting Velcro. However, its high input speed comes at the cost of accuracy (4% - 12% TER) and
the high learning costs (90 mins of practice time) associated with its optimized nail keyboard layout. In contrast,
our Handwriting Velcro is accurate (4.02% TER) and easy-to-learn (handwriting input). Note that for fairness we
did not compare with two-hand input solutions with faster text input rates, such as DigiTouch [72] (13 WPM) and
BiTipText [78] (23.4 WPM).

Error Rate. As Sec. 7.1 shows, our Handwriting Velcro achieves a low TER of 4.02%, which outperforms all
relevant works listed in Table 1. Specifically, FingerText [40], TipText [79], Thumb-to-Finger [41] (5.12 WPM),
and ThumbText [34] suffer from the limited interaction area of fingers; Haptic Glove [28] and TEXTile [6] suffer
from their complicated gesture recognition. In contrast, our Handwriting Velcro offers a large interaction area
to enable intuitive handwriting, which is part of human nature and easy to recognize. As a result, our Velcro
allows for accurate text input (TER of 4.02%) with a low learning cost, i.e., our Velcro requires comparably shorter
practice time (20 mins) than other methods in Table 1.

8.2 Multi-Posture Adaptation

We believe that multi-posture adaptation is an inevitable step towards anywhere and anytime text input for
AR glasses. Specifically, a large number of AR text input scenarios (e.g., time, place, movement, etc., and their
combinations) lead to diverse demands that can hardly bemet by a small number of fixed input postures (i.e., sitting
or walking) offered by existing solutions [22, 28, 40, 41, 70]. To meet such demands, we propose Handwriting
Velcro, which is based on a flexible sensing film that can be easily attached to any positions of body surfaces
(i.e., interaction positions) in a comfortable and natural way, thereby giving users complete freedom to explore
the best interaction positions and postures for different AR text input scenarios. To make the most use of the
flexible film, we choose the handwriting input paradigm (with a low learning cost but high speed/accuracy) and
implement it with the latest deep learning technology (Sec. 5).

For evaluation purposes, we first select 6 representative interaction positions and investigate their adaptability
to 4 representative interaction postures (Sec. 4). After obtaining the best interaction positions for the 4 postures
(Fig. 4), we benchmark the performance of the proposed Handwriting Velcro and demonstrate its superiority
with a series of experiments (Sec. 6). Finally, we show the effectiveness of our Handwriting Velcro against a
similar baseline (TEXTile [6]) that also uses a flexible film, and demonstrate that it is superior to the physical
mini keyboard (commercial product) in meeting the demands of various challenging contexts/scenarios for AR
text input (Sec. 7). Specifically, the comparison with mini keyboard shows that łcontextž has no significant effect
on the input speed (F = 0.706, p = 0.575) and TER (F = 1.003, p = 0.440) of the Handwriting Velcro. For all users in
all contexts, our Velcro achieved an average input speed of 12.34 WPM over 10 sessions, which is faster than
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physical mini keyboards (11.04 WPM). In terms of error rate, our Velcro achieved an average TER of 3.64% over
10 sessions, and the results of one-way ANOVA showed that there was no significant difference in TER between
the two devices (F = 0.826, p = 0.373). Subjective feedback (Fig. 12(c)) showed that 91.67% (11 out of 12) users
preferred Velcro in the four contexts. Since the successful design of common situational barriers, such as obstacle
walking, maybe a key factor in the ultimate viability of any wearable text input technology [40], we believe the
multi-posture design space explored in this paper will benefit the community in creating more effective wearable
text entry systems for diverse scenarios in the future.
In addition, thanks to the multi-posture feature of our Handwriting Velcro, it can be adapted to various

challenging contexts and is thus more socially acceptable. Specifically, our Velcro allows hidden operations that
are more acceptable in social settings [28]; our assessment of social acceptance (Sec. 6.3.5) indicates that users
are widely positive about using Velcro in different locations and in front of different audiences; our comparative
study (Sec. 7.2) about hidden context shows that our Velcro allows significantly faster (12.26 WPM, F = 95.91, p =
0.001) and more accurate (TER of 2.22%) hidden input operations than the mini keyboard (6.85 WPM, TER of
3.23%).

8.3 User-centered Personalization

Based on the previous discussion (Sec. 8.2), we choose the handwriting input paradigm (low learning cost, high
speed/accuracy, and suitable for the flexible film). However, due to the inherent differences in handwriting styles
among different users, it is difficult for generalized classifiers to achieve high accuracy for different users (Sec. 6.2).
Therefore, we believe that user-centered personalized handwritten character classification is indispensable. We
borrow the idea of "human-in-the-loop" and implement the personalized classifiers through active learning
(Sec. 5.3). After experimental evaluation, our personalized classifier eventually reached a low TER of 0.005 among
different users after 6 sessions (Sec. 6.3), which outperforms the performance of the generalized classifier not
calling the active learning module (SWITCH mode) in the same situation (łforearm" position, łsitting" posture)
in the comparative experiment (as shown in Sec. 7.1, 0.021 of TER after 10 sessions). The lower error rate also
reduces the time required for error correction, resulting in faster input speed (15.46WPM vs 12.32WPM, on
average). The benefits of user-centered personalization are also reflected in the user’s subjective feedback on
system performance and social acceptance (Sec. 6.3.5).

8.4 Limitations and Future Work

Limited Sample Sizes. We acknowledge that the sample size in our user studies is relatively small. For example,
in the personalization experiment, although 10 participants were recruited in total, only 6 of them had eligible data
for subsequent analysis, i.e., their initial error rate is large (TER>0.01) in the S1 experiment (Sec. 6.3.4) to allow
sufficient room for improvement in personalization. Although all six users show improvement in terms of both
reduced error and increased input speed for all sessions, their statistics show minor fluctuations (0.015+/-0.005
for average TER and 15.46+/-4.09WPM for average speed). Therefore, despite their effectiveness in justifying our
major claims, we expect that the reported statistics may demonstrate some variation if using a different sample
size.

Hardware Improvement. Currently, our device is connected to a desktop computer via USB, limiting its mobility.
In the future, we will switch from a wired cable to wireless transmission methods such as Bluetooth. Additional
hardware upgrade, such as reducing the size of the circuit, is also critical to achieving a more affordable and
wearable experience.

Exploring More Interaction Positions. The current study carefully evaluated the forearm and the thigh as the
two interaction positions. However, as we mentioned in the heuristic study, the upper arm and the abdomen are
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also promising interactive positions. They may show unique advantages or user preferences in certain interaction
scenarios. In the future, we will explore more interaction positions, including the upper arm and the abdomen.

Advanced Text Input and Editing Functions. In addition to basic characters (e.g., A-Z, 0-9), modern text input
methods are required to support the input of special characters (e.g., punctuation) as well as basic editing functions
such as selection and modification. These can be achieved by increasing the types of recognized characters or
combining with other input modalities (such as voice, touch strips, etc.). In addition, we can also control the text
input process by designing start/end options to prevent accidental touches of sensors in daily life.

Real-world Usage. In this work, we used a strip-based prototype of our Handwriting Velcro, which allows
for free exploration of interaction positions and postures at low cost. Although sufficient for lab use, the strips
used in our prototype might be inconvenient for use in real-world scenarios. In the future, we will replace our
strip-based prototype with customized ones integrated into clothing (Fig. 13), making them more suitable for
practical daily use.

Fig. 13. The possible integrated wearable prototype design for daily use in the future. (left: integrated sleeve design, right:
integrated trousers design.)

More Interaction Options. Although effective, the proposed Handwriting Velcro focuses on a limited number of
interaction options associated with handwriting text input. However, flexible film-based touch interfaces can
sense continuous input, a feature that enables them to be used for various tasks beyond text input [72]. Thanks
to its expressive 40x40 resolution, larger touch area, and accurate continuous input monitoring, our Handwriting
Velcro allows for many more interaction options (e.g., sketch drawing, touch control, 3D interaction, etc.), and
we will address them in future work.

9 CONCLUSION

We have presented a novel method, Handwriting Velcro, for handwriting input on AR glasses, using flexible
touch sensors. The distinct advantage of our method is that it adapts to different postures and users at little cost,
providing a user-friendly, accurate, and robust input experience for diverse, challenging scenarios. The heuristic
study reveals the optimal layout positions of the input device when the user is under different postures. Our
method achieved accurate recognition performance by building a personalized classifier for each single user based
on the concept of łhuman-in-the-loopž and active learning. With this approach, the error rate of personalized
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classifiers for individual users (6 in total) reaches an average of 0.005. The results show that our handwriting
Velcro achieves good performance and high user feedback in system practicability and social acceptance. We
also compared our solution with the existing similar work TEXTile [6] and commercial grade physical mini
QWERTY keyboard for performance evaluation. Results show that our method excels the existing technique in
both practicality (12.3 WPM) and user-friendliness in different daily contexts. In the future, we can achieve more
complete and practical text input and editing solutions by upgrading hardware and adding more types of input
characters and text editing functions.

ACKNOWLEDGEMENTS

This work was supported by National Natural Science Foundation of China (62072383, 61702433, 62077039), the
Fundamental Research Funds for the Central Universities (20720210044, 20720190006), and the Royal Society
(IEC\NSFC\211022), grants from the City University of Hong Kong (Project No. 7005590 and 9667234) and the
Centre for Applied Computing and Interactive Media (ACIM) of School of Creative Media, CityU.

REFERENCES
[1] Jiban Adhikary and Keith Vertanen. 2021. Text Entry in Virtual Environments using Speech and a Midair Keyboard. IEEE Transactions

on Visualization and Computer Graphics 27, 5 (2021), 2648ś2658.

[2] Jiban Adhikary and Keith Vertanen. 2021. Typing on Midair Virtual Keyboards: Exploring Visual Designs and Interaction Styles. In IFIP

Conference on Human-Computer Interaction. Springer, 132ś151.

[3] Sunggeun Ahn and Geehyuk Lee. 2019. Gaze-assisted typing for smart glasses. In Proceedings of the 32nd Annual ACM Symposium on

User Interface Software and Technology. 857ś869.

[4] Takumi Azai, Shuhei Ogawa, Mai Otsuki, Fumihisa Shibata, and Asako Kimura. 2017. Selection and Manipulation Methods for a Menu

Widget on the Human Forearm. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems

(Denver, Colorado, USA) (CHI EA ’17). Association for Computing Machinery, New York, NY, USA, 357ś360. https://doi.org/10.1145/

3027063.3052959

[5] Bartosz Bajer, I. Scott MacKenzie, and Melanie Baljko. 2012. Huffman Base-4 Text Entry Glove (H4 TEG). In 2012 16th International

Symposium on Wearable Computers. IEEE. https://doi.org/10.1109/iswc.2012.28

[6] Ilyasse Belkacem, Isabelle Pecci, Benoît Martin, and Anthony Faiola. 2019. TEXTile: Eyes-Free Text Input on Smart Glasses Using

Touch Enabled Textile on the Forearm. In Human-Computer Interaction ś INTERACT 2019. Springer International Publishing, 351ś371.

https://doi.org/10.1007/978-3-030-29384-0_22

[7] Brenda AJ Berendsen, Marike RC Hendriks, Kenneth Meijer, Guy Plasqui, Nicolaas C Schaper, and Hans HCM Savelberg. 2014. Which

activity monitor to use? Validity, reproducibility and user friendliness of three activity monitors. BMC Public Health 14, 1 (2014), 1ś11.

[8] Xiaojun Bi and Shumin Zhai. 2016. IJQwerty: What Difference Does One Key Change Make? Gesture Typing Keyboard Optimization

Bounded by One Key Position Change from Qwerty. Association for Computing Machinery, New York, NY, USA, 49ś58. https:

//doi.org/10.1145/2858036.2858421

[9] Sabah Boustila, Thomas Guégan, Kazuki Takashima, and Yoshifumi Kitamura. 2019. Text typing in VR using smartphones touchscreen

and HMD. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 860ś861.

[10] Eugenie Brasier, Olivier Chapuis, Nicolas Ferey, Jeanne Vezien, and Caroline Appert. 2020. ARPads: Mid-air Indirect Input for Augmented

Reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 332ś343.

[11] GE Burnett, SM Lomas, B Mason, JM Porter, and SJ Summerskill. 2005. Writing and driving: An assessment of handwriting recognition

as a means of alphanumeric data entry in a driving context. Advances in Transportation Studies (2005).

[12] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik. 2017. EMNIST: Extending MNIST to handwritten letters. In 2017

International Joint Conference on Neural Networks (IJCNN). IEEE. https://doi.org/10.1109/ijcnn.2017.7966217

[13] Li Deng. 2012. The MNIST Database of Handwritten Digit Images for Machine Learning Research. IEEE Signal Processing Magazine 29, 6

(nov 2012), 141ś142. https://doi.org/10.1109/msp.2012.2211477

[14] David Dobbelstein, Christian Winkler, Gabriel Haas, and Enrico Rukzio. 2017. PocketThumb. Proceedings of the ACM on Interactive,

Mobile, Wearable and Ubiquitous Technologies 1, 2 (jun 2017), 1ś17. https://doi.org/10.1145/3090055

[15] Jacqui Fashimpaur, Kenrick Kin, and Matt Longest. 2020. PinchType: Text Entry for Virtual and Augmented Reality Using Comfortable

Thumb to Fingertip Pinches. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems. 1ś7.

[16] Conor R Foy, John J Dudley, Aakar Gupta, Hrvoje Benko, and Per Ola Kristensson. 2021. Understanding, Detecting and Mitigating the

Effects of Coactivations in Ten-Finger Mid-Air Typing in Virtual Reality. In Proceedings of the 2021 CHI Conference on Human Factors in

Computing Systems. 1ś11.



28 • Fang et al.

[17] Maite Frutos-Pascual, Clara Gale, Jake M Harrison, Chris Creed, and Ian Williams. 2021. Character Input in Augmented Reality: An

Evaluation of Keyboard Position and Interaction Visualisation for Head-Mounted Displays. In IFIP Conference on Human-Computer

Interaction. Springer, 480ś501.

[18] Debjyoti Ghosh, Pin Sym Foong, Shengdong Zhao, Can Liu, Nuwan Janaka, and Vinitha Erusu. 2020. EYEditor. In Proceedings of the

2020 CHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/3313831.3376173

[19] Jun Gong, Zheer Xu, Qifan Guo, Teddy Seyed, Xiang ’Anthony’ Chen, Xiaojun Bi, and Xing-Dong Yang. 2018. WrisText: One-Handed

Text Entry on Smartwatch Using Wrist Gestures. Association for Computing Machinery, New York, NY, USA, 1ś14. https://doi.org/10.

1145/3173574.3173755

[20] Tovi Grossman, Xiang Anthony Chen, and George Fitzmaurice. 2015. Typing on Glasses: Adapting Text Entry to Smart Eyewear. In

Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services (Copenhagen, Denmark)

(MobileHCI ’15). Association for Computing Machinery, New York, NY, USA, 144ś152. https://doi.org/10.1145/2785830.2785867

[21] Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias Kranz, and Per Ola Kristensson. 2018. Text entry in immersive

head-mounted display-based virtual reality using standard keyboards. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces

(VR). IEEE, 159ś166.

[22] Aakar Gupta, Cheng Ji, Hui-Shyong Yeo, Aaron Quigley, and Daniel Vogel. 2019. RotoSwype: Word-Gesture Typing Using a Ring.

Association for Computing Machinery, New York, NY, USA, 1ś12. https://doi.org/10.1145/3290605.3300244

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24] Ramin Hedeshy, Chandan Kumar, Raphael Menges, and Steffen Staab. 2021. Hummer: Text Entry by Gaze and Hum. In Proceedings of

the 2021 CHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/3411764.3445501

[25] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang Irani. 2014. Consumed endurance. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/2556288.2557130

[26] Andreas Holzinger. 2016. Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Informatics

3, 2 (mar 2016), 119ś131. https://doi.org/10.1007/s40708-016-0042-6

[27] Xing-Yu Hou and Chuan-Fei Guo. 2020. Sensing mechanisms and applications of flexible pressure sensors. Acta Physica Sinica 69, 17

(2020), 178102. https://doi.org/10.7498/aps.69.20200987

[28] Y. T. Hsieh, Antti Jylh, V. Orso, L. Gamberini, and G. Jacucci. 2016. Designing a Willing-to-Use-in-Public Hand Gestural Interaction

Technique for Smart Glasses. In Chi Conference on Human Factors in Computing Systems.

[29] Tan-Phat Huynh and Hossam Haick. 2018. Autonomous Flexible Sensors for Health Monitoring. Advanced Materials 30, 50 (2018),

1802337. https://doi.org/10.1002/adma.201802337 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201802337

[30] Haiyan Jiang and Dongdong Weng. 2020. HiPad: Text entry for head-mounted displays using circular touchpad. In 2020 IEEE Conference

on Virtual Reality and 3D User Interfaces (VR). IEEE, 692ś703.

[31] Haiyan Jiang, Dongdong Weng, Zhenliang Zhang, Yihua Bao, Yufei Jia, and Mengman Nie. 2018. Hikeyb: High-efficiency mixed reality

system for text entry. In 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). IEEE, 132ś137.

[32] Jung. 2020. imgaug. https://github.com/aleju/imgaug/.

[33] Dagmar Kern, Albrecht Schmidt, Jonas Arnsmann, Thorsten Appelmann, Nillakshi Pararasasegaran, and Benjamin Piepiera. 2009.

Writing to your car. In CHI '09 Extended Abstracts on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/1520340.1520724

[34] Junhyeok Kim, William Delamare, and Pourang Irani. 2018. ThumbText: Text Entry for Wearable Devices Using a Miniature Ring. In

Graphics Interface.

[35] Diederik P. Kingma and Jimmy Ba. 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG]

[36] Kotikalapudi. 2016. keras-resnet. https://github.com/raghakot/keras-resnet.

[37] Chandan Kumar, Ramin Hedeshy, I. Scott MacKenzie, and Steffen Staab. 2020. TAGSwipe: Touch Assisted Gaze Swipe for Text Entry.

Association for Computing Machinery, New York, NY, USA, 1ś12. https://doi.org/10.1145/3313831.3376317

[38] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998),

2278ś2324. https://doi.org/10.1109/5.726791

[39] DoYoung Lee, Jiwan Kim, and Ian Oakley. 2021. FingerText: Exploring and Optimizing Performance forWearable, Mobile and One-Handed

Typing. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/3411764.3445106

[40] DoYoung Lee, Jiwan Kim, and Ian Oakley. 2021. FingerText: Exploring and Optimizing Performance forWearable, Mobile and One-Handed

Typing. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 1ś15.

[41] Lik Hang Lee, Kit Yung Lam, Tong Li, Tristan Braud, Xiang Su, and Pan Hui. 2019. Quadmetric Optimized Thumb-to-Finger Interaction

for Force Assisted One-Handed Text Entry on Mobile Headsets. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies 3, 3 (sep 2019), 1ś27. https://doi.org/10.1145/3351252

[42] Lik Hang Lee, Kit Yung Lam, Yui Pan Yau, Tristan Braud, and Pan Hui. 2019. HIBEY: Hide the Keyboard in Augmented Reality. In 2019

IEEE International Conference on Pervasive Computing and Communications (PerCom. IEEE. https://doi.org/10.1109/percom.2019.8767420



Handwriting Velcro: Endowing AR Glasses with Personalized and Posture-adaptive Text Input using Flexible Touch Sensor • 29

[43] Xueshi Lu, Difeng Yu, Hai-Ning Liang, and Jorge Goncalves. 2021. iText: Hands-free text entry on an imaginary keyboard for augmented

reality systems. Proc. UIST. Association for Computing Machinery, New York, NY, USA (2021).

[44] Xueshi Lu, Difeng Yu, Hai-Ning Liang, Wenge Xu, Yuzheng Chen, Xiang Li, and Khalad Hasan. 2020. Exploration of Hands-free Text

Entry Techniques For Virtual Reality. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 344ś349.

[45] I Scott MacKenzie and R William Soukoreff. 2002. Text entry for mobile computing: Models and methods, theory and practice.

HumanśComputer Interaction (2002).

[46] I. Scott MacKenzie and R. William Soukoreff. 2003. Phrase Sets for Evaluating Text Entry Techniques. Association for Computing

Machinery, New York, NY, USA, 754ś755. https://doi.org/10.1145/765891.765971

[47] Tim Menzner, Alexander Otte, Travis Gesslein, Jens Grubert, Philipp Gagel, and Daniel Schneider. 2019. A capacitive-sensing physical

keyboard for VR text entry. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 1080ś1081.

[48] Anindya Nag, Subhas Chandra Mukhopadhyay, and Jurgen Kosel. 2017. Wearable Flexible Sensors: A Review. IEEE Sensors Journal 17,

13 (jul 2017), 3949ś3960. https://doi.org/10.1109/jsen.2017.2705700

[49] Shahriar Nirjon, Jeremy Gummeson, Dan Gelb, and Kyu-Han Kim. 2015. TypingRing: A Wearable Ring Platform for Text Input. In

Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services (Florence, Italy) (MobiSys ’15).

Association for Computing Machinery, New York, NY, USA, 227ś239. https://doi.org/10.1145/2742647.2742665

[50] Alex Olwal, Jon Moeller, Greg Priest-Dorman, Thad Starner, and Ben Carroll. 2018. I/O Braid: Scalable Touch-Sensitive Lighted

Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics. In Proceedings of the 31st Annual ACM Symposium on User

Interface Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 485ś497.

https://doi.org/10.1145/3242587.3242638

[51] Alex Olwal, Thad Starner, and Gowa Mainini. 2020. E-Textile Microinteractions: Augmenting Twist with Flick, Slide and Grasp Gestures for

Soft Electronics. Association for Computing Machinery, New York, NY, USA, 1ś13. https://doi.org/10.1145/3313831.3376236

[52] Alexander Otte, TimMenzner, Travis Gesslein, Philipp Gagel, Daniel Schneider, and Jens Grubert. 2019. Towards utilizing touch-sensitive

physical keyboards for text entry in virtual reality. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 1729ś1732.

[53] Alexander Otte, Daniel Schneider, Tim Menzner, Travis Gesslein, Philipp Gagel, and Jens Grubert. 2019. Evaluating text entry in virtual

reality using a touch-sensitive physical keyboard. In 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct

(ISMAR-Adjunct). IEEE, 387ś392.

[54] Patrick Parzer, Florian Perteneder, Kathrin Probst, Christian Rendl, Joanne Leong, Sarah Schuetz, Anita Vogl, Reinhard Schwoediauer,

Martin Kaltenbrunner, Siegfried Bauer, and Michael Haller. 2018. RESi: A Highly Flexible, Pressure-Sensitive, Imperceptible Textile

Interface Based on Resistive Yarns. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (Berlin,

Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA, 745ś756. https://doi.org/10.1145/3242587.3242664

[55] Patrick Parzer, Adwait Sharma, Anita Vogl, Jürgen Steimle, Alex Olwal, and Michael Haller. 2017. SmartSleeve. In Proceedings of the 30th

Annual ACM Symposium on User Interface Software and Technology. ACM. https://doi.org/10.1145/3126594.3126652

[56] Duc-Minh Pham and Wolfgang Stuerzlinger. 2019. Hawkey: Efficient and versatile text entry for virtual reality. In 25th ACM Symposium

on Virtual Reality Software and Technology. 1ś11.

[57] Ivan Poupyrev, Nan-Wei Gong, Shiho Fukuhara, Mustafa Emre Karagozler, Carsten Schwesig, and Karen E. Robinson. 2016. Project

Jacquard. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/2858036.

2858176

[58] Julie Rico and Stephen Brewster. 2010. Usable Gestures for Mobile Interfaces: Evaluating Social Acceptability. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing Machinery,

New York, NY, USA, 887ś896. https://doi.org/10.1145/1753326.1753458

[59] Deepak Ranjan Sahoo, Kasper Hornbñk, and Sriram Subramanian. 2016. TableHop: An Actuated Fabric Display Using Transparent

Electrodes. Association for Computing Machinery, New York, NY, USA, 3767ś3780. https://doi.org/10.1145/2858036.2858544

[60] Stefan Schneegass and Alexandra Voit. 2016. GestureSleeve. In Proceedings of the 2016 ACM International Symposium on Wearable

Computers. ACM. https://doi.org/10.1145/2971763.2971797

[61] Burr Settles. 2009. Active learning literature survey. University of Wisconsin-Madison Department of Computer Sciences.

[62] Gaganpreet Singh, William Delamare, and Pourang Irani. 2018. D-SWIME: A design space for smartwatch interaction techniques

supporting mobility and encumbrance. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. 1ś13.

[63] Sophie Skach, Rebecca Stewart, and Patrick G. T. Healey. 2018. Smart Arse. In Proceedings of the 20th ACM International Conference on

Multimodal Interaction. ACM. https://doi.org/10.1145/3242969.3242977

[64] Paul Strohmeier, Victor Håkansson, Cedric Honnet, Daniel Ashbrook, and Kasper Hornbñk. 2019. Optimizing Pressure Matrices. In

Proceedings of the Thirteenth International Conference on Tangible, Embedded, and Embodied Interaction. ACM. https://doi.org/10.1145/

3294109.3295638

[65] Paul Strohmeier, Jarrod Knibbe, Sebastian Boring, and Kasper Hornbñk. 2018. zPatch. In Proceedings of the Twelfth International

Conference on Tangible, Embedded, and Embodied Interaction. ACM. https://doi.org/10.1145/3173225.3173242



30 • Fang et al.

[66] Felix Sygulla, Felix Ellensohn, Arne-Christoph Hildebrandt, Daniel Wahrmann, and Daniel Rixen. 2017. A flexible and low-cost

tactile sensor for robotic applications. In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 58ś63. https:

//doi.org/10.1109/AIM.2017.8013995

[67] Mohsin I. Tiwana, Stephen J. Redmond, and Nigel H. Lovell. 2012. A review of tactile sensing technologies with applications in biomedical

engineering. Sensors and Actuators A: Physical 179 (jun 2012), 17ś31. https://doi.org/10.1016/j.sna.2012.02.051

[68] Radu-Daniel Vatavu. 2017. Smart-Pockets. Int. J. Hum.-Comput. Stud. 103, C (July 2017), 1ś21. https://doi.org/10.1016/j.ijhcs.2017.01.005

[69] Nicolas Villar, Daniel Cletheroe, Greg Saul, Christian Holz, Tim Regan, Oscar Salandin, Misha Sra, Hui-Shyong Yeo, William Field, and

Haiyan Zhang. 2018. Project Zanzibar: A Portable and Flexible Tangible Interaction Platform. Association for Computing Machinery, New

York, NY, USA, 1ś13. https://doi.org/10.1145/3173574.3174089

[70] Cheng-Yao Wang, Wei-Chen Chu, Po-Tsung Chiu, Min-Chieh Hsiu, Yih-Harn Chiang, and Mike Y Chen. 2015. PalmType: Using palms

as keyboards for smart glasses. In Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices

and Services. 153ś160.

[71] Yancheng Wang, Xin Wu, Deqing Mei, Lingfeng Zhu, and Jianing Chen. 2019. Flexible tactile sensor array for distributed tactile sensing

and slip detection in robotic hand grasping. Sensors and Actuators A: Physical 297 (2019), 111512. https://doi.org/10.1016/j.sna.2019.07.036

[72] Eric Whitmire, Mohit Jain, Divye Jain, Greg Nelson, Ravi Karkar, Shwetak Patel, and Mayank Goel. 2017. DigiTouch. Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 1, 3 (sep 2017), 1ś21. https://doi.org/10.1145/3130978

[73] Tony Wu, Shiho Fukuhara, Nicholas Gillian, Kishore Sundara-Rajan, and Ivan Poupyrev. 2020. ZebraSense: A Double-Sided Textile

Touch Sensor for Smart Clothing. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual

Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 662ś674. https://doi.org/10.1145/3379337.3415886

[74] Te-Yen Wu, Lu Tan, Yuji Zhang, Teddy Seyed, and Xing-Dong Yang. 2020. Capacitivo: Contact-Based Object Recognition on Interactive

Fabrics Using Capacitive Sensing. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software and Technology (Virtual

Event, USA) (UIST ’20). Association for Computing Machinery, New York, NY, USA, 649ś661. https://doi.org/10.1145/3379337.3415829

[75] Te-YenWu, Zheer Xu, Xing-Dong Yang, Steve Hodges, and Teddy Seyed. 2021. Project Tasca: Enabling Touch and Contextual Interactions

with a Pocket-Based Textile Sensor. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)

(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article 4, 13 pages. https://doi.org/10.1145/3411764.3445712

[76] Wenge Xu, Hai-Ning Liang, Anqi He, and Zifan Wang. 2019. Pointing and selection methods for text entry in augmented reality head

mounted displays. In 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR). IEEE, 279ś288.

[77] Wenge Xu, Hai-Ning Liang, Yuxuan Zhao, Tianyu Zhang, Difeng Yu, and Diego Monteiro. 2019. Ringtext: Dwell-free and hands-free

text entry for mobile head-mounted displays using head motions. IEEE transactions on visualization and computer graphics 25, 5 (2019),

1991ś2001.

[78] Zheer Xu, Weihao Chen, Dongyang Zhao, Jiehui Luo, Te-Yen Wu, Jun Gong, Sicheng Yin, Jialun Zhai, and Xing-Dong Yang. 2020.

Bitiptext: Bimanual eyes-free text entry on a fingertip keyboard. In Proceedings of the 2020 CHI Conference on Human Factors in Computing

Systems. 1ś13.

[79] Zheer Xu, Pui Chung Wong, Jun Gong, Te-Yen Wu, Aditya Shekhar Nittala, Xiaojun Bi, Jürgen Steimle, Hongbo Fu, Kening Zhu, and

Xing-Dong Yang. 2019. TipText: Eyes-Free Text Entry on a Fingertip Keyboard. In Proceedings of the 32nd Annual ACM Symposium on

User Interface Software and Technology. ACM. https://doi.org/10.1145/3332165.3347865

[80] Powen Yao, Vangelis Lympouridis, Tian Zhu, Michael Zyda, and Ruoxi Jia. 2020. Punch Typing: Alternative Method for Text Entry in

Virtual Reality. In Symposium on Spatial User Interaction. 1ś2.

[81] Shanhe Yi, Zhengrui Qin, Ed Novak, Yafeng Yin, and Qun Li. 2016. GlassGesture: Exploring head gesture interface of smart glasses.

In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications. IEEE. https://doi.org/10.1109/

infocom.2016.7524542

[82] Sang Ho Yoon, Ke Huo, Vinh P. Nguyen, and Karthik Ramani. 2015. TIMMi. In Proceedings of the Ninth International Conference on

Tangible, Embedded, and Embodied Interaction. ACM. https://doi.org/10.1145/2677199.2680560

[83] Chun Yu, Ke Sun, Mingyuan Zhong, Xincheng Li, Peijun Zhao, and Yuanchun Shi. 2016. One-Dimensional Handwriting. In Proceedings

of the 2016 CHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/2858036.2858542

[84] Difeng Yu, Kaixuan Fan, Heng Zhang, Diego Monteiro, Wenge Xu, and Hai-Ning Liang. 2018. PizzaText: Text entry for virtual reality

systems using dual thumbsticks. IEEE transactions on visualization and computer graphics 24, 11 (2018), 2927ś2935.

[85] Yang Zhang, Junhan Zhou, Gierad Laput, and Chris Harrison. 2016. SkinTrack. In Proceedings of the 2016 CHI Conference on Human

Factors in Computing Systems. ACM. https://doi.org/10.1145/2858036.2858082

[86] Fengyuan Zhu and Tovi Grossman. 2020. BISHARE: Exploring Bidirectional Interactions Between Smartphones and Head-Mounted

Augmented Reality. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. ACM. https://doi.org/10.1145/

3313831.3376233


	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Text Input On AR Glasses
	2.2 Interaction On Flexible Touch Sensor
	2.3 Handwriting Input Recognition

	3 HARDWARE
	4 HEURISTIC STUDY
	4.1 Free Exploration of Interaction Positions
	4.2 Evaluation of Position-Posture Correlation

	5 METHODOLOGY
	5.1 Handwriting Input Event Monitoring
	5.2 Handwritten Character Recognition
	5.3 User-centered Active Learning for Personalization

	6 EXPERIMENT
	6.1 Experimental Setup
	6.2 Performance Evaluation of Handwriting Velcros
	6.3 Evaluation of Active Learning-based Personalization

	7 Comparison with Existing Baselines
	7.1 Comparison with TEXTile
	7.2 Comparison with Physical Mini QWERTY Keyboard

	8 Discussions
	8.1 Comparison with Previous Literature
	8.2 Multi-Posture Adaptation
	8.3 User-centered Personalization
	8.4 Limitations and Future Work

	9 CONCLUSION
	References

