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The development of stable numerical schemes for viscoelastic multiphase flows has 
implications for many areas of engineering applications. The principal original contribution 
of this paper is the implementation of a conservative level-set method to define implicitly 
the interface between fluid phases, fully integrated into the mathematical framework of 
viscoelastic flow. The governing equations are discretized using the finite element method 
and stabilisation of the constitutive equation is achieved using either the discontinuous 
Galerkin (DG) or streamline upwinding (SU) method. The discrete elastic viscous stress 
splitting gradient (DEVSS-G) formulation is also employed in the Navier-Stokes equations to 
balance the hyperbolic characteristics of the polymeric stress tensor. The numerical scheme 
is validated with reference to several benchmark problems and excellent quantitative 
agreement with published data is found for Newtonian and viscoelastic fluids, for both 
single and multiphase flows. The motion of a gas bubble rising in a viscoelastic fluid is 
studied in detail. The influence of polymer concentration, surface tension, fluid elasticity 
and shear-thinning behaviour, on flow features such as the development of filaments and 
cusps and the generation of negative wakes is explored.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Multiphase flows are ubiquitous in a variety of natural and industrial processes, from the refinement of oil to food science 
and the flow inside a nuclear reactor. Furthermore, considering one of the phases as having a viscoelastic relationship 
between stress and strain, rather than a traditional Newtonian relationship, is important in chemical manufacturing and 
polymer processing. Understanding how these complex flows evolve over time is of great importance. Using numerical 
schemes, like the one presented in this paper, rather than performing physical experiments reduces cost and gives us more 
information over what parametric changes cause the phenomenological activity we observe.

The main object that requires rigorous definition when studying multiphase flows is the interface between the fluid 
phases. The methods used can be broadly split into two categories: interface capturing (e.g. volume of fluid (VOF) [1]
and level-set [2]) and interface tracking (e.g. front tracking [3] and moving mesh method [4]). Interface tracking methods 
explicitly construct a set of points that define the interface which are moved according to the local velocity. Interface 
capturing methods only implicitly define the interface, for example, as the contour of a greater surface or the amount of 
marker in a cell. In this paper we opt for an implicit representation of the interface since viscoelastic fluids can have very 
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unpredictable dynamics, so the ability to track the evolution of very general interfaces is desirable. The level-set method uses 
the 0-contour of a signed distance function to define the interface, which is then advected in a velocity field and reinitialised 
to maintain its original properties. Initially introduced by Osher and Sethian [5], it was eventually applied to incompressible 
two-phase flow by Sussman et al. [2], with applications ranging from topology optimization [6] to mathematical biology 
[7]. The presence of steep polymeric stress boundary layers on the interface can contribute to the loss of mass from one 
phase over time. To remedy the lack of mass conservation of the traditional level-set method, we utilise the conservative 
level-set method of Olsson et al. [8]. To the best of our knowledge this has not been applied to viscoelastic flow before. 
The conservative level-set method uses a smeared Heaviside function rather than a signed distance function in order to 
represent the interface. The reinitialisation scheme now involves taking an L2 projection of the normal to the interface 
and compressing the surface in that direction. This modification of the traditional level-set method has resulted in many 
new developments, with Kees et al. [9] adapting it for variable-order approximations / unstructured meshes and Zahedi 
et al. [10] using it for contact line dynamics. More recent developments of the method come from Lin et al. [11] who 
used the conservative level-set method for modelling multiphase thermo-fluid flow and Jettestuen et al. [12] who modelled 
capillary-controlled displacements in porous media.

When accounting for viscoelastic dynamics, the problem gets more challenging on multiple levels. Firstly, we have to 
solve a separate constitutive equation that relates polymeric stress and deformation rate. This equation is hyperbolic, unlike 
the conservation of mass and momentum equations which form an elliptic system. This mandates the use of numerical sta-
bilisation techniques in order to obtain converged approximations to our problem. One technique is a version of the popular 
elastic viscous split stress (EVSS) [13,14] type methods, namely the discrete EVSS gradient (DEVSS-G) [15] method. Here, an 
L2 projection of the velocity gradient tensor is used to approximate velocity gradient terms in the momentum and constitu-
tive equations. This has the effect of creating artificial ellipticity, while maintaining consistency with the original equations. 
The discontinuous Galerkin (DG) [16] finite-element discretisation uses discontinuous finite elements for polymeric stress 
to better approximate and resolve the steep stress gradients at boundary layers. Through the choice of the numerical flux 
function, we can also ensure a fully upwind approximation in the process. The last stabilisation technique is the streamline 
upwinding (SU) [17] method, which modifies the test functions in the weak formulation, introducing artificial diffusion into 
the constitutive equation in the process. Numerical methods for solving viscoelastic flow problems are well-established. The 
review by Baaijens [18] describes many of the popular stabilisation methods like DG, SU and DEVSS-G in detail.

There have been a number of contributions to the development of numerical methods for viscoelastic multiphase flows 
in recent years. A short literature review is provided here of some of the most important papers. Figueiredo et al. [19]
investigated the use of the VOF method to model the famous Weissenberg effect, while Izbassarov et al. [20] used the 
front tracking method to investigate viscoelastic emulsions. Harvie et al. [21] considered a VOF approach for modelling 
a Newtonian droplet passing through a microfluidic contraction and Chung et al. [22] considered a similar 5:1:5 con-
traction/expansion microchannel using a finite-element front-tracking approach. Vahabi et al. [23] and Zainali et al. [24]
investigated the viscoelastic rising bubble problem by using different versions of the smoothed particle hydrodynamics (SPH) 
[25] method. Pillapakkum and Singh [26] developed a level-set method for modelling a Newtonian droplet in a viscoelastic 
fluid under simple shear, with a brief investigation into the rising bubble problem as well. Pillapakkum et al. [27] expanded 
on this work some years later and constructed a fully 3D model for a rising bubble in a viscoelastic fluid, also based on 
the level-set method. Venkatesan et al. [28] considered an arbitrary Lagrangian-Eulerian (ALE) approach for a Newtonian 
bubble rising in a viscoelastic bulk fluid and a viscoelastic bubble rising in a Newtonian bulk fluid. Lind and Phillips [29]
developed a boundary element method approach to model a rising Newtonian bubble in a viscoelastic fluid, which included 
a detailed parametric study. Recently a lot of attention has focused on modelling the jump discontinuity in the rise velocity 
of a rising gas bubble in a viscoelastic fluid, demonstrated experimentally in Pilz and Brenn [30]. This phenomenon is a 
sharp jump in the rise velocity as a function of bubble volume, where there exists a so-called critical volume at which the 
rise velocity increases drastically. Yuan et al. [31] and Niethammer et al. [32] used an interface capturing approach through 
the VOF method to construct fully 3D simulations for modelling the velocity jump discontinuity. Both papers accounted for 
such large Weissenberg numbers that their numerical schemes necessitated the use of the log-conformation formulation 
[33] of the constitutive equation. Finally, Fraggedakis et al. [34] adopted a theoretical approach instead and performed a 
steady state analysis with the aid of pseudo arc length computations to model the jump discontinuity.

To summarise the novelty of our paper, the conservative level-set method is applied to viscoelastic flow in a 2D finite 
element formulation with stabilisation and non-dimensionalisation procedures included. This has only previously been done 
for the non-conservative level-set method, see Pillapakkam et al. [26] as an example. The conservative level-set method is 
more challenging to implement as the smeared Heaviside function is harder to approximate for sharp interfaces and requires 
frequent L2 projections for normal calculations. The reward is a numerical scheme that accurately calculates the mass of a 
viscoelastic rising bubble while it undergoes strong polymeric stress forces near the interface. The viscoelastic constitutive 
equation is stabilised using a variety of intricate techniques in order to accurately model flows where the extension rate 
is large. Papers from Vahabi et al. [23] and Zainali et al. [24] focus only on small polymeric concentrations and thus do 
not require any stabilisation, so we expand on this work through the aforementioned methods. We validate our results 
using benchmarks from the literature, obtaining very satisfactory results for both the multiphase Newtonian and single-
phase viscoelastic cases. Lastly, the case of a Newtonian bubble rising in a viscoelastic fluid is explored. We use additional 
viscoelastic models when compared with the literature and model much larger polymer concentrations, which allows us 
2
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Fig. 1. Illustration of the conservative level-set function for a two-phase flow set-up. The φ(x) = 0.5 contour is the black line between the two phases.

to analyse phenomena in detail. A fully object-oriented, parallelised and open-source code based on the FEniCS [35] finite 
element library is available in the lead author’s Github [36] repository for reproduction of all results found in the paper.

The paper is organised as follows. In Section 2 the mathematical model for describing viscoelastic multiphase flows is 
presented. In Section 3 the finite element discretization of the governing equations is described paying particular attention 
to the use of stabilisation techniques. The results of numerical experiments on several benchmark problems are presented 
and discussed in Section 4. Finally, in Section 5 some concluding remarks and areas of future study are summarised.

2. Mathematical model for viscoelastic multiphase flow

2.1. Multiphase governing equations

The multiphase governing equations are comprised firstly of the following mass and momentum conservation laws:

∇ · u = 0

ρ

(
∂u

∂t
+ (u · ∇) u

)
= ∇ · σ + F

(1)

where u is the velocity vector, ρ is the density and F is a body force. In these equations σ is the Cauchy stress tensor 
defined by:

σ = −pI + 2ηsD (u) + τ p (2)

where p is the pressure, ηs is the solvent viscosity (ηs = μ for Newtonian fluids), D (u) = 1
2

(∇u + ∇uT
)

is the rate-of-strain 
tensor and τ p is the polymeric stress tensor. For Newtonian fluids, τ p = 0. For viscoelastic fluids the evolution of τ p is 
dictated by a constitutive equation, detailed more in Section 2.2. In the momentum equation the body force F comprises of 
a gravitational force Fg and a surface tension force F�:

F = Fg + F� = ρg − σκ∇φ (3)

The treatment of the surface tension force follows the continuum surface force approach of Brackbill et al. [37] where 
the force due to surface tension is transformed into a volume force. Here σ is the surface tension coefficient, φ is the 
conservative level-set function (see Section 2.3) and κ is the curvature of the interface. We refer to Section 2.4 for more 
information on the continuum surface force approach. The material parameters μ and ρ are now phase-dependent:

μ(φ) = μ1φ + μ2(1 − φ), ρ(φ) = ρ1φ + ρ2(1 − φ) (4)

where μi and ρi are the values of the dynamic viscosity and density in phase i. Eqs. (1) are solved in a time dependent two-
dimensional domain 	(t) = 	1(t) ∪	2(t) where 	i(t) is the domain occupied by phase i at time t ∈ (0, T ]. The two phases 
are distinguished by the interface between them �(t), which itself is determined from the 0.5 contour of the conservative 
level-set function. A schematic figure of this set-up is shown in Fig. 1.
3
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Fig. 2. Plot of extensional viscosity ηE against elongation rate ε̇ for ηp = 0.5, η0 = 1 and λ1 = 1.

2.2. Viscoelastic flow

For a viscoelastic fluid the evolution of the polymeric stress tensor τ p can be described by a multitude of different con-
stitutive laws. Cracco [38] provides a general form of the constitutive equation, from which multiple different relationships 
can be obtained by setting certain parameters to 0 or 1. In this paper we consider the following relationship:

τ p + λ1
�
τ p + α

λ1

ηp
τ 2

p = 2ηpD (u) (5)

where 
�
τ p denotes the upper-convected derivative of the polymeric stress τ p defined by:

�
τ p = ∂

∂t
τ p + u · ∇τ p −

(
(∇u)T · τ p + τ p · (∇u)

)
(6)

For a viscoelastic fluid, the total viscosity η0 is defined as the sum of two viscosities: the solvent viscosity ηs and the poly-
meric viscosity ηp . Both of these material parameters can be obtained by considering the amount (by weight) of polymer 
dissolved in the Newtonian solvent, denoted by c. The relaxation time λ1 is the characteristic time taken for the shear 
stress in a simple shear flow to relax under constant strain conditions. The parameter α is the Giesekus mobility factor and 
controls the shear-thinning behaviour of the fluid. When using the Oldroyd-B model [39], we shall use α = 0. Oldroyd-B is 
largely unsuitable for extensional flows due to the presence of a singularity in the extensional viscosity ηE at a finite elon-
gation rate ε̇ . In contrast the Giesekus model predicts a bounded extensional viscosity. To illustrate this, consider a steady 
uniaxial elongational flow field of the form u =

(
ε̇x,− ε̇

2 y,− ε̇
2 z

)
. The extensional viscosity is given by the expression:

ηE(ε̇) = 3ηs + τxx − τyy

ε̇
(7)

where τxx and τyy are the normal components of the polymeric stress tensor τ p . For the given uniaxial extensional flow 
field the constitutive equation (5) can be solved for each value of ε̇ to obtain the corresponding value of ηE(ε̇). The ex-
tensional viscosity is plotted in Fig. 2 for the Oldroyd-B and Giesekus models, the latter for different values of the mobility 
factor α.

2.3. Level-set method

The level-set function used for the conservative level-set method is generated from a transformation of the signed dis-
tance function where φ̃ (x) = dist (x,�(t)) if x ∈ 	1(t) and φ̃ (x) = −dist (x,�(t)) if x ∈ 	2(t). For x ∈ �(t), φ̃ (x) = 0 and 
this defines the interface implicitly. We perform the following transformation to obtain the level-set function used in the 
conservative level-set method:

φ (x) = 1

1 + eφ̃(x)/ε
(8)

This transforms the signed distance function into a smeared Heaviside function, with the interface located at φ(x) = 0.5. 
The parameter ε is a measure of interface thickness and determines the width of the transition region between the 0 
4
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level-set and 1 level-set. To capture the interface we solve the advection equation for φ with a given velocity field u. For 
incompressible fluids we have ∇ · u = 0, so it can be shown the advection equation is equivalent to its conservative form:

∂φ

∂t
+ u · ∇φ = 0 (9)

Hence the advection problem consists of solving Eq. (9) for φ with initial condition φ(x, 0) = φ0. During advection of the 
level-set function, the desirable stability properties of a smeared Heaviside function are lost. Therefore an intermediate 
reinitialisation step that recaptures these properties must be performed, while also not distorting the location of the inter-
face. Upon solving Eq. (9) for an intermediate φ we calculate the L2-projection of the interface normal n� and reinitialise 
by solving the following equation:

∂φ

∂τ
+ ∇ · (4φ (1 − φ)n�) = ε∇ · (∇φ) (10)

until a steady state is reached under the artificial time-step τ . On the continuous level, the interface normal is given by 
n� = ∇φ

|∇φ| . Since Eq. (10) is written in conservative form we know that φ is also conserved as it is reinitialised, which means 
the area bounded by the φ (x) = 0.5 contour is conserved under advection and reinitialisation. This proves that the method 
conserves the mass of the level-set function. The area bounded by the φ = 0.5 contour is also conserved, the proof of which 
can be found in Olsson et al. [40].

2.4. Boundary conditions

Eqs. (1) are solved subject to prescribed initial conditions:

u(x,0) = u0(x) (11)

and boundary conditions, which can be of Dirichlet:

u(x, t) = uD(x) if x ∈ �D (12)

or Neumann type:

u(x, t) · n(x, t) = fN(x) if x ∈ �N (13)

t(x, t) · σ (x, t) · n(x, t) = gN(x) if x ∈ �N (14)

where uD(x) ∈ [
H1

0(	)
]d

and fN(x), gN (x) ∈ L2
0(	). The terms t and n refer to the tangent and normal vectors to the 

interface respectively. Along the interface �(t) we enforce the following conditions:

�u� = u
∣∣
	1

− u
∣∣
	2

= 0, x ∈ �(t) (15)

�σ · n�� = σ · n�

∣∣
	1

− σ · n�

∣∣
	2

= −σκn�, x ∈ �(t) (16)

where we drop x and t for brevity. The first of the interface conditions (Eq. (15)) ensures that the velocity field is con-
tinuous across �(t) while the second (Eq. (16)) states that the jump in the normal stress is balanced by the force due to 
surface tension. The second condition is satisfied by the continuum surface force approach of Brackbill et al. [37], in which 
surface tension is interpreted as a continuous volume force in the neighbourhood of the interface (F� in Eq. (3)). This is 
accomplished by expressing Eq. (16) as a volume force:

Fst = −σκn�δ(�(t)) (17)

where δ(�(t)) is the Dirac delta function localised to the interface � and κ is the curvature given by κ = ∇ · n� . Then using 
the fact that δ(�(t)) = |∇φ| we derive the form of F� given in Eq. (3). We refer to Brackbill et al. [37] and Chang et al. [41]
for a full derivation. The approach is also implemented in the papers cited in Sections 4.1 and 4.3. These include Hysing et 
al. [42], Vahabi et al. [23] and Zainali et al. [24].

3. Numerical method

The finite element method (FEM) is used to discretise the governing equations presented in Section 2.1. The FEM is 
based on the weak formulation of the governing equations. The computational domain is decomposed into finite elements 
on which a piecewise polynomial approximation is sought.
5
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3.1. Function spaces and weak formulations

In order to define the weak formulation of the problem, we first define suitable function spaces that guarantee the well-
posedness of the integrals that appear in the weak forms. For the level-set advection and reinitialisation we choose the trial 
space φ ∈ H1(	) and test space ψ ∈ H1

0(	). For velocity we choose the trial space u ∈ [
H1

D(	)
]d

, where the subscript D

denotes satisfaction of given Dirichlet boundary conditions, and corresponding test space v ∈ [
H1

0(	)
]d

. Here d represents 
the dimension of the problem. Since pressure only appears as a gradient term in the Navier-Stokes equations it is only 
defined up to an arbitrary constant. To guarantee the uniqueness of pressure we choose the following trial and test spaces:

p,q ∈ L2
0(	) =

⎧⎨
⎩ f ∈ L2(	) :

∫
	

f d	 = 0

⎫⎬
⎭ (18)

Lastly, the polymeric stress is a second order symmetric tensor so its trial and test functions τ p and S must reflect this.

τ p,S ∈
[

L2(	)
]d×d

sym
=

{
L ∈

[
L2(	)

]d×d : L = LT
}

(19)

Define the following inner products for scalar, vector and tensor functions in L2 respectively: (a,b)	 = ∫
	

ab d	, (a,b)	 =∫
	

a · b d	 and (A,B)	 = ∫
	

A : B d	. The weak formulation of Eqs. (1) and (5) is: For t ∈ (0, T ], we find (u, p, τ p) ∈[
H1

D(	)
]d × L2

0(	) × [
L2(	)

]d×d
sym such that:

b (u,q)	 = 0 (20)

(ρ ∂tu,v)	 + a (ρ u,u,v)	 = b (v, p)	 − 2c (ηs D(u),v)	 − c
(
τ p,v

)
	

+ f (v)	 (21)

(
τ p,S

)
	

+
(

λ1
�
τ p,S

)
	

+ α

(
λ1

ηp
τ 2

p,S
)

	

= 2
(
ηp D(u),S

)
	

(22)

∀(v, q, S) ∈ [
H1

0(	)
]d × L2

0(	) × [
L2(	)

]d×d
sym with u(x, 0) = u0 and τ p(x, 0) = τ p,0. We group the body force terms under a 

single operator f :

f (v)	 = (ρ g,v)	 − σ (κ∇φ,v)	 (23)

and the trilinear operator a and bilinear operators b and c are defined as follows:

a (u,w,v)	 =
∫
	

(u · ∇) w · v d	

b (u,q)	 =
∫
	

∇ · u q d	

c
(
τ p,v

)
	

=
∫
	

τ p : D(v) d	

(24)

for q ∈ L2
0(	), u, v, w ∈ [

H1
0(	)

]d
and τ p ∈ [

L2(	)
]d×d

sym . The weak formulations for Eqs. (9), (10) and the normal projection 
are as follows: For t ∈ (0, T ], we find φ(t) ∈ H1(	) such that:

(∂tφ,ψ)	 + (u · ∇φ,ψ)	 = 0 (25)

∀ψ ∈ H1
0(	) with φ(x, 0) = φ0. Then, find n� ∈ L2(	) such that:

(n�,nv)	 − (∇φ/ (|∇φ| + δ) ,nv)	 = 0 (26)

∀nv ∈ L2(	) where φ is the solution to Eq. (25) and δ is some small quantity which is added to the denominator to avoid 
division by 0. Finally, we find the reinitialised level-set function φ(τ ) ∈ H1(	) from the following:

(∂τ φ,ψ)	 + (ε∇φ − 4φ(1 − φ)n�,∇ψ)	 = 0 (27)

∀ψ ∈ H1
0(	). The initial condition for Eqs. (26) and (27) is the solution of Eq. (25). Eq. (27) is solved until steady state is 

reached (see Section 3.5).
6
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3.2. Galerkin method

Following the construction of the weak forms in Section 3.1 we formally state the finite-element approximation to the 
problem. First the computational domain 	 is partitioned into a finite set of triangular elements T with the following 
properties:

Ti ∩ T j = ∅, ∀Ti, T j ∈ T and ∪Ti∈T Ti = 	 (28)

where ∅ is the empty set and i, j ∈N . The non-boundary vertices of each cell will have a node with position vector xi for 
1 ≤ i ≤ N where N is the number of nodes. Continuous piecewise linear basis functions ξi with the property ξi(x j) = δi j are 
also defined. Consider a finite-dimensional subspace Uh of one of our infinite spaces (say H1

D(	)) from earlier. The basis 
functions ξi, 1 ≤ i ≤ N , span this subspace and as a result uh ∈ Uh can be represented as:

ui =
N∑

i=1

Uiξi(x) (29)

where the coefficients Ui are the velocity degrees of freedom. For the Navier-Stokes equations, the finite element approxi-
mation to the weak formulation is to find (uh, ph) ∈ Uh × Ph such that:

b (uh,qh)	 = 0 (30)

(ρ ∂tuh,vh)	 + a (ρ uh,uh,vh)	 = b (vh, ph)	 − 2c (ηs D(uh),vh)	 − c
(
τ p,h,vh

)
	

+ f (vh)	 (31)

∀(vh, qh) ∈ Vh × Q h . The test functions (vh, qh) ∈ Vh × Q h can be replaced by basis functions, which then allows the integrals 
to be evaluated and matrices to be constructed. This approximation is repeated for all the weak forms in Section 3.1.

3.3. Choice of finite elements

In order to guarantee a stable solution to the FE approximation of the Navier-Stokes equations, we must choose the 
pressure and velocity spaces in accordance with the Ladyzhenskaya–Babuška–Brezzi (LBB) condition.

∃βh > 0 : inf
ph∈Phuh∈Uh

sup
b (ph,uh)

‖uh‖Uh
‖ph‖Ph

≥ βh ∀h > 0 (32)

The finite dimensional subspaces Uh and Ph are spaces of continuous piecewise linear polynomials, or in set theoretic 
notation:

Ph =
⎧⎨
⎩ph ∈ C0(	) :

∫
	

ph d	 = 0, ph
∣∣

T ∈ Pk, ∀Ti ∈ T , k ∈ N0

⎫⎬
⎭ (33)

Uh =
{

uh ∈
[

C0(	)
]d : uh

∣∣
∂	

= 0, uh
∣∣

T ∈ [Pk]d , ∀Ti ∈ T , k ∈N0

}
(34)

where Pk refers to the space of polynomials of degree less than or equal to k. Pairs of finite elements with polynomial 
degrees Pk+1 − Pk satisfy the LBB condition and are known as Taylor-Hood elements. The most common choice, which 
is used in this paper, is the P2 − P1 velocity / pressure coupling (Fig. 3). The polymeric stress is approximated using 
P2 elements. In Sections 3.4.1 and 3.4.2 we will discuss the stabilisation techniques that are required in flows with high 
Weissenberg numbers. We found P1 elements were insufficient for resolving the 0.5-level-set so P2 elements were used for 
all level-set related equations. The choice of mesh resolution will be discussed in the results section but structured meshes 
are used throughout the paper.

3.4. Viscoelastic stabilisation techniques

In order to stabilise the viscoelastic constitutive equation, we introduce three different methods that will be used 
throughout this paper. For high Weissenberg numbers and large polymer concentrations the numerical solution to the 
constitutive equation grows exponentially and some form of stabilisation is necessary to obtain converged approximations.
7
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Fig. 3. a): Linear (CG1) and quadratic (CG2) basis functions for a 1D problem. b): Interpolation points on a 2D problem for three different finite-elements 
considered in this paper: CG1, CG2, DG0.

Fig. 4. Six elements of the triangulation T in which T1 and T2 have a shared boundary indicated in purple with respective interfaces normals (coloured 
red and blue). (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

3.4.1. Discontinuous Galerkin
The viscoelastic constitutive equation is a non-linear hyperbolic PDE which can give rise to steep stress gradients or 

thin boundary layers. For high Weissenberg number flows these regions of large polymeric stress become more prevalent 
in regions of high elastic deformation. One way to increase stability is to use a discontinuous Galerkin treatment of the 
boundary terms. This relaxes the continuity requirements described in Section 3.3 and allows the polymeric stress to be 
discontinuous across element boundaries. Integrate the convective term in the constitutive equation by parts over each 
element Ti and sum over all elements in the triangulation T :∑

Ti∈T

∫
Ti

((
u · ∇τ p

) : S
)

dTi = −
∑

Ti∈T

∫
Ti

(
(u · ∇) S : τ p

)
dTi +

∑
Ti∈T

∫
∂Ti

(
(u · n)τ p : S

)
dS (35)

Note: 
∫
	

= ∑
Ti∈T

∫
Ti

. The boundary integral is now expressed in terms of ‘positive’ and ‘negative’ contributions (Fig. 4), 
which refers to the two perspectives of the same cell boundary ∂Ti , since τ p is dual-valued there. The last term on the 
right hand side of Eq. (35) is reformulated as:∑

Ti∈T
∫
∂Ti

(
(u · n)τ p : S

)
dS = ∑

Ti∈T
∫
∂Ti

[(
u · n+)

τ+
p : S+ + (

u · n−)
τ−

p : S−]
dS (36)

where τ+
p and τ−

p are polymeric stresses evaluated on either side of their shared boundary. These will be distinct since 
the polymeric stress is discontinuous across elements. Of course it is true that some elements have unshared boundaries, 
namely those that have an edge which coincides with the Dirichlet boundary. We omit the unshared boundary term in 
Eq. (36) however as the boundary conditions we impose cause it to vanish anyway. In order to define the transport of 
8
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τ p across boundaries, the term 
(
u · n±)

τ±
p is approximated by a quantity known as the numerical flux. The numerical 

flux can be defined according to the characteristics of the conservation law under inspection, so if we expect information 
to be propagated downstream using information from upstream, we use a fully upwind approach. Many more choices of 
numerical flux are also possible. The numerical flux F̂ is of the following form:

F̂
(
u,n,τ p

) =
{

u
(
γ τ+

p + (1 − γ )τ−
p )

)
if u · n < 0

u
(
γ τ−

p + (1 − γ )τ+
p )

)
if u · n ≥ 0

(37)

where γ = 1 guarantees a fully upwind approach. Following the work of Pietro et al. [43], we use the upwind numerical 
flux that is formulated in terms of jumps and averages instead, which is equivalent to Eq. (37) for γ = 1:

F̂
(
u,n,τ p

) = u{τ p} + 1

2
|u · n|�τ p� (38)

where {τ p} = 1
2

(
τ+

p + τ−
p

)
and �τ p� = τ+

p n+ + τ−
p n− . Now, substituting 

(
u · n±)

τ±
p in Eq. (36) for F̂

(
u,n,τ p

) · n± the 
boundary term becomes:

∑
Ti∈T

∫
∂Ti

(
(u · n)τ p : S

)
dS =

∑
Ti∈T

∫
∂Ti

(
u{τ p} + 1

2
|u · n|�τ p�

)
: �S� dS (39)

We are now left with the following expression:∫
	

((
u · ∇τ p

) : S
)

d	 = −
∫
	

(
(u · ∇) S : τ p

)
d	 +

∑
Ti∈T

∫
∂Ti

(
u{τ p} + 1

2
|u · n|�τ p�

)
: �S� dS (40)

We substitute Eq. (40) back into the weak form of the constitutive equation, then integrate by parts the first term on 
the right hand side of Eq. (40). This will retrieve the original advective term and a boundary term vanishes due to the 
incompressibility condition. Altogether this yields the following discontinuous Galerkin approximation to the constitutive 
equation:

(
τ p,S

)
	

+
(

λ1
�
τ p,S

)
	

+
∑

Ti∈T

(
λ1

(
u{τ p} + 1

2
|u · n|�τ p�

)
, �S�

)
∂Ti

+ α

(
λ1

ηp
τ 2

p,S
)

	

= 2
(
ηp D(u),S

)
	

(41)

3.4.2. Streamline upwinding
An alternative to DG is the streamline upwinding (SU) method [44]. This method augments the test functions with an 

artificial diffusion term in order to stabilise the convective term:

Ŝ = S + γ
u

|u| · ∇S (42)

where the SU parameter γ will be specified in Section 4.2. The method was introduced and applied to the incompressible 
Navier-Stokes equations by Brooks and Hughes [17] and to the viscoelastic constitutive equation by Marchal and Crochet 
[44]. Due to the presence of oscillatory stress fields near steep stress boundary layers Marchal and Crochet [44] applied the 
augmented test function to the convective term only. Even though this results in an inconsistent formulation and we are 
left with a residual, the increase in the reliability of the scheme is significant. The resulting weak form of the constitutive 
equation is as follows:

(
τ p,S

)
	

+
(

λ1
�
τ p,S

)
	

+
(

γ λ1

|u| u · ∇τ p,u · ∇S
)

	

+ α

(
λ1

ηp
τ 2

p,S
)

	

= 2
(
ηp D(u),S

)
	

(43)

3.4.3. DEVSS-G
The last stabilisation method that is employed is a variant of the EVSS class of techniques that introduces artificial 

ellipticity to the momentum equation. A summary of this method is available in Baaijens [18] and has been considered for 
the case of viscoelastic multiphase flow by Chung et al. [22]. The momentum equation includes forces due to Newtonian 
stress through the term ηs∇ · D(u) and forces due to elastic stress through the term ∇ · τ p . For highly elastic viscoelastic 
fluids, the first term is small when compared to the latter, leading to a reduced elliptic contribution in the momentum 
equation. One way to circumvent this is to consider the following approximation of the Cauchy stress tensor:

σ ≈ −pI + 2ηsD(u) + ηθ

(
2D(u) − (G + GT )

)
(44)

(G − ∇u,R)	 = 0 (45)
9
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where ηθ = 1 − ηs . In Eq. (44) we add the difference between two different approximations to the velocity gradient tensor, 
thereby increasing the ellipticity. In the continuous limit, the L2 projection G calculated in Eq. (45) is equivalent to ∇u so 
the extra terms cancel. However, at the discrete level the projection is not exact and we have extra elliptic terms in the 
momentum equation, which help balance the hyperbolic characteristics created through the inclusion of polymeric stress.

3.5. Temporal discretisation

We use 2nd order Crank-Nicolson and 1st order implicit schemes for the advection and reinitialisation of the level-
set function respectively. The conservation of mass and momentum equations are linked temporally through the use of a 
projection algorithm. The constitutive equation follows similarly to the level-set equations, using a 2nd order Crank-Nicolson 
scheme.

3.5.1. Navier-Stokes equations
Due to the presence of the incompressibility condition and the fact that there is no equation of state for pressure, we 

must find a way of coupling the Navier-Stokes equations so as to produce a consistent numerical method. In this paper we 
use a variation on Chorin’s classic projection method, the Incremental Pressure Correction Scheme (IPCS) of Goda [45]. In this 
scheme we first neglect the incompressibility condition and solve the momentum equation to determine an intermediate 
velocity u∗:

1

�t

(
ρ (u∗ − un),v

)
	

+ a
(
ρ un,u∗,v

)
	

= b (v, pn)	 − 2c
(
ηs D(u∗),v

)
	

− c
(
τ p,n,v

)
	

+ f (v)	 (46)

The original method used a time-averaged velocity U = 1
2 (u∗ + un) in the viscous term but we found better convergence 

with the fully implicit choice of u∗ .
Then, solve a Poisson equation for the pressure correction, simultaneously ensuring ∇ · un+1 = 0:

(∇ (pn+1 − pn) ,∇q)	 = − 1

�t

(
ρ ∇ · u∗,q

)
	

(47)

Lastly, update the velocity field:

(
(un+1 − u∗),v

)
	

= −�t

(
1

ρ
∇(pn+1 − pn),v

)
	

(48)

3.5.2. Constitutive equation
We use a 2nd order Crank-Nicolson scheme for temporal discretisation:

1

�t

(
λ1 (τ p,n+1 − τ p,n),S

)
	

+ 1

2
Tn + 1

2
Tn+1 + α

(
λ1

ηp
τ 2

p,n,S
)

	

= 2
(
ηp D( un),S

)
	

(49)

where Tn is defined as:

Tn = T
(
un,τ p,n,S

) = M
(
λ1 un,τ p,n,S

)
	

− N
(
λ1 un,τ p,n,S

)
	

+ (
τ p,n,S

)
	

(50)

and the trilinear operators M and N are defined as follows:

M
(
u,τ p,S

)
	

=
∫
	

(
u · ∇τ p

) : S d	 (51)

N
(
u,τ p,S

)
	

=
∫
	

(
(∇u)T · τ p + τ p · (∇u)

)
: S d	 (52)

3.5.3. Level-set equations
For the level-set advection we a 2nd order Crank-Nicolson scheme as well:

1

�t

(
φn+1 − φn,ψ

)
	

+ 1

2

(
u · ∇φn,ψ

)
	

+ 1

2

(
u · ∇φn+1,ψ

)
	

= 0 (53)

It is important to note again that the normal projection step in Eq. (26) comes immediately before the reinitialisation step 
and not simultaneous with it, meaning the same normal vector is used throughout the reinitialisation. A simple 1st order 
implicit scheme was found to be suitable for advancing the reinitialisation equation through a pseudo time-step defined by 
�τ :

1 (
φn+1 − φn,ψ

)
	

+ (
ε∇φn+1 − 4φn+1(1 − φn+1)n�,∇ψ

)
	

= 0 (54)

�τ

10
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where Eq. (54) is solved recursively until the following condition is satisfied:

‖φn+1 − φn‖2

�τ
< δ (55)

where δ is chosen to be some small quantity.

3.6. Non-dimensionalisation

Here we summarise the dimensionless form of the Navier-Stokes equations used in this paper. A similar non-
dimensionalisation procedure to that in Venkatesan et al. [28] is used with the following scales and dimensionless pa-
rameters:

x = x̄L, u = ūU , t = t̄
L

U
, ρ = ρ2ρ̄, p = ρ2U 2 p̄, τ p = η0,2U

L
τ̄ p

Fr = U 2

gL
, Re2 = ρ2U L

η0,2
, Wi2 = λ1U

L
, Eo = ρ2 gL2

σ

β2 = ηs,2

η0,2
, ηε = η0,2

η0,1

Re =
{
ηεRe2 if x ∈ 	1

Re2 if x ∈ 	2
Wi =

{
0 if x ∈ 	1

Wi2 if x ∈ 	2

β =
{

1 if x ∈ 	1

β2 if x ∈ 	2

(56)

where Fr is the Froude number, Re is the Reynolds number, Wi is the Weissenberg number, Eo is the Eötvös number and 
β and ηε are viscosity ratios useful in the non-dimensionalisation. In our simulations Fr = 1 so U = √

gL where U is the 
velocity scale, L is the length scale and g is the acceleration due to gravity. The equations are scaled relative to phase 2. The 
total viscosity of the fluid is η0,2 = ηs,2 + ηp,2 which is the sum of the solvent and polymeric viscosities respectively. The 
non-dimensional equations governing the flow of an incompressible viscoelastic fluid are (bar over dimensionless quantities 
has been removed):

∇ · u = 0 (57)

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p + 2β

Re
∇ · D(u) + 1

Re2
∇ · τ p + F (58)

τ p + Wi
�
τ p + αWi

(1 − β)
τ 2

p = 2 (1 − β)D(u) (59)

where F = ρ

Fr2 g − 1
Eo ∇φ. The dimensional density ρ remains in the dimensionless momentum equation but is now a non-

dimensional density ratio, scaled according to phase 2. Using this set of dimensionless equations, we construct a new weak 
from that includes the stabilisation techniques introduced in Section (3.4). The set of equations that follow are used for all 
results generated in Section 4. For t ∈ (0, T ], find (u, p, G, τ p) ∈ [

H1
D(	)

]d × L2
0(	) × [

H1
D(	)

]d×d × [
L2(	)

]d×d
sym such that:

(ρ ∂tu,v)	 + a (ρ u,u,v)	 = b (v, p)	 − c
(

2(β + θ)

Re
D(u),v

)
	

+ c
(
θ G + GT ,v

)
	

− c
(

1

Re2
τ p,v

)
	

+ f (v)	

(60)

b (u,q)	 = 0 (61)

(G − ∇u,R)	 = 0 (62)(
τ p,S

)
	

+
(

Wi
�
τ p,S

)
	

+ (
Wi

(
Stab

(
u,τ p,S

))) + α

(
Wi

(1 − β)
τ 2

p,S
)

	

= 2
(
(1 − β)(G + GT ),S

)
	

(63)

∀(v, q, R, S) ∈ [
H1

0(	)
]d × L2

0(	) × [
H1

D(	)
]d×d × [

L2(	)
]d×d

sym with u(x, 0) = u0, p(x, 0) = p0 and τ p(x, 0) = τ p,0. We also 
have the body force terms grouped under a single operator:

f (v)	 =
(

ρ

Fr2
g,v

)
	

−
(

1

Eo
κ∇φ,v

)
	

The term denoted by Stab refers to the additional stabilising term that is unique to either the DG or SU method:
11
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Stab
(
u,τ p,S

) =
⎧⎨
⎩

∑
Ti∈T

(
u{τ p} + 1

2 |u · n|�τ p�, �S�
)
∂Ti(

γ
|u|

(
u · ∇τ p

)
,u · ∇S

)
	

(64)

The solution procedure is summarised in the pseudo-code in Algorithm 1.

Algorithm 1
Initialise φn , un , τ p,n , Gn and pn . Set t = 0, q = 0.
while t < T do

q = q + 1
procedure Navier-Stokes Equation(φn , τ p,n , un , pn , Gn)

Solve the two-phase Navier-Stokes equations by IPCS method.
return un+1, pn+1

end procedure
procedure Velocity Gradient Projection(un)

Project velocity gradient tensor.
return Gn

end procedure
procedure Constitutive Equation(φn , τ p,n , un , Gn)

Solve the two-phase viscoelastic constitutive equation.
return τ p,n+1

end procedure
procedure Level-set Advection(φn , un+1)

Advect the level-set in the direction of un+1.
return φ∗

n+1
end procedure
un ← un+1

pn ← pn+1

τ p,n ← τ p,n+1

if q mod qr = 0 then
procedure Normal Projection(φ∗

n+1)
Project interface normal.
return n�

end procedure
for n ∈ (1, nr) do

procedure Level-set Reinitialisation(φ∗
n+1, n�)

Reinitialise level-set until steady state is reached.
return φn+1

end procedure
end for

else
φn+1 ← φ∗

n+1
end if
φn ← φn+1

end while

3.7. Code

All code used to generate the data presented in this paper is available on the lead author’s Github [36] page. It is written 
using the Python interface of FEniCS [35], an open-source finite-element library written in the C++ programming language. 
FEniCS allows for simple construction of weak formulations through its Unified Form Language (UFL) package and highly 
optimized solution algorithms through its C++ backend. The code itself is object-oriented, allowing for rapid calculations 
and easy handling of data. Parameters can be read in from a parameter file and all post-processing data is stored in the 
users file space. All matrix-vector systems are solved using GMRES, an iterative Krylov linear system solver. The default 
FEniCS preconditioner is an LU factorization. When we solve a mixed Stokes system for the viscoelastic benchmark problem 
in Section 4.2 we use a direct LU solver due to convergence problems with an iterative solver.

4. Numerical results

In this section benchmark problems are considered. In Section 4.1 we investigate a gas bubble rising in a Newtonian 
bulk fluid. The motion of the bubble is driven by buoyancy forces and the interface deforms due to interfacial tension, 
caused by stress at the boundary between phases. We will consider the two benchmark cases studied by Hysing et al. [42], 
one which exhibits moderate deformation and another which exhibits large deformation. Then in Section 4.2 we consider a 
viscoelastic benchmark problem for the case of single-phase Stokes flow past a cylinder in a channel. By disregarding inertial 
forces and a multiphase framework, we provide an easy way of discerning the suitable implementation of a viscoelastic 
constitutive equation and its associated stabilisation techniques. Lastly we consider the case of a rising Newtonian bubble 
in a viscoelastic bulk fluid in Section 4.3, using the Oldroyd-B and Giesekus models. We compare our 2D planar model to 
12
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Table 1
Table of material parameters for test cases taken from Hysing et al. [42].

ρG ρL μG μL σ ρL/ρG μL/μG g ReL Eo

Case 1 100 1000 1 10 24.5 10 10 0.98 35 10
Case 2 1 1000 0.1 10 1.96 1000 100 0.98 35 125

Table 2
The meshes used in Section 4.1 with their associated number of cells, 
minimum cell length and degrees of freedom (DOF) for each variable. The
Mc mesh is not used in any computations but is provided for illustration 
purposes to show the structure of the mesh in Fig. 5.

Cells h p u τp

Mc 12800 0.0250 6521 51682 51200
M1 51200 0.0125 25841 205762 204800
M2 204800 0.00625 102881 821122 819200
M3 819200 0.003125 410561 3280642 3276800

the limited available work from the literature, and work with much larger polymer concentrations too. We then perform 
a parametric study, exploring how the dynamics of the viscoelastic fluid and Newtonian bubble change with the relative 
importance of dimensionless quantities, namely the Eötvös and Weissenberg numbers, and the Giesekus mobility factor.

4.1. Benchmark: two-phase Newtonian flow

We validate our Newtonian multiphase model by making comparisons with the wealth of available literature for the 
2D rising bubble benchmark case. In particular, the paper by Hysing et al. [42] reports on the findings of three different 
pieces of software. The ‘TP2D’ and ‘FreeLIFE’ codes employ an Eulerian level-set method while the ‘MooNMD’ code used an 
arbitrary Lagrangian-Eulerian (ALE) approach. We omit the ‘TP2D’ data as numerically it is effectively the same as ‘FreeLIFE’ 
but its quantitative behaviour, especially for Case 2, is very different. The computational domain is 	(t) = [0,1] × [0,2]. The 
bubble’s initial position is xi = (0.5,0.5) and has radius r = 0.25. Slip boundary conditions are employed on the left and 
right walls and no-slip conditions on the top and bottom walls:

u = 0 if x ∈ �D (65)

u · n = 0 and t · σ · n = 0 if x ∈ �N (66)

where �D and �N correspond to the solid boundaries labelled in Fig. 5. Interface boundary conditions (16) are enforced by 
their inclusion in the weak formulation. The relevant material parameters can be found in Table 1. The interface thickness 
and reinitialisation pseudo time-step are chosen to be ε = 1.5�x and �τ = 0.1�x respectively, where �x is the minimum 
cell size. Four different bubble metrics: shape, centre of mass xc , rise velocity Ur and circularity C are used for quantitative 
comparison purposes:

xc =
∫
	2(t) x d	∫
	2(t) d	

, Ur =
∫
	2(t) u d	∫
	2(t) d	

, C = Pc

Pb
= πdb∫

�(t) dS
(67)

We also compare the final bubble shape against the reference data. The relevant material parameters are given in Table 1. 
Three different meshes are used, each with increasing levels of refinement, detailed in Table 2.

4.1.1. Case 1
Fig. 6 compares the predictions obtained using the scheme described in this paper with 2 of the 3 sets of benchmark 

data provided by Hysing [42] for Case 1. Excellent agreement is observed with the benchmark results and convergence is 
attained with all of the bubble metrics. Quantitatively the bubble forms an ellipse at around T = 1, with the cap widening 
until around T = 2. Subsequently the bubble maintains this shape while continuing to rise for the rest of the simulation 
time. Due to the small Eötvös number, surface tension effects are small and the bubble undergoes only moderate interfacial 
deformation in response to buoyancy forces.

4.1.2. Case 2
The corresponding predictions of the bubble metrics for Case 2 (see Table 1) are presented in Fig. 7. The Reynolds and 

Eötvös numbers are both larger than in Case 1. This bubble lies within the ellipsoidal cap regime which is characterised by 
the bubble inverting in on itself, then surface tension forces acting to correct the bubble shape while thin trailing filaments 
are left behind in the wake. Bubble breakup can be exhibited but as for the ‘MooNMD’ code, this behaviour is not predicted. 
Similar to Case 1, the centre of mass and rise velocity metrics agree well with the benchmark data while the slight difference 
13
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Fig. 5. Schematic of the rising gas bubble simulation with the level-set function φ plotted with its accompanying colour bar. We indicate the direction of 
the normal vector n� the location of the Dirichlet �D and Neumann �N boundary conditions, plus the direction of gravity. The mesh on the left hand side 
is a coarse example of the structure of the mesh we use for the results in Section 4.1.

in circularity is due to the different filament shapes. Results mesh M3 resolves the principal flow characteristics and captures 
the predicted shape for a bubble in this regime. The trailing filament behaviour can be seen as a combination of both the 
‘MooNMD’ and ‘FreeLIFE’ results due to the long thin filament and larger nodule at the edge. It is worth noting that the 
frequency of reinitialisation has a large effect on the accuracy of the filaments modelled. This is because the cusps have 
sharp transition zones. In both cases we perform three reinitialisations per time step so a smaller time-step will require a 
greater number of reinitialisations.

4.2. Benchmark: single-phase viscoelastic flow

In order to validate the suitability of our numerical scheme for solving viscoelastic constitutive equations, we will con-
sider the popular benchmark problem of Oldroyd-B flow passed a confined cylinder in a channel. There is a wealth of data 
available for this case, for example in Fan et al. [46], Alves et al. [47] and Claus et al. [48], all of which are used as a means 
of comparison. Since this benchmark case is only utilised in order to confirm the accuracy of the viscoelastic constitutive 
equation (and its associated stabilisation techniques), we consider creeping flow conditions, where:

∇ · u = 0

−∇ · σ = F
(68)

Since this is a single-phase system, all material parameters are no longer phase dependent and the level-set part of the 
algorithm is not required. We solve the equations in Eq. (68) as a mixed system, so we couple our finite elements together 
into a dual space and approximate velocity u and pressure p simultaneously. The polymeric stress is advanced in time 
according to Section 3.5.2 and we use the SU and DEVSS-G stabilisation techniques detailed in Sections 3.4.2 and 3.4.3. The 
SU parameter is chosen to be γ = 0.05. We enforce inflow conditions on the left, outflow conditions on the right, no-slip 
conditions on the top wall and cylinder surface and also a symmetry condition on the bottom wall:
14
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Fig. 6. Comparison of the predicted centre of mass, rise velocity, circularity and bubble shape for Case 1 in Table 1 with those generated the ‘MooNMD’ and 
‘FreeLIFE’ pieces of software [42].

u = 0 if x ∈ �T and u = 0 if x ∈ �C

u · n = 0 and t · σ · n = 0 if x ∈ �T

u = (u,0)T and τ p =
(

τxx τxy

τxy 0

)
if x ∈ �L

∂u

∂n
= 0 and p = 0 if x ∈ �R

(69)

where u = 3
2

(
1 − y2

4

)
, τxx = 2Wi (1 − β)

(
∂u
∂ y

)2
and τxy = (1 − β) ∂u

∂ y . A schematic of these boundary conditions and the 
structure of the meshes used is available in Fig. 8. More detailed information about the simulation can be found in Claus et 
al. [48]. We set β = 0.59, θ = 1 − β and vary the Weissenberg number between 0.1 and 1. We found a stable time-step to 
be �t = 0.005 for all meshes used. The parameter we measure is the drag coefficient on the surface of the cylinder, given 
below:

C D =
∫
�C

σ · nC · e1 dS (70)

where nC is the unit normal to the surface of the cylinder. There are some observations made by Claus et al. [48] that we 
can concur with here. Namely, a very high resolution is required in order to obtain converged values for C D . This is due 
to the steep polymeric stress gradients adjacent to the boundary of the cylinder, the magnitudes of which only get larger 
and thus harder to resolve with increasing Weissenberg number. In addition, stabilisation techniques are crucial to obtain 
converged solutions as there exists a critical Weissenberg number for 0.7 < Wi < 0.8 upon which polymeric forces in the 
Navier-Stokes equations dominate and our simulations diverge. Claus also notes that simulations diverge with increasing 
spatial refinement, possibly due to unphysical predictions made by the viscoelastic model or the propagation of numerical 
errors. We have found the same issue, but like Claus our simulations seem to converge to a final value drag value before 
diverging. Convergence is evident when looking at Table 4 and Fig. 9 which tabulate and display the terminal drag values 
15
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Fig. 7. Comparison of the predicted centre of mass, rise relocity, circularity and bubble shape for Case 2 in Table 1 obtained with those generated by the 
‘MooNMD’ and ‘FreeLIFE’ pieces of software [42].

Table 3
The meshes used in Section 4.2 with their associated number of cells, min-
imum cell length and degrees of freedom (DOF) for each variable. The VMc
mesh is not used for approximation, rather just for illustration of the struc-
ture of the mesh in Fig. 8.

Cells h p u τp

VMc 14440 0.03336 7430 58598 117196
VM1 254370 0.00396 127437 1018508 2037016
VM2 1584040 0.00317 794210 6344918 12689836
VM3 2284840 0.00264 1145050 9149878 18299756

for our range of Weissenberg numbers. Our scheme performs very well for low Weissenberg numbers, but losing some 
accuracy as a result of increased polymeric activity in the higher Weissenberg number regime. The observed convergence to 
the values provided in the literature successfully validate the implementation of our viscoelastic flow solver, enabling us to 
combine this and the results in Section 4.1 together in Section 4.3.

4.3. Two-phase viscoelastic flow

In order to fully explore the case of a rising gas bubble in a viscoelastic fluid, we will analyse the effect of changing 
various material parameters and dimensionless numbers associated with the bulk fluid. These include the polymer con-
centration, the Weissenberg number, the Eötvös number and the mobility factor in the case of the Giesekus model. We 
analyse the velocity field and shape of the bubble in order to identify and characterise bubble phenomena. We then look at 
polymeric stress gradients in order to better determine what causes the phenomena.
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Fig. 8. Structured mesh used for the single-phase viscoelastic flow benchmark case in Section 4.2. The mesh used corresponds to VMc in Table 3.

Table 4
Table comparing different values for the drag on the surface of a cylinder for Weis-
senberg numbers between 0 and 1. A * next to a drag value indicates the solution 
did not converge for all time, but converged to an apparent drag value before 
breaking down.

Wi VM1 VM2 VM3 [46] [47] [48]

0.1 130.353 130.355 130.358 130.36 130.355 130.364
0.2 126.618 126.619 126.622 126.62 126.32 126.626
0.3 123.190 123.190 123.190 123.19 123.210 123.192
0.4 120.599 120.597 120.595 120.59 120.607 120.593
0.5 118.847 118.842 118.829 118.83 118.838 118.826
0.6 117.819 117.808 117.794 117.77 117.787 117.776
0.7 117.387 117.366 117.331 117.32 117.323 117.316
0.8 117.457 117.420 117.404 117.36 117.357 117.368*
0.9 117.975* 117.940* 117.897* 117.79 117.851 117.812*
1 118.783* 118.696* 118.636* 118.49 118.518 118.550*

Fig. 9. Our calculated drag values C D for their respective Weissenberg numbers Wi, using the meshes listed in Table 3. We plot our results against the 
aforementioned studies from the literature. We include a zoomed inset axis to show the convergence properties for the drag values at higher Weissenberg 
numbers.

4.3.1. Polymer concentration
The polymer concentration c of the viscoelastic fluid contained in the domain 	2 is the amount by weight of polymer 

which has been dissolved in the Newtonian solvent. It is varied in order to determine how the presence of more or less 
polymer in the fluid affects a bubble’s rise, rather than changing the qualitative characteristics of the fluid through parame-
17
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Table 5
Table of material parameters from Vahabi et al. [23] for the associated figures 
in Section 4.3.1. The star indicates that we vary the viscosity ratio β by varying 
the polymer concentration c.

ρL/ρL Reη Wi Eo g α β

Vahabi et al. [23] 0.1 1.419 8.08 24.86 980 0.1 *

ters such as the Weissenberg number Wi. Given a polymer concentration c, the solvent and polymeric viscosities are defined 
according to the following mass fraction relations:

ηs =
(

1

1 + c

)
η0, ηp =

(
c

1 + c

)
η0 (71)

Vahabi et al. [23] employ a polymer concentration of c = 13.286 wt.% for Figure 6 in their paper investigating the use 
of the WC-SPH method on viscoelastic rising bubbles. Vahabi et al. [23] obtained the parameters for their work from 
an earlier study conducted by Zainali et al. [24], who used another SPH based method, namely the I-SPH method. We 
explore how bubble shape changes for a standardised c = 13 wt.% (similar to the c = 13.286 wt.% chosen in [23] and 
[24]) and then explore the influence of c on bubble dynamics by performing simulations for c = 6.5 wt.% and c = 26 wt.%. 
In the dimensionless case, a polymeric concentration of c = 26 wt.% will correspond to a viscosity ratio of β = 0.03698, 
an incredibly small and almost unphysical value. The effect this has on the momentum equation is a drastic reduction in 
elliptic Newtonian viscosity generated by β

Re ∇ ·D, thus acting to increase the hyperbolic character of this equation. This large 
increase in viscoelastic stresses necessitates the use of stabilisation techniques, so we employ the DG and DEVSS-G methods 
described in Sections 3.4.1 and 3.4.3. While the work of Vahabi et al.’s [23] expanded on Zainali et al. [24] by correctly 
predicting a trailing cusp shape, large polymer concentrations were not considered, since no stabilisation techniques were 
considered in either paper.

The computational domain is the same as that used by Vahabi et al. (Figure 1 [23]), spanned by the co-ordinates [0,2] ×
[0,4] and the centre of the bubble is initially at xc = (1,1) with radius r = 0.3. Material parameters are given in Table 5. 
As we observed in Section 4.1, a Newtonian bubble will rise due to buoyancy forces and deform according to interfacial 
tension forces. For smaller Reynolds numbers the bubble will deform to become a ellipsoid and for high Reynolds numbers 
a transition from the ellipsoidal to the spherical cap regime is observed. This is due to inertial forces overcoming the forces 
due to surface tension on the interface. The same happens when the bulk fluid is viscoelastic, except that it is now the 
polymeric stress term which heavily influences the shape of the interface as it deforms, also by overcoming the interfacial 
forces. In Fig. 10 the bubble has only just begun to rise so Newtonian forces are still very present in the fluid, due to 
polymeric forces taking time to accumulate. The values of the polymeric stress tensor τ p are small (when compared to 
Figs. 11 and 12) so Newtonian forces are allowed to dominate, causing the bubble to rise similar to Case 1 in Section 4.1.

Fig. 11 captures a crucial moment in the simulation as we observe the viscous and viscoelastic stresses overcome the in-
herent surface tension forces of the bubble, leading to deformation of the interface. Comparing the τxx and τyy components 
of τ p , between Figs. 10 and 11, the polymeric stress regions become focused at stagnation points on opposite ends of the 
interface, with values almost twice that in the T = 0.13 case compared to the T = 0.05 case. This displays the transition 
from Newtonian to viscoelastic rise as the increase in extensional forces due to polymer concentration leads to the forma-
tion of a trailing cusp shape. The viscoelastic behaviour continues as time progresses, Fig. 12 shows the profile at T = 0.2
and we can see the trailing cusp has extended even more due to the τyy stress moving down to the edge of the cusp and 
increasing in magnitude.

We also observe the onset of the negative wake phenomenon that is ubiquitous for viscoelastic fluids with a high 
enough polymer concentration c. In Fig. 11, subplot 2A can be seen to be forming the classic conical shaped region of flow 
in the wake of the bubble, where an inversion in the velocity field directly beneath the bubbles cusp contrasts with an 
upward flow from buoyancy forces to create dual vortices either side of the wake. This effect is decreased and increased for 
c = 6.5 wt.% and c = 26 wt.% respectively, where a change in the amount of polymer dissolved in the fluid results in a change 
of polymeric phenomenological activity. The appearance of a negative wake is not affected by rising polymer concentrations 
in our case, however its duration and intensity is. We can observe in Fig. 13 that at time T = 0.13, when the negative wake 
is most active, that the interface is extended in both directions, increasingly more so for rising polymer concentration. As 
the bubble continues to rise the negative wake begins to disappear until the velocity field is more akin to that of a bubble 
rising in a Newtonian fluid as the viscoelastic stresses have relaxed.

4.3.2. Parametric study
In the previous section we considered the Oldroyd-B constitutive equation for the purposes of extending on the work 

of Vahabi et al. [23] and Zainali et al. [24]. While the model is suitable for the parameters considered, a major drawback 
is the presence of a singularity in the extensional viscosity as a function of shear rate. This results in the model giving 
unphysical predictions for certain values of the shear rate. This can be seen in Fig. 2. The Giesekus model which is used in 
the succeeding section, has no such singularity and is much more reliable for use in simulations with variable shear rate. 
We will analyse the change in bubble shape and bubble metrics for varying Eötvös and Weissenberg number, and also the 
Giesekus mobility factor - a parameter that changes the amount of shear thinning behaviour in the viscoelastic fluid.
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Fig. 10. Comparison of polymer concentrations (Top: c = 6.5wt.%, Middle: c = 13wt.%, Bottom c = 26wt.%). Overset bubble interface φ0.5 with from left 
to right: velocity magnitude |u|, x-normal polymeric stress τxx , polymeric shear stress τxy , y-normal polymeric stress τyy . Snapshots taken at T = 0.05
simulation time.

4.3.3. Weissenberg number
The Weissenberg number is the dimensionless group defined to be the ratio of the time taken for the fluid to relax back 

to equilibrium and the characteristic time scale of experiment causing the deformation. It allows us to quantify the relative 
importance of elastic to viscous forces, so a fluid with Wi � 1 behaves much more like a viscous fluid whereas for Wi � 1
the response to an applied deformation is much more akin to an elastic solid. In Fig. 14 we examine the effect of varying the 
Weissenberg number for values Wi = 4, Wi = 8 and Wi = 16 on the final bubble shape and associated bubble metrics. For the 
bubble shape we immediately notice an increase in Weissenberg number correlates to an increase in the rise velocity and 
consequently the bubble’s final position. The peak in the rise velocity is also delayed for increasing Weissenberg number, 
due to the viscoelastic stresses taking longer to build up. The same behaviour is observed by Pillapakkam et al. [27] when 
they increased the dimensional relaxation time parameter λ1 from 0.1 to 0.2. This same mechanism causes the higher final 
position, as the bubbles with a larger Weissenberg number spend longer in the semi-Newtonian regime with the dominant 
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Fig. 11. Comparison of polymer concentrations (Top: c = 6.5wt.%, Middle: c = 13wt.%, Bottom c = 26wt.%). Overset bubble interface φ0.5 with from left 
to right: velocity magnitude |u|, x-normal polymeric stress τxx , polymeric shear stress τxy , y-normal polymeric stress τyy . Snapshots taken at T = 0.13
simulation time.

forces on the interface being viscous and interfacial, rather than viscoelastic. However, when the viscoelastic stresses have 
been built up, we see they are of a much larger intensity, indicated by the increased length of the tail of the bubble for 
larger Weissenberg number. We also observe the thinning of the tail for high Wi, possibly indicating that a reduction in 
drag on the interface also leads to a higher final position.

4.3.4. Eötvös number
The Eötvös number is the ratio of gravitational forces and forces due to surface tension, with a large Eötvös number 

resulting in relatively negligible interfacial forces. Fig. 15 displays the effect of Eo on the centre of mass, rise velocity, 
circularity and shape of the bubble. For small Eötvös numbers, the surface tension forces are strong and the bubble interface 
is not easily deformed by viscous and viscoelastic stresses. As can be seen in Fig. 15, there is no visible tail for Eo = 5 and it 
only begins to form properly for Eo = 10. Bubbles in this regime are more akin to those examined in Section 4.1 since they 
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Fig. 12. Comparison of polymer concentrations (Top: c = 6.5wt.%, Middle: c = 13wt.%, Bottom c = 26wt.%). Overset bubble interface φ0.5 with from left 
to right: velocity magnitude |u|, x-normal polymeric stress τxx , polymeric shear stress τxy , y-normal polymeric stress τyy . Snapshots taken at T = 0.2
simulation time.

are in the ellipsoidal regime. Venkatesan et al. [28] mention in their paper that a critical Capillary number (Ca = Eo/Re) 
exists at which the bubble will form a trailing cusp. We observe that the critical Eötvös number is in the range 5 < Eo < 10
in our simulations. We also observe only a minor change in bubble shape between Eo = 35 and Eo = 500.

4.3.5. Mobility factor
Extensional stresses become very large in the wake of a rising bubble. The Giesekus model [49] is able to predict shear-

thinning and extensional-hardening and therefore is more suitable for predicting the dynamics of bubbles. The mobility 
factor α controls the shear-thinning behaviour of the bulk fluid. Fig. 16 displays the effect of varying α on the centre of 
mass, rise velocity, circularity and shape of the bubble. Increasing α increases the degree of shear thinning behaviour in the 
bulk fluid, which decreases the viscous and viscoelastic stresses on the bubbles interface. As a result, there is less resistance 
to flow and the bubble is able to rise faster and the final position is higher. Even though the viscoelastic stresses around 
the tail are smaller for larger α, the tail will still extend because the bubble rises faster, explaining the drop in circularity.
W. Doherty, T.N. Phillips and Z. Xie Journal of Computational Physics 477 (2023) 111936
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Fig. 13. Comparison between bubble shapes for times T = 0.05, T = 0.13 and T = 0.2.

Fig. 14. Influence of Wi on bubble metrics at time T = 0.3. All other parameters are kept the same as the c = 13wt.% polymer concentration case from 
Section 4.3.1. Here t refers to dimensionless time.
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Fig. 15. Influence of Eo on bubble metrics at time T = 0.13. All other parameters are kept the same as the c = 13wt.% polymer concentration case from 
Section 4.3.1. Here t refers to dimensionless time.

5. Conclusions and future research

In this paper a stabilised finite element formulation for viscoelastic multiphase flow has been presented in which the 
conservative level-set method is used to define the interface between the phases. To the best of our knowledge, this is 
the first implementation of this technique to this class of flows. Material parameters were made to depend on the conser-
vative level-set function to provide a distinction between the phases of flow. A viscoelastic constitutive equation is used 
to evolve the polymeric stress tensor. A numerical scheme based on the finite-element method was then constructed for 
the non-dimensional version of the problem. An open-source repository was created which gives access to the code used 
to generate the results in the paper [36]. This provides a useful tool for the multiphase viscoelastic flow community and 
further exemplifies the efficacy of FEniCS as a finite-element library.

The numerical scheme is applied to several benchmark problems to assess its convergence and stability properties. 
Benchmark problems with increasing levels of difficulty are considered. First, the conservative level-set method was imple-
mented for the two-phase Newtonian benchmark problem of a 2D rising bubble. Excellent quantitative agreement with the 
literature for bubble metrics such as centre of mass, rise velocity and circularity was obtained for large density and viscosity 
ratios. The final shape of the bubble for the inertia dominated case had trailing filaments that were resolved to a very high 
degree. The second benchmark problem was chosen to assess the viscoelastic component of the scheme and, in particular, 
its associated stabilisation techniques. The benchmark case of single-phase viscoelastic flow past a cylinder in a channel 
was considered. Excellent agreement with results from the literature for low Weissenberg numbers was observed. For larger 
Weissenberg numbers we have good agreement and most importantly, convergence to values from contemporary research. 
We concur with the conclusion that accurate values for high Weissenberg numbers are heavily dependent on spatial refine-
ment. We also observe the absolute necessity of stabilisation techniques like SU and DEVSS-G for stable simulations in the 
long time limit.

The final benchmark problem combined the multiphase and viscoelastic components of the scheme to simulate a rising 
gas bubble in a viscoelastic fluid in 2D. The numerical results were compared with the limited number of results in the 
literature. The DG and DEVSS-G stabilisation techniques allowed us to model polymer concentrations as large as c = 26wt.%
and Weissenberg numbers up to Wi = 16. By examining each component of the polymeric stress tensor we were able to 
explain the mechanical mechanism that leads to the deformation of the bubble interface in detail. In particular we observed 
the accumulation of τyy polymeric stresses in the tail, causing the elongated profile of the bubble. By taking snapshots of 
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Fig. 16. Influence of α on bubble metrics at time T = 0.25. All other parameters are kept the same as the c = 13wt.% polymer concentration case from 
Section 4.3.1. Here t refers to dimensionless time.

the bubble’s rise over the course of the simulation we identified when phenomenological activity such as the negative wake 
formed. Lastly we performed a parametric study where we analysed the various dimensionless quantities associated with 
Oldroyd-B and Giesekus models such as the Weissenberg and Eötvös numbers. By also modelling the Giesekus mobility 
factor we gained insight into how the shear-thinning behaviour of the viscoelastic fluid can affect a bubble’s rise.

In future work we would like to investigate the conditions under which a jump in the rise velocity for a viscoelastic 
rising bubble is achieved. This behaviour is unattainable using the planar model implemented in the current framework and 
requires either a fully 3D model or an axisymmetric formulation to explore this further. In addition, the generalisation to 
three or more phases and multiphase fluid-structure interaction applications [50] are further priorities.
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