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Neural Radiance Fields from Sparse RGB-D
Images for High-Quality View Synthesis

Yu-Jie Yuan, Yu-Kun Lai, Yi-Hua Huang, Leif Kobbelt, and Lin Gao∗

Abstract—The recently proposed neural radiance fields (NeRF) use a continuous function formulated as a multi-layer perceptron

(MLP) to model the appearance and geometry of a 3D scene. This enables realistic synthesis of novel views, even for scenes with view

dependent appearance. Many follow-up works have since extended NeRFs in different ways. However, a fundamental restriction of the

method remains that it requires a large number of images captured from densely placed viewpoints for high-quality synthesis and the

quality of the results quickly degrades when the number of captured views is insufficient. To address this problem, we propose a novel

NeRF-based framework capable of high-quality view synthesis using only a sparse set of RGB-D images, which can be easily captured

using cameras and LiDAR sensors on current consumer devices. First, a geometric proxy of the scene is reconstructed from the

captured RGB-D images. Renderings of the reconstructed scene along with precise camera parameters can then be used to pre-train

a network. Finally, the network is fine-tuned with a small number of real captured images. We further introduce a patch discriminator to

supervise the network under novel views during fine-tuning, as well as a 3D color prior to improve synthesis quality. We demonstrate

that our method can generate arbitrary novel views of a 3D scene from as few as 6 RGB-D images. Extensive experiments show the

improvements of our method compared with the existing NeRF-based methods, including approaches that also aim to reduce the

number of input images.

Index Terms—Novel View Synthesis, Neural Rendering, Neural Radiance Fields.

✦

1 INTRODUCTION

NOVEL view synthesis (NVS) is a major research topic
in computer vision and computer graphics. It has been

widely applied in the digital and entertainment industry,
from movie production to games, as well as the boom-
ing virtual and augmented reality (VR/AR) applications.
However, generating highly realistic images under arbitrary
views based on only a small number of input images is still
an urgent problem to be solved. If we have the accurate
geometry of an object or scene, the problem can be solved
through rendering, which also requires additional informa-
tion such as the surface material and lighting environment.
The rendering process solves the integral of the rendering
equation to obtain highly-realistic results. However, there
are still full of challenges for real-world objects or scenes.
On the one hand, it is difficult to obtain accurate geome-
try, surface normal and material information of objects or
scenes in the real world. On the other hand, the lighting
in the real environment is very complicated, and multi light
source environment is difficult to model. Therefore, to avoid
geometry reconstruction, traditional image-based rendering
(IBR) methods [1], [2] directly interpolate between existing
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images to obtain images in novel views. However, the novel
view results can only be within the range of existing views,
and images from densely captured views are required.
Moreover, these methods cannot handle occlusions well.

Recently, neural rendering [3] has shown a promising
future. Neural-based methods have also emerged for the
NVS task. A large group of these methods is based on the
volume-based representation to model the appearance of
the entire space [4]. Among these volume-based methods,
NeRF (Neural Radiance Fields) [5] becomes a very popular
method, due to the simple formulation and appealing per-
formance. NeRF only needs to input a set of RGB images
(the camera parameters are known or estimated by meth-
ods such as COLMAP [6], [7]) to generate highly-realistic
images under novel views. The key idea of NeRF is to
represent the entire space by a continuous function, which
is approximated by a multi-layer perceptron (MLP). The
network inputs the spatial coordinates and view direction
of the sampled point, a 5-dimensional vector in total, then
predicts the radiance emitted by the point and density of the
location, and uses the classic volume rendering [8] to render
the image at last.

Although the results of NeRF are fascinating, it still
requires a fairly large number of images as the training
samples, which puts a very high requirement on practical
use. Some variants have been proposed to address this
problem, but they still suffer from reduced performance.
NeRF and its variants are still far from actual use by average
users. These works only use the RGB images as inputs to
generate novel view images of the scenes or objects. In this
paper, we adopt a consumer product equipped with both
an RGB camera and a LiDAR camera to capture RGB-D
images in a limited number of views. The key idea of our
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Figure 1. We propose a novel NeRF (Neural Radiance Field) framework that uses sparse RGB-D images to synthesize novel view images. These
RGB-D images are acquired using consumer devices such as an iPad Pro. We first use the rendered images of the reconstructed mesh to pre-train
the NeRF network, and then use the real captured images to fine-tune the network to synthesize realistic images from novel views.

method is to significantly reduce the camera view number
by exploiting reliable depth information. The captured RGB-
D images can provide a rough point cloud geometry for
the scene. Although this point cloud is relatively coarse
and cannot fully reflect the accurate geometry of the scene,
and some other information such as the normals and the
lighting cannot be directly obtained, we can still get lots of
rendered images which depicts the approximate appearance
of the scene, through rendering the mesh reconstructed from
the point cloud. A large number of such images can be
rendered with precise camera parameters, and they can be
in arbitrary views. These characteristics are very important
and helpful for the NeRF training. Our idea is to pre-
train a neural radiance field network using these rendered
images as the (pseudo) ground truth. Because the network
is trained with precise camera parameters and a sufficient
number of images, the novel view images generated by
the trained network can fully retain the quality of those
rendered images. Based on this pre-training, we fine-tune
the network using the small number of captured real RGB
images. With the basis provided by the rendered images,
this strategy can obtain better results than training from
scratch with the small amount of the real captured RGB
images. Furthermore, we introduce a fine-tuning framework
suitable for few-shot training, making full use of real cap-
tured RGB images. We also use depth information to pro-
vide more accurate RGB prior information from the point
cloud of the scene for the network to better predict RGB
values. We also initialize a sparse voxel octree to organize
the scene given the reconstructed rough geometry. Although
some recent works [9] adopt depth loss, we only sample
within the voxel, which means that we only sample near the
known depth. This also gives density prediction guidance
while allowing the initial depth to have some deviation.
This is more flexible than directly using depth loss. The
contributions of our work are summarized as follows:

• We propose a NeRF system that only requires users
to capture a small number of RGB-D images (as
few as 6) with a consumer-grade product to render
realistic images in novel views.

• We propose a training strategy for the NeRF network,
from the pre-training by the rendered images with
precise camera parameters and sufficient views to
the fine-tuning by a small set of real captured RGB
images.

• We further propose a fine-tuning method, with a
patch discriminator enhancing supervision and col-
ored point cloud providing voxel color priors.

Experimental results show that our method can produce
high-quality NeRF-based novel view synthesis with sparse
RGB-D input images captured using a consumer product
(an iPad Pro), outperforming existing methods which only
utilize RGB images.

2 RELATED WORK

Image-based rendering. Early novel view synthesis work
focused on image-based rendering (IBR) [1], [2], which in-
terpolates between input images of different views to obtain
novel view images. Some NVS works rely on explicit 3D
scene representations [10], [11], [12], [13], and also use RGB-
D sensors to enable fast rendering [14]. Choi et al. [15]
obtain the depth probability volume (DPV) of the novel
view by blending the DPVs of the input views, and further
synthesize the novel view image from the obtained DPV.
The synthesized image is refined by a patch-based refine-
ment network with a U-Net architecture. Following a similar
idea, Riegler and Koltun [16] warp the features of the input
images to the target view with the help of the reconstructed
rough geometry. And a recurrent neural network is used to
synthesize novel view images from the warped features of
nearby views. They further combine the reconstructed mesh
with the input images to complete NVS [17]. However, the
method still follows the idea of image translation. Based
on the point cloud obtained from the RGB-D data, Aliev et
al. [18] define learnable descriptors on each point. The point
cloud with the descriptors is rasterized into images at dif-
ferent resolutions, which are translated to the realistic image
by a U-net structure. The reconstruction-based approaches
often exhibit artifacts due to the imprecise geometry. One
way to improve this is to fill the missing content of 3D
geometry with the learnable 2D texture [19], [20]. Some
deep-learning-based methods [21], [22], [23] jointly estimate
proxy shape and radiance field from 2D input views. On the
other hand, the implicit geometry coming from dense input
images could also help synthesize novel view images, such
as some light field methods [24], [25]. Multiplane image
(MPI) [26], [27] is a kind of light field representation, which
can model some complex scenes. But it can only work within
a small viewing angle [28]. Mildenhall et al. [29] extend
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the synthesis views by requiring the input images to be at
some specified views. Recently, Li et al. [30] propose a new
DeepMPI representation, which appends learnable latent
vectors to the voxels of MPI, modeling the same attributes
among different view images, such as the scene geometry.
By adopting an Adaptive Instance Normalization (AdaIN)
layer [31] to input the appearance vector to the rendering
network, novel view synthesis with different lighting condi-
tions can be realized.

Neural Radiance Fields. Undoubtedly, the Neural Radi-
ance Fields (NeRF) method [5] has led to a series of research
work using MLP and volume rendering [8] to solve the
novel view synthesis task. Prior to this, similar ideas that
use MLP to model the appearance of the object or scene
have been explored in the volume-based representation [4]
and surface-based representation [32] of space. With the
simple formulation and stunning effects of NeRF, people
have high expectations on the combination of MLP and
volume rendering. Taking a step forward, NSVF [33] pro-
poses to use a sparse voxel octree to represent the scene.
During the training process, they gradually prune the octree
and subdivide the voxels, making them closer to the real
geometry of the scene. At inference time, the sampled points
only exist in voxels, so the rendering time is significantly
reduced compared to NeRF, and the rendering quality has
also improved. Our method also adopts a sparse voxel
octree to organize the scene. Thanks to the captured depth,
we can initialize voxels to be close to the real scene geometry
at the beginning of training, which can help our training
converge, even with a few captured images. There are also
some works that introduce depth into NeRF. For example,
imposing constraints between close frames by depth in the
continuous dynamic scenes [34], [35], and accelerating infer-
ence time by only sampling near the predicted depth [36].
In particular, NSFF [34] has a sort of pre-training process
that relies on the geometric prior and depth prior. Since
these priors come from inaccurate predictions, the weight
of the corresponding loss will be gradually reduced to zero
through a linear mapping during the training. Although
the pre-training process is similar to ours, the aimed task,
the specific methods used, and the implementation of pre-
training are different. In addition to the above extensions,
NeRF has been extended for dynamic scenes [37], [38],
better rendering effects [39], [40], generalization on multiple
scenes [41], [42], [43], [44], [45], faster training or inference
speed [46], [47], [48], [49], [50], [51], [52], re-lighting ren-
dering [53], [54], [55], geometry or appearance editing [56],
[57], [58], [59], [60] and specifically for processing human
bodies [61], [62], [63] and faces [64], [65]. Some works are
briefly summarized in [66].

Although NeRF only needs a relatively small set of
images, the actual number of required images is still large
for practical use. Our method aims to reduce the number
of input images. Some implicit-field-based methods [67],
[68] are able to perform single-image view extrapolation.
PixelNeRF [69] realizes novel view synthesis from only one
or few input images. It extracts convolutional features from
the input images and inputs to the network. Although it
reduces the demand of input images, the generated results
of novel views show obvious artifacts, which greatly affects
the user experience in actual use. DietNeRF [70] also aims to

reduce the number of input images. It introduces a semantic
consistency loss which preserves the scene attributes to be
unchanged under novel views. This loss is built on the
semantics extracted by a pre-trained CLIP Vision Trans-
former [71]. More recently, ToRF [72] also enhances NeRF
with additional sensors to capture more information, but it
adopts raw time-of-flight images instead of depth maps. DS-
NeRF [9] utilizes the depth map reconstructed by COLMAP
and adds depth loss to achieve few-shot NeRF training.
However, it mainly considers the enhancement of the den-
sity aspect. RegNeRF [73] proposes to add constraints on
both density and color to reduce the number of input images
required, where the color constraint is patch-based supervi-
sion. Our method also introduces depth and patch-based
supervision, but we propose a pre-training process using
mesh rendering as pseudo ground truth and introduce the
3D voxel color prior, which provides more prior knowledge.

Few shot learning. Few shot learning has been widely
applied in video colorization [74], image classification [75],
[76], [77] and image generation tasks. The image generation
task is more relevant to our work. The work of this task
usually adopts adaptation methods. They typically first
use a large number of samples of a source domain to
train a basic model, and then adapt it to the target data
domain with only a small number of samples. This could
be done either by adding additional parameters [62], [78]
or using some regularization to directly fine-tune on the
source model [79]. There are also methods that use data
augmentation to avoid over-fitting [80], [81], but the effect
is not good for a very small number of images. Our method
adopts a patch discriminator to enhance supervision, and at
the same time uses the 3D color priors brought in by RGB-D
data to achieve few shot learning on realistic images. Pang
et al. [82] also rely on the RGB-D data and patch supervision
to realize few-shot free-view rendering. However, it focuses
on neural human rendering and is based on an image
translation network, while our method focuses on the static
scene modeling and is based on NeRF, leading to improved
consistency across views. Recently, there is also the idea of
using patch discriminator in few shot image generation [83]
and the combination with NeRF [41], [84], but we also use
3D color priors to complete few shot learning from both
prior and supervision. The similar idea of starting from a
small amount of labeled data, gradually generating a larger
dataset to complete network training is also applied to ren-
dering in computer graphics, such as the inverse rendering
problem [85].

3 PRELIMINARY

Our method is based on the recent work, Neural Radi-
ance Fields (NeRF) [5] and Neural Sparse Voxel Fields
(NSVF) [33], we will first briefly introduce these two meth-
ods.

Given a set of input images, NeRF represents the scene
geometry and appearance using a simple fully-connected
network. The multi-layer perceptron (MLP) network takes
3-dimentional spatial coordinates p = (x, y, z) and 2-
dimentional viewing direction d = (θ, φ) as inputs and
outputs the volume density σ and RGB values c: F (Θ) :
(p,d) → (c, σ), where Θ represents the network weights.
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NeRF assumes that the camera intrinsics and extrinsics for
each input image are known. Those camera parameters are
used to generate rays that start from the camera location and
go through image pixels in the world coordinate system.
Several points are sampled along the rays. The color C(r) of
each ray r(t) is calculated by the classical volume rendering
method [8], and the continuous integral is approximated by
the quadrature,

Ĉ(r) =
N∑

i=1

Ti(1− exp(−σiδi))ci,

Ti = exp(−
i−1∑

j=1

σjδj),

(1)

where δi = ti+1 − ti is the distance between adjacent
samples. NeRF also adopts a stratified sampling method
which samples uniformly in evenly-spaced bins. For more
details, we refer the readers to [5].

Neural Sparse Voxel Fields (NSVF) [33], extends NeRF
by introducing voxels to divide the scene. It assigns embed-
ding vectors at each voxel vertex, and the spatial position
p of the network input is replaced by the interpolated
feature obtained from the aggregation of eight embedding
features of the voxel vertices. The interpolated feature g(p)
and the viewing direction d will then go through positional
encoding ζp(·) and ζd(·) respectively, which is also used in
NeRF [5]. So the MLP network predicting density σ and
color c in NSVF turns to:

FΘ : (ζp(g(p)), ζd(d)) → (c, σ), ∀p ∈ Vi. (2)

The initial voxels of the scene are obtained from the subdi-
vision of the bounding box of the scene. During the training
process, NSVF will gradually prune non-essential voxels
according to the predicted density. On the other hand, the
remaining voxels will be further subdivided. After the prun-
ing and subdivision, the voxels will gradually approach the
real geometry of the scene. This not only helps with the
convergence of the training, but also reduces the number
of sampled points during test and reduces the rendering
time. In our method, we also represent the scene using the
voxels. The difference is that from the collected RGB-D data,
the scene geometry (point cloud or triangle mesh) can be
directly obtained, and the voxels can be initialized according
to the known geometry. This can provide a geometry prior at
the very beginning of the training, but also helps us provide
a color prior which we will introduce in Sec. 4.5. The octree
structure can also be used to accelerate the rendering. We
will introduce our method in the next section.

4 METHOD

4.1 Overview

The proposed method aims to reduce the demand on the
number of user shots, with the help of the depth, while en-
suring satisfactory rendering results from novel views. Our
method uses the LiDAR camera and RGB camera equipped
on consumer products to capture the RGB-D images. The
point cloud of the scene can be reconstructed through the
captured RGB-D images and the camera parameters ex-
ported from the ARKit. We further reconstruct the triangle

mesh from the point cloud, and render it from any views
we want. The rendered images from this step are not as
realistic as the captured images but depict the approximate
appearance of the scene. Previous NeRF-based methods
need to provide a large number of real captured images to
train the network. When the number of those images cannot
reach the required number, we propose to introduce the
depth, and provide a large number rendered images to pre-
train the network. Since the rendered images have precise
camera parameters and come from many view directions,
the pre-training process can provide a strong prior for the
network. On this basis, we further propose a fine-tuning
method which uses a small number of real captured images
so that the network after fine-tuning can generate realistic
novel view images. The whole pipeline of our method is
illustrated in Fig. 1.

4.2 Mesh Reconstruction

We first reconstruct the rough geometry, including the point
cloud and the triangle mesh of the scene. We make the full
use of the depth images captured through the consumer
devices such as the LiDAR camera of Apple iPad Pro and
Microsoft Kinect. As mentioned before, other NeRF-based
methods including NeRF [5] and NSVF [33], require a lot
of images to achieve satisfactory novel view synthesized
images, which puts a burden on the users in practical use.
While with our method, we only need to capture images in
several scattered views, which cover the most appearances
of the interested area of a scene.

Given the RGB images {Ii, i = 1, · · · , n} and the cor-
responding depth images {Idi , i = 1, · · · , n} captured by
the RGB camera and the LiDAR camera, we first reconstruct
the raw point cloud {Pi, i = 1, · · · , n} in each captured
views, with the help of camera parameters exported from
the ARKit. Due to the different resolutions, we scale the
RGB images to the same resolution as the depth images and
assign the color value for each point of the reconstructed
point cloud in each view. The point cloud of each view
is then denoised using the outlier removal algorithm of
Open3D [86], aligned with the colored iterative closest point
algorithm (ICP) to eliminate the pose error, and finally
merged into a complete point cloud using a box grid filter.
The complete point cloud will be transformed to a colored
triangle mesh by Poisson surface reconstruction [87], [88].
The whole process from RGB-D images to the triangle mesh
is shown in Fig. 2.

4.3 Pre-training by rendering

The core of our approach is the pre-training strategy using
the rendered images as the pseudo ground truth. Once the
reconstructed mesh is obtained, we can render the mesh
from any view that we want to obtain a rendered image. To
cover the most views of the scene, we interpolate between
the known camera views {di, i = 1, · · · , n} and perturb
each known camera view to generate a large number of
novel camera views. We denote those views as the sampled

views {d
′

i, i = 1, · · · , k}, where k is the number of sampled
views. Under these sampled views, we use OpenGL to
render the reconstructed colored mesh to produce plenty

of rendered images {I
′

i , i = 1, · · · , k}, which are further
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Figure 2. The mesh reconstruction process in our method. We first
obtain the point cloud of each view from the RGB-D image, and then
align and merge them into a single scene point cloud. The triangle
mesh is reconstructed from the scene point cloud through Poisson
reconstruction [87], [88].

used to pre-train the network. The number k of these
rendered images can be large enough to train a satisfac-
tory neural radiance field network. And the corresponding
camera parameters are accurate, which is more conducive
to the training of the network than the camera parameters
reconstructed by the methods such as COLMAP directly
from the RGB images.

For the neural radiance field network, we adapt the
same architecture of NSVF [33]. Since we have the raw
geometry of the scene, we can initialize the voxels of the
scene from the point cloud or the triangle mesh. The initial
voxel size depends on the scene size. We also use the octree
structure [89] to organize those voxels of the scene, and
apply the Axis Aligned Bounding Box intersection test [90]
for each ray. This test is very efficient for the voxels in sparse
octree structure. We define a learnable embedding feature
g̃ at each voxel grid node. For each intersected voxel, we
uniformly sample points on the intersecting ray segments,
and use trilinear interpolation to obtain the input feature
g(p) of each sampled point p. The inputs to our network
are the interpolated feature g(p) of the sampled point and
the ray direction d of the ray r. The input feature g(p) and
ray direction d will go through encoding process ζp(·) and
ζd(·) respectively, which is the same as NeRF [5], to capture
high-frequency details. The encoded input feature ζp(g(p))
will be input to an MLP network Fσ to predict the volume
density σ of the sampled point,

σ = Fσ(ζp(g(p))), (3)

and another MLP network Fc will concatenate the encoded
input feature ζp(g(p)) and the encoded ray direction ζd(d)
as the input and predict the color value c at the sampled
point,

c = Fc(ζp(g(p)), ζd(d)). (4)

The whole network architecture is illustrated in Fig. 3. We

adopt Eq. 1 to calculate the pixel color Ĉ(r) of the generated

image and use those rendered images {I
′

i , i = 1, · · · , k} as
the ground truth. The pre-training process is supervised by
the RGB loss function LRGB , which is formulated as:

LRGB =
∑

r∈R

‖Ĉ(r)− C(r)‖22, (5)

where R is the set of sampled rays in the mini-batch, C(r)
is the ground truth color of the ray r. It should be noted
that, during the pre-training process, in order to ensure the

completeness of the scene, we do not perform pruning oper-
ations on the voxels. But when necessary, we will subdivide
the voxels, that is, the size of the voxels will be half of the
original.

4.4 Few-shot training

After the pre-training of the network, since the rendered
images are used as the (pseudo) ground truth, the novel
view images generated by the network are also in the
rendering style, which is different from the real captured
images. In order to enable the network to generate realistic
images in novel views with the help of a few captured
images, we introduce a fine-tune process to finish the few-
shot training of the network.

During the few-shot training process with few realistic

images, we simply replace the rendered images {I
′

i , i =
1, · · · , k} with those real captured images {Ii, i = 1, · · · , n}
as the ground truth and continue training. Although the op-
eration of directly replacing the ground truth is very simple,
we have found that this simple strategy has been able to
help the network to generate novel view images of realistic
style. However, there are still deficiencies in the details,
especially when the novel view is quite different from the
views of known real images. Therefore, we introduce a dis-
criminator D and regard the whole MLP network, including
Fσ and Fc, as the generator G, to improve the network
training and the details of the generated images using a
GAN architecture. During the training, we not only sample
rays from the known camera views {di, i = 1, · · · , n} and
perform the same RGB loss supervision as pre-training

process, but also generate the images {Ifakei , i = 1, · · · , k}
from the sampled views {d

′

i, i = 1, · · · , k}. Those generated

images {Ifakei , i = 1, · · · , k} are grouped with the real
captured images {Ii, i = 1, · · · , n} to train our GAN ar-
chitecture. As we do not acquire a large number of captured
images, the number of “real” images is less than the number
of “fake” (generated) images. In order to solve the problem
of the inadequate “real” samples, we adopt a patch-based
discriminator [91]. We randomly sample a certain size of
image patch from the real image and the generated fake
image respectively, and feed them into the discriminator
to determine whether it is real or fake. The patch size is
typically 32 × 32. The patch-based discriminator can not
only help us increase the number of real samples in the
training, but also reduce memory consumption. The whole
framework is illustrated in Fig. 3.

The training objective of the fine-tuning process consists
of the RGB loss function LRGB and the GAN loss function
LGAN . The definition of the RGB loss LRGB is the same as
Eq. 5. The GAN loss function LGAN is formulated as:

LGAN = max
G

min
D

(Ep∼Pfake
[log(D(p))]

+ Ep̂∼Preal
[log(1−D(p̂))]),

(6)

where Pfake is the set of fake image patches and Preal is the
set of real image patches. The total training loss is the sum
of LRGB and LGAN :

Lfine−tune = LRGB + αLGAN , (7)

where α is the adjustable weight. It should be noted that the
RGB loss function LRGB only works for the generator step.
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Figure 3. The training network of our method. Our training is divided into two stages. The first stage (a) is to pre-train the network with the rendered
images, using both the known views and sampled views, and LRGB as supervision. The second stage (b) uses realistic images to fine-tune the
network. At this stage, the known views are supervised by LRGB , which is indicated by the blue arrows, while the sampled views are supervised
by LGAN , which is indicated by orange arrows. We also obtain the color embedding from the point cloud as one of the inputs to predict the color
value.

4.5 Voxel color prior

The GAN architecture can provide our network with addi-
tional supervision under more sampled views, in addition
to the supervision of the RGB loss function under known
views. Besides increasing supervision, it is also a good idea
to make better use of the small amount of the RGB images
and the depths to provide priors to enhance the generated
results.

As a complete colored point cloud of the scene is recon-
structed, we can know which part of the point cloud is con-
tained in a voxel and use the color information of the point
cloud as voxel color. Since the number of points contained in
each voxel is inconsistent, we take the average color value
of the point cloud in a voxel as the voxel color cvoxel of
that voxel. The RGB value cvoxel is low-dimensional, so we
further use similar positional encoding [5] ζc(·) of spatial lo-
cation to encode the 3-dimensional color information to the
high-dimensional feature. The encoded voxel color feature
ζc(cvoxel) is input into the color prediction network Fc as a
condition, as shown in Fig. 3. So the MLP network Fc will
be re-formulated as:

c = Fc(ζp(g(p)), ζd(d), ζc(cvoxel)). (8)

The density prediction network Fσ is irrelevant to the voxel
color, so Fσ is still formulated as Eq. 3 and the density
is only determined by the encoded positional feature at
the sampled point. ζc(cvoxel) provides a color prior for the
sampled points in the corresponding voxel, and it is a prior
from the real scene. Compared with those works [42], [92]
that extract color features from the 2D images, our method
extracts color information from the 3D point cloud which
can resolve the ambiguity in depth.

5 EXPERIMENTS AND EVALUATIONS

In this section, we will evaluate our method in the realistic
scenes that are captured by a consumer product equipped
with both an RGB camera and a LiDAR camera. We first
report the implementation details. Then we show some
results and compare them with the previous state-of-the-art
methods, both qualitatively and quantitatively. Finally, we
verify the role of each technical component in our method.

5.1 Implementation Details

We use a single Nvidia GeForce RTX3090 GPU for all of our
experiments. Different scene sizes require different training
time, which is ranging from 24 hours to 36 hours. Typically,
the pre-training process requires about 9000 epochs, and the
fine-tuning process requires 20000 epochs. The resolution of
the voxel grid depends on the size of the captured scene.
We generally take the length of a single voxel as 1/50 of the
longest edge of the scene bounding box. The patch size we
used in the patch discriminator is 32× 32. The parameter α
in the loss function is set to 0.1 for all datasets. The Adam
optimizer [93] is used for training, and the learning rate is
set to 0.001.

We choose Apple iPad Pro which is more portable as
the device to collect all of our datasets. The dataset we col-
lected includes five indoor scenes (“crocodile toy”, “plant”,
“box”, “dumbbells” and “character toys”) and two scenes
containing relatively big objects (“stone bench” and “stone
art”). All datasets contain 1920 × 1440 RGB images with
256 × 192 depth images and camera parameters exported
from iPad Pro. We hold the iPad Pro while walking around
the object and shoot RGB-D images continuously. A brief
introduction to each scene and the RGB-D images selected
for reconstruction and training are presented in the supple-
mentary material. Note that in all these examples, a small
number of RGB-D images are used for training and the rest
are used for evaluation.

5.2 Metrics

In order to compare our method with the state-of-the-art
methods quantitatively, we adopt three commonly used
metrics: Peak Signal-to-Noise Ratio (PSNR), Structure Sim-
ilarity Image Metric (SSIM) [94] and Learned Perceptual
Image Patch Similarity (LPIPS) [95]. The three metrics are
calculated between the synthesized images under the test
views and the corresponding ground truth images. Note
that for PSNR and SSIM, the larger the better, while for
LPIPS the smaller the better.
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(a) NeRF (b) NeRF++ (c) IBRNet (d) pixelNeRF (e) NSVF (f) NeRF w/
depth

(g) Ours (h) Ground Truth

Figure 4. Comparisons of novel view synthesis on “box” dataset and “dumbbells” dataset. It can be clearly seen that our results are the clearest and
the closest to the ground truth images.

5.3 Novel View Synthesis Results

For comparison, we first consider some current state-of-the-
art NeRF-based methods, including the original NeRF [5],
NeRF++ [96], NSVF [33] and IBRNet [42]. As the main goal
of our method is to reduce the number of shots needed,
we also compare with pixelNeRF [69], which also reduces
the number of input images. It should be noted that the
above methods do not use depth as input, but we emphasize
that with consumer-grade products, users can also obtain a
depth image while taking an RGB image, which will not
bring extra burden. As we obtain the reconstructed mesh of
the scene, the rough depth of each ray is also known. So we
also add the depth loss to NeRF for comparison, denoted as
‘NeRF w/ depth’. Both IBRNet and pixelNeRF are general
models, which can be generalized in multiple scenes. Based
on the official checkpoint, we fine-tune their networks on
our dataset. The images used in fine-tuning are the same as
those used in our method. For other methods, we re-train
their networks on our own dataset, and the images used
for training are the same as our method. NSVF also uses
known voxel initialization during training. We also compare
our method with some recent NeRF-based methods which
also introduce depth information, including ToRF [72], DS-
NeRF [9] and NerfingMVS [97]. Moreover, we propose a
baseline method which combines the RGB loss with depth
loss and patch GAN loss, denoted as “NeRF+3loss”. A

mesh-based reconstruction method, Intrinsics3d [98] is also
compared. In addition to NeRF-based methods, recently
there were also some novel view synthesis methods based
on image translation. Some of these also adopt geometric
priors, such as Stable View Synthesis (SVS) [17] and Neural
Point Based Graphics (NPBG) [18]. We also show the com-
parisons with these two methods. At last, we show some
NVS results on the public dataset, BlendedMVS [99] and
NeRF dataset [5].

Comparisons with NeRF-based methods. We evaluate
our method and other methods on the test set with ground
truth images. We perform comparisons on the “box” dataset
and the “dumbbell” dataset in Fig. 4, on the “plant” dataset
in Fig. 5, on the “crocodile toy” dataset and the “character
toy” dataset in Fig. 6, and on “stone bench” dataset and
“stone art” dataset in Fig. 7. It can be seen that the results of
other methods are blurry or lose some details. In particular,
although NeRF with depth loss performs better than the
original NeRF, it still suffers from obvious artifacts. The
“plant” dataset has fine details, like the leaves of the plant.
The leaves of IBRNet results are missing and the leaf color
of NSVF results is significantly affected by the floor color.
In contrast our method maintains the leaf geometry and
color thanks to the patch discriminator and 3D voxel color
prior. The “character” scene is also a forward-facing scene.
Compared with other methods, the results of our method
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are clearer and have more details. We can see that our
results can reconstruct view-dependent effects, such as the
reflections on the surface of the stone bench and handling
the reflection of the water surface in novel view synthesis,
while other methods cannot even maintain the basic shape
and produce artifacts on the main object of the synthesized
images. We show more novel view synthesis results on other
scenes in Fig. 8. In addition to the visualization results, we
also compare the quantitative results in Table 1. We show the
results on four scene datasets, “plant”, “crocodile”, “box”
and “dumbbells”. The results on other scene datasets are
shown in the supplementary file. Our method outperforms
other methods in all three metrics, which demonstrates the
ability of our method to use sparse views to synthesize high-
quality novel view images.

Comparisons with NeRF-based methods using depth
information and a mesh-based reconstruction method.
We show the comparisons with some NeRF-based methods
using depth information, including ToRF [72], DS-NeRF [9],
NerfingMVS [97] and a baseline method “NeRF+3loss” in
Fig. 9. We also show the comparisons with a mesh-based
reconstruction method, Intrinsic3d [98]. It can be seen that
our method still achieves better results. The quantitative
comparisons are shown in Table 2. Our method achieves
the best performance in all three metrics.

Comparisons with other geometry-based NVS meth-
ods. We show the comparisons with two recent geometry-
based novel view synthesis methods SVS [17] and
NPBG [18] in Fig. 10 and Table 3. We also show the point
cloud rendering under the corresponding views in Fig. 10.
For NPBG, we use our reconstructed scene point cloud as
input and re-train the network. For SVS, we use our mesh
reconstruction as input, and train the network with self-
collected datasets other than the two shown in the results.
Overall, these two methods can ensure the completeness of
the scene under novel views. However, NPBG has some
artifacts and instability across different views, which can
also be seen in the supplementary video. The results of
SVS are blurry and lack the details of the object surface.
In contrary, our method can maintain the veins on the leaf
and the texture of dumbbells.

Results on BlendedMVS. In addition to the self-
collected datasets, we also test our method on the public
dataset, BlendedMVS [99], which contains RGB-D images
with camera parameters. The novel view synthesis results
are shown in Fig. 11. For the first three scenes we show,
we select 8 views using the farthest point sampling method
from the provided RGB-D images. The last scene is a
forward-facing case, and we select 6 views in the same way.
The scene point cloud is then obtained from the selected
RGB-D images and corresponding camera parameters. It can
be seen that our method can still guarantee satisfactory re-
sults. The NVS results can maintain the details on the bread
and sculptures. The forward-facing scene is also handled
well. It is worth noting that the depth image resolution
of this dataset is higher than that of our collection, which
improves the quality of the scene point cloud. The calibrated
camera parameters are also more accurate, which is con-
ducive to training. We also show view-dependent effect on
bread and pottery scenes in the supplementary video.

Results on NeRF dataset. In addition to using captured

depth values, our method can also utilize depth values esti-
mated from images. For the NeRF dataset, we use COLMAP
to estimate the depth and camera parameters, and use our
method to reconstruct the mesh and perform pre-train-fine-
tune training. The training images (6 images) for each scene
are selected by farthest point sampling. The result is shown
in Fig. 12. It can be seen that our method still achieves
satisfactory results.

5.4 Evaluation of Settings

Some settings in our method are based on empirical ex-
periments. In this section, we evaluate such settings in
our method to determine which choice is better to achieve
satisfactory synthesis results. These evaluations include the
number of real images and the distribution of input views.
We also evaluate the quality of the reconstruction geometry,
which is shown in the supplementary document.

Number of real images. The number of real images we
currently select on each dataset is manually determined.
In order to clarify the effect of the number of real im-
ages in the fine-tuning stage on the final synthesis result,
we compare the synthesis results of different real image
numbers while ensuring that the reconstruction geometry
and the pre-training stage are the same. When there is
only one input image, we directly select the first image in
the dataset for training in the fine-tuning stage. For other
number settings, we adopt the farthest point sampling (FPS)
method to select the training images. It should be noted that
the RGB-D images used for reconstruction are fixed, and
also selected by the FPS method (the same as the choices
in previous section). The quantitative results are shown in
Table 4. It can be seen that, in general, as the number of real
images increases, the synthesis quality will also improve.
But when the number of real images reaches a certain level,
the improvement is no longer significant. This is because
those images are able to train a satisfactory NeRF model. It
is worthy to note that when using fewer real images than
the comparison methods in Table 1, our method can achieve
comparable or even better performance. We also compare
with the well-performing baseline, NeRF w/ depth under
different numbers of images. It can be seen that our method
outperforms NeRF w/ depth when the number of images is
smaller (up to 20 views), and can achieve comparable results
(slightly worse PSNR but better SSIM and LPIPS which are
more perceptual) when the number of images is large.

Distribution of input views. The distribution of input
views is another factor that may affect the final synthesis
results. As mentioned before, we adopt the farthest point
sampling (FPS) method to select a specified number of input
views. In order to evaluate the influence of the randomness
of user capturing on the results, we set up some representa-
tive experimental groups. The first group (User Select) is
hand-picking the views that are relatively far from each
other. The second group (Uneven) is to first select the two
most distant views, and select the remaining views near
one of the picked views. And the last group is the FPS
method. The first group simulates user selection, the second
group is an extreme situation, and the last group is an ideal
situation. The comparison results are shown in Table 5. It
can be seen that the result of User Select is comparable to
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(a) NeRF (b) NeRF++ (c) IBRNet (d) pixelNeRF (e) NSVF (f) NeRF w/
depth

(g) Ours (h) Ground Truth

Figure 5. Comparisons of novel view synthesis on “plant” dataset. Our results preserve the leaves of the plants to the greatest extent, and the
results are the clearest.

(a) NeRF (b) NeRF++ (c) IBRNet (d) pixelNeRF (e) NSVF (f) NeRF w/
depth

(g) Ours (h) Ground Truth

Figure 6. Comparisons of novel view synthesis on “crocodile” dataset and “character toy” dataset. The comparisons of these two datasets show
that our method can handle the scene of plush objects and multiple small objects. The last one is also a forward-facing scene.
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(a) NeRF (b) NeRF++ (c) IBRNet (d) pixelNeRF (e) NSVF (f) NeRF w/
depth

(g) Ours (h) Ground Truth

Figure 7. Comparisons of novel view synthesis on “stone bench” dataset and “stone art” dataset. Our method can synthesize view-dependent
effects, such as the reflection of the water surface (the second row) and the highlights of the bench surface (the third row).

Table 1
Quantitative comparison against several NeRF-based methods. Compared with NeRF, NeRF w/ depth, NeRF++, IBRNet, pixelNeRF and NSVF,

our method achieves the best performance in all three metrics.

Plant Crocodile Box Dumbbells Mean
Models PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 20.20 0.3465 0.6064 20.63 0.4134 0.6358 21.09 0.3644 0.5988 21.98 0.3531 0.5784 20.98 0.3694 0.6049

NeRF++ 23.62 0.3906 0.7042 21.16 0.4173 0.7440 21.68 0.3867 0.6872 22.49 0.3692 0.6233 22.24 0.3910 0.7062
IBRNet 22.20 0.3755 0.4906 19.88 0.4250 0.5182 22.10 0.4005 0.4926 22.20 0.3754 0.5073 21.60 0.3941 0.5022

pixelNeRF 21.64 0.3442 0.7224 20.13 0.4003 0.6110 22.65 0.3609 0.7331 20.62 0.3072 0.7257 21.26 0.3532 0.6981
NSVF 19.95 0.4943 0.3933 20.02 0.5373 0.3250 22.17 0.5433 0.3304 23.33 0.5328 0.2901 21.36 0.5269 0.3347

NeRF w/ depth 23.60 0.4714 0.5356 22.16 0.4805 0.4738 23.29 0.4307 0.3884 22.77 0.3866 0.4489 22.96 0.4423 0.4617
Ours 25.14 0.5886 0.3461 24.91 0.5408 0.2676 25.07 0.5555 0.2987 25.96 0.6313 0.2799 25.27 0.5791 0.2981

Figure 8. Novel view synthesis results on more scenes. In each group,
the first row is the synthesized result, and the second row is the ground
truth.

the result of FPS, but the result of Uneven is much worse,
which is understandable because the information provided
by real images is limited to two limited view ranges. We can
add user guidance in practical use to ensure better results.
This is also one of the future work. Moreover, we also add

Table 2
Quantitative comparison against several NeRF-based methods using

depth information and a mesh-based reconstruction method.
Compared with these methods, our method achieves the best

performance in all three metrics.

Box Dumbbells Mean
Models PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

ToRF 18.89 0.3179 0.5681 19.36 0.3037 0.5096 19.13 0.3108 0.5388
Intrinsics3d 19.49 0.2935 0.4936 19.59 0.2771 0.4890 19.54 0.2853 0.4913

DS-NeRF 24.05 0.4875 0.5332 25.59 0.6076 0.4000 24.82 0.5476 0.4666
NerfingMVS 18.13 0.2271 0.4668 20.85 0.5153 0.3137 19.49 0.3712 0.3903
NeRF+3loss 21.38 0.2967 0.3552 22.76 0.3641 0.3437 22.07 0.3304 0.3494

Ours 25.07 0.5555 0.2987 25.96 0.6313 0.2799 25.52 0.5934 0.2893

Table 3
Quantitative comparison against several geometry-based NVS

methods. Compared with NPBG and SVS, our method achieves the
best performance in all three metrics.

Plant Dumbbells Mean
Models PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NPBG 20.73 0.3954 0.3454 19.44 0.3116 0.3669 20.09 0.3535 0.3562

SVS 24.36 0.5502 0.3981 23.55 0.5111 0.4038 23.96 0.5306 0.4009
Ours 25.14 0.5886 0.3461 25.96 0.6313 0.2799 25.55 0.6100 0.3130

comparisons with NeRF w/ depth under different settings.
It can be seen that our method still achieves better results
under these three settings.
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Figure 9. The comparisons with ToRF [72], DS-NeRF [9], NerfingMVS [97], Intrinsics3d [98] and a baseline method “NeRF+3loss”. Our method
outperforms other methods in detail and clarity.

(a) PC Ren-
derer

(b) NPBG (c) SVS (d) Ours (e) Ground
Truth

Figure 10. Comparisons of novel view synthesis on “plant” dataset and
“dumbbells” dataset with NPBG and SVS. We also show the rendered
images of the scene point cloud under the corresponding views. It can
be seen that our method achieves clearer results without artifacts of
other methods. Figure 11. Novel view synthesis results on the public dataset, Blended-

MVS.
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Figure 12. Novel view synthesis results on the NeRF dataset. In each
group, the first row is the synthesized result, and the second row is the
ground truth.

5.5 Ablation Study

In this section, we perform qualitative and quantitative
experiments to evaluate that each component of our method
achieves the expected effects. We experiment five different
settings. The first one removes the pre-training stage and
directly trains the network with voxel color prior and patch
discriminator using those real captured images, denoted
as ’No pre-train’. The other four adopt the pre-training
stage, while the second one does not use voxel color prior
and patch discriminator, denoted as ’Directly fine-tune’, the
third one uses patch discriminator but does not use voxel
color prior, denoted as ’w/o dis.’, the forth one uses voxel
color prior but does not use patch discriminator, denoted as
’w/o dis.’, and the last one uses both voxel color prior and
patch discriminator, during the fine-tuning stage, denoted
as ’Ours’. The visual results of the comparisons are shown
in Fig. 13. By comparing the results of ’No pre-train’ with
the results of ’Ours’, we can conclude that the pre-training-
fine-tuning strategy performs well. By comparing the results
of ’Directly fine-tune’ with the results of ’w/o dis.’, we can
find that due to the use of voxel color prior, the plant leaves
in ’w/o dis.’ will not be affected by the color of the floor,
and the generated colors are more vivid and closer to the

Table 4
Evaluation of NeRF reconstruction quality w.r.t. the number of real

images. When the number reaches a certain level, the improvement is
no longer significant. But when using fewer real images than the

comparison methods in Table 1, our method can achieve comparable
or even better performance. We also compare our method with NeRF
w/ depth under different numbers of images. It can be seen that our
method outperforms NeRF w/ depth when the number of images is

smaller, and can achieve comparable results (slightly worse PSNR but
better SSIM and LPIPS) when the number of images is large.

# of views Methods PSNR ↑ SSIM ↑ LPIPS ↓

1
NeRF w/ depth 19.38 0.3754 0.5547

Ours 21.75 0.3971 0.3639

3
NeRF w/ depth 22.03 0.3646 0.4599

Ours 23.15 0.4759 0.3380

5
NeRF w/ depth 22.37 0.4251 0.4699

Ours 23.25 0.5163 0.3562

7
NeRF w/ depth 23.14 0.4549 0.4488

Ours 23.49 0.5234 0.3506

9
NeRF w/ depth 23.60 0.4570 0.4714

Ours 25.14 0.5886 0.3461

20
NeRF w/ depth 25.38 0.5356 0.4459

Ours 25.42 0.6155 0.3759

40
NeRF w/ depth 25.91 0.5948 0.4684

Ours 25.67 0.6277 0.3878

60
NeRF w/ depth 26.05 0.6063 0.4745

Ours 25.71 0.6285 0.3974

80
NeRF w/ depth 26.18 0.6059 0.4746

Ours 25.77 0.6283 0.3940

Table 5
Evaluation of the distribution of input views. The result of User Select is

comparable to the result of FPS, but the result of Uneven is much
worse. We can add some user guidance to avoid the extreme case,
which is also one of the future work. We also add comparisons with

NeRF w/ depth under different settings. It can be seen that our method
still achieves better results under these three settings.

Settings Methods PSNR ↑ SSIM ↑ LPIPS ↓

User Select
NeRF w/ depth 23.60 0.4714 0.5356

Ours 24.73 0.6163 0.3462

Uneven
NeRF w/ depth 21.72 0.4527 0.4943

Ours 23.37 0.5303 0.3785

FPS
NeRF w/ depth 24.64 0.5492 0.4318

Ours 25.14 0.5886 0.3461

reality. However, due to the complex structure of the plant
itself, the results of ’w/o dis.’ still fail to show plant leaves
in some views (the second row). Compared with ’w/o
dis.’, ’Ours’ adds a patch discriminator, which can provide
better supervision under novel views. From the comparison
between the forth column and the last column, it can be
seen that in the view where the leaves are missing in
’w/o dis.’, the result of ’Ours’ can maintain the appearance
well and is visually better. The comparisons of the above
five settings fully prove the effects of the pre-training-fine-
tuning strategy and the necessity of voxel color prior and
patch discriminator in our few-shot learning framework.
They have achieved the expected effect. We further show
the quantitative comparison results in Table 6, where our
approach outperforms other variations in terms of all three
metrics. We also show more ablation study results on some
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(a) No pre-
train

(b) Directly
fine-tune

(c) w/o v.c. (d) w/o dis. (e) Ours

Figure 13. Ablation study of technical components. “No pre-train” repre-
sents that the network is directly trained with voxel color prior and patch
discriminator using real captured images. “Directly fine-tune” represents
that the network is fine-tuned without voxel color prior and patch dis-
criminator. “w/o v.c.” represents that the network is fine-tuned with the
patch discriminator but without voxel color prior. “w/o dis.” represents
that the network is fine-tuned with voxel color prior but without patch
discriminator. “Ours” represents that the network is fine-tuned with both
voxel color prior and patch discriminator, which is also our choice. It can
be clearly found that our choice achieves the best results.

other datasets in the supplementary file.

Table 6
Quantitative experiments of ablation study. The comparison shows that

our choice which adopts the pre-training-fine-tuning strategy and
combines voxel color prior and patch discriminator obtains the best

performance.

Settings PSNR ↑ SSIM ↑ LPIPS ↓
No pretrain 22.08 0.4794 0.3902

Directly finetune 24.26 0.5755 0.3744
w/o v.c. 24.61 0.5542 0.3552
w/o dis. 24.50 0.5844 0.3542

Ours 25.14 0.5886 0.3461

6 CONCLUSIONS AND LIMITATIONS

In this paper, based on an off-the-shelf consumer product
with an RGB camera and a LiDAR camera, we propose a
novel view synthesis method that significantly reduces the
number of captured views. We first reconstruct the rough
geometry of the scene from the captured RGB-D images
and render it to obtain sufficient rendered images with
precise camera parameters. We then propose to use rendered
images to pre-train the network which helps the network
learn a prior of the scene. Then the captured few real images
are used to fine-tune the network. In order to better use
the information of real images to fine-tune the network,
we introduce a patch discriminator and voxel color prior
to enhance supervision and prior information respectively.
The experiments show that our method outperforms the
current state-of-the-art NeRF-based method including those
that also aim to reduce the number of inputs.

Our method still has some limitations. First, our method
is more suitable for indoor scenes and provide robust novel
view synthesis under sparse input views. Our method is

Figure 14. We show a failure case of a furry bear, where some high-
frequency texture details fail to be reconstructed.

hard to synthesize novel view images of very large or
complex outdoor scenes. This is firstly because it is difficult
to model the whole details of large scenes or complex scenes
under sparse captured views. On the other hand, it is also
limited by the resolution of the LiDAR camera we use,
which is only 256 × 192. However, the pre-training-fine-
tuning framework we propose is not limited to iPad Pro,
one can improve the effect by adopting a depth sensor with
higher precision and slightly increasing the number of cap-
tured views. In order to show the usability of public users,
we use iPad Pro, a consumer mobile device to perform
experiments in this paper. At the same time, limited by the
depth sensor and mesh reconstruction method, if the mesh
has missing parts or the scene contains high specularity,
thin structures or furry appearance, the pre-training stage
may not provide the correct prior. Although this can be
corrected by the fine-tuning stage, the desired result may
not be obtained. We show a failure case of a furry bear in
Fig. 14, where some high-frequency texture details fail to
be reconstructed. The appearance issues could be solved by
combining the idea of Mip-NeRF [39] and Ref-NeRF [40],
and the geometry problem could be solved by dynamically
expanding or deleting the scene point cloud [44]. Another
limitation is that our method cannot synthesize images
under the views that are not covered by the captured im-
ages. This is also the limitation of most current novel view
synthesis method, including NeRF. The inference ability of a
completely unknown view requires a large amount of data
for training, and NeRF fitting on a single scene is difficult to
deal with this situation.
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