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Abstract

The multiscale modeling of complex fluids under small and large amplitude oscillatory shear flow
using non-linear kinetic and transient network models is presented. The kinetics of microstates is
analogous to chemical kinetics, which defines the physical macromolecule interaction in a Newtonian
fluid, and the concentration of microstates defines a variable maximum length of extension for each
microstate. The effect of important parameters like viscosity ratio, chain length, viscoelasticity, kinetic
rate constants, for different initial entanglement scenarios (entangled, disentangled and aleatory) are
analyzed. The Lissajous curves for the shear stress and the first normal stress difference versus the
instantaneous strain or strain-rate are shown. The self-intersection of the Lissajous curves or
secondary loops is shown to depend on the kinetic rate constants, the maximum extension length, and
the elasticity.

Nomenclature
Latin letters
A Dimensionless forward kinetic rate constant
B Dimensionless backward kinetic rate constant
b Dimensionless maximum extension length
d Dimensions of the problem
C; Concentration of the microstate
LC Lissajous curve
De Deborah number
F Spring force
Gn Dimensionless complex number for oscillatory behaviour
k Boltzmann constant
KA forward kinetic rate constants
kP backward kinetic rate constant
I; characteristic maximum extension length for the microstate i
Q Dumbbell configuration vector
Qo Maximum strain distance of the dumbbell
Re Reynolds number
t Time
Temperature
v Velocity vector
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(Continued.)

Latin letters

Wi Weissenberg number

X Position vector

Greek letters

«; Model parameter

Ié; Viscosity ratio coefficient

5 Shear tensor

Yo Characteristic shear

Vay Shear strain

¥ Strain rate tensor

o Characteristic strain rate

Yy Shear strain rate

S Drag coefficient

n Viscosity function

Mo Viscosity at zero strain rate

s Solvent viscosity

p Polymer viscosity

A Relaxation time

Vi Viscous coefficient for the microstate i
Transposed strain rate tensor

p Density

o Total stress tensor

Oy Shear stress

o’ Solvent stress tensor

of Polymeric stress tensor

T Relaxation coefficient for the microstate i

P Wiener process

é Angle of oscillatory behaviour

w Oscillation frequency

wj Microstate i

1. Introduction

In rheology, oscillatory shear flow is used to investigate different materials like complex fluids and soft matter,
including polymer solutions and melts, biological macromolecules, surfactants, polyelectrolytes, suspensions
and emulsions [1]. This dynamical test is divided into two regimes, linear (small amplitude oscillatory shear,
SAQOS) and nonlinear (large amplitude oscillatory shear, LAOS). At SAOS, the rheological properties do not
depend on the strain amplitude, and the sinusoidal stress or strain amplitude input results in a sinusoidal
response. On the other hand, at LAOS the rheological properties depend systematically on the strain amplitude,
so that a sinusoidal strain input often results in a deviation in the shape of the resulting stress waveform from a
sinusoidal wave. Hyun et al proposed an intermediate region between SAOS and LAOS called MAOS (medium
amplitude oscillatory shear) [2]. The nonlinear response at large strain amplitude means that the familiar
material functions used to quantify linear behavior in SAOS tests (the storage and loss modulus) are no longer
sufficient, due to the presence of higher harmonic contributions. To describe the nonlinear response, different
methods have been proposed, such as the Fourier transform [3], Stress Decomposition (SD) [4], sets of
simplified characteristic functions and orthogonal polynomials [5, 6], analyzing the sequence of physical
processes (SPP) [7, 8].

The purpose of dynamic oscillatory tests is to investigate nonlinear viscoelastic material responses, in order
to relate nonlinear behavior with microstructure or topology, and to provide useful information for materials
processing operations under large strains [1]. Wyss et al introduced a technique called strain-rate frequency
superposition (SRES) for probing the nonlinear structural relaxation of metastable soft materials [9]. The
evolution in the shape of the distorted stress waveforms can be related to systematic changes in the internal
microstructure of the material or the polymer topologies [10]. A graphical representation that is more amenable
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A v(H..1) = ¥, cos(wt)H,

=

v(y.0)=0

Figure 1. Schematic of the oscillatory shear flow and the transient network immersed in a Newtonian solvent indicating its
microstates.

to rapid qualitative evaluation is the use of a closed loop plot or Lissajous curve (LC) of stress as a function of the
strain or strain-rate [11]. This plot visually demonstrates how higher harmonic contributions, especially the
third harmonic, can affect the measured output for a nonlinear viscoelastic material or complex fluid. There
exists important information about the microstructure in the nonlinear regime, and LAOS experiments play an
important role in revealing the interaction within complex fluids as well as in characterizing them [10].

There are different network models, which serve to determine the creation and destruction network
functions. Sim et al investigated possible mechanisms of complex LAOS behavior using a network model
composed of segments and junctions [12]. The classical transient network models consider creationtobea
thermally activated process while the destruction of nodes is due to the flow force [13—15]. Rincén et al
considered different entanglement scenarios was provided by the assumption of five microstates to describe
transient network dynamics [16], where the rheological functions were calculated using the moments of the
distribution function [17]. Ferrer et al[18] used the micro-macro approach to couple the Finitely Extensible
Nonlinear Elastic (FENE) model with the transient network of Rincén et al [ 16] for a generalized complex fluid
under simple shear flow.

Gomez-Lopez et al performed numerical simulations of a FENE fluid under SAOS and LAOS using the
Brownian Configuration Field Method (BCFM) [19]. It was found that the self-intersection in the LC produces
secondary loops for short dumbbell extension lengths and a high ratio of dimensionless Weissenberg/Deborah
numbers (Wi/De). The classical FENE model possesses a constant maximum length of extension [20]. Rincon
etal[16] proposed a transient network model in which the extensibility is not a constant but a variable resulting
from the creation and destruction processes, and the microstate dynamics is described by a kinetic process,
which is a function of the available energy of the system as a result of flow or temperature.

In this paper, numerical simulations of complex fluids under SAOS and LAOS using a combined FENE
transient network model is presented. The LC for the shear stress and the first normal stress difference with
various kinetic rate constants versus the instantaneous strain-rate for viscoelastic projection are shown. The
effect of Wi/Deratio, flow regime, variation of the forward and reverse kinetic rate constants is investigated and
analyzed.The methodology developed in this paper through the consideration of the kinetics of microstrucural
evolution will enable a greater understanding of the physics of complex fluids. It will also help to provide an
interpretation of experimental data generated by SAOS and LAOS experiments to aid their characterization.

2. Transient network dynamics

The classical FENE dumbbell model, the maximum dumbbell extension is constant. To overcome this
limitation, [16] considered a different way of modelling macromolecular interactions in terms of a transient
network comprising a group of interconecting flexible chains, as shown in figure 1. The model system comprises
nodes, which are points of physical interaction between two molecules, and segments, which are sections of the
molecule between two nodes. A microstate is formed in terms of the number of nodes and describes the
complexity of interactions amongst chains in a region of space. The topological configuration of the five basic
microstates are shown in figure 1 and represented by a random arrangement of chains. A complex fluid involves
the kinetics of creation and destruction of microstates, this process is called a transient network. It is possible to
relate each microstate with its own relaxation time. The transient network has the ability to produce a spectrum
of maximum extension lengths depending on the microstates immersed in the fluid. The microstates are created
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Table 1. Properties of microstates.

Microstate Number Number of Number of
of nodes segments chains

Wo 0 1 1

W 1 4 2

[ 2 7 3

ws 3 9 3

wa 4 12 4

Table 2. Microstates properties.

Microstate v; T I;

w ! 1 1
0 4

w 1 1 1

1 2 2 2

w 3 1 3

2 4 3 7

w 3 1 1

3 4 3 3

1 1

1 L 1

Wa 4 3

by the molecular interaction, where structures that require less energy are favored. Hence, the microstates with
lower energy correspond to those with the minimum number of interacting segments. The nomenclature used
in the transient network model is as follows: w; represents a specific microstate where the subscript i indicates the
number of nodes involved in a microstate. In this case, w  is a single segment (free chain with no interactions)
and w;, i = 1,2, 3, 4 specifies the level of entanglement. In terms of average quantities, the maximum length of an
extended free segment is defined by L, and the maximum end-to-end distance between nodes in the network is
I"(t), which depends on time ¢ € T. Rincén et al [16] show using conservation of chains that the time-dependent
maximum extension length as a mapping I’: T — R; represented by (1):

VL,(Co + 2C; + 3C, + 3C; + 4Cy)
V(Co + 4G + 7C;, + 9C; + 12Cy)

e = )]

where V and C; are the volume occupied by the microstate and the concentrations of each microstate w; (i =0, 1,
2,3, 4), respectively. The dimensionless maximum length of extension time-dependent I(¢) is normalized, by
dividing (1) by L, to give

I'(t)  Co+2G + 3C; + 3C; + 4Cy
L, Co+ 4G+ 7C, + 9C; + 12C4

I(r) = (@)

The numerator and denominator in (2) are the number of chains and number of segments in the network,
respectively. The number of segments is defined in a similar way, noting that the concentration of segments
includes the dangling ends. Table 1 characterizes the microstates in terms of nodes, the number of segments, and
the number of chains, (for details see [ 16, 18]). Each microstate has its own extension length I, viscosity v;and
time 7;, which are determined:

_individual microstate

number of segments’
the simplest microstate

Vv = ; >
number of microstates

number of microstates
. 3)

the number of single microstates in the network.

The characteristic maximum length of extension /; for each microstate is shown in table 2 (column 4), that
takes a particular value in the range % < I; < 1. The properties of each microstate are based on the number of
nodes, segments and microstates to form it, as shown in table 2. The maximum extension length, relaxation time
and drag are different for each microstate.
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2.1. Microstate kinetics

The transient network depends on the destruction/generation rate process of five different configurations (w;,
fori=0,1,2,3,4). The four different reversible processes that determine the destruction/generation rates of w;
are represented by:

k:lA exp (—%)
2&)0 w1, (4)
kBo . d
k2A exp (—%)
3&)1 2&)27 (5)
kBo:d
k:A exp ( 4E°)
3wy + wo 3ws, (6)
kPo:d
k:f exp (—%)
2WQ + 2&)3 3&)4, (N
kPBo . d

where I(f and k,B are the forward and backward rate constants (i = 0, 1, 2, 3, 4), respectively. The backward rate
constants multiplied by the dissipation function ko d is related to the process of breaking or changing of the
transient network at a given time. In (4)—(7) E, is the characteristic interaction energy corresponding to form a
single node, T'is the temperature, K is the Boltzmann constant, o is the total stress tensor, and d is the strain-rate
tensor. The symmetric part of the strain-rate tensor is:

d— %(Vv + Vv, )

where vis the velocity field. In the first two transitions (4) and (5) the energy change represents E,. For example,
in the transition (5) three single-node configurations (six chains of energy content 3E,) result in two double-
node configurations (six chains of energy content 4E,). For each transition, conservation of the chainsis
required. which explains why the simpler formation of w, and w, is not admissible (see (5) ).

The simplified kinetic equations for destruction/generation of microstates are given in (9)—(13). The
evolution of the microstate concentrations allows the determination of I(f), where A (microstates generation)
and B (microstates destruction or dissipative process) are the forward and backward kinetic rate constants,
respectively. Forward rate constants are the quantities of structure formation, having Arrhenius temperature
dependence [16], while the backward rate constants multiplied by the viscous dissipation function are the
quantities of structure destruction.

dc
=L = Bo: d(C) — A(CD), %)
dt
ﬁ =Bo: d(—C1 + C; + lC;) + A(Co2 -G - lCECz)) (10)
dt 4 4
dCz = ( C; + C4 sz) + A(Cl3 - iC?Cz - %szcaz} an
dC 1 1 1 1
=Bo:d|=C} — —C3) + A(—c3c - —czcz), 12
d (2 4 4 3 4 1“2 ) 23 ( )
dC4 B 3 A 22
= = Z g d(—=C)) + =(C2CH. 13
" 5 (—=C9) 2(23) (13)

3. Governing equations

This section presents the governing equations for solving viscoelastic flow problems using multiscale modeling.
The equation system is related to macroscale, and the microscale to particle kinetics.

3.1. Macroscopic equations
The macroscopic equations comprise the conservation equations. The mathematical statement of the
conservation of mass for an incompressible fluid is [29, 37]:
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V.-v=0, (14)
while the Cauchy equation of motion (conservation of momentum) is [29, 37]:
p(%Jrv-Vv)VerV-o', (15)

where p and p are pressure and fluid density. The stress tensor o is defined as the sum of solvent and polymeric
contributions, o° + o, respectively.

o=o0'+ o =2nd + ol (16)
where 7), is the solvent viscosity. After describing the extra stress tensor, the momentum equation is:
A4 2
,08—+V'VV:*VP+V'UP+775VV. 17)
t

3.2. Microscopic equations

In this paper, five different microstates are considered. The simplest microstate represents a single polymer
chain and the FENE dumbbell model has been used for simulating macromolecules. An analysis based on rigid
dumbbells was presented in Bird et al [21] and Schmalzer et al [22].

Polymer solutions are modeled as elastic dumbbell suspensions, in which the dumbbell is represented by two
identical Brownian beads, with friction coefficient {, connected by a spring. The polymer solution is dilute so
that the dumbbell interactions may be neglected. The configuration of a dumbbell is given in terms of a vector Q
connecting the two beads of the dumbbell which provides information about the orientation and length of the
spring (see figure 1). Considering the spring force, the viscous drag force and the force due to Brownian motion
one can derive the equation of motion for the beads and hence the Fokker-Planck equation which [23], for

homogeneous flows is:

0 0 2 2kT 0 0

9 _ 9 N Q- 2p|pl + 2L 2 9, (18)
ot oQ ¢ ¢ 0QaQ

where k is the velocity gradient, T'is absolute temperature, k is Boltzmann’s constant and F(Q) is the spring

force. The solution of (18) furnishes the probability 1/(Q, x, 1)dQ of finding a dumbbell with configuration in the

range Q to Q + dQ at (x, t). Once the configuration probability density function (pdf), ¥, is known the polymeric
contribution to the extra-stress may be determined with the Kramers expression

o? = —nkTI + n(Q ® F(Q)), (19)

where nis the number of polymer molecules per unit volume, the symbol ®denotes the outer product of two
vectors and the angular brackets denote the ensemble average over configuration space.
The spring force for Hookean dumbbells is defined as:

F(Q = HQ, (20)

where H is the spring constant. Note that this linear spring law performs well in weak field flows, in which the

chain is close to its equilibrium state, as described in [ 17, 24]. This law has a problem, at high flow rates and in

extensional flow, the chains extend without limit, but the real polymers can only extend, at most, to their fully
stretched length, as long as they do not break. Warner proposed the FENE spring law to adress this restriction
[20]:

__HQ
1= (Q/Qu)*’
where Q, is the maximum extension length of a single spring, for long chains it is equivalent to a Hookean

dumbbell. The solution of (18), is unfortunately not always possible, particularly with many particle systems, but
there exists an equivalence between equation (18) and a stochastic partial differential equation

(SPDE) [23, 25, 26]:
dQ(t) = (Fz(t) Q- %F)dt + /‘”‘TT d®. (22)

In this SPDE, the term ® represents a multi-dimensional Wiener process and its corresponding scale is </t
[26, 27]. The connector vector length Q is scaled by / kT / H . If we define the relaxation time and polymeric
viscosity by

FQ = (e2)

¢
A==, = nkTA.
ag’
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one can derive the Oldroyd B model in the case of Hookean dumbbells, where 7 is the number of molecules per
unit of volume in the system. This provides the link between the macroscopic and microscopic contributions.
The maximum extension length Q, and A characterize the microstructure.

BCFM considers the multiscale contribution of viscoelastic fluids problems [25, 28—30]. A configuration
field approach is used to reduce the variance by introducing a convective term in (22):

dQ(t) = (—v -VQ + k(1) -Q — %F(Q))dt + \/Ed‘I’(t). (23)

After calculating the spatial configuration field, the polymeric stress can be determined by the Kramers
expression (19), by using 1, and A [17, 31]:that is then used in the momentum equation to calculate the new
velocity field. To evaluate the individual contribution of each microstate, (23) and (24) are generalized as follows:

dQi(t) = (—V' VQi+ k() - Q; — ZLXFi(Qi))dt + \/gd‘l’i(l‘)) (25)
o = %(—1 +(Qi ® F(Q))), (26)
where
HQ;
FQ)=—"—7—"——7, 27
Q) 1 —(Qi/1iQo)? @7

and J;is a extension length scale factor for each microstate described in table 2. The polymeric stress contribution
is defined as:

4
ot =3 o (28)
i=0
with >‘i = 7',‘)\, ni= Cil/il’lkaAi.
4. Dimensionless equations

The governing equations are made dimensionless using the following non-dimensional variables

X * v

v = , tf=wt, ot = il s Y = Y50, (29)
H c ;YO H c 770 ;YO
where x is the position vector, v is the velocity vector, ¢ is time, ¥ is the polymeric contribution to the extra stress
tensor, - is the strain-rate tensor, H, is a characteristic length scale which in this paper is the distance between
the parallel plates and 7, is the zero-shear-rate viscosity. The velocity is v = (u, 0, 0) where u is the velocity vector
component in x-direction, defined by u(y, t) = , cos(wt)y. The corresponding initial and boundary
conditions are u(y, 0) = 0, u(H,, t) = -, cos(wt) H,, respectively.

With this choice of non-dimensional variables the momentum equation becomes

ReDe ov*
Wi or*
where Reand (8 = 1),/1) are the Reynolds number and the viscosity ratio, respectively. The total viscosity is

defined by 1o = 1), + 1, where 1, is the zero-shear-rate polymer viscosity. The dimensionless initial and
boundary conditions are u*(y, 0) = 0, u™(0, ") = 0 and u*(1, t*) = cos(t*).

Regarding the microscopic equations, the vectors Q and ® are scaled with \/kT /H and \/I , respectively.

= BV** 4 V* . gp¥, (30)

Wi Wi 1 1

dQ*= (— D—ev* - V*Q* + D—eh:*(t) -Q* — EF(Q*))dt* + \/D:6dw, (31)

The dimensionless polymeric stress is given by the Kramers expression:
or* = s S =D 1qr & B@D) - D), ()

Wi
where
1,Hookean,

Qp,d = {b+:+2 _FENE, (33)

where d denotes the dimension of the problem, Q™ is the dimensionless configuration vector and W is the
Wiener process. In this paper, d = 2 and F(Q") is:

7
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Q*
11— (Q¥/b)
where b = HQg /kT is the dimensionless maximum extension length, so that when b — oo the spring behaves
as a Hookean dumbbell. The dimensionless form of the individual microstate SDEs are:

(34)

Wi Wi 1
dQf=|——v*- V*QF + —k*- Qf — F(QF)|dr* + dW,, 35
Q(De QF+ Rt Q= o R@D) — (35)
where
HQ*
RQ) = —oa (36)
1— (Qi 'Qi)
12b
’b+d+2
=t 37
7 (37)
and corresponding Kramers expression
ot = ZC M Do o R@) - 1. 38)

5. Numerical solution

The numerical solution for solving under SAOS and LAOS conditions of complex fluids with transient network
dynamics is presented. A decoupled micro-macro numerical scheme is used [ 19]. In the macroscopic part of the
numerical scheme, the velocity and pressure are determined at the new time level by solving the conservation
equations for a given polymeric contribution to the extra-stress tensor. The new velocity field is then used as an
input to the microscopic part of the numerical scheme in which the polymeric contribution to the extra-stress
tensor is determined at the same time level. This process is repeated until a steady state or periodic solution is
obtained.

The same numerical scheme developed by [19], employing finite differences to discretize the system of
governing equations, is used. The computational spaceis Q@ x T where 2 is defined by C x D = {(x, y)|x € C,
y€ D}and T € R is the time interval. In this paper C = [0, 10], D = [0,20]and T = [0, tmax], where t;,,.x is the
periodic or steady-state dimensionless time [18, 32].

The momentum equation is solved using an implicit iterative ADI method [32]. For the temporal and spatial
derivatives, forward and central difference discretizations are used, respectively. For the polymeric extra-stress a
semi-implicit predictor-corrector scheme is used:

n+1 Wi Wi 1
—Q [Py v+ Mgvr. r - R At
Qk = Qi ( Dev Qk De v Qk 2De (Qk))
1
+ _W) 39
— (39)
(1+A—F(Q”“))Q”“ Q - LM vqp v varth
4D k k 2 De k k
1 n
+5ﬁ<v LQ+ wvi - QY

+Dlrqp + \F w. (40)

The predictor step (39) is used to determine QZ+ , before the corrector step (40) is used to evaluate Q at the next
time step [30, 31, 33].

The polymeric contribution to the extra-stress is determined using a discrete version of the Kramers
expression (38)

ol = ahd ﬁ)( Z Q' ® F(QZ“))» (41)
Wi Nz

where Nydefines the number of Brownian configuration fields. For information on statistical error as well as
numerical convergence, see [31]. The time step At = 0.001 is used in all of the simulations. Full details of the
algorithm can be foundin [18, 19].




IOP Publishing Phys. Scr. 98 (2023) 025213 RO Vargasetal

rrrrr[rrrrrrr T T rrrr [ rrrrprrrr T

1.0

0.5

Lo o bww o buwaa bwn gl
L LB R R LN R

P (PO [SIST UM NN ) KOTSRS ITIRTI N B

Oxy
(=]
o
L 2L i e e L

PR T T T T T T NN T U T N T WY M PR T T T N T T T T T T A T S T

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

—\/iscous =—=Elastic ==Viscoelastic

Figure 2. Lissajous curves: elastic form (o, versus ) (left) and viscous form (o, versus ) (right) with Wi/De = 1,b = 50,A = 1,
B =1,Re=0.001 ande: 1500.

6.SAOS and LAOS characterization

The description of the problem consists of a complex fluid enclosed between two infinite parallel plates, spaced
by a distance H,. The lower plate is stationary for all time. The upper plate is at rest for ¢ < 0 while for t > 01t
begins an oscillatory motion of small or large amplitude, as presented in figure 1. The fluid is an incompressible
dilute polymeric solution. To analyze the fluid behavior, the LC is widely used for both SAOS and LAOS tests
[6,21,22,34-36].

The LC are plots of the instantaneous stress versus strain or strain rate, elastic or viscous projection,
respectively. For SAOS regime, the stress response is linear, the input and the output signals are in-phase, out-
phase or the input is shifted by a certain angle 6. For elastic solids, the LC is a straight line, for viscous fluids a
circular orbit and for viscoelastic fluids a tilted ellipse in the elastic projection, respectively [37]. The LC of the
elastic and viscous projections are shown in figure 2. In the LAOS regime, the stress response is nonlinear, and
the LC for a viscoelastic fluid departs from the elliptical shape found in the SAOS regime in many different ways.
Researchers have focused on characterizing the nonlinear stress response through different methods. More
information on this is available in several publications [1, 36, 37]. In this paper, a complex fluid under SAOS and
LAOS regime is characterized by using sinusoidal shear Yy =Y sin(wt) with strain-rate Yy = Yo cos(wt),
where t, 7, and w are time, strain amplitude and oscillation frequency, respectively [36], where 5, = y,w.
Utilizing the characteristic relaxation time of the fluid, the dimensionless strain-rate is expressed as:

May = Ao cos (w)\i) = Wi cos (De%) (42)

where De = Awand Wi = A7, represent the dimensionless Deborah and Weissenberg numbers, respectively. As
mentioned by a number of researchers [21, 22, 36], the relationship between De and Wi in (42) is used to define
the LAOS regime for a viscoelastic material. A modification of De or Wi deviates the fluid response from
Newtonian behavior. This behavior is described by the complex number Gn = De + iWi, with magnitude
defined by |Gn| = y/De? + Wi? and corresponding angle by ¢ = arctan (DK;), according to the criteria
proposed by [36]. This analysis has two purposes. First to establish guidelines for the identification of the flow
conditions for the LAOS (g—; > 1) and SAOS regimes (g < 1) or the case of simple shear ((ZS = g) Italso
provides a tool for analyzing different time scales.

7. Results

The results for SAOS and LAOS tests of a complex fluid are obtained by using the scheme described in section 5
and programmed in Fortran. The numerical code validation was performed by comparing the Oldroyd-B and
Hookean dumbbell models in a simple shear flow. A comprehensive description of the numerical algorithm can
be found in a previous publication of the authors [19].
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7.1. Numerical simulation predictions

In this section, the evolution of concentrations and Lissajous plots are used to analyze the effect of the main
variables (b, 8, Wi, De and Wi/ Deratio) of the model on complex fluid behavior. Elastic and viscous projections
in Lissajous plots of a complex fluid under SAOS and LAOS conditions for o, and N; versus 7, or 5, is
performed, where N is defined by N; = 0. — 0,,. Starting with the same kinetic scheme used in previous work
[19], figure 3 presents the viscous projection of the shear stress o, and N; for different values of Wi/Deand b
under LAOS regime. By increasing the maximum extension length, no relevant changes in o, were found.
However, the magnitude of N increases as Wi is increased. It is well known that the Hookean and FENE models
are equivalent under these conditions. An important finding of the FENE model is to identify the conditions
when self-intersections appear in the Lissajous plots, which are for large Wi/De values and short chain lengths.
Similar predictions were reported by [38] who quantified the LAOS dynamics of the Giesekus constitutive model
atlarge Wi via singular perturbation methods. The viscous LC exhibited a secondary loop while the elastic LC
was a straight line with negative slope.These findings were consistent with the experiments of [39] on wormlike
micelle solutions whose shear rheology closely follows a single-mode Giesekus model. Férec et al used SAOS and
LAOS measurements to investigate the rheological behavior of short glass fibers suspended in polybutene and
molten polypropylene [40]. They determined material functions such as shear stress and primary normal stress
differences from the raw signals using a parallel plate rheometer. For suspensions based on polybutene, the shear
stress amplitude grows with increasing cycles of deformation to reach a constant value after more than 20 cycles.
The opposite behavior, i.e. a decrease of the shear stress amplitude, was observed for the polypropylene
composites. For both filled systems the evolution was attributed to fiber orientation under flow, with the
differences in behavior caused by different initial fiber orientations.

7.2. Comparison of kinetic schemes

The kinetics of microstates is analogous to chemical kinetics, and describes the physical interaction

of macromolecules immersed in a Newtonian solvent, in which the microstates are defined by the number of
nodes. Molecular collisions involve a Brownian diffusion process, as well as the formation of physical
entanglements that require a specific state of thermal energy to form a node. Under flow, the number of nodes
decreases because the deformation energy exceeds the interaction energy between the molecules participating in
anode.

In this section, two kinetic schemes are compared. The first scheme (Kinetics 1) is the one used by Ferrer et al
[18] for the transient network model under simple shear flow using BCEM, where Ny is the number of
trajectories or configuration fields in the whole system. The second scheme (Kinetics 2), coupling the transient
network model, comprises five microstates where each microstate uses Ny configuration fields in order to
determine its extension length. The simplest microstate wy is equivalent to a FENE dumbbell. Therefore the
computational cost of the second scheme is higher.

A comparison of the microstate concentration evolution for weakly and highly structured networks using
the two kinetic schemes is shown in figure 4. Note that the oscillating behavior is due to the imposed oscillatory
shear flow (see (42)). This is responsible for the cyclical nature of the creation/destruction of microstructures.
Both kinetic schemes exhibit the same time evolution with small changes in magnitude. Figure 5 presents the
effect of the kinetic rate constants A and B on the LC for the viscous projection of the shear stress o, from a
weakly (A = 1, B=100) to a highly (A = 100, B = 1) structured network. For both kinetic schemes nonlinear
behavior is observed. The shape and magnitude of the LC are modified using Kinetics 2 while for Kinetics 1 no
change is seen. Kinetics 2 is used for all subsequent simulations.

10



10P Publishing

Phys. Scr. 98 (2023) 025213

RO Vargasetal

Kinetic 1

LRy L L R LR L L Lt L N LN LR ALY LR RY LAY RN L

Kinetic 2

A=100 B=1

0.1

10i

=]

0.01 0.1

Figure 4. Time evolution of microstate concentrations for disentanglement (A = 1 and B = 100) and entanglement (A = 100 and
B = 1) structured network using two different kinetic schemes with Wi/De = 5, De= 1, 3 = 0.1, b = 50, Re = 0.001 and Ny = 1500.

10 100

1.0

0.5

0.0

Oxy

20 LI B R i

A=100 B=1

IR I S R

PRI B S

T T T T

A=10 B=1

il PR

L I e e i |

P T T N T T S |

A=1 B=10

b b beaaa be bed b basaa b binas baaaa by

Oy
o
=)

Oxy
§ L
o
T T T [T T T T T T T

A=1B=100

ro S N S RN T W N [ N | [N T 5y (O |

ol b b b b b dovia beaa e b b ba b ba e danaa bovaals

-1.0

-0.5

0.0 0.5

A

1.0

— Kinetic 1
—Kinetic 2

Figure 5. Effect of the kinetic rate constants A and B on the Lissajous curves using two kinetic schemes with Wi/De = 5, De =1,
B=10.1,b = 50, Re=0.001 and Ny = 1500.

0.5 1.0

7.3. Viscosity ratio 3

Figure 6 presents the influence of the viscosity ratio 5 on the time evolution of the microstate concentrations for
three different initial structured networks: (i) disentanglement, only free chains, microstate wy, (ii)
entanglement, only microstate w, defined by four chains, and (iii) aleatory, all the microstates are present. The
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Figure 6. Influence of the viscosity ratio 5 on the time evolution of microstate concentrations for different initial conditions with Wi/
De=1,De=1,b=50,A=1,B=1,Re=0.001 ande: 1500.
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A =1,B=1,Re=0.001 and Ny = 1500.

Wy

initial microstate concentration conditions are: disentanglement (wy = 1,andw ; = 0 for i=1,2, 3,4),
entanglement (wy = 1,andw ;= 0 for i=0, 1, 2, 3), and aleatory structured network (w ; = O for i =0, 1, 2, 3, 4).
The initial entanglement scenario of a transient network is a function of the system’s available energy. This
energy depends on the flow condition and is quantified through viscous dissipation. The influence of S on all the
entanglement scenarios is shown to slightly modify the microstate concentration values. It is important to note
the aleatory case with 3 = 0.5, generates an increase of the microstates wy and w; which is correct because the
system gives preference to the formation of microstates with lower energy requirements.

Figure 7 exhibits the effect of 3 on the LC of the individual shear stress o, associated with each microstate for
different initial entanglement scenarios. The number of microstates is implicit in the polymer viscosity
contribution. In this case lower values of 3 correspond to a viscoelastic fluid and higher values to a viscous fluid.
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Figure 9. Influence of the extension length b on the time evolution of microstate concentrations with different entanglement scenarios
with Wi/De = 1,De=1, 3= 0.1,A = 1,B = 1,Re=0.001 and Ny = 1500.

In this figure decreasing Jincreases the o, microstate magnitudes. This effect can be better appreciated in the
total shear stress and its corresponding first normal stress difference N, which are shown in figure 8.

7.4.Extension length b

An important characteristic of this work with respect to the literature is that it facilitates coupling the FENE and
transitory network models [18, 19]. In the classical FENE model (see (34)) bis a constant. The transient network
model allows us to generalise this by associating a maximum extension length to each of the five basic
microstates using a scale factor [; shown in table 2 [16]. The maximum extension length b corresponds to
microstate wy. Figure 9 shows the effect of b on the time evolution of microstate concentrations with different
entanglement scenarios under SAOS flow. The microstate concentrations are affected when b = 40, mainly wy
and w; which are more sensitive to energetic changes of the transitory network. For larger values of b there are no
significant changes in concentrations. Figure 10 presents the effect of the extension length b on the LC for each
shear stress o, for different entanglement scenarios. All curves have the characteristic elliptical shape
corresponding to SAOS regime. Note that some noise is generated in the curves shown for short extension
lengths (b = 40). In order to complement these numerical predictions with experiments, Anvari and Joyner
characterized the effects of concentrated emulsions as a fat replacer on the viscoelastic properties of reduced-fat
(15 % fat) and low-fat (6% fat) Cheddar cheeses under SAOS and LAOS flow [41]. They reported the LC of
cheeses at different fat contents and storage timepoints. The shape of the LC for all samples was elliptical at
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0.05% strain (linear regime), indicating ideal viscoelastic behavior. Under higher strains, nonlinearities were
presented as a distortion from the elliptical shape. Specific distortions of the shapes were related to different

microstructural features.

7.5. Influence of Wi

Figure 11 presents the influence of the Weissenberg number Wi on the time evolution of microstate

concentrations for different entanglement scenarios. The microstate concentrations do not show significant
changes when the Wi value is changed. Figures 12—14 show the effect of Wi on the LC for the shear stress o, and
the first stress difference N for each microstate with different entanglement scenarios under LAOS regime. In
order to analyze only the Wi effects, the parameter values selected for these casesare b = 50,A = land B=1,
while the generation and destruction of microstates are the same. Starting with a disentanglement network,
increasing Wi the elliptical shape of the shear stress is lost, and the formation of small secondary loops for each
microstate are found in the total shear stress only for Wi = 7. N| mainly changes in magnitude. In the
entanglement network, thixotropic behavior can be seen in the shear stress and N, due to the microstructual
evolution of the transitory network and convergence is lost at values greater than Wi = 6. In the aleatory
network, there is a loss of the elliptical shape of the shear stress. Also thixotropic behavior can be observed in the
shear stress and N; when Wi > 6 and only for the microstates wy and w;. Tong et al investigated the rheological
properties of gellan fluid gels using the LAOS technique, with consideration of high acyl (HA)/low acyl (LA)
gellan ratio and Ca®" concentration [42]. LC and Chebyshev coefficients were used to analyze the LAOS data and
this was successful in visually and quantitatively representing the microstructural differences between HA and
LA gellan gum, respectively. For small strain amplitude, the viscous LC produced an elliptical shape for all Ca**
concentrations. With increasing strain amplitude, the LC adopted complex shapes and secondary loops
corresponding to self-intersection and strong nonlinear elastic responses appeared.

7.6. Influence of the kinetic rate constants A and B
Figure 15 presents the effect of the kinetic rate constants A and B on the time evolution of microstate
concentrations for different entanglement scenarios. As expected, modifying A and B the microstate
concentrations has a direct impact on the rate change of the build-up and break-up processes. It is important to
note that the effect of the kinetic constants favors the formation of a structured network or the destruction of the
same, but as the transitory network evolves, it gives preference to form microstates with lower energy
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Figure 12. Influence of the Weissenberg number Wi on the Lissajous curves for the shear stress o, (left) and N (right) versus + for
each microstate of a disentanglement structured network with De=1, 3= 0.1,b = 50,A = 1, B = 1, Re=0.001 and Ny = 1500.

requirements. Because of this, several cases in figure 15 show a sudden increase in the concentration of the
simplest microstates such as wy, w; and w,.

Figures 16—18 show the effect of the kinetic rate constants A and B on the LC for 0,,, and N; for each
microstate with different entanglement scenarios under LAOS regime. For the disentanglement network, from a
highly structured network (A = 100, B = 1) to a weakly structured network (A = 1, B = 100), the shape of the LC
for o, and N, are substantially modified and classical and different secondary loops are found. It is important to
mention that the value of b = 50, indicating that the formation and shape of secondary loops depends on kinetics
and the initial entanglement scenario. For the entanglement and aleatory networks, the changes are very similar
to the previous case in terms of the shape of the Lissajous curves for o, and Ny, besides additionally observing
thixotropic behavior in various microstates. An important task of rheology is to relate kinetics and
microstructure through models such as the present one and experiments. Jeyaseelan and Giacomin used a
framework based on molecular entanglement kinetics to interpret the LAOS behavior of polyacrylamide and
polystyrene solutions [43]. A kinetic rate equation for the balance of entanglements was capable of predicting
previously reported LAOS data for these solutions. They concluded that the transient network concept provides
areasonable framework to interpret the LAOS behavior of two polymer solutions. Their predictions were
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Figure 14. Influence of the Weissenberg number Wi on the Lissajous curves for the shear stress o, (left) and N; (right) versus  for
each microstate of an aleatory structured network with De=1, 3 = 0.1,b = 50, A = 1, B = 1, Re=0.001 and Ny = 1500.

obtained for both shear and normal stresses, manifesting secondary loops at severe conditions due to non-affine
deformation. Szopinski and Luinstra described the nonlinear flow behavior of aqueous carboxymethyl
hydroxypropyl guargum (CMHPG) and non-ionic hydroxypropyl guar gum (HPG) solutions [44]. The high
molecular weight of guar gum and its derivatives in combination with the formation of superstructures/
aggregates in aqueous solutions leads to excellent water-thickening properties, and makes it useful in food,
agricultural and textile applications. The influence and breakup of superstructures/aggregates gives a
rheological fingerprint, a function of the applied deformation and time scale (Pipkin space).

The effect of A and B on the LC of the elastic projection of the shear stress for different entanglement
scenarios is shown in figure 19. In the elastic projection of the shear stress the LC approaches a rectangle or a flag
which is related with the formation of secondary loops. This flag form is also modified by the kinetics and
entanglement scenario. Similar elastic projection was reported by Ewoldt ef al who developed experiments for
two complex fluids, a pseudoplastic shear-thinning xanthan gum solution and an elastoviscoplastic invert-
emulsion drilling fluid [45]. They explored how the yielding response depends on both strain amplitude and
frequency of deformation. Their calculations with simple pseudoplastic (viscous Carreau) and elastoplastic
(elastic Bingham) models, as well as experimental measurements, correspond to increasingly rectangular LC.
The LC of the raw measured stress as a function of the strain indicated an initial transient response which quickly
settles into steady oscillatory orbits. Li and Wang investigated nonlinear behavior in LAOS for four different
polymeric materials using simultaneous conventional rheometric measurements and particle tracking
velocimetric observations. They emphasized that for the four examples considered, the nonlinearity in LAOS
often arises in complex fluids due to the time dependent rearrangement of their microstructures in response to
LAOS [46]. They concluded that the structural change induced by LAOS may not be generally described by
classical constitutive models, where all material parameters are constant with respect to both space and time.
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Figure 16. Influence of the kinetic rate constants A and B on the Lissajous curves for each microstate for oy, (left) and N, (right) versus
7 of a disentanglement structured network with Wi =7, De=1, 3 = 0.1, b = 50, Re =0.001 and Ny = 1500.

A=100, B=1 A=1,82100 A=18=10 A=1,8=100
| ¥ A A Ao
= - - | A S

: S

L " / [} Ll \ o

" / pon =/ i (7%

13 =

: / g _—Ale @
- s
gk / T o o

? g | fea— P
» ‘
) = A ~- e O

T T T
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Figure 19. Influence of the kinetic rate constants A and B on the Lissajous curves for each microstate for o, versus + for different
entanglement scenarios with Wi=7, De= 1, 3 = 0.1, b = 50, Re= 0.001 and Ny = 1500.

8. Conclusions

In this paper numerical simulations of complex fluids under SAOS and LAOS have been presented. The basis of
the numerical simulations is a micro-macro solver in which the microscopic part of the method uses the method
of Brownian configuration fields in conjunction with transient network dynamics. The effect of the principal
model parameters such as viscosity ratio (3, chain length b, elasticity level Wi, kinetic rate constants A and B, for
different initial entanglement scenarios (entangled, disentangled and aleatory) was analyzed. The Wi/De ratio
accurately describes the flow conditions: LAOS (% > 1) and SAOS (% < 1).

Modification of 3, b and Wi generates small changes in the evolution of the microstate concentrations.
Substantial changes are obtained by modifying the kinetic rate constants (A and B) and the initial entanglement
scenario. Increasing Wiwith (A = 1 and B = 1) and the rest of the variables constant on the Lissajous curves,
increases the nonlinear response and thixotropic behavior can be found for some microstates.

The FENE model using the BCFM under LAOS requires larger values of Wi/ De and short extension lengths
to generate self-intersection of the LC which form secondary loops. The FENE / transient network model using
BCFM under LAOS considered the interaction of microstates (microstructures) immersed in a Newtonian fluid.
This model is able to predict experimental results using different initial conditions and kinetic schemes. The
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secondary loops are strongly dependent on the kinetics and are mainly generated when the destruction is faster
than the creation of microstructures (A < B).

The present work provides an important tool for characterizing complex fluids with different initial
conditions under SAOS and LAOS regimes. It enables the behavior of material rheological fuctions to be
predicted and the relationship between microstructure and macroscopic behavior to be understood.
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