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Abstract
Themultiscalemodeling of complexfluids under small and large amplitude oscillatory shear flow
using non-linear kinetic and transient networkmodels is presented. The kinetics ofmicrostates is
analogous to chemical kinetics, which defines the physicalmacromolecule interaction in aNewtonian
fluid, and the concentration ofmicrostates defines a variablemaximum length of extension for each
microstate. The effect of important parameters like viscosity ratio, chain length, viscoelasticity, kinetic
rate constants, for different initial entanglement scenarios (entangled, disentangled and aleatory) are
analyzed. The Lissajous curves for the shear stress and the first normal stress difference versus the
instantaneous strain or strain-rate are shown. The self-intersection of the Lissajous curves or
secondary loops is shown to depend on the kinetic rate constants, themaximum extension length, and
the elasticity.

Nomenclature

Latin letters

A Dimensionless forward kinetic rate constant

B Dimensionless backward kinetic rate constant

b Dimensionlessmaximumextension length

d Dimensions of the problem

Ci Concentration of themicrostate i

LC Lissajous curve

De Deborah number

F Spring force

Gn Dimensionless complex number for oscillatory behaviour

k Boltzmann constant

ki
A forward kinetic rate constants

ki
B backward kinetic rate constant

li characteristicmaximumextension length for themicrostate i

Q Dumbbell configuration vector

Q0 Maximum strain distance of the dumbbell

Re Reynolds number

t Time

T Temperature

v Velocity vector
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(Continued.)

Latin letters

Wi Weissenberg number

x Position vector

Greek letters

αi Model parameter

β Viscosity ratio coefficient

γ Shear tensor

γ0 Characteristic shear

γxy Shear strain

g Strain rate tensor

0g Characteristic strain rate

xyg Shear strain rate

ς Drag coefficient

η Viscosity function

η0 Viscosity at zero strain rate

ηs Solvent viscosity

ηp Polymer viscosity

λ Relaxation time

νi Viscous coefficient for themicrostate i

κ Transposed strain rate tensor

ρ Density

σ Total stress tensor

σxy Shear stress

σs Solvent stress tensor

σp Polymeric stress tensor

τi Relaxation coefficient for themicrostate i

Φ Wiener process

f̂ Angle of oscillatory behaviour

ω Oscillation frequency

ωi Microstate i

1. Introduction

In rheology,oscillatory shearflow is used to investigate differentmaterials like complex fluids and softmatter,
including polymer solutions andmelts, biologicalmacromolecules, surfactants, polyelectrolytes, suspensions
and emulsions [1]. This dynamical test is divided into two regimes, linear (small amplitude oscillatory shear,
SAOS) and nonlinear (large amplitude oscillatory shear, LAOS). At SAOS, the rheological properties do not
depend on the strain amplitude, and the sinusoidal stress or strain amplitude input results in a sinusoidal
response. On the other hand, at LAOS the rheological properties depend systematically on the strain amplitude,
so that a sinusoidal strain input often results in a deviation in the shape of the resulting stress waveform from a
sinusoidal wave.Hyun et al proposed an intermediate region between SAOS and LAOS calledMAOS (medium
amplitude oscillatory shear) [2]. The nonlinear response at large strain amplitudemeans that the familiar
material functions used to quantify linear behavior in SAOS tests (the storage and lossmodulus) are no longer
sufficient, due to the presence of higher harmonic contributions. To describe the nonlinear response, different
methods have been proposed, such as the Fourier transform [3], StressDecomposition (SD) [4], sets of
simplified characteristic functions and orthogonal polynomials [5, 6], analyzing the sequence of physical
processes (SPP) [7, 8].

The purpose of dynamic oscillatory tests is to investigate nonlinear viscoelasticmaterial responses, in order
to relatenonlinear behavior withmicrostructure or topology, and to provide useful information formaterials
processing operations under large strains [1].Wyss et al introduced a technique called strain-rate frequency
superposition (SRFS) for probing the nonlinear structural relaxation ofmetastable softmaterials [9]. The
evolution in the shape of the distorted stress waveforms can be related to systematic changes in the internal
microstructure of thematerial or the polymer topologies [10]. A graphical representation that ismore amenable
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to rapid qualitative evaluation is the use of a closed loop plot or Lissajous curve (LC) of stress as a function of the
strain or strain-rate [11]. This plot visually demonstrates howhigher harmonic contributions, especially the
third harmonic, can affect themeasured output for a nonlinear viscoelasticmaterial or complexfluid. There
exists important information about themicrostructure in the nonlinear regime, and LAOS experiments play an
important role in revealing the interactionwithincomplex fluids aswell as in characterizing them [10].

There are different networkmodels, which serve to determine the creation and destruction network
functions. Sim et al investigated possiblemechanisms of complex LAOS behavior using a networkmodel
composed of segments and junctions [12]. The classical transient networkmodels considercreation to be a
thermally activated process while the destruction of nodes is due to the flow force [13–15]. Rincón et al
considered different entanglement scenarios was provided by the assumption offivemicrostates to describe
transient network dynamics [16], where the rheological functionswere calculated using themoments of the
distribution function [17]. Ferrer et al [18]used themicro-macro approach to couple the Finitely Extensible
Nonlinear Elastic (FENE)model with the transient network of Rincón et al [16] for a generalized complex fluid
under simple shearflow.

Gómez-López et al performed numerical simulations of a FENE fluid under SAOS and LAOS using the
BrownianConfiguration FieldMethod (BCFM) [19]. It was found that the self-intersection in the LCproduces
secondary loops for short dumbbell extension lengths and a high ratio of dimensionlessWeissenberg/Deborah
numbers (Wi/De). The classical FENEmodel possesses a constantmaximum length of extension [20]. Rincon
et al [16] proposed a transient networkmodel inwhich the extensibility is not a constant but a variable resulting
from the creation and destruction processes, and themicrostate dynamics is described by a kinetic process,
which is a function of the available energy of the system as a result offlowor temperature.

In this paper, numerical simulations of complex fluids under SAOS and LAOSusing a combined FENE
transient networkmodel is presented. The LC for the shear stress and thefirst normal stress difference with
various kinetic rate constants versus the instantaneous strain-rate for viscoelastic projection are shown. The
effect ofWi/De ratio,flow regime, variation of the forward and reverse kinetic rate constants is investigated and
analyzed.Themethodology developed in this paper through the consideration of the kinetics ofmicrostrucural
evolutionwill enable a greater understanding of the physics of complex fluids. It will also help to provide an
interpretation ofexperimental data generated by SAOS and LAOS experiments to aid their characterization.

2. Transient network dynamics

The classical FENEdumbbellmodel, themaximumdumbbell extension is constant. To overcome this
limitation, [16] considered a different way ofmodellingmacromolecular interactions in terms of a transient
network comprising a group of interconecting flexible chains, as shown infigure 1. Themodel system comprises
nodes, which are points of physical interaction between twomolecules, and segments, which are sections of the
molecule between two nodes. Amicrostate is formed in terms of the number of nodes and describes the
complexity of interactions amongst chains in a region of space. The topological configuration of thefive basic
microstates are shown infigure 1 and represented by a randomarrangement of chains. A complex fluid involves
the kinetics of creation and destruction ofmicrostates, this process is called a transient network. It is possible to
relate eachmicrostate with its own relaxation time. The transient network has the ability to produce a spectrum
ofmaximumextension lengths depending on themicrostates immersed in the fluid. Themicrostates are created

Figure 1. Schematic of the oscillatory shear flow and the transient network immersed in aNewtonian solvent indicating its
microstates.
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by themolecular interaction, where structures that require less energy are favored.Hence, themicrostates with
lower energy correspond to thosewith theminimumnumber of interacting segments. The nomenclature used
in the transient networkmodel is as follows:ωi represents a specificmicrostate where the subscript i indicates the
number of nodes involved in amicrostate. In this case,ω 0 is a single segment (free chainwith no interactions)
andωi, i= 1, 2, 3, 4 specifies the level of entanglement. In terms of average quantities, themaximum length of an
extended free segment is defined by Lp and themaximumend-to-end distance between nodes in the network is
l t( )¢ , which depends on time t Î . Rincón et al [16] showusing conservation of chains that the time-dependent
maximumextension length as amapping  l : ;¢  represented by (1):

l t
VL C C C C C

V C C C C C

2 3 3 4

4 7 9 12
, 1

p 0 1 2 3 4

0 1 2 3 4

( )
( )

( )
( )¢ =

+ + + +

+ + + +

whereV andCi are the volume occupied by themicrostate and the concentrations of eachmicrostateωi (i= 0, 1,
2, 3, 4), respectively. The dimensionlessmaximum length of extension time-dependent l(t) is normalized, by
dividing (1) by Lp to give

l t
l t

L

C C C C C

C C C C C

2 3 3 4

4 7 9 12
, 2

p

0 1 2 3 4

0 1 2 3 4

( ) ( ) ( )=
¢

=
+ + + +
+ + + +

The numerator and denominator in (2) are the number of chains and number of segments in the network,
respectively. The number of segments is defined in a similar way, noting that the concentration of segments
includes the dangling ends. Table 1 characterizes themicrostates in terms of nodes, the number of segments, and
the number of chains, (for details see [16, 18]). Eachmicrostate has its own extension length li, viscosity νi and
time τi, which are determined:

l
individual microstate

number of segments
,

the simplest microstate

number of microstates
,

number of microstates

the number of single microstates in the network.
3

i

i

i ( )

n

t

=

=

=

The characteristicmaximum length of extension li for eachmicrostate is shown in table 2 (column 4), that
takes a particular value in the range  l 1i

1

3
. The properties of eachmicrostate are based on the number of

nodes, segments andmicrostates to form it, as shown in table 2. Themaximumextension length, relaxation time
and drag are different for eachmicrostate.

Table 1.Properties ofmicrostates.

Microstate Number Number of Number of

of nodes segments chains

ω0 0 1 1

ω1 1 4 2

ω2 2 7 3

ω3 3 9 3

ω4 4 12 4

Table 2.Microstates properties.

Microstate νi τi li

ω0
1

4
1 1

ω1
1

2

1

2

1

2

ω2
3

4

1

3

3

7

ω3
3

4

1

3

1

3

ω4 1
1

4

1

3

4
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2.1.Microstate kinetics
The transient network depends on the destruction/generation rate process offive different configurations (ωi,
for i= 0, 1, 2, 3, 4). The four different reversible processes that determine the destruction/generation rates ofωi

are represented by:

ð4Þ

ð5Þ

ð6Þ

ð7Þ

where ki
A and ki

B are the forward and backward rate constants (i= 0, 1, 2, 3, 4), respectively. The backward rate
constantsmultiplied by the dissipation function k d:i

Bs is related to the process of breaking or changing of the
transient network at a given time. In (4)–(7)E0 is the characteristic interaction energy corresponding to form a
single node,T is the temperature,K is the Boltzmann constant,σ is the total stress tensor, and d is the strain-rate
tensor. The symmetric part of the strain-rate tensor is:

d v v
1

2
, 8T( ) ( )=  + 

where v is the velocity field. In thefirst two transitions (4) and (5) the energy change represents E0. For example,
in the transition (5) three single-node configurations (six chains of energy content 3E0) result in two double-
node configurations (six chains of energy content 4E0). For each transition,conservation of the chains is
required. which explains why the simpler formation ofω2 andω1 is not admissible (see (5) ).

The simplified kinetic equations for destruction/generation ofmicrostates are given in (9)–(13). The
evolution of themicrostate concentrations allows the determination of l(t), where A (microstates generation)
andB (microstates destruction or dissipative process) are the forward and backward kinetic rate constants,
respectively. Forward rate constants are the quantities of structure formation, having Arrhenius temperature
dependence [16], while the backward rate constantsmultiplied by the viscous dissipation function are the
quantities of structure destruction.

dC

dt
B C A Cd: , 90

1 0
2( ) ( ) ( )s= -

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

dC
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4

1

4
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1 2
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3
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0
2

1
3

1
3
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⎛
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⎞
⎠
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⎞
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dC

dt
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⎛
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dt

B
C

A
C Cd

2
:

2
. 134

4
3

2
2

3
2( ) ( ) ( )s= - +

3.Governing equations

This section presents the governing equations for solving viscoelastic flowproblems usingmultiscalemodeling.
The equation system is related tomacroscale, and themicroscale to particle kinetics.

3.1.Macroscopic equations
Themacroscopic equations comprise the conservation equations. Themathematical statement of the
conservation ofmass for an incompressible fluid is [29, 37]:
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v 0, 14· ( ) =

while theCauchy equation ofmotion (conservation ofmomentum) is [29, 37]:

⎛
⎝

⎞
⎠t

p
v

v v , 15· · ( )sr
¶
¶

+  = - + 

where p and ρ are pressure andfluid density. The stress tensorσ is defined as the sumof solvent and polymeric
contributions,σs+σp, respectively.

d2 , 16s p
s

p ( )s s s sh= + = +

where ηs is the solvent viscosity. After describing the extra stress tensor, themomentum equation is:

⎛
⎝

⎞
⎠t

p
v

v v v. 17p
s

2· · ( )sr h
¶
¶

+  = - +  + 

3.2.Microscopic equations
In this paper, five differentmicrostates are considered. The simplestmicrostate represents a single polymer
chain and the FENEdumbbellmodel has been used for simulatingmacromolecules. An analysis based on rigid
dumbbells was presented in Bird et al [21] and Schmalzer et al [22].

Polymer solutions aremodeled as elastic dumbbell suspensions, inwhich the dumbbell is represented by two
identical Brownian beads, with friction coefficient ζ, connected by a spring. The polymer solution is dilute so
that the dumbbell interactionsmay be neglected. The configuration of a dumbbell is given in terms of a vectorQ
connecting the two beads of the dumbbell which provides information about the orientation and length of the
spring (see figure 1). Considering the spring force, the viscous drag force and the force due to Brownianmotion
one can derive the equation ofmotion for the beads and hence the Fokker-Planck equationwhich [23], for
homogeneous flows is:

⎜ ⎟
⎧
⎨⎩

⎛
⎝

⎞
⎠

⎫
⎬⎭t

t
kT

Q
Q F

Q Q

2 2
, 18( ) · ( )ky

z
y

z
y

¶
¶

= -
¶
¶

- +
¶
¶

¶
¶

whereκ is the velocity gradient,T is absolute temperature, k is Boltzmann’s constant and F(Q) is the spring
force. The solution of (18) furnishes the probabilityψ(Q, x, t)dQ offinding a dumbbell with configuration in the
rangeQ toQ+ dQ at (x, t). Once the configuration probability density function (pdf),ψ, is known the polymeric
contribution to the extra-stressmay be determinedwith theKramers expression

nkT nI Q F Q , 19p ( ) ( )s = - + á Ä ñ

where n is the number of polymermolecules per unit volume, the symbol⊗denotes the outer product of two
vectors and the angular brackets denote the ensemble average over configuration space.

The spring force forHookean dumbbells is defined as:

HF Q Q, 20( ) ( )=

whereH is the spring constant. Note that this linear spring law performswell inweakfield flows, inwhich the
chain is close to its equilibrium state, as described in [17, 24]. This law has a problem, at highflow rates and in
extensional flow, the chains extendwithout limit, but the real polymers can only extend, atmost, to their fully
stretched length, as long as they do not break.Warner proposed the FENE spring law to adress this restriction
[20]:

H

Q
F Q

Q

Q1
, 21

0
2

( )
( )

( )=
-

whereQo is themaximum extension length of a single spring, for long chains it is equivalent to aHookean
dumbbell. The solution of (18), is unfortunately not always possible, particularly withmany particle systems, but
there exists an equivalence between equation (18) and a stochastic partial differential equation
(SPDE)[23, 25, 26]:

⎜ ⎟
⎛
⎝

⎞
⎠

d t t dt
kT

dQ Q F
2 4

. 22( ) ( ) ( )k
z z

F= ⋅ - +

In this SPDE, the termΦ represents amulti-dimensionalWiener process and its corresponding scale is t
[26, 27]. The connector vector lengthQ is scaled by kT H . If we define the relaxation time and polymeric
viscosity by

H
nkT

4
, .pl

z
h l= =
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one can derive theOldroyd Bmodel in the case ofHookean dumbbells, where n is the number ofmolecules per
unit of volume in the system. This provides the link between themacroscopic andmicroscopic contributions.
Themaximumextension lengthQo andλ characterize themicrostructure.

BCFMconsiders themultiscale contribution of viscoelastic fluids problems [25, 28–30]. A configuration
field approach is used to reduce the variance by introducing a convective term in (22):

⎛
⎝

⎞
⎠

d t t dt d tQ v Q Q F Q
1

2

1
. 23( ) · ( ) · ( ) ( ) ( )k

l l
F= -  + - +

After calculating the spatial configuration field, the polymeric stress can be determined by theKramers
expression (19), by using ηp andλ[17, 31]:that is then used in themomentum equation to calculate the new
velocityfield. To evaluate the individual contribution of eachmicrostate, (23) and (24) are generalized as follows:

⎜ ⎟
⎛
⎝

⎞
⎠

d t t dt d tQ v Q Q F Q
1

2

1
, 25i i i

i
i i

i
i( ) · ( ) · ( ) ( ) ( )k

l l
F= -  + - +

I Q F Q , 26i
i

i
i i i( ( ) ) ( )s

h
l

= - + á Ä ñ

where

H

l Q
F Q

Q

Q1
, 27i i

i

i i 0
2

( )
( )

( )=
-

and li is a extension length scale factor for eachmicrostate described in table 2. The polymeric stress contribution
is defined as:

, 28p

i
i

0

4

( )ås s=
=

withλi= τiλ, ηi= CiνinkbTλi.

4.Dimensionless equations

The governing equations aremade dimensionless using the following non-dimensional variables

 
  x

H H
t t

x
v

v
, , , , , 29

c c

p
p

0 0 0
0 ( )s g g

g
w

s
h g

g= = = = =* * * * *

where x is the position vector, v is the velocity vector, t is time,σp is the polymeric contribution to the extra stress
tensor, g is the strain-rate tensor,Hc is a characteristic length scalewhich in this paper is the distance between
the parallel plates and η0 is the zero-shear-rate viscosity. The velocity is v= (u, 0, 0)where u is the velocity vector
component in x-direction, defined by u y t t y, cos0( ) ( )g w= . The corresponding initial and boundary
conditions are u(y, 0)= 0, u H t t H, cosc c0( ) ( )g w= , respectively.

With this choice of non-dimensional variables themomentum equation becomes

ReDe

Wi t

v
v , 30p2 · ( )sb

¶
¶

=  + 
*
*

* * * *

whereRe andβ= ηs/η0 are the Reynolds number and the viscosity ratio, respectively. The total viscosity is
defined by η0= ηs+ ηp, where ηp is the zero-shear-rate polymer viscosity. The dimensionless initial and
boundary conditions are u*(y, 0)= 0, u*(0, t*)= 0 and u t t1, cos( ) ( )=* * * .

Regarding themicroscopic equations, the vectorsQ andΦ are scaledwith kT H and 1

w
, respectively.

⎛
⎝

⎞
⎠

d
Wi

De

Wi

De
t

De
dt

De
dQ v Q Q F Q W

1

2

1
, 31· ( ) · ( ) ( )k= -  + - +* * * * * * * *

The dimensionless polymeric stress is given by theKramers expression:

F I
C

Wi
Q Q

1
, 32i

p
b d

i i
i i i,

( ) ( ( ) ) ( )s a
n b

=
-

á Ä ñ -* * *

where

⎧
⎨⎩

1,Hookean,

,FENE,
33b d b d

b

, 2 ( )a = + +

where d denotes the dimension of the problem,Q* is the dimensionless configuration vector andW is the
Wiener process. In this paper, d= 2 andF(Q*) is:
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b
F

Q

Q1
. 34

2( )
( )=

-
*

*

where b HQ kT0
2= is the dimensionlessmaximum extension length, so that when b→∞ the spring behaves

as aHookean dumbbell. The dimensionless formof the individualmicrostate SDEs are:

⎜ ⎟
⎛
⎝

⎞
⎠

d
Wi

De

Wi

De De
dt

De
dQ v Q Q F Q W

1

2

1
, 35i i i

i
i i

i
i· · ( ) ( )k

t t
= -  + - +* * * * * * * *

where

H
F Q

Q

1
, 36i i

i

l b

Q Qi i

i
2( )( ) ( )
·

=
-

*
*
* *

l b d

l b

2
37i

i

i

2

2
( )a =

+ +

and correspondingKramers expression

C
Wi

Q F Q I
1

. 38p

i

n

i i
i

i i i
0

( ) ( ( ) ) ( )ås a
n b

=
-

á Ä ñ -
=

* * *

5.Numerical solution

The numerical solution for solving under SAOS and LAOS conditions of complexfluidswith transient network
dynamics is presented. A decoupledmicro-macro numerical scheme is used [19]. In themacroscopic part of the
numerical scheme, the velocity and pressure are determined at the new time level by solving the conservation
equations for a given polymeric contribution to the extra-stress tensor. The new velocity field is then used as an
input to themicroscopic part of the numerical scheme inwhich the polymeric contribution to the extra-stress
tensor is determined at the same time level. This process is repeated until a steady state or periodic solution is
obtained.

The same numerical scheme developed by [19], employing finite differences to discretize the systemof
governing equations, is used. The computational space is W ´ whereΩ is defined byC×D≔ {(x, y)|x ä C,
yäD} and  Î is the time interval. In this paperC= [0, 10],D= [0, 20] and  t0, max[ ]= , where tmax is the
periodic or steady-state dimensionless time [18, 32].

Themomentum equation is solved using an implicit iterative ADImethod [32]. For the temporal and spatial
derivatives, forward and central difference discretizations are used, respectively. For the polymeric extra-stress a
semi-implicit predictor-corrector scheme is used:

⎛
⎝

⎞
⎠

Wi

De

Wi

De De
t

De

Q Q v Q v Q F Q

W

1

2

1
, 39

k
n

k
n n

k
n n

k
n

k
n1˜ · · ( )

( )

= + -  +  - D

+

+

⎛
⎝

⎞
⎠

t

De

Wi

De
Wi

De

t

De De

F Q Q Q v Q v Q
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The predictor step (39) is used to determine Qk
n 1˜ +

, before the corrector step (40) is used to evaluateQ at the next
time step [30, 31, 33].

The polymeric contribution to the extra-stress is determined using a discrete version of theKramers
expression (38)
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whereNf defines the number of Brownian configuration fields. For information on statistical error as well as
numerical convergence, see [31]. The time stepΔt= 0.001 is used in all of the simulations. Full details of the
algorithm can be found in [18, 19].
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6. SAOS andLAOS characterization

The description of the problem consists of a complexfluid enclosed between two infinite parallel plates, spaced
by a distanceHc. The lower plate is stationary for all time. The upper plate is at rest for t� 0while for t> 0 it
begins an oscillatorymotion of small or large amplitude, as presented infigure 1. Thefluid is an incompressible
dilute polymeric solution. To analyze the fluid behavior, the LC is widely used for both SAOS and LAOS tests
[6, 21, 22, 34–36].

The LC are plots of the instantaneous stress versus strain or strain rate, elastic or viscous projection,
respectively. For SAOS regime, the stress response is linear, the input and the output signals are in-phase, out-
phase or the input is shifted by a certain angle δ. For elastic solids, the LC is a straight line, for viscous fluids a
circular orbit and for viscoelastic fluids a tilted ellipse in the elastic projection, respectively [37]. The LCof the
elastic and viscous projections are shown infigure 2. In the LAOS regime, the stress response is nonlinear, and
the LC for a viscoelastic fluid departs from the elliptical shape found in the SAOS regime inmany different ways.
Researchers have focused on characterizing the nonlinear stress response through differentmethods.More
information on this is available in several publications [1, 36, 37]. In this paper, a complex fluid under SAOS and
LAOS regime is characterized by using sinusoidal shear tsinxy 0 ( )g g w= with strain-rate   tcosxy 0 ( )g g w= ,

where t, γ0 andω are time, strain amplitude and oscillation frequency, respectively [36], where 0 0g g w= .
Utilizing the characteristic relaxation time of the fluid, the dimensionless strain-rate is expressed as:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

  t
Wi De

t
cos cos 42xy 0 ( )lg lg wl

l l
= =

whereDe= λω and Wi 0lg= represent the dimensionless Deborah andWeissenberg numbers, respectively. As
mentioned by a number of researchers [21, 22, 36],the relationship betweenDe andWi in (42) is used to define
the LAOS regime for a viscoelasticmaterial. Amodification ofDe orWi deviates thefluid response from
Newtonian behavior. This behavior is described by the complex numberGn=De+ iWi, withmagnitude

defined by Gn De Wi2 2∣ ∣ = + and corresponding angle by arctan Wi

De( )f̂ = , according to the criteria

proposed by [36]. This analysis has two purposes. First to establish guidelines for the identification of theflow
conditions for the LAOS  1Wi

De( ) and SAOS regimes 1Wi

De( )< or the case of simple shear
2( )f̂ = p . It also

provides a tool for analyzing different time scales.

7. Results

The results for SAOS and LAOS tests of a complex fluid are obtained by using the scheme described in section 5
and programmed in Fortran. The numerical code validationwas performed by comparing theOldroyd-B and
Hookean dumbbellmodels in a simple shearflow. A comprehensive description of the numerical algorithm can
be found in a previous publication of the authors [19].

Figure 2. Lissajous curves: elastic form (σxy versus γ) (left) and viscous form (σxy versus g ) (right)withWi/De = 1, b = 50,A = 1,
B = 1,Re= 0.001 andNf = 1500.
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7.1. Numerical simulation predictions
In this section, the evolution of concentrations and Lissajous plots are used to analyze the effect of themain
variables (b,β,Wi,De andWi/De ratio) of themodel on complex fluid behavior. Elastic and viscous projections
in Lissajous plots of a complexfluid under SAOS and LAOS conditions forσxy andN1 versus γxy or xyg is

performed, whereN1 is defined byN1= σxx− σyy. Startingwith the same kinetic scheme used in previous work
[19],figure 3 presents the viscous projection of the shear stressσxy andN1 for different values ofWi/De and b
under LAOS regime. By increasing themaximum extension length, no relevant changes inσxywere found.
However, themagnitude ofN1 increases asWi is increased. It is well known that theHookean and FENEmodels
are equivalent under these conditions. An important finding of the FENEmodel is to identify the conditions
when self-intersections appear in the Lissajous plots, which are for largeWi/De values and short chain lengths.
Similar predictions were reported by [38]whoquantified the LAOSdynamics of theGiesekus constitutivemodel
at largeWi via singular perturbationmethods. The viscous LC exhibited a secondary loopwhile the elastic LC
was a straight linewith negative slope.These findingswere consistent with the experiments of [39] onwormlike
micelle solutionswhose shear rheology closely follows a single-modeGiesekusmodel. Férec et alused SAOS and
LAOSmeasurements to investigate the rheological behavior of short glass fibers suspended in polybutene and
molten polypropylene [40]. They determinedmaterial functions such as shear stress and primary normal stress
differences from the raw signals using a parallel plate rheometer. For suspensions based on polybutene, the shear
stress amplitude growswith increasing cycles of deformation to reach a constant value aftermore than 20 cycles.
The opposite behavior, i.e. a decrease of the shear stress amplitude, was observed for the polypropylene
composites. For bothfilled systems the evolutionwas attributed tofiber orientation under flow,with the
differences in behavior caused by different initial fiber orientations.

7.2. Comparison of kinetic schemes
The kinetics ofmicrostates is analogous to chemical kinetics, and describes the physical interaction
ofmacromolecules immersed in aNewtonian solvent, inwhich themicrostates are defined by the number of
nodes.Molecular collisions involve a Brownian diffusion process, as well as the formation of physical
entanglements that require a specific state of thermal energy to form a node. Underflow, the number of nodes
decreases because the deformation energy exceeds the interaction energy between themolecules participating in
a node.

In this section, two kinetic schemes are compared. Thefirst scheme (Kinetics 1) is the one used by Ferrer et al
[18] for the transient networkmodel under simple shearflowusing BCFM,whereNf is the number of
trajectories or configuration fields in thewhole system. The second scheme (Kinetics 2), coupling the transient
networkmodel, comprises fivemicrostates where eachmicrostate usesNfconfiguration fields in order to
determine its extension length. The simplestmicrostateω0 is equivalent to a FENEdumbbell. Therefore the
computational cost of the second scheme is higher.

A comparison of themicrostate concentration evolution forweakly and highly structured networks using
the two kinetic schemes is shown infigure 4.Note that the oscillating behavior is due to the imposed oscillatory
shearflow (see (42)). This is responsible for the cyclical nature of the creation/destruction ofmicrostructures.
Both kinetic schemes exhibit the same time evolutionwith small changes inmagnitude. Figure 5 presents the
effect of the kinetic rate constantsA andB on the LC for the viscous projection of the shear stressσxy, from a
weakly (A= 1,B= 100) to a highly (A= 100,B= 1) structured network. For both kinetic schemes nonlinear
behavior is observed. The shape andmagnitude of the LC aremodified usingKinetics 2while for Kinetics 1 no
change is seen. Kinetics 2 is used for all subsequent simulations.

Figure 3. Lissajous curves forσxy (left) andN1 (right) versus g for differentWi and bwithDe= 1,β = 0.1,Re= 0.001 andNf = 1500.
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7.3. Viscosity ratioβ
Figure 6 presents the influence of the viscosity ratioβ on the time evolution of themicrostate concentrations for
three different initial structured networks: (i) disentanglement, only free chains,microstateω0, (ii)
entanglement, onlymicrostateω4 defined by four chains, and (iii) aleatory, all themicrostates are present. The

Figure 4.Time evolution ofmicrostate concentrations for disentanglement (A = 1 andB = 100) and entanglement (A = 100 and
B = 1) structured network using two different kinetic schemes withWi/De = 5,De= 1,β = 0.1, b = 50,Re= 0.001 andNf = 1500.

Figure 5.Effect of the kinetic rate constantsA andB on the Lissajous curves using two kinetic schemeswithWi/De = 5,De= 1,
β = 0.1, b = 50,Re= 0.001 andNf = 1500.
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initialmicrostate concentration conditions are: disentanglement (ω0= 1, andω i= 0 for i= 1, 2, 3, 4),
entanglement (ω4= 1, andω i= 0 for i= 0, 1, 2, 3), and aleatory structured network (ω i≠ 0 for i= 0, 1, 2, 3, 4).
The initial entanglement scenario of a transient network is a function of the system’s available energy. This
energy depends on theflow condition and is quantified through viscous dissipation. The influence ofβ on all the
entanglement scenarios is shown to slightlymodify themicrostate concentration values. It is important to note
the aleatory casewithβ= 0.5,generates an increase of themicrostatesω0 andω1 which is correct because the
system gives preference to the formation ofmicrostates with lower energy requirements.

Figure 7 exhibits the effect ofβ on the LCof the individual shear stressσxy associatedwith eachmicrostate for
different initial entanglement scenarios. The number ofmicrostates is implicit in the polymer viscosity
contribution. In this case lower values ofβ correspond to a viscoelastic fluid and higher values to a viscousfluid.

Figure 6. Influence of the viscosity ratioβ on the time evolution ofmicrostate concentrations for different initial conditionswithWi/
De = 1,De= 1, b = 50,A = 1,B = 1,Re= 0.001 andNf = 1500.

Figure 7. Influence of the viscosity ratioβ on the Lissajous curves for different initial concentrations withWi/De = 1,De= 1, b = 50,
A = 1,B = 1,Re= 0.001 andNf = 1500.
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In thisfigure decreasingβ increases theσxymicrostatemagnitudes. This effect can be better appreciated in the
total shear stress and its corresponding first normal stress differenceN1 which are shown infigure 8.

7.4. Extension length b
An important characteristic of this workwith respect to the literature is that it facilitates coupling the FENE and
transitory networkmodels [18, 19]. In the classical FENEmodel (see (34)) b is a constant. The transient network
model allows us to generalise this by associating amaximumextension length to each of the five basic
microstates using a scale factor li shown in table 2 [16]. Themaximumextension length b corresponds to
microstateω0. Figure 9 shows the effect of b on the time evolution ofmicrostate concentrations with different
entanglement scenarios under SAOSflow. Themicrostate concentrations are affectedwhen b= 40,mainlyω0

andω1 which aremore sensitive to energetic changes of the transitory network. For larger values of b there are no
significant changes in concentrations. Figure 10 presents the effect of the extension length b on the LC for each
shear stressσxy for different entanglement scenarios. All curves have the characteristic elliptical shape
corresponding to SAOS regime.Note that some noise is generated in the curves shown for short extension
lengths (b= 40). In order to complement these numerical predictionswith experiments, Anvari and Joyner
characterized the effects of concentrated emulsions as a fat replacer on the viscoelastic properties of reduced-fat
(15% fat) and low-fat (6% fat)Cheddar cheeses under SAOS and LAOS flow [41]. They reported the LCof
cheeses at different fat contents and storage timepoints. The shape of the LC for all samples was elliptical at

Figure 8. Influence of the viscosity ratioβ on the Lissajous curves forσxy (left) andN1 (right) versus g with different entanglement
scenarios withWi/De = 1, b = 50,A = 1,B = 1,Re= 0.001 andNf = 1500.

Figure 9. Influence of the extension length b on the time evolution ofmicrostate concentrations with different entanglement scenarios
withWi/De = 1,De= 1,β = 0.1,A = 1,B = 1,Re= 0.001 andNf = 1500.
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0.05% strain (linear regime), indicating ideal viscoelastic behavior. Under higher strains, nonlinearities were
presented as a distortion from the elliptical shape. Specific distortions of the shapeswere related to different
microstructural features.

7.5. Influence ofWi
Figure 11 presents the influence of theWeissenberg numberWi on the time evolution ofmicrostate
concentrations for different entanglement scenarios. Themicrostate concentrations do not show significant
changes when theWi value is changed. Figures 12–14 show the effect ofWi on the LC for the shear stressσxy and
thefirst stress differenceN1 for eachmicrostate with different entanglement scenarios under LAOS regime. In
order to analyze only theWi effects, the parameter values selected for these cases are b= 50,A= 1 andB= 1,
while the generation and destruction ofmicrostates are the same. Startingwith a disentanglement network,
increasingWi the elliptical shape of the shear stress is lost, and the formation of small secondary loops for each
microstate are found in the total shear stress only forWi= 7.N1mainly changes inmagnitude. In the
entanglement network, thixotropic behavior can be seen in the shear stress andN1, due to themicrostructual
evolution of the transitory network and convergence is lost at values greater thanWi= 6. In the aleatory
network, there is a loss of the elliptical shape of the shear stress. Also thixotropic behavior can be observed in the
shear stress andN1 whenWi� 6 and only for themicrostatesω0 andω1. Tong et al investigated the rheological
properties of gellanfluid gels using the LAOS technique, with consideration of high acyl (HA)/low acyl (LA)
gellan ratio andCa2+ concentration [42]. LC andChebyshev coefficients were used to analyze the LAOSdata and
this was successful in visually and quantitatively representing themicrostructural differences betweenHA and
LA gellan gum, respectively. For small strain amplitude, the viscous LCproduced an elliptical shape for all Ca2+

concentrations.With increasing strain amplitude, the LC adopted complex shapes and secondary loops
corresponding to self-intersection and strong nonlinear elastic responses appeared.

7.6. Influence of the kinetic rate constantsA andB
Figure 15 presents the effect of the kinetic rate constantsA andB on the time evolution ofmicrostate
concentrations for different entanglement scenarios. As expected,modifyingA andB themicrostate
concentrations has a direct impact on the rate change of the build-up and break-up processes. It is important to
note that the effect of the kinetic constants favors the formation of a structured network or the destruction of the
same, but as the transitory network evolves, it gives preference to formmicrostates with lower energy

Figure 10. Influence of the extension length b on the Lissajous curves for each shear stressσxy for different entanglement scenarios
withWi/De = 1,De= 1,β = 0.1,A = 1,B = 1,Re= 0.001 andNf = 1500.
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requirements. Because of this, several cases infigure 15 show a sudden increase in the concentration of the
simplestmicrostates such asω0,ω1 andω2.

Figures 16–18 show the effect of the kinetic rate constantsA andB on the LC forσxy andN1 for each
microstate with different entanglement scenarios under LAOS regime. For the disentanglement network, from a
highly structured network (A= 100,B= 1) to aweakly structured network (A= 1,B= 100), the shape of the LC
forσxy andN1 are substantiallymodified and classical and different secondary loops are found. It is important to
mention that the value of b= 50, indicating that the formation and shape of secondary loops depends on kinetics
and the initial entanglement scenario. For the entanglement and aleatory networks, the changes are very similar
to the previous case in terms of the shape of the Lissajous curves forσxy andN1, besides additionally observing
thixotropic behavior in variousmicrostates. An important task of rheology is to relate kinetics and
microstructure throughmodels such as the present one and experiments. Jeyaseelan andGiacomin used a
framework based onmolecular entanglement kinetics to interpret the LAOS behavior of polyacrylamide and
polystyrene solutions [43]. A kinetic rate equation for the balance of entanglements was capable of predicting
previously reported LAOSdata for these solutions. They concluded that the transient network concept provides
a reasonable framework to interpret the LAOS behavior of two polymer solutions. Their predictionswere

Figure 11. Influence of theWeissenberg numberWi on the time evolution ofmicrostate concentrations for different entanglement
scenarios withDe= 1,β = 0.1, b = 50,A = 1,B = 1,Re= 0.001 andNf = 1500.

Figure 12. Influence of theWeissenberg numberWi on the Lissajous curves for the shear stressσxy (left) andN1 (right) versus g for
eachmicrostate of a disentanglement structured networkwithDe= 1,β = 0.1, b = 50,A = 1,B = 1,Re= 0.001 andNf = 1500.
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obtained for both shear and normal stresses,manifesting secondary loops at severe conditions due to non-affine
deformation. Szopinski and Luinstra described the nonlinearflowbehavior of aqueous carboxymethyl
hydroxypropyl guargum (CMHPG) and non-ionic hydroxypropyl guar gum (HPG) solutions [44]. The high
molecular weight of guar gumand its derivatives in combinationwith the formation of superstructures/
aggregates in aqueous solutions leads to excellent water-thickening properties, andmakes it useful in food,
agricultural and textile applications. The influence and breakup of superstructures/aggregates gives a
rheologicalfingerprint, a function of the applied deformation and time scale (Pipkin space).

The effect ofA andB on the LCof the elastic projection of the shear stress for different entanglement
scenarios is shown infigure 19. In the elastic projection of the shear stress the LC approaches a rectangle or aflag
which is relatedwith the formation of secondary loops. This flag form is alsomodified by the kinetics and
entanglement scenario. Similar elastic projectionwas reported by Ewoldt et alwhodeveloped experiments for
two complexfluids, a pseudoplastic shear-thinning xanthan gum solution and an elastoviscoplastic invert-
emulsion drilling fluid [45]. They explored how the yielding response depends on both strain amplitude and
frequency of deformation. Their calculations with simple pseudoplastic (viscousCarreau) and elastoplastic
(elastic Bingham)models, as well as experimentalmeasurements, correspond to increasingly rectangular LC.
The LCof the rawmeasured stress as a function of the strain indicated an initial transient response which quickly
settles into steady oscillatory orbits. Li andWang investigated nonlinear behavior in LAOS for four different
polymericmaterials using simultaneous conventional rheometricmeasurements and particle tracking
velocimetric observations. They emphasized that for the four examples considered, the nonlinearity in LAOS
often arises in complex fluids due to the time dependent rearrangement of theirmicrostructures in response to
LAOS [46]. They concluded that the structural change induced by LAOSmay not be generally described by
classical constitutivemodels, where allmaterial parameters are constant with respect to both space and time.

Figure 13. Influence of theWeissenberg numberWi on the Lissajous curves for the shear stressσxy (left) andN1 (right) versus g for
eachmicrostate of an entanglement structured networkwithDe= 1,β = 0.1, b = 50,A = 1,B = 1,Re= 0.001 andNf = 1500.

Figure 14. Influence of theWeissenberg numberWi on the Lissajous curves for the shear stressσxy (left) andN1 (right) versus g for
eachmicrostate of an aleatory structured networkwithDe= 1,β = 0.1, b = 50,A = 1,B = 1,Re= 0.001 andNf = 1500.
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Figure 15. Influence of the kinetic rate constantsA andB on the time evolution ofmicrostate concentrations for different
entanglement scenarios withWi= 7,De= 1,β = 0.1, b = 50,Re= 0.001 andNf = 1500.

Figure 16. Influence of the kinetic rate constantsA andB on the Lissajous curves for eachmicrostate forσxy (left) andN1 (right) versus
g of a disentanglement structured networkwithWi= 7,De= 1,β = 0.1, b = 50,Re= 0.001 andNf = 1500.

Figure 17. Influence of the kinetic rate constantsA andB on the Lissajous curves for eachmicrostate forσxy (left) andN1 (right) versus
g of a entanglement structured networkwithWi= 7,De= 1,β = 0.1, b = 50,Re= 0.001 andNf = 1500.

17

Phys. Scr. 98 (2023) 025213 ROVargas et al



8. Conclusions

In this paper numerical simulations of complex fluids under SAOS and LAOS have been presented. The basis of
the numerical simulations is amicro-macro solver inwhich themicroscopic part of themethod uses themethod
of Brownian configuration fields in conjunctionwith transient network dynamics. The effect of the principal
model parameters such as viscosity ratioβ, chain length b, elasticity levelWi, kinetic rate constantsA andB, for
different initial entanglement scenarios (entangled, disentangled and aleatory)was analyzed. TheWi/De ratio

accurately describes the flow conditions: LAOS  1Wi

De( ) and SAOS 1Wi

De( )< .

Modification ofβ , b andWi generates small changes in the evolution of themicrostate concentrations.
Substantial changes are obtained bymodifying the kinetic rate constants (A andB) and the initial entanglement
scenario. IncreasingWiwith (A= 1 andB= 1) and the rest of the variables constant on the Lissajous curves,
increases the nonlinear response and thixotropic behavior can be found for somemicrostates.

The FENEmodel using the BCFMunder LAOS requires larger values ofWi/De and short extension lengths
to generate self-intersection of the LCwhich form secondary loops. The FENE / transient networkmodel using
BCFMunder LAOS considered the interaction ofmicrostates (microstructures) immersed in aNewtonianfluid.
Thismodel is able to predict experimental results using different initial conditions and kinetic schemes. The

Figure 18. Influence of the kinetic rate constantsA andB on the Lissajous curves for eachmicrostate forσxy (left) andN1 (right) versus
γ0 of a aleatory structured networkwithWi= 7,De= 1,β = 0.1, b = 50,A = 1,Re= 0.001 andNf = 1500.

Figure 19. Influence of the kinetic rate constantsA andB on the Lissajous curves for eachmicrostate forσxy versus γ for different
entanglement scenarios withWi= 7,De= 1,β = 0.1, b = 50,Re= 0.001 andNf = 1500.
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secondary loops are strongly dependent on the kinetics and aremainly generatedwhen the destruction is faster
than the creation ofmicrostructures (A< B).

The present work provides an important tool for characterizing complex fluidswith different initial
conditions under SAOS and LAOS regimes. It enables the behavior ofmaterial rheological fuctions to be
predicted and the relationship betweenmicrostructure andmacroscopic behavior to be understood.
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