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Summary 

 
Alzheimer’s disease (AD) is a devastating form of neurodegeneration that is characterised by 

the formation of amyloid plaques and tau tangles in the brain. Genome-wide association 

studies (GWAS) have identified over 70 risk loci. How these functionally relate to AD is still 

yet to be fully explored. The work presented in this thesis aims to integrate and interrogate 

three publicly available genetic and RNA-sequencing datasets. This is with the aim to increase 

our understanding of the mechanisms underlying AD biology. This was achieved by utilising a 

variety of bioinformatic analyses.  

 

Chapter 1 introduces the background of AD, an overview of the relevant literature and the 

aims of this thesis. Chapter 2 gives an overview of some of the bioinformatic methodology 

used throughout this thesis. Chapter 3 uses linear mixed-effect models in addition to principal 

component analysis to combine the ROSMAP, MSBB and MayoRNAseq bulk brain RNA-

sequencing datasets into a single dataset. This dataset was then utilised in chapter 4 to 

perform a differential gene expression analysis followed by a gene ontology enrichment 

analysis. This identified that GWAS prioritised genes are not enriched in differential gene 

expression derived from case-control bulk RNA-sequencing data. This analysis also implicated 

pathways associated with mitochondrial processes and the endoplasmic reticulum in AD. 

Chapter 5 explores a cis- and trans- eQTL analysis of differentially expressed genes that were 

identified in chapter 4. This identified SST, TAC1, MAF1 and SCGN as potential candidate risk 

genes for AD. Chapter 6 compares the results of the differential gene expression analysis 

(from chapter 4) to three published Transcriptome-Wide Association studies (TWAS) results. 

This identified that in AD, TWAS signals are not enriched in bulk brain DGE analysis. Chapter 

7 is a discussion of the results of this thesis and directions for possible future study.  
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Chapter 1 – Introduction 
 

The purpose of this chapter is to introduce the wider context and history of the AD 

field in which the work presented in this thesis sits. This chapter will also provide a 

summary of the overall aims of the work included in this thesis.  

 

1.1 Alzheimer’s Disease 

 

1.1.1 Overview 

 

Alzheimer’s disease (AD) was originally described by Alois Alzheimer in 1907. He 

described an individual suffering from memory loss, paranoia, disorientation to space 

and time and hallucinations. The individual declined over a period of four years until 

their eventual death. Upon autopsy, brain atrophy was evident and changes to 

neurons and glial cells were documented (Alzheimer 1907; Alzheimer et al. 1995). AD 

is the most common form of dementia, which is an umbrella term for a variety of 

neurodegenerative disorders which all typically feature cognitive impairment, and 

mental and physical deterioration. AD accounts for 50-70% of all dementia cases 

(Winblad et al. 2016). 

 

There are a few forms of AD, and they can be divided based on age of visible symptom 

onset and genetic predisposition. AD is rare in younger individuals and over 95% of 

AD cases are what is known as sporadic or late-onset AD (LOAD). This occurs when 

the visible symptoms develop after 65 years of age although disease processes are 

likely to be earlier. Conversely, early-onset AD (EOAD) occurs when age of disease 

onset and visible symptoms are before 65 years of age (Bali et al. 2012). Rare 

autosomal dominant forms of AD also exist due to mutations in the amyloid 

precursor protein gene (APP) and presenilin genes (PSEN1 and PSEN2). Knowledge of 
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these mutations has contributed to current understanding of both early- and late-

onset AD disease processes (Van Cauwenberghe et al. 2016).  

 

1.1.2 Pathology of AD 

 

The pathology of the AD brain can be divided into microscopic and macroscopic 

features. The microscopic changes usually seen in AD include progressive loss of the 

synaptic connections between neurons and eventually the neurons themselves.  The 

hippocampus (which is important for memory formation) is one of the first areas to 

be affected. As the disease progresses, macroscopic features are evident such as 

cortical atrophy.  The brain appears to be shrunken and the frontal and temporal 

cortices have enlarged sulcal spaces (Drew 2018; Knopman et al. 2021).  

 

Further microscopic changes include the accumulation of the amyloid-beta peptide. 

Amyloid-beta is produced by the cleavage of APP in the membrane of neurons. 

Amyloid-beta forms oligomers compromising neuronal membrane integrity which is 

thought to result in synaptic disfunction. Fibrils of amyloid-beta aggregate into what 

are known as plaques. These insoluble plaques form between neurons and interfere 

with their function (Drew 2018; Knopman et al. 2021).  

 

Another microscopic change is seen with tau, which is a microtubule-associated 

protein that is present in the cytoplasm of axons. Misfolded tau protein aggregates 

into neurofibrillary tangles (NFT) inside of neurons, displacing intracellular 

organelles. Misfolded tau can pass through synapses to other neurons, where it 

catalyses further misfolding of tau (Drew 2018; Knopman et al. 2021).  

 

1.1.3 Staging 

 

The pathophysiology and symptomology of AD is understood to be on a continuum. 

Patients transition from normal cognition to a pre-dementia phase of AD referred to 
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as mild cognitive impairment (MCI). This is then followed by a progressive dementia 

advancing through mild, moderate and severe stages of AD (Sperling et al. 2011; 

Davis et al. 2018).  

 

Symptoms of AD typically include both cognitive and neuropsychiatric symptoms and 

vary depending on disease stage (Atri 2019b). Symptoms initially start as memory 

problems, impaired judgement or behaviour but do not affect the independence of 

the individual (Davis et al. 2018). Early pathological changes can already be seen in 

the cortex and hippocampus (Breijyeh and Karaman 2020). As the disease 

progresses, cognition worsens and neuropsychiatric symptoms such as depression, 

apathy, hallucinations, and delusions can become exacerbated. Over time these 

symptoms can have an increasingly adverse effect on daily function, quality of life 

and they can have a huge impact on caregivers (Lyketsos et al. 2011).  

 

Eventually the individual will decline to a severe AD stage. At this stage, pathological 

changes in the entire cortex area can be seen. Patients will have lost independence 

due to severe cognitive impairment and potentially due to difficulties with 

swallowing and urination. Eventually death occurs due to complications such as 

pneumonia, urinary tract infection, dehydration and sepsis (Breijyeh and Karaman 

2020). The symptoms and rate of decline varies between individuals and are difficult 

to predict and are not well understood (Davis et al. 2018). 

 

1.1.4 Diagnosis 

 

Symptoms of AD are very heterogenous and in the early stages of disease are often 

misattributed to other conditions, dismissed or ignored leading to delays in diagnosis 

and missed opportunities for intervention. Diagnosis of AD is challenging as there are 

no biomarker tests available for clinical use. Diagnosis is mainly based on a clinical 

and exclusionary approach (Scheltens et al. 2021).  
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Diagnosis is usually decided based on a clinical interview with the patient and an 

informant in addition to cognitive and physical examinations. Blood tests are 

performed to exclude conditions that may cause cognitive symptoms. Brain imaging 

is used to identify structural changes in the brain. Genetic testing may be used when 

an autosomal dominant case of AD may be suspected but routine genetic testing is 

not currently recommended (Lane et al. 2018).  

 

Research is currently focused on identifying a potential biomarker that would be 

usable in the clinical setting. Amyloid-beta, total tau, and phosphorylated tau levels 

in cerebrospinal fluid (CSF) have been considered for use as biomarkers and have 

been shown to be moderately successful in diagnosing not only AD dementia but 

prodromal AD. However, a blood based biomarker would be preferred as it is less 

invasive to collect than CSF (Blennow and Zetterberg 2018) . Recently a blood 

biomarker assay of phosphorylated tau has been developed. This assay was able to 

differentiate AD dementia from cognitively unimpaired older adults with an area 

under the curve (AUC) of 90.21-98.24%  (Karikari et al. 2021). 

 

Recently a research framework has been proposed to diagnose individuals living with 

AD using a range of biomarkers. The biomarkers are usually a mixture of imaging and 

biofluid markers (often CSF) and aim to capture the following underlying AD biology: 

amyloid-beta deposition, pathological tau, and neurodegeneration. This is referred 

to as Amyloid/Tau/Neurodegeneration (ATN) classification (Jack et al. 2018). The 

framework has the advantage in that it aims to provide individuals a biologically 

driven classification of AD. The framework considers AD as a continuum rather than 

a binary AD case-control status based solely on observed symptoms.  The ATN 

classification has the advantage that additional biomarkers can be added as 

understanding of disease biology progresses, and this is an active area of research 

(Kasuga et al. 2022).   

 



 5 

Tau protein phosphorylated at threonine 181 (p-tau) is a biomarker used for tau 

deposition (T) and CSF total tau is used as a biomarker for neurodegeneration (N) 

within the ATN framework. However, this has been criticised as they are so highly 

correlated that there may be limited value in using total tau when diagnosing AD 

using the ATN framework (Soldan et al. 2019; Cousins et al. 2021). CSF neurofilament 

light chain protein has been suggested as an alternative marker of N. Neurofilament 

light chain is an axonal protein that has been shown to be elevated in CSF in a range 

of neurodegenerative conditions including AD and dementia (de Jong et al. 2007). 

Neurofilament light chain has been suggested as a promising biomarker for 

identifying preclinical disease as it is dynamic and captures different biology to total 

tau (Mattsson-Carlgren et al. 2020; Kasuga et al. 2022) 

 

 

1.1.5 Epidemiology and projections of AD 

 

AD is not simply a product of normal ageing and the disease is not only distressing to 

the patient, but it is also onerous to their families, caregivers and the healthcare 

system (Atri 2019b).  In 2015, it was estimated that nearly 47 million people were 

living with AD globally. In 2019, this had risen to 57.4 million people. This number is 

predicted to rise to more than 167 million by 2050 with some models predicting that 

1 in 85 people would be living with the disease if no cure or prevention is found 

(Brookmeyer et al. 2007; Prince et al. 2015). AD is not only devastating at a personal 

level but has a large economic cost. The current worldwide annual cost of dementia 

is estimated to be one trillion US dollars and predicted to reach two trillion US dollars 

by 2030 if no incidence-altering treatment is found (Prince et al. 2015; Wittenberg et 

al. 2020; Nichols 2022).  

 

Globally there is an increasingly ageing population due in part to individuals living 

longer. It is therefore anticipated that the global burden of AD and related dementias 

will increase.  In 2019, it was estimated that almost 885,000 older people in the UK 

have dementia. If no new interventions are discovered, this is forecasted to be 1.6 
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million by 2040. Projections suggest that overall expenditure on care for older people 

with dementia will have risen by 249% in the period between 2015 to 2040. Total 

costs for dementia-related health and social care are predicted to rise from 0.8% of 

GDP to 1.9% of GDP in this same period. This is excluding unpaid care costs which 

usually impact the families of those affected by AD (Wittenberg et al. 2020). These 

figures are forecasted specifically with respect to the UK, but if a similar outcome is 

seen globally, it is clear that there is an urgent need for new treatments to reduce 

the global burden of disease. An intervention that could delay both disease onset 

and progression by one year could have a huge impact with an estimated reduction 

in 9.2 million fewer cases worldwide (Brookmeyer et al. 2007).  

 

1.1.6 Treatments 

 

There is currently no cure for AD and treatment strategies aim to retain quality of life 

and manage symptoms (Atri 2019a). Over the past 10 years, more than 100 AD drug 

candidates have either not made it past the drug development stage or through 

clinical trials (Dujardin et al. 2022). It is understood that the pathological processes 

underlying AD could begin decades before symptoms manifest (Atri 2019a). This 

could explain why clinical trials have been unsuccessful so far. Many trials included 

patients that are in the advanced stage of disease when widespread and likely 

irreversible damage to the brain has taken hold (Mehta et al. 2017). More modern 

trials are focussed on including individuals with milder disease, MCI and even utilising 

the ATN framework (Grill et al. 2019; Gregory et al. 2022; Kasuga et al. 2022).   

 

Other criticisms of trials to date include problems with trial design, and potentially 

targeting the wrong pathological substrate. Amyloid-beta plaques and their 

elimination have been the primary target for many drugs, but success has been 

limited (Mehta et al. 2017; Dujardin et al. 2022). In 2021, the US Food and Drug 

Administration (FDA) approved Aducanumab, a monoclonal antibody which targets 

amyloid-beta. However only clearance of amyloid-beta has been demonstrated, and 

as such the efficacy of the drug on the impact on AD is unknown. Additionally, the 
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FDA advisory committee had advised that the drug should not be approved as there 

was a lack of evidence that Aducanumab would result in cognitive improvement. The 

decision to approve the drug by the FDA lead to three committee members resigning. 

In addition, there were further concerns over its safety profile. The European 

Medicines Agency did not approve the drug for use in the EU partially because brain 

scans of patients using the drug were found to show abnormalities such as swelling 

and bleeding. Additionally, they stated that no link between reducing amyloid in the 

brain and cognitive improvement was found and that the trial results were conflicting   

(Mahase 2021; Dujardin et al. 2022).   

 

1.1.7 Risk factors for AD 

 

The underlying cause of pathological changes in AD remain unknown. AD is 

considered a multifactorial disease with several risk factors (Zhang et al. 2020b). 

These can be separated into modifiable and non-modifiable risk factors, and these 

are summarised in Figure 1-1. It is estimated that around 35% of life-time risk of 

dementia is modifiable by factors such as diet, education, health care and socio-

economic status which are often interlinked (Livingston et al. 2017). Other modifiable 

risk factors include exposure to air pollution, alcohol use and infections.  Obesity, 

type 2 diabetes and cardiovascular diseases are also known risk factors for AD and 

dementia (Breijyeh and Karaman 2020). It is known that a wide variety of modifiable 

risk factors contribute to risk for AD but as to how they contribute to underlying 

disease mechanisms remains elusive. Health initiatives to prevent AD are largely 

aimed at encouraging individuals to lead active lifestyles with a healthy diet, 

especially at middle age due to a lack of pharmacological interventions (Silva et al. 

2019). Targeting poverty and inequality would also be of benefit especially for 

individuals experiencing the most deprivation (Livingston et al. 2017). 
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Figure 1-1 - A list of potentially modifiable and non-modifiable risk factors for AD 

 
Risk factors that are non-modifiable include age, sex, genetics and family history. 

Ageing is considered to be one of the most important risk factors in AD for several 

reasons. Firstly, AD is rare in young people and most cases have a late onset which 

starts over the age of 65 years (Breijyeh and Karaman 2020). Furthermore, ageing is 

known to be a complex process that impacts on every cell in the body. It has been 

hypothesised that systems driving brain ageing such as amyloid-beta processing, 

inflammation, and mitochondria dysfunction contribute to AD risk. The female 

prevalence of AD is higher than that in males, which could be due in part to women 

having a greater lifespan than men on average (4.5 years)  (Riedel et al. 2016).  

 

As age is one of the most important risk factors for AD, recent research has given 

more attention to the concept and definition of age and ageing. Age can be defined 

using chronological age which is determined by the day a person is born. However, 

chronological age is not neccesssarily an accurate indicator of the biological process 

of ageing. Biological age has been proposed as a method to predict the ageing status 

of an individual or tissue (Milicic et al. 2022).  

Modifiable

Education Traumatic 
Brain Injury Alcohol Use Hypertension Diet

Obesity Smoking Air Pollution Social 
Isolation

Physical 
Activity

Hearing Loss Diabetes Cognition Socio-economic 
Status Depression

Risk Factors of Alzheimer’s Disease:
Potentially Modifiable and Non-Modifiable

Biological Sex

Family History

Age

Genetics

Non-Modifiable



 9 

One measure of biological age is the epigenetic clock. Epigenetic clocks rely on DNA 

methylation, a process which involves the addition of a tag known as a methyl group 

to parts of the genome in which cytosine bases are bound to guanine bases through 

a phosphate group (CpG). When methylated, CpGs can act as binding sites for 

proteins that alter the DNA’s structure. At numerous CpGs, methylation has been 

shown to decrease gene expression which could in turn affect biological function 

(Drew 2022).  Horvath developed a ground-breaking epigenetic clock which applied 

an algorithm on the same 353 CpGs to predict biological age regardless of the DNA 

origin. This allowed the comparing of biological age from different tissues (Horvath 

2013). More recently, another epigenetic clock has been developed specifically for 

human cortex that has the potential to identify phenotypes associated with biological 

ageing in the brain (Shireby et al. 2020). With time, these methods are likely to help 

increase our understanding of the impact biological ageing has on 

neurodegenerative diseases.  

 

Genetics are also known to play an important role in AD and have contributed to our 

current understanding of AD disease processes. It is known that rare mutations 

account for familial forms of early-onset AD. Sporadic early-onset AD and late-onset 

AD share common pathological features and both are considered to be highly 

heritable (Li et al. 2021). The heritability of late-onset AD is estimated to be 58-79% 

(Gatz et al. 2006) and familial early-onset AD shows a heritability of over 90% (Wingo 

et al. 2012; Sims et al. 2020). Common polymorphisms in the apolipoprotein E (APOE) 

gene are known to be a major genetic risk factor for AD.  

 
1.1.8 Early genetic studies of AD and the amyloid cascade hypothesis 

 

Early genetic studies in AD have informed the main hypothesis of how AD occurs 

which has remained for over three decades now. In the early nineties, mutations 

were identified in APP, PSEN1 and PSEN2 which led to the development of the 

amyloid cascade hypothesis (Hardy and Allsop 1991; Hardy and Higgins 1992). The 

hypothesis is based on the idea that accumulation of amyloid-beta protein in the 
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brain is the main causal agent in the pathogenesis of AD. Neurofibrillary tangles, cell 

loss and eventually dementia follow (Hardy and Higgins 1992; Hardy and Selkoe 

2002).  

 

Amyloid-beta is produced by the enzymes beta-secretase and gamma-secretase by 

cutting APP in two places, which then creates a peptide fragment. Mutations in 

PSEN1 and PSEN2 were found to affect the location where gamma-secretase cuts 

APP resulting in a variant of amyloid-beta that clumps together more easily. This 

triggers the accumulation of amyloid-beta oligomers and then further accumulation 

produces insoluble fibrils which aggregate into plaques. This aggregation of amyloid-

beta is thought to then trigger a cascade of disease (Makin 2018). 

 

Further knowledge of disease has come from individuals with Down syndrome who 

have three copies of chromosome 21 (trisomy 21). The APP gene is found on 

chromosome 21, and amyloid plaques and tau neurofibrillary tangles are usually 

found in individuals with Down syndrome by the age of 40. The lifetime risk of AD in 

individuals with Down syndrome is more than 90% and Down syndrome is now 

considered a genetic cause of AD (Fortea et al. 2021).  

 

1.1.9 The APOE gene 

 

The strongest genetic risk factor for sporadic late-onset AD is the ɛ4 allele of the 

APOE gene. ApoE is a lipoprotein that is expressed in the brain. It is involved in 

cholesterol and lipid transportation and neuronal growth (Li et al. 2021). Three 

different alleles of APOE encode three different isoforms of ApoE. These are Apo E2, 

E3, and E4 and encoded by the ε2, ε3 and ε4 alleles of the APOE gene respectively 

(Liu et al. 2013). The three ApoE isoforms are determined by combinations of two 

SNPs (rs429358 and rs7412).  There are three possible haplotypes which are 

presented in Table 1-1 and six possible genotypes (ɛ2/ɛ2, ɛ2/ɛ3, ɛ2/ɛ4, ɛ3/ɛ3, ɛ3/ɛ4, 

ɛ4/ɛ4) (Wu et al. 2020). 
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rs429358 rs7412 APOE allele 

T T ε2 

T C ε3 

C C ε4 

Table 1-1 The three APOE haplotypes (ɛ2/ɛ3/ɛ4) formed by two single nucleotide polymorphisms: 
rs429358 and rs7412 

 

 

APOE ε4 carriers have an increased risk of AD with ε4/ε4 homozygotes carrying a 

14.9-fold higher odds ratio (OR) of AD risk (Liu et al. 2013). Disease risk is also higher 

for ε4 heterozygotes (OR = 2.6 for ε2/ε4 and OR = 3.2 for ε3/ε4) (Liu et al. 2013; Li et 

al. 2021). In contrast the ε2 allele has been found to be protective against AD 

(OR=0.6) (Liu et al. 2013; Li et al. 2021). 

 

1.1.10 GWAS and its applications in AD 

 

The identification of susceptibility variants for common disease with high minor allele 

frequency, like APOE, led to the ‘common disease common variant’ hypothesis. This 

hypothesis is that common diseases like AD are influenced by genetic variation that 

is common within the population and that effect sizes for any one variant must be 

small relative to that found for rare disorders. Therefore, if common alleles with low 

penetrance contribute to  the heritability of common disease, then multiple variants 

of low penetrance are contributing to disease susceptibility (Bush and Moore 2012).  

Some AD variants with varying frequency and risk effect size are summarised in 

Figure 1-2. 
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Figure 1-2 A selection of risk genes associated with AD presented by their risk allele frequency and 
the strength of their genetic effect. Colours in the legend indicate pathways in which the genes are 
involved. Adapted from (Lane et al. 2018) and (König and Stögmann 2021) 

 
The arrival of high throughput genotyping has allowed genome-wide association 

studies (GWAS) to explore the genetic architecture of human disease and identify 

variants of small effect sizes that potentially contribute to the heritability of complex 

disorders. GWAS examines the association between millions of SNPs across the 

genome and a trait of interest with no underlying assumptions about disease biology 

(Uffelmann et al. 2021).  

 

An important concept of GWAS to take into consideration is linkage disequilibrium 

(LD) (Li et al. 2021). LD is the degree to which an allele of a SNP or variant is inherited 

with an allele of another SNP within a population. The identification of an index SNP 

in GWAS means the index SNP can be used as a tag SNP for the surrounding region 

of LD (Bush and Moore 2012). This aspect of LD is important to take note of when 

considering the results from GWAS at it means that identified variants may not be 

causal but tagging the causal variant. Additionally, it means that findings from one 

population may not be applicable to another population due to differences in LD 

structure (Bush and Moore 2012; Li et al. 2021). Due to LD potentially obscuring 
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which is the causal variant driving a trait-association, any causal relationship cannot 

be ascertained from GWAS alone (Wainberg et al. 2019). 

 

The first AD GWAS were started in 2007 where only SNPs within the APOE locus 

reached genome-wide significance and included around 2,000 cases and controls. As 

AD GWAS sample numbers increased, subsequent analyses identified more AD 

susceptibility loci including CLU, PICALM, CR1, BIN1, ABCA7, MS4A, CD2AP, CD33 and 

EPHA1 (Li et al. 2021).  

 

In 2013, the International Genomics of Alzheimer’s Project (IGAP) published a meta-

analysis of previous AD GWAS including 17,008 cases and 37,154 controls (stage 1). 

This was followed by replication in an independent cohort of 8,572 disease cases and 

11,312 controls (stage 2)  (Lambert et al. 2013). These two stages of the meta-

analysis confirmed previous GWAS findings and found a further 11 novel 

susceptibility loci: HLA-DRB5, HLA-DRB1, PTK2B, SORL1, SLC24A4, INPP5D, MEF2C, 

NME8, ZCWPW1, CELF1, and FERMT2.  

 

In order to build on the previous findings of GWAS and increase statistical power, the 

first AD GWAS-by-proxy (GWAX) was performed in 2018. This utilised the UK Biobank 

by including 314,278 proxy AD cases and controls. The proxy cases and controls were 

based on self-reported parental history of dementia as opposed to an AD diagnosis 

of the individuals included in the study. These were then meta-analysed with the 

previous IGAP GWAS. This led to the identification of 27 AD susceptibility loci 

including three novel ones: ADAM10, BCKDK/KAT8 and CR1 (Marioni et al. 2018). The 

authors also performed expression quantitative trait loci (eQTL) analysis which is an 

approach used to identify variants associated with gene expression on the basis that 

a proportion of transcripts are under genetic control. A transcript that is correlated 

with a risk variant in a relevant tissue has often been considered to be a candidate 

susceptibility gene (Lawrenson et al. 2015). This led to the authors reporting 

TOMM40, KAT8 and CR1 as candidate causal genes in AD (Marioni et al. 2018).  
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In 2019, a larger GWAX was published consisting of 534,403 individuals. This was 

achieved by meta-analysing IGAP stage 1, a new sample from the Psychiatric Genetics 

Consortium (n=17,477), exome-wide data from the Alzheimer’s Disease Sequencing 

Project and GWAX from the UK Biobank (71,880 proxy cases and 383,378 proxy 

controls). This analysis identified 29 susceptibility loci in which nine were novel: 

ADAMTS4, HESX1, CLNK, CNTNAP2, ADAM10, APH1B, KAT8, ALPK2 and AC074212.3 

(Jansen et al. 2019). The authors used three gene-mapping strategies to link the AD- 

associated variants to candidate causal genes. This included positional gene-

mapping, eQTL analysis and chromatin interaction mapping as implemented by the 

platform Functional Mapping and Annotation (FUMA) (Watanabe et al. 2017). This 

was followed by genome-wide gene-based association analysis using Multi-marker 

Analysis of Genomic Annotation (MAGMA) (de Leeuw et al. 2015). 215 potential 

causative genes were identified in total, but only 16 genes were implicated by all four 

approaches with seven of these genes being located outside of the APOE locus: HLA-

DRA, HLA-DRB1, PTK2B, CLU, MS4A3, SCIMP, RABEP1. 

 

Later in 2019 IGAP produced the largest GWAS of clinically diagnosed AD. IGAP Stage 

1 was increased to 21,892 cases and 41,944 controls. The meta-analysis with stages 

2 and 3 produced a final sample size of 35,274 cases and 59,163 controls with 24 

susceptibility loci being discovered including three novel loci: IQCK, ADAMTS1, and 

WWOX (Kunkle et al. 2019). In order to determine candidate AD genes, Kunkle et al. 

determined a priority score for genes located within 500Kb of the LD region for the 

risk locus associated with each lead SNP. The priority score was determined by taking 

the sum of different lines of evidence including exonic functional annotation, eQTLs 

in AD relevant tissue then all tissues, correlation between expression and Braak (tau) 

pathology, differential expression in AD and evidence based on biological pathways. 

400 candidate causative genes were identified across 24 loci including ADAM10, 

ADAMTS1, ACE, IQCK, WWOX and MAF (Kunkle et al. 2019). MAGMA pathway 

analyses were performed in the 2018 GWAX and both 2019 studies and all three 

implicated amyloid and tau processing, lipid metabolism, and the immune system.  
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In 2021, a meta-analysis of the UK Biobank GWAX dataset with the stage 1 data from 

Kunkle et al. (Schwartzentruber et al. 2021). This included 53,042 AD proxy cases, 

21,982 AD cases and 397,844 controls (Li et al. 2021; Schwartzentruber et al. 2021). 

Schwartzentruber et al. identified 37 risk loci with novel associations near CCDC6, 

TSPAN14, NCK2 and SPRED2. The authors performed colocalization between 36 of 

the discovered risk loci (excluding APOE) and 109 eQTL datasets representing a wide 

range of tissues, cell types and conditions. They also performed fine-mapping using 

FINEMAP, GCTA and PAINTOR and network analysis. Evidence from these analyses 

led the authors to suggest the following candidate causal genes: CCDC6, TSPAN14, 

NCK2, SPRED2, BIN1, APH1B, PTK2B, PILRA, CASS4, ABCA7, SORL1, PICALM, SPI1, CR1. 

Immune response, phagocytosis and the complement cascade pathways were found 

to be implicated in AD using gene enrichment analysis (Schwartzentruber et al. 2021).  

 

In 2021, the 2019 GWAX was also expanded to include samples from additional 

cohorts including GR@CE and 23andMe. This resulted in the inclusion of 90,338 

(44,613 proxy) cases and 1,036,225 (318,246 proxy) controls. This study identified 38 

loci, with seven of them not being previously reported: AGRN, TNIP1, HAVCR2, 

TMEM106B, GRN, NTN5, and LILRB2. The authors’ work utilised gene set analysis, 

chromatin enrichment analysis, eQTL enrichment analysis and functional 

consequence enrichment analysis which provided evidence for microglial pathways, 

amyloid and tau aggregation, and the immune system as AD- associated pathways 

(Wightman et al. 2021).  

 

More recently in 2022, another study has been published including 111,326 cases 

(which are a mixture of clinically diagnosed and proxy cases) and 677,663 controls. 

Their samples came from the following consortia/datasets: EADB, GR@CE, EADI, 

GERAD/PERADES, DemGene, Bonn, the Rotterdam study, the CCHS study, NxC and 

UK Biobank. The samples included share a larger overlap with previously published 

GWAS and GWAX.  The authors reported that they found 75 risk loci, of which 42 
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were new at the time of their analysis. Their gene prioritisation analysis identified 55 

genes and the authors highlighted that six of them are expressed at a low level in 

microglia (ICA1L, EGFR, RITA1, MYO15A, LIME1 and APP) which the authors 

concluded emphasised that AD and related dementias result from multiple cell types 

in the brain.   A pathway enrichment analysis using their results confirmed the 

involvement of amyloid/tau pathways and implicated microglial endocytosis in AD 

(Bellenguez et al. 2022).  

 

GWAS have shown that AD has a genetic underpinning that is highly polygenic and 

has allowed researchers to identify genetic variants associated with AD. These 

variants can be combined into a polygenic risk score (PRS) that captures part of an 

individual’s susceptibility to disease (Lewis and Vassos 2020). PRSs have been shown 

to discriminate between pathologically confirmed AD cases and controls achieving 

an accuracy between 75-84% (Escott-Price et al. 2015; Escott-Price et al. 2017a). 

Prediction of disease status based on PRS alone is insufficient for precision medicine 

but can be used for other applications. One example is using PRS for induced 

pluripotent stem cell lines to identify and study cell lines which are at risk extremes. 

Selecting polygenic extremes can increase confidence in the cell line developing 

disease or remaining a control (Baker and Escott-Price 2020).  

 

AD GWAS have contributed a lot to our understanding of the genetic architecture of 

AD. In the future it is likely that AD GWAS will continue to grow with the aim of finding 

new loci however it has been argued that will result in diminishing returns as current 

AD GWAS are not without their limitations (Escott-Price and Hardy 2022). It is likely 

that the GWAS are contaminated with dementia samples rather than being solely 

AD. This is due to AD being challenging to diagnose due to a lack of available 

biomarkers. Additionally, the GWAX rely on individuals accurately reporting their 

parents’ diagnosis of dementia, so is also likely to be diluted with other types of 

dementia or not having dementia at all.  The controls are potentially diluted too as 

some could be preclinical AD or dementia cases leading to a reduction of power. The 

future of GWAS may achieve more in furthering understanding of disease by using 
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only pathologically confirmed samples or those confirmed using biomarkers. This is 

likely to result in much smaller sample sizes in comparison to the GWAS/GWAX 

previously described, but likely to be better at informing on loci relevant to disease 

pathology and progression (Escott-Price and Hardy 2022). 

 

Another limitation is the large overlap of participants between the separate GWAS 

meaning that the discovered loci are not truly independent findings and may be 

biased. The GWAS discussed so far all include individuals of European descent, so 

findings are biased towards a European-centric AD. More GWAS in other ancestries 

are required to develop a fuller understanding of AD genetic architecture.  

 

One final limitation is that GWAS alone cannot identify which is the causal SNP or 

gene. The next challenge is how to identify which functional genetic variants and 

causal genes at these risk loci contribute to the biology of disease. 

 

 
 

1.1.11 Expression quantitative trait loci and AD 

 

Candidate functional SNPs affect genes differently depending on whether they are 

located in a regulatory or coding region. About 80% of the genetic susceptibility loci 

detected by GWAS were located in the non-coding regions (Zhao et al. 2019). This 

suggests that the pathogenic variants at these loci may be regulatory variants, or in 

other words, genetic variants that regulate expression levels of genes. Expression 

quantitative trait locus (eQTL) studies determine associations of genetic variants with 

gene expression (mRNA), but it is not possible to pinpoint which eQTLs are 

functionally important through eQTL associations alone.  
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Many studies (including many of the GWAS discussed above) utilise eQTL discovery 

in order to identify candidate genes driving disease risk  (Gallagher and Chen-Plotkin 

2018). EQTLs can be characterised as cis-acting or trans-acting eQTLs. Cis-eQTLs are 

those that affect the expression of nearby genes as opposed to trans-eQTLs which 

affect the expression of distant genes or even genes on different chromosomes. 

Distance in this context is usually defined depending on the study and is variable 

between studies. Typically, cis- is within 1Mb and trans- is a distance greater than 

1Mb from the eQTL to the gene end. Research in AD using eQTLs has suggested that 

altered gene expression plays a role in the aetiology of AD however most studies 

focus only on cis-eQTLs (Zou et al. 2010; Sieberts et al. 2020; Patel et al. 2021).  This 

is because detecting trans-eQTLs is more computationally intensive in addition to 

requiring larger sample sizes and being affected by multiple hypothesis testing 

burden. Trans-eQTLs also tend to have weaker effect sizes in comparison to cis-eQTLs 

(Clyde 2017). 

 

Many eQTLs are shared between contexts (such as tissue, time, sex) but some eQTLs 

can be context specific. One study of over 400 healthy individuals found that 

although most eQTLs are shared, AD susceptibility alleles were enriched for 

monocyte-specific cis-eQTLs. The authors suggest that their results provide a genetic 

underpinning to the idea that the myeloid compartment of the immune system is 

driving the inflammatory component of susceptibility to neurodegenerative 

diseases. Additionally, as they studied young and healthy individuals, their results 

provide support for a role of myeloid cells in the prodromal phase of 

neurodegenerative diseases like AD (Raj et al. 2014).  

 

One study compared cell-type specific eQTLs (ct-eQTLS) with bulk eQTLs from whole 

blood and brain. The authors then investigated the association of eQTLs with AD in 

addition to performing a differential gene expression analysis. They used brain 

samples from the Religious Orders Study/Memory and Aging Project (ROSMAP) 

(n=475) and blood samples from the Framington Heart Study (n=5,257). 24,028 

significant SNP-gene eQTL pairs were found to be shared between blood and brain 
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with 386 distinct eGenes (the gene of the SNP-gene eQTL pair). 308 of these eGenes 

were differentially expressed between AD cases and controls. Six AD-associated 

genes (CR1, ECHDC3, HLA-DRB1, HLA-DRB5, LRRC2, and WWOX) were shared eQTL 

genes between brain and blood. CR1, HLA-DRB1, HLA-DRB5 and ECHD3 showed 

different patterns of association between AD cases and controls whereas WWOX and 

LRRC2 were differentially expressed in AD cases versus controls (Patel et al. 2021). 

Additional significant gene-SNP eQTL pairs in the brain (n = 11,649) and blood 

(n = 2,533) were observed in ct-eQTL analysis that were not detected in the bulk eQTL 

analysis (Patel et al. 2021). These findings demonstrate that eQTL analysis in AD can 

help identify candidate genes involved in AD in a context specific manner which may 

provide mechanistic insights.  

 

An area that has been understudied in AD is eQTL mapping of non-coding RNA such 

as microRNA and the study of microRNA’s role in AD itself. MicroRNAs are known to 

be post-transcriptional regulators of gene expression by binding to target mRNA 

(Sonehara et al. 2021).  It has been estimated that at least 1% of the human genome 

encodes microRNAs and each one could regulate up to 200 mRNAs. MicroRNA 

dysregulation has been implicated in AD and microRNAs are known to play a role in 

APP degradation and amyloid-beta metabolism through regulating gene expression.  

Dysregulation of microRNAs in AD is a relatively new area of research but is an 

important area of study as there is growing evidence that microRNAs may have utility 

as diagnostic markers in AD. Previous research has shown that combining between 

two and four microRNAs could distinguish AD cases and controls with an accuracy of 

between 75-82% (Angelucci et al. 2019; Wei et al. 2020).  

 

1.1.12 Transcriptome-wide association studies and their application in AD 

 

Large reference panels of eQTLs are now available for researchers to utilise, such as 

those from the Genotype-Tissue Expression (GTEx) project which has generated 

eQTLs from 54 different non-diseased tissues (GTEx-Consortium 2013).  One method 
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that utilises reference panels of eQTLs is transcriptome-wide association studies 

(TWAS).  

TWAS is a gene-based association method that identifies associations between 

genetically regulated gene expression and complex traits such as AD.  The first stage 

of a TWAS imputes genetically regulated gene expression by combining individual-

level genotype data or GWAS summary statistics with externally estimated eQTLs. 

These external eQTLs can come from reference panels such as those available from 

GTEx. The second stage assesses the association between imputed gene expression 

levels and a complex trait (Gusev et al. 2016; Li and Ritchie 2021).  

 

TWAS have been applied in AD to try and disentangle the effect between genotype, 

transcript and disease status. A recent TWAS study in monocytes found an 

association between differences in gene expression and AD in seven genes in known 

AD risk loci, three of which (PVR, PTK2B and MS4A6E) were replicated (Harwood et 

al. 2021). Another study utilising the ROSMAP, MayoRNASeq and MSBB cohorts 

performed a TWAS across six different brain regions and found six candidate AD 

genes that were replicated: APOC1, EED, CD2AP, CEACAM19, CLPTM1, and TREM2 

(Gockley et al. 2021).  

 

One benefit of TWAS is that the multiple hypothesis testing burden is much lower in 

comparison to GWAS. Another benefit is that analyses can be tissue specific meaning 

that it is possible to find associations specific to disease-relevant tissues  (Li and 

Ritchie 2021).  

 

Although TWAS is informative, it does have limitations. It is important to emphasise 

that TWAS is still a test of association, and the method does not confirm causality. 

Additionally TWAS-significant loci can contain multiple associated genes analogous 

to a GWAS identifying blocks of associated variants in LD (Wainberg et al. 2019). At 

present, TWAS studies only focus on gene expression that can be explained by 

common cis-eQTLs. This is in part due to the technical difficulties in assessing trans-
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eQTLs. For trans-eQTLs the number of statistical tests is orders of magnitude higher 

than for cis-eQTLs leading to a huge multiple hypothesis testing burden. Therefore, 

increased sample sizes are required to ensure there is enough statistical power in 

any analysis (Li and Ritchie 2021). Furthermore, TWAS may be limited when there 

are overlapping effects between cis- and trans-eQTLs for the same gene (Li and 

Ritchie 2021) . Finally, the computational resources for calculating LD when including 

trans-eQTLs is prohibitive (Li and Ritchie 2021). 

 

 It has been estimated that common cis-eQTLs explain only 10% of genetic variance 

in gene expression (Grundberg et al. 2012). Trans-eQTLs on the other hand have been 

estimated to contribute around 70% of the genetic heritability of gene expression 

levels (Boyle et al. 2017). More reliable methods and more powerful datasets are 

required to detect rare cis-eQTLs and trans-eQTLs which are likely to explain more of 

the genetic basis of gene expression.   

 

Some novel methods to extend the TWAS methodology have been suggested. A 

Bayesian genome-wide TWAS (BGW-TWAS) approach can gain insights from both cis- 

and trans-eQTLs. The authors performed BGW-TWAS in AD case-control data, 

neurofibrillary tangle density, global AD pathology and amyloid-beta.  Using ROSMAP 

individual-level data they found ZC3H12B was a significant gene for the AD, global 

AD pathology and tangles phenotypes. KCTD12 was significant for the amyloid-beta 

phenotype. Their data suggests that the association between ZC3H12B with all the 

included AD phenotypes was driven by trans-eQTLs, with the top four trans-eQTLs 

being located in the known risk gene APOC1. Using IGAP GWAS (Lambert et al. 2013) 

summary statistics they identified 13 significant genes including HLA-DRB1, APOC1, 

and ZC3H12B (Luningham et al. 2020).  
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1.1.13 Transcriptomics in AD 

 

TWAS tests for association with genetically predicted expression using cis-eQTLs 

which only explains a very small part of total gene expression. Total expression also 

includes expression of rare cis-eQTLs, trans-eQTLs, the environment, and technical 

components (Wainberg et al. 2019). To further understanding of the molecular 

mechanisms underpinning the association between a risk gene, gene expression and 

AD, researchers have explored transcriptome profiling. This can be performed using 

microarray hybridisation or ribonucleic acid-sequencing (RNA-seq) technologies. 

Researchers then utilise these technologies with the aim of identifying genes that are 

differentially expressed between different phenotypes of AD, such as cases versus 

controls. Differentially expressed genes (DEGs) and their over- or under- expression 

may result in perturbations of biological pathways which could result in disease. 

 

Differential gene expression (DGE) analysis is used to identify whether individual 

genes are expressed differently between phenotypes. In bioinformatic research it is 

also common to perform some form of pathway enrichment analysis as individual 

genes are not particularly informative as to underlying biology of disease. Sources of 

pathways include using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(Kanehisa et al. 2008) and Reactome (Fabregat et al. 2016) databases.  

 

Gene expression data is also often interpreted using gene ontology (GO) enrichment 

analysis. The Gene Ontology is a system for classifying sets of genes into terms. These 

GO terms fall under three categories: biological processes, molecular functions and 

cellular components. Differentially expressed genes are functionally annotated to 

biological processes, molecular functions or cellular components to discover 

pathways associated with disease. Identifying and modifying pathways associated 

with gene expression may be useful for disease diagnosis and discovering potential 

therapies (Bagyinszky et al. 2020). Tools for finding enriched GO terms include DAVID 

(Huang da et al. 2009b,a), GOrilla (Eden et al. 2009), and PANTHER (Mi et al. 2020) as 

well as many others.  
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The first step of an enrichment analysis typically involves defining a gene list of 

interest and depends on the type of analysis being performed. Ranked methods take 

as input a ranked gene list. Other methods take as input a gene list of interest, such 

as genes that are differentially expressed between two groups of samples from an 

RNA-seq experiment. The second step utilises a statistical method to identify 

pathways that are enriched in the gene list more than what one would expect by 

chance alone. Statistical methods do vary with non-ranked methods and require a 

definition of a background set, such as all genes included in the sequencing panel. A 

statistical test such as the Fisher’s exact test based on the hypergeometric 

distribution is then used. More sophisticated methods do also exist as an alternative 

to non-ranked methods as they rely on arbitrary cut-offs. The alternative ranked 

methods include the entire gene list and often utilise statistical methods such as the 

Wilcoxon rank sum test. The third step is correction for multiple hypothesis testing 

correction and data visualisation (Reimand et al. 2019).  

 

Transcriptomic studies in AD are often small due to the difficulty of collecting brain 

tissue samples. Therefore, gene expression studies in AD frequently utilise the AMP-

AD gene expression data. This data is the most comprehensive publicly available 

expression data from AD brains and comprises data from the ROSMAP, MSBB and 

MayoRNASeq cohorts. One study downloaded microarray and RNA-seq data from 

the ROSMAP, MSBB and MayoRNASeq cohorts and analysed each dataset 

individually. They found 828 genes to be differentially expressed between AD cases 

and individuals with no cognitive impairment. The genes included CD2AP, CD33 and 

CR1. A KEGG pathway analysis implicated the calcium signalling pathway and further 

analysis demonstrated the whole pathway barring 10 genes to be downregulated in 

AD in the ROSMAP RNA-seq data (Bihlmeyer et al. 2019).  

 

Another study utilising AMP-AD RNA-seq data compared gene expression levels in 

different AD brain regions. The authors found alterations in gene expression are 
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highly prominent in samples obtained from the temporal lobe in comparison to the 

frontal lobe. Their interpretation for this was that the temporal lobe harbours the 

first brain regions to be affected by AD pathogenesis whereas the frontal lobe is 

affected only in advanced stages of AD. This study also demonstrated that the 

following AD genes were differentially expressed between AD cases and controls: 

ABCA1, ABCA2, CALB1, C1R, C1S, GAD1/2, PVALB, REST, SLC32A1, SST, VGF, and VIP 

(Marques-Coelho et al. 2021). 

 

A study just using gene expression data from only the ROSMAP cohort performed 

differential gene expression analysis in blood and brain samples individually then 

together and stratified by APOE genotype.  They found that established AD genes 

INPP5D and HLA-DQA1 were differentially expressed in both blood and brain. The 

authors’ findings also suggested that AD genes that are differentially expressed in 

both blood and brain were often associated with vascular markers, and their effects 

were also dependent on APOE genotype (Panitch et al. 2022).  This study provides 

evidence of a potential benefit of evaluating differential gene expression data from 

different tissue types together. A limitation of this study is that the sample size of the 

study was small. Only 140 individuals had both blood and brain expression data and 

was further segregated by APOE genotype meaning each of the groups were very 

small.   

 

Post-mortem bulk-cell transcriptomics show vast changes in gene expression 

throughout the brain, yet it is challenging to deduce which changes are driven by the 

cause of disease or are the result of disease. One recent article utilising Mendelian 

randomization provided evidence that differentially expressed genes between case 

and control status may reflect disease-induced changes in the transcriptome as 

opposed to disease-causing changes (Porcu et al. 2021). Analyses comparing gene 

expression may still have utility in pointing to useful biomarkers and further 

understanding of disease biology. It is important to consider this limitation when 

interpreting results as interventions that alter gene expression to normal levels may 

not necessarily be disease-modifying (Porcu et al. 2021). 
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1.2 Aims of this thesis 

 

The aim of this thesis was to use a variety of bioinformatic approaches to identify 

potential genes involved with AD and identify potential biological mechanisms 

implicated in AD. This was achieved by initially integrating publicly available genetic 

and RNA-seq data with phenotypic data. Then by performing differential gene 

expression analysis and gene ontology enrichment analysis to identify disrupted 

pathways potentially implicated in AD. The next aim was to utilise eQTLs of AD 

differentially expressed genes to identify potential genes implicated in AD. The final 

results chapter aims to test if TWAS signals from three TWAS are enriched in 

differentially expressed genes for AD.  

 

1.3 Outline of thesis 

 

Chapter two gives a brief overview of the AMP-AD consortium and the three studies 

(ROSMAP, MSBB and MayoRNASeq) from which the data used in this thesis 

originates. This chapter also gives a brief overview of some of the computational 

methods used throughout this thesis.  

 

Chapter three describes the work to produce a unified RNA-seq dataset from 

combining the three AMP-AD RNA-seq datasets together. The work followed an 

extensive quality control (QC) pipeline and used linear mixed-effect models (LMEM) 

in combination with principal component analysis to combine the three RNA-seq 

datasets into a larger, unified dataset. This chapter also describes the work to process 

and QC the accompanying genetic data and the work to define the phenotypic 

variables of interest, such as AD case-control status, Braak score and CERAD scores.  

 

Chapter four investigates differentially expressed genes between AD cases and 

controls. Initially this is performed in only the ROSMAP data in order to see how the 
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LMEM and logistic regression method for determining differentially expressed genes 

performs against two frequently used DGE packages: Limma-voom and DESeq2. A 

DGE analysis was also performed on the combined AMP-AD RNA-seq data which was 

generated in chapter three for AD case-control, Braak and CERAD score phenotypes. 

A GO enrichment analysis was also performed to find potential pathways of biological 

interest.  

 

In chapter five, a cis-eQTL analysis was performed to find associations between index 

SNPs from five AD GWAS and GWAX, and the AD case-control differentially expressed 

genes identified in chapter four. Additionally, a trans-eQTL analysis is performed to 

identify any associations between AD GWAS/GWAX index SNPs and the differentially 

expressed genes from chapter four.  

 

Chapter six compares the results of the DGE analysis from chapter four to three 

existing AD TWAS results to identify if these two methods produce comparable 

results in AD research.  

 

Chapter seven is the final chapter and is a discussion of the results of this thesis, its 

limitations, future directions and conclusions.  
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Chapter 2 – General Methods 
 

The purpose of this chapter is to describe the origin of the data used in this thesis 

and some of the bioinformatic methodologies used. Finally, a summary of the 

programming languages and software used is given with their respective versions.  

 

2.1 Cohort overview 

 

2.1.1 Religious Orders Study and the Memory and Aging Project 

 

The Religious Orders Study (ROS) and the Memory and Aging Project (MAP) are two 

cohorts that together are known as ROSMAP.  Both ROS and MAP are longitudinal 

cohort studies of ageing and Alzheimer’s disease from Rush University. Participants 

agreed to annual clinical evaluations and brain donation upon death (Bennett et al. 

2012a; Bennett et al. 2012b). 

 

Participants into ROS were recruited from religious communities such as nuns, 

priests, and brothers from all across the United States and all participants were 

without known dementia at enrolment (Bennett et al. 2012a). MAP was similar in 

study design to ROS but aimed to enrol participants with a much wider range of life 

experiences and socioeconomic status than ROS (Bennett et al. 2012b). For both ROS 

and MAP cohorts, upon death, dorsolateral prefrontal cortex samples were collected 

(Bennett et al. 2012a; Bennett et al. 2012b).  

 

From the collected samples, the ROSMAP study has generated a large variety of 

omics data and made the data publicly available to researchers. This consists of 

whole genome sequencing, epigenomic, metabolomic, proteomic and transcriptomic 

data.  Imaging and phenotype data has also been made available to allow for 

extensive analyses in dementia research.  
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2.1.2 Mount Sinai Brain Bank study 

 

The Mount Sinai Brain Bank (MSBB) study is a cohort study that generated large-scale 

multi-omics data from AD, mild cognitive impaired (MCI) and AD control brains. 

Specifically, they generated whole genome sequencing, whole exome sequencing, 

transcriptome sequencing and proteome profiling data from multiple regions of the 

brain. Samples were taken from four areas of the brain: the parahippocampal gyrus 

(Brodmann area 36 – BM36); inferior frontal gyrus (BM44); superior temporal gyrus 

(BM22); and the frontal pole (BM10). Both raw and processed data were released 

and made publicly available in order to allow researchers to investigate the molecular 

underpinnings of AD (Wang et al. 2018).  

 

2.1.3 MayoRNAseq study 

 

The MayoRNAseq study has genomic, transcriptomic and proteomic data generated 

from cerebellum and temporal cortex samples from North American participants. In 

the original study, data was made publicly available to researchers to investigate 

transcriptional mechanisms contributing to neurodegenerative diseases.  

 

Participants were recruited to the study if they had a neuropathological diagnosis of 

AD, progressive supranuclear palsy (PSP), pathological ageing (PA) in addition to 

elderly controls who were free of neurodegenerative diseases (Allen et al. 2016).  

 

 

2.2 Data availability and the Accelerating Medicines Partnership for Alzheimer’s 
Disease 

 

2.2.1 Overview 

 

The ROSMAP, MSBB and MayoRNAseq datasets are now hosted by the Accelerating 

Medicines Partnership for Alzheimer’s Disease (AMP-AD). AMP-AD is a collaborative 
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program set-up between government, industry and non-profit organisations. The 

program launched in 2014 with two keys projects. The first was the Biomarkers in 

Clinical Trials project and the second was the Target Discovery and Preclinical 

Validation Project. This second project is the source of the data used throughout this 

thesis. 

 

The aim of the Target Discovery and Preclinical Validation Project was to integrate 

the analyses of large-scale molecular data from human brain samples in order to 

discover potential drug targets. Genomic, epigenomic, transcriptomic and proteomic 

data were made available through the AD Knowledge Portal, a resource developed 

by Sage Bionetworks and hosted by Synapse. The data used throughout this thesis 

are the RNA-seq and genetic data which were made available on this platform and 

can be accessed through this website: https://adknowledgeportal.synapse.org/ 

 

 

2.2.2 RNA-sequencing data 

 

Originally the ROSMAP, MayoRNAseq and MSBB studies were instigated separately 

and were completely independent of one another. Table 2-1 describes the sample 

generation, RNA extraction and processing each sample underwent which was 

performed by the original investigators.  

 

As the aim of the Target Discovery and Preclinical Validation Project was to integrate 

data, the ROSMAP, MSBB and MayoRNAseq datasets underwent reprocessing as 

shown in Figure 2-1. This reprocessing was performed by researchers at the Mount 

Sinai Icahn School of Medicine for the AMP-AD consortium (Hodes and Buckholtz 

2016).  

 

I downloaded aligned bam files from the AMP-AD consortium using the Python 

synapseclient package via command line for quality control (QC) purposes (on 06 
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December 2019).  Additionally, raw counts as generated by STAR were downloaded 

and used. In addition to this, phenotypic data were downloaded, and the variables 

included: sex, age at death, diagnosis at time of death, APOE carrier status, Braak 

score, CERAD score, race, RNA Integrity Number (RIN) and post-mortem interval 

(PMI). All data were downloaded from Synapse which hosts both unprocessed and 

reprocessed data for these studies  

(https://www.synapse.org/#!Synapse:syn9702085). The reprocessed datasets for 

each study were downloaded and merged to form a single dataset. The QC process 

is further described in chapter 3.  

 

 

 ROSMAP MSBB MayoRNAseq 

 

Sample Source Grey matter of the 
dorsolateral 
prefrontal cortex 

 

Samples from 
Brodmann Areas 
10, 22, 36 and 44 

Cerebellum and 
Temporal Cortex 

RNA Extraction Qiagen miRNeasy Qiagen RNeasy 
Lipid Tissue Mini 
Kit  

Trizol and cleaned 
using Qiagen 
RNeasy with 
DNase treatment 

 

Library 
Preparation 

Strand specific dUTP 
method with poly-A 
selection followed by 
Illumina adapter 
ligation  

Illumina TruSeq 
RNA Sample 
Preparation Kit: 
Non-strand 
specific method 
with poly-A 
selection followed 
by ligation with 
Illumina 
compatible 
adapters. 

 

 

Illumina TruSeq 
RNA Sample 
Preparation Kit : 
Non-strand 
specific method 
with poly-A 
selection. No 
other details 
given.  
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Sequencing Illumina HiSeq with 
101bp paired-end 
reads with coverage 
of 150M for first 12 
samples and 
remaining samples 
with coverage of 50M 
reads  

Illumina HiSeq 
2500 system with 
100 nucleotide 
single end-reads 
with a coverage of 
80M reads 

 

Illumina HiSeq 
2000 with 101bp 
paired end reads. 
Coverage not 
stated.  

Quality Control 
of Reads 

Trimming beginning 
and end bases of each 
read, identifying and 
trimming adapter 
sequences from 
reads, detecting and 
removing rRNA reads 

 

Genes with at 
least 1 read count 
in at least 10 
libraries were 
considered 
present, 
otherwise 
removed. 

Low RIN score 
(<4), or relatively 
large rRNA rate 
(>5%) were 
removed. 

 

Low % mapped 
reads (<85%) or 
sex discrepant 
gene counts (Y 
chromosome gene 
expression) 
removed. Samples 
with a 3’ bias 
excluded.  

 

Aligning Reads 
to Genome 

Non-gapped aligner 
Bowtie to gencode 
v14 in hg19 human 
genome reference 
(GRCh37) 

 

Star aligner 
(v2.3.0e) to 
human genome 
hg19  

(GRCh37) 

 

 

 

SNAPR to GRCh38 
reference and 
Ensembl v77  

Estimation of 
Expression 
Levels 

RSEM to produce 
FPKM 

Quantified by 
featureCounts 
(v1.4.4)  

SNAPR 

Normalisation Combat package to 
remove potential 
batch effect 

TMM 
normalisation 
method using 
edgeR in R to 
calculate CPM 

TMM 
normalisation 
method using 
edgeR in R to 
calculate CPM 

Table 2-1 Sample processing methods used by original investigators in each of the three original 
studies (ROSMAP, MSBB and MayoRNASeq) to generate gene expression counts.  
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Figure 2-1 – The reprocessing strategy performed by the Mount Sinai Icahn School of Medicine for 
the AMP-AD consortium.  

This reprocessing strategy was used on the three independent ROSMAP, MayoRNAseq and MSBB RNA-
seq datasets. This was performed to reduce some of the technical variation in order for the datasets 
to be analysed together. 

 

 

 

2.2.3 Genetic data 

 

AMP-AD had performed whole genome sequencing (WGS) for the ROSMAP, 

MayoRNAseq and MSBB studies. Sequencing had been performed on an Illumina 

HiSeq X sequencer and data aligned to the GRCh37 (hg19) human reference.  

 VCF files for the use in this these were downloaded from the synapse website 

(https://www.synapse.org/#!Synapse:syn22264775). The QC process is further 

described in chapter 3.  

 

 

 

 

Gene counting

Counting reads per gene using STAR

Alignment

Realignment of FASTQ reads to GENCODE24 (GRCh38) reference genome using STAR.

FASTQ generation

Conversion of BAMs to FASTQs using Picard.



 33 

2.3 Methodology 

 

2.3.1 Linear mixed-effect models 

 

Linear mixed-effect models build on linear models but allow the user to analyse data 

that show non-independence, are correlated, or show some form of hierarchical 

structure. The key component of linear mixed-effect models is that they allow the 

inclusion of both fixed and random effects. When considering RNA-seq data, certain 

variables are not independent, such as samples sequenced in the same sequencing 

batch in comparison to the rest of the samples from the study. The linear mixed-

effect models that were used in this thesis were implemented using the lme4 R 

package (Bates et al. 2015).   

 

2.3.2 Limma-Voom 

 

The limma R package was originally developed for differential expression analysis of 

microarray data. The voom function within the limma package modifies RNA-seq 

data for use with limma. Voom works by these steps: 

1. Voom firstly transforms counts to log2 counts per million reads (CPM), where 

“per million reads” is defined based on the normalisation factors.  

2. A linear model is fitted to the log2 CPM counts for each gene and residuals 

are then calculated.  

3. A smoothed curve is fitted to the sqrt(residual standard deviation) by average 

expression 

4. The smoothed curve is used to obtain weights for each gene and sample that 

are passed into limma along with the log2 CPMs.  

 

Limma then fits models using weighted least squares for each gene. Limma-voom 

was implemented using the limma package in R (Law et al. 2014; Ritchie et al. 2015). 
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2.3.3 DESeq2 

 

DESeq2 is an R package which allows the user to test for differential expression by 

use of negative binomial generalised linear models of the form:  

𝐾!" 	~	𝑁𝐵(𝜇!" , 𝛼!) 

𝜇!" =	𝑠"𝑞!"  

𝑙𝑜𝑔2(𝑞!") = 	𝑥"𝛽!  

 

 

(1) 

 

where counts 𝐾!"  for gene i, sample j are modelled using a negative binomial 

distribution with a fitted mean 𝜇!"  and a gene-specific dispersion parameter 𝛼!. The 

fitted mean consists of a sample-size specific factor 𝑠"  and a parameter 𝑞!"  

proportional to the expected true concentration of fragments for sample j. The 

coefficients 𝛽!  give the log2 fold change for gene i. The DESeq function in R performs 

three steps: 

1. Estimation of size factors 𝑠"  

2. Estimation of dispersion 𝛼!  

3. Fitting of the negative binomial GLM for 𝛽!  and Wald statistics  (Love et al. 

2014).  

 

2.3.4 MatrixEQTL 

 

MatrixEQTL is an R package designed for computationally efficient eQTL analysis 

(Shabalin 2012). An analysis that used to take days or weeks can be performed in 

minutes. The fast performance is achieved by utilising large matrix operations when 

performing the most computationally intensive part of the algorithm.  EQTL studies 

usually perform separate testing for each gene-SNP pair. The work presented in this 

thesis used a linear regression model with covariates for eQTL analysis and assumes 

that genotype only has an additive effect on gene expression.  Each sample is 

encoded by 0, 1 or 2 corresponding to the number of minor alleles a SNP has. The 
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linear association between gene expression g and genotype s, considering covariate 

x is assumed to be: 

𝑔 = 	𝛼 + 𝛾𝑥 + 	𝛽𝑠	 (2) 

Where 𝛼 is the intercept of the linear model (the value of 𝑔 when s = 0), 𝛾 is the slope 

of covariate x and 𝛽 is the slope of genotype s. 

For a faster computation, the equation can be reduced to testing of a simple linear 

regression model by orthogonalising g and s with respect to x through the following 

steps: 

1. Centre variables g, x, and s to remove constant 𝛼 from the model. 

2. Orthogonalize g and s with respect to x: 

𝑔6 = 𝑔 − 〈𝑔, 𝑥〉𝑥	, 𝑠̃ = 𝑠 −	〈𝑠, 𝑥〉𝑥 (3) 

  

3. Perform the analysis for the simple linear regression using one less degree 

of freedom for the test statistic to account for the removed covariate 

 

𝑔6 = 𝛽𝑠̃ + 	𝜀 (4) 

  

 

2.4 Software, programming and data storage 

 

2.4.1 Computing 

 

All of the analyses presented in this thesis were performed either on an Apple iMac 

desktop or on the Supercomputing Wales’ supercomputer based at Cardiff University 

called Hawk. Hawk is Linux-powered, and jobs were submitted to the slurm scheduler 

using Bash shell scripts. 
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2.4.2 R 

 

R is a free software and programming language that is widely used for statistical 

programming and data visualisation (R Core Team 2021) . R version 3.6.2 was the 

default statistical tool used throughout this thesis unless otherwise stated.  

 

2.4.3 Python 

 

Python version 3.6.5 was used for the execution of Go-Figure! and the use of the 

synapse command line client which was used to download WGS and RNA-seq count 

data and BAM files (Greenwood et al. 2020; Reijnders and Waterhouse 2021).   

 

 

2.4.4 PLINK 

 

PLINK is an open-source toolset for genome-wide association studies, research in 

population genetics and other analyses requiring the use of very large genetic 

datasets (Purcell et al. 2007; Chang et al. 2015). The genetic data utilised throughout 

this thesis was largely stored in the PLINK binary file format as -bed, -bim and -fam 

files. All analyses using PLINK were executed using PLINK version 1.9 which had been 

pre-installed on Hawk.  

 

2.4.5 SAMtools 

 

SAMtools is a widely used program for processing and analysing high-throughput 

sequencing data (Danecek et al. 2021). SAMtools version 1.9 was used for file 

processing such as sorting and indexing BAM files and had been pre-installed on 

Hawk.   
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2.4.6 Crossmap 

 

The software Crossmap is a program for genomic coordinate conversion between 

different assemblies (Zhao et al. 2014). It was used to convert the WGS data and 

GWAS summary statistics from GRCh37 to GRCh38. Crossmap version 0.2.8 was used 

and installed using python onto Hawk.   

 

2.4.7 RNASeQC 

 

RNASeQC is a program that takes BAM files as input and provides RNA-seq quality 

metrics for use in QC pipelines (DeLuca et al. 2012). RNASeQC version 2.3.5 was used, 

and the program was obtained from:  https://github.com/getzlab/rnaseqc/ and 

analyses were performed on Hawk. 

 

2.4.8 VerifyBamID 

 

VerifyBamID matches individual RNA-seq data with the data from genetic VCF files 

to identify sample mix-ups (Jun et al. 2012). This was used to confirm that the genetic 

data and RNA-seq data belonged to the same individuals and any samples with 

discrepancies were not included in the analysis. Version 1.1.3 of the software was 

obtained from: 

 https://github.com/statgen/verifyBamID/releases and implemented on Hawk using 

command line. 

 

2.4.9 CATMAP 

 

CATMAP is a program that was originally produced to functionally annotate 

microarray data (Breslin et al. 2004). It allows the user to perform a Wilcoxon rank 

sum test in order to perform Gene Ontology (GO) enrichment analysis. The software 
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and coding scripts to use CATMAP were provided by Dobril Ivanov (see contributions 

section).  

 

 

2.4.10 False discovery rate 

 

Throughout this thesis, in order to control for the false discovery rate, the Benjamini-

Hochberg procedure was used. This was implemented in R using the function p.adjust 

(Benjamini and Hochberg 1995).  Unless otherwise stated, statistical significance was 

defined to be FDR p-value of less than 0.05 (FDR <0.05). 
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Chapter 3 – Quality control of RNA-seq 
data 
 

3.1 Introduction 

 

3.1.1 Public repositories and the Accelerating Medicines Partnership – Alzheimer’s 
Disease (AMP-AD) 

 

As DNA and RNA sequencing (DNA-seq and RNA-seq) technologies have advanced 

and reduced in cost, researchers are now able to generate vast amounts of data. 

Much of this data is now publicly available to computational researchers. This could 

drive forward new understanding of disease aetiology without having to spend time 

and money repeating data generation. 

 

Some datasets are utilised often and are well known such as the UK Biobank (Sudlow 

et al. 2015). Many publicly available data sets are under-utilised in comparison. This 

is because interrogating existing data is not a straightforward enterprise. This is 

particularly true of RNA-seq data, as many of the individual studies are small in 

sample size. As shown by GWAS, larger datasets are imperative for finding novel gene 

associations. To enlarge RNA-seq datasets, combining datasets to create a larger 

dataset is an option - but this is not a straightforward process. Figure 3-1 

demonstrates a simple outline of the processing RNA-seq data often undergoes. Each 

stage can differ in the method used, which is a problem as RNA-seq data are very 

sensitive to batch effects. Batch effects are sources of unwanted variation that  could 

be due to technical artefacts or differences between the samples such as sequencing 

method or technician. Failure to remove this unwanted variability or combining data 

without proper correction could lead to spurious findings (Peixoto et al. 2015). 

Depending on some of the methods used, attempting to combine datasets could be 

inappropriate without reprocessing.  For example, datasets that have aligned their 
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reads to different reference genomes would require a lot of time-consuming and 

resource intensive reprocessing.   

 

The Accelerating Medicines Partnership-Alzheimer’s Disease (AMP-AD) knowledge 

portal hosts three independent RNA-seq datasets. These are the Religious Orders 

Study and Memory and Aging Project (ROSMAP), Mount Sinai Brain Bank (MSBB) 

study, and the MayoRNAseq study. An overview of these studies can be found in the 

previous chapter. Originally these three data sources were generated independently. 

Recently these three datasets have been reprocessed by researchers at the Mount 

Sinai Icahn School of Medicine to create a uniformly processed RNA-seq dataset. In 

addition to these three datasets, AMP-AD hosts phenotypic information such as 

Braak scores (measures severity of neurofibrillary changes such as neurofibrillary 

tangles) and CERAD (Consortium to Establish a Registry for Alzheimer’s Disease) 

scores (a semiquantitative measure of neuritic plaques) allowing for a diverse range 

of analyses to be performed to potentially further our understanding of AD aetiology 

(Braak et al. 2006; Fillenbaum et al. 2008).  

 

 
Figure 3-1 – A simple outline of the processing workflow of a typical RNA-seq experiment.  
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Library 

Preparation Sequencing

Quality 
Control of 

Reads

Aligning Reads 
to Genome

Quality Control 
of Aligned 

Reads

Estimation of 
Expression 

Levels
Normalisation



 41 

3.1.2 Aims 

 

The over-arching aim of this chapter was to produce a single, cohesive dataset by 

taking advantage of the reprocessed files available from the AMP-AD consortium. 

This data consisted of phenotypic, RNA-seq and genetic data from three different 

studies. 

 

The first aim of this work was to define the phenotypic variables of interest with the 

data that were available.  

 

The second aim was to quality control (QC), pre-process and normalise the RNA-seq 

data.  

 

The third aim was to investigate the presence of unwanted variation in the three 

individual RNA-seq datasets. 

 

The final aim of this analysis was to combine the RNA-seq data available from the 

three studies. Linear mixed-effect models (LMEM) in combination with principal 

component analysis (PCA) were used to overcome batch effects and hidden 

confounders when combining RNA-seq data. The outcome was the production of a 

larger dataset with increased power where the normalised residuals were saved for 

use in downstream analyses such as differential gene expression analysis. 

 

3.2 Methods 

 

3.2.1 Overview of the methods and steps taken to QC and produce the single dataset 

 

For each of the three studies, the original investigators performed different QC 

measures. This meant that samples from each study had been processed differently. 
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In addition to this, QC details on the reprocessed data have been sparse. To 

overcome the lack of clarity surrounding the QC of this data, an extensive QC 

procedure was executed in this thesis on both the reprocessed aligned BAM files and 

the counts. This QC process consisted of using multiple existing software and R 

packages including VerfiyBamID, RNASeQC, and conditional-quantile normalisation 

(CQN) (DeLuca et al. 2012; Hansen et al. 2012; Jun et al. 2012).  Figure 3-2 provides 

an overview of the process. The resulting dataset from these QC processes includes 

a total of 627 individuals (379 AD cases vs 248 AD controls) with 930 samples from 

six different cortical brain tissues.  

 

 

Figure 3-2 – An overview of the steps taken to produce a combined RNA-seq dataset from the three reprocessed 
ROSMAP, MSBB and MayoRNASeq datasets. fIBD = identity by descent ; RNA-seq = Ribonucleic acid sequencing; 
PCA = principal component analysis; CQN = conditional quantile normalization; GC = guanine-cytosine; PC = 
principal components  
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3.2.2 Disease and variable definition 

 

3.2.2.1 AD diagnosis 

 

Of the three studies, only the MayoRNAseq study had an AD case or control 

diagnosis. Therefore, defining AD case or control status for ROSMAP and MSBB had 

to be based on the variables that were available.  

For ROSMAP the final consensus diagnosis was provided in the available metadata. 

It was determined by a neurologist with expertise in dementia who reviewed all 

available clinical data to determine which category the individual fell into. Every 

individual was given a value of 1-6 which is summarised in Table 3-1 (Schneider et al. 

2007). In this study, individuals with a diagnosis of 1 were considered controls and 

those with a score of 4 or 5 were considered AD cases.  

 

Value Coding 

1 NCI: No cognitive impairment (no 
impaired domains) 

2 MCI: (one impaired domain and no other 
cause of CI 

3 MCI: One impaired domain and no other 
cause of CI  

4 AD: AD and no other cause of CI (NINCDS 
Probable AD) 

5 AD: AD and another cause of CI (NINCDS 
Possible AD) 

6 Other dementia: Other primary cause of 
dementia 

Table 3-1 ROSMAP data final consensus diagnosis 

Table amended from 
https://www.radc.rush.edu/docs/var/detail.htm?category=Clinical+Diagnosis&subcategory=Final+co
nsensus+diagnosis&variable=cogdx and Schneider et al.(Schneider et al. 2007).  (AD: Alzheimer’s 
disease; CI: cognitive impairment; MCI: mild cognitive impairment; NCI: no cognitive impairment; 
NINCDS: National Institute of Neurological and Communicative Diseases and Stroke) 
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For the MSBB data, AD case-control status was based on the clinical dementia rating 

(CDR) and CERAD score. The CDR is derived from a semi-structured interview and 

rates impairment in six cognitive categories. These are: memory, orientation, 

judgement and problem solving, community affairs, home and hobbies and personal 

care.  CDR was originally based on a five-point scale (0, 0.5, 1, 2, 3). The MSBB study 

used a validated extended version to account for the fact a significant proportion of 

individuals included in the study were living in care homes at the time of interview. 

Therefore, the investigators introduced additional scores of 4 and 5 (Morris 1993; 

Wang et al. 2018). I describe CERAD in more depth in the next section and an 

overview of all definitions for cases and controls for each study is given in Table 3-2. 

The final case-control definitions for the MSBB data used in this work were 

determined through discussions between me, DI, GL, AM and the AD field team (see 

contributions section of thesis). A final decision was made to define AD case based 

on a CDR rating of 2 or greater (capturing moderate, severe, profound and terminal 

dementia) and a CERAD score of 2,3,4 (capturing possible AD, probably AD and 

definite AD).  This decision was made on the basis that it captured both clinical and 

pathological information. 
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Study Variable used Final case and control 
definition 

ROSMAP Final consensus diagnosis 

1-NCI, 4 – AD-no other 
cause, 5-AD with another 
CI 

1-Control 

4,5- Cases 

MayoRNAseq AD, PSP, Pathological 
Ageing, Control 

Control – control 

AD – AD case 

MSBB CDR: 

0 - no cognitive deficits, 
0.5 – questionable 
dementia  

1 – mild dementia,  

2 – moderate dementia,  

3 – severe dementia, 

4 – profound dementia,  

5 - terminal dementia 

CERAD: 1, 2, 3, 4 

Control – CERAD 1 AND 
CDR 0 or 0.5 

CERAD 2, 3, 4 and CDR 2 
or greater  

Table 3-2 A summary of the case and control definitions used for the three datasets  

(AD: Alzheimer’s disease; CDR: clinical dementia rating; CERAD: Consortium to Establish a Registry 
for Alzheimer’s Disease; CI: cognitive impairment; PSP: Progressive supranuclear palsy) 

 

The original data files from the ROSMAP and MSBB studies had coded CERAD scores 

differently, for example the MSBB study had coded definite AD as a 2 whereas this 

was a 1 in the ROSMAP study. In this analysis I recoded them so that the score was 

consistent between studies. I have summarised this in Table 3-3 and the coding used 

in this analysis is shown in the harmonised CERAD scoring column. To demonstrate 

this point, an individual in the MSBB study with an original score of 2 (definite AD) 

would be recoded as a 4 (and the stage definition remains as definite AD as per the 

harmonised CERAD scoring in Table 3-3). In contrast, an individual from the ROSMAP 

study with an original score of 4 (No AD) would be recoded as a 1 (Normal/No AD).  
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Original MSBB  

CERAD scoring 

 Original ROSMAP  

 CERAD    

 scoring 

Harmonised CERAD scoring 
used in this thesis 

Normal: 1   No AD:  

   

4 Normal/No AD: 
 

1 

Possible AD: 4 Possible AD: 3 Possible AD: 2 

Probable AD: 3 Probable AD: 2 Probable AD: 3 

Definite AD: 2 Definite AD: 1 Definite AD: 4 

Table 3-3 – A summary of how CERAD score was initially coded in both the MSBB and ROSMAP 
studies. The harmonised scoring shows how each of the CERAD scores were recoded in order to 
harmonise the variable across studies for use in this thesis. Only the label was changed, the CERAD 
stage of normal, possible AD, probable AD and definite AD remained the same.  

 

 

3.2.2.2 Braak and CERAD phenotypes 

 

Three phenotypes of interest were chosen for the analyses presented in this thesis: 

Braak stage, CERAD neuropathological stage and AD case-control status. Braak stage 

or score is a measure of the presence of hyperphosphorylated tau protein which is 

central to the AD process. The deposition of hyperphosphorylated tau occurs at 

predisposed cortical and subcortical sites in a predictable manner. This allows the 

deposition to be characterised by six stages of pathology (I – VI). The six stages are 

often further grouped into four further units: 0, I-II, III-IV, V-VI, with 0 being the 

absence of any hyperphosphorylated tau. Elevated tau is often seen in tandem with 

increased amyloid pathology and deterioration of cognition as Braak stages increase 

(Braak et al. 2006; Lowe et al. 2018). In the literature each Braak stage is referred to 

using either Roman or Arabic numerals. Throughout this thesis I will refer to them 

using Arabic numerals (0,1,2,3,4,5 and 6).  
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CERAD categories or scores are the evaluation of neuropathology post-mortem. They 

assess the frequency of neuritic and diffuse plaques in a semi-quantitative manner. 

This age-related plaque categorisation indicates the level of certainty of the diagnosis 

of AD. The categories range from definite, probable, possible or no evidence of AD 

(and are often indicated by a number running 1 to 4 or 4 to 1). CERAD provides a 

validated measure that permits comparison across studies and settings (Mirra 1997; 

Fillenbaum et al. 2008). I chose CERAD scores as a phenotype in this analysis in 

addition to Braak score. The reasoning is that although the two have a positive 

correlation, it is not yet clear if these two occur through separate mechanisms. 

 

The three studies provided different phenotypic information. The MayoRNAseq 

study data had the least available to download. Individuals had a diagnosis of 'AD', 

'Progressive Supranuclear Palsy', 'Pathological ageing' or 'control'. I excluded any 

individual with a diagnosis other than ‘AD’ or ‘control’ from the analysis. All 

individuals with a label of ‘AD’ had a definite diagnosis according to the National 

Institute of Neurological and Communicative Diseases and Stroke – Alzheimer’s 

Disease and Related Disorders Association (NINCDS-ADRDA) criteria and had a Braak 

stage of 4 or greater. Individuals identified as being ‘controls’ had a Braak score of 3 

or less, CERAD neuritic and cortical plaque densities of none or sparse and lacked a 

pathological diagnosis of AD. They also lacked a pathological diagnosis of 11 other 

neurodegenerative disorders including Parkinson’s disease, motor neuron disease 

(MND), Huntington’s disease (HD), and dementia lacking distinctive histology (DLDH).  

 

As Braak scores were unavailable for some MayoRNASeq controls, a “neutral” Braak 

score of 3 was assigned to those controls to maintain sample size. Some individuals 

in the MayoRNAseq study had Braak scores of 2.5, 4.5 and 5.5 (totalling 4, 3, and 4 

samples respectively). After initial investigation of the MayoRNAseq data, these were 

recoded to 2, 4 and 5 respectively. The decision to recode was made to harmonise 

the MayoRNAseq data with the ROSMAP and MSBB data which did not use half Braak 

scores. The decision to round down the Braak score was made as the pathology 
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indicated that the lower score pathology was present but not quite enough 

pathology was present to be characterised as the higher Braak score.  

 

Individual-level data for CERAD score was unavailable for all MayoRNAseq samples. 

Samples originating from this study were excluded from any analysis utilising the 

CERAD score. For individuals from the ROSMAP and MSBB studies, I only included 

samples in the analysis if information on both Braak score and CERAD score were 

available as no other information was given for inference. Table 3-4 summarises this 

information for clarity.  

 

Braak Measures CERAD measures 

ROSMAP & 
MSBB 

MayoRNAseq ROSMAP & MSBB MayoRNAseq 

Scores 0-6 
available for 
all 
individuals  

AD cases had Braak 
scores available. 

AD controls without 
individual level data 
were given a score of 3 
as individual level data 
for some controls were 
unavailable 

Scores 1-4 
available for all 
individuals 

Individual level data 
unavailable so 
excluded from 
analysis 

Table 3-4 A summary of Braak and CERAD measures available in each study. 

Arabic numerals have been used instead of roman numerals for the purposes of clarity. 

 

Some variables were recoded to ensure harmony between the studies. Originally in 

the supplied metadata, individuals aged above 90 at death were coded as 90+. The 

age was recorded this way by the owners of the original data to comply with data 

privacy regulations. I changed those individuals with a recorded age at death of 90+ 

to 90 so that this variable was numerical rather than categorical. I also changed post-

mortem interval (PMI) from minutes to hours, and I assigned a CERAD score of 1, 2, 

3 or 4 to indicate no AD, possible AD, probable AD and definite AD respectively.  
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3.2.3 Tissues 

 

The ROSMAP, MSBB and MayoRNAseq generated gene expression data from 

samples across the cerebral cortex and the cerebellum. The original ROSMAP RNA-

seq investigators collected samples from the dorsolateral prefrontal cortex (DLPFC) 

(Wang et al. 2013; Bennett et al. 2018). The MSBB study included samples from four 

brain regions located in the cerebral cortex: Brodmann areas 10, 22, 36 and 44 

(referred to as BM10, BM22, BM36 and BM44 respectively) (Wang et al. 2018). The 

MayoRNAseq study took samples from the temporal cortex (TCX) and the cerebellum 

(Allen et al. 2016). Cerebellum samples were excluded from this analysis as the 

cerebellum’s role in AD is still debated. In addition, gene expression of the 

cerebellum in comparison to cortex brain samples is vastly different (Chappell et al. 

2018). Thus, this analysis explored the gene expression of cortical samples only.  

 

Anatomist Korbinian Brodmann defined regions of the cerebral cortex based on 

subtle differences in cortical structure. These regions are known as Brodmann areas 

and remain one of the most widely used systems for identifying regions of the brain 

(Johns 2014).  Figure 3-3 shows where the cerebral cortex samples from the three 

studies are located in terms of Brodmann areas. 
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Figure 3-3 – A schematic of the brain regions sampled in the AMP-AD data.  

The red, magenta, yellow and orange (Brodmann areas 10, 22, 36 and 44 respectively) represent areas 
MSBB samples originated from; the blue area represents the dorsolateral prefrontal cortex from which 
the ROSMAP samples were sampled from; the green area represents the temporal cortex from with 
the MayoRNAseq samples were sampled from. Figure 3a is the sagittal view of the brain and figure 3b 
is the mid-sagittal view. Image amended from (Cabeza and Nyberg 2000). 

 

3.2.4 Initial sample exclusion 

 

Samples were excluded if they had been flagged by the original investigators for 

exclusion in any future analyses. This could have been for reasons such as sex 

mismatch, sample ID duplication or discordance between RNA-seq and genetic data 

or due to the sample being of a low quality.  

 

 

3.2.5 European ancestry  

 

VCF files containing WGS data were downloaded from the AMP-AD website. SNPs 

were then excluded if their minor allele frequency (MAF) < 0.01; they deviated from 

Hardy-Weinberg equilibrium at p ≤ 1x10-06; or had a missingness of greater than 2%. 

Individuals were excluded if they had increased or decreased heterozygosity of 

|F| > 0.1; high pairwise relatedness (pi-hat > 0.22); or were population outliers as 

a)

b)
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identified by principal component analysis (PCA) in a joint analysis of 2,000 subjects 

from three different populations taken from the 1000 Genomes project. The three 

populations used were EUR, ASN, AFR ((http://www.1000genomes.org/) (Auton et 

al. 2015). This resulted in 8,717,089 SNPs and 1772 genetic samples. Not all genetic 

samples had corresponding RNA-seq data. VCF files were downloaded by me, but this 

QC analysis was performed by Ganna Leonenko (see contributions section of thesis).  

 

3.2.6 Samples excluded for missing phenotype data 

 

Samples were excluded if they lacked the data to be defined as a case or a control 

according to Table 3-2. Additional samples were excluded if they had missing 

phenotypic data. This included post-mortem interval (PMI), RNA integrity number 

(RIN), age at death and sex, and for MSBB and ROSMAP studies Braak score and 

CERAD score.   

 

3.2.7 VerifyBamID 

 

The software VerifyBamID was implemented to confirm that the genetic data and 

gene expression data were from the same individual (Jun et al. 2012). VerifyBamID 

checks that the reads in a BAM file for an individual against the polymorphisms for 

each genotype for all individuals in the sample. It also reports whether the reads are 

contaminated as a mixture of two samples or if a sample swap has occurred.  

 

The aim of using VerifyBamID was to detect mislabelled samples and/or sample 

swaps rather than to detect the presence of DNA contamination. As a result, a 

genetic contamination level of up to 10% was deemed an acceptable contamination 

cut-off. Samples which were identified as being potential sample swaps were 

excluded from the analysis as it would not be possible to tell which was the true 

sample.  This amounted to two individuals being excluded from the MayoRNASeq 

cohort, 18 from the ROSMAP cohort and 1 from the MSBB cohort. 
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VerifyBamID accepts VCF and BAM files as input for the analysis. As the genetic data 

are build 37 but the RNA-seq data are build 38, the software Crossmap was used to 

first convert the genetic data from build 37 to build 38 (Zhao et al. 2014).  

 

Version 1.1.3 of the software was obtained from 

https://github.com/statgen/verifyBamID/releases and implemented on a Linux 

server using command line. Only genetic samples with a corresponding RNA-seq 

sample were retained for future analyses. 

 

3.2.8 RNASeQC 

 

The original investigators for each of the three studies performed different QC 

measures. In addition to this, QC details on the reprocessed data were sparse. In 

order to overcome this and to ensure more homogenous data, QC was performed on 

the reprocessed aligned BAM files. Initially, samples were excluded if they had been 

identified by the original investigators for previous QC failure. Some MSBB samples 

had been sequenced twice and recorded as two samples so the sample with the most 

mapped reads was retained for analysis. The remaining aligned BAM files were then 

sorted and indexed using Samtools (v. 1.9) and then processed using RNASeQC (v. 

2.3.5).  

 

RNASeQC is a program which computes a series of quality control metrics for RNA-

seq data (DeLuca et al. 2012). Table 3-5 describes the metrics used for QC purposes 

and pass/fail criteria. Typically for the samples, the mean metric was calculated, and 

samples were excluded if they fell above or below four standard deviations (SD) from 

the mean, which was calculated using R (v3.6.1.).  
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QC measure as defined by the 
software 

Description Exclusion Criteria 

Mapping rate  Proportion of reads in the BAM that were mapped Any sample that is 4 SD from the 
mean in the lower tail of 
distribution 

Duplicate rate of mapped The proportion of all reads that were marked as PCR/Optical 
Duplicates out of all “Mapped Reads” 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

Duplicate rate of mapped excluding 
Globin genes 

Similar to duplicate rate of mapped but excludes reads that 
did not align to HBA1, HBA2, HBB or HBD 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

Expression profiling efficiency The proportion of “Exonic Reads” out of all reads which were 
not secondary alignments or platform/vendor QC failing reads 

Any sample that is 4 SD from the 
mean in the lower tail of 
distribution 

High quality rate The proportion of properly paired reads with less than 6 
mismatched bases and a perfect mapping quality 

Any sample that is 4 SD from the 
mean in the lower tail of 
distribution 

Exonic rate The proportion of mapped reads for which all aligned 
segments unambiguously aligned to exons of the same gene 

Any sample that is 4 SD from the 
mean in the lower tail of 
distribution 
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Intronic rate The proportion of mapped reads for which all aligned 
segments unambiguously aligned to the same gene but none 
of which intersected any exons. 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

Intergenic rate The proportion of mapped reads for which none of the aligned 
segments intersected any genes.  

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

Ambiguous alignment rate The proportion of mapped reads where the aligned segments 
unambiguously aligned to exons of more than one gene 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

High quality exonic rate The proportion of exonic reads out of high quality reads as 
defined in high quality rate 

Any sample that is 4 SD from the 
mean in the lower tail of 
distribution 

High quality intronic rate The proportion of intronic reads out of high quality reads as 
defined in high quality rate 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

High quality intergenic rate The proportion of intergenic reads out of high quality reads as 
defined in high quality rate 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

High quality ambiguous alignment rate The proportion of ambiguous alignment reads out of high 
quality reads as defined in high quality rate 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 
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rRNA rate The proportion of mapped reads which at least partially 
intersected with an annotated rRNA gene 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

End 1 sense rate The proportion of first mate reads which intersected with a 
sense strand feature out of all first or second mate reads 
which intersected with any features respectively.  

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

End 2 sense rate The proportion of second mate reads which intersected with 
a sense strand feature out of all first or second mate reads 
which intersected with any features respectively 

Any sample that is 4 SD from the 
mean in the lower tail of 
distribution 

Genes detected The number of genes which had at least 5 unambiguous reads.  Less than 15,000 or greater than 
30,000 

Median 3’ bias These aggregate statistics are based on the total coverage in 
100 bp windows on both the 3' and 5' ends of a gene. The 
windows are both offset 150 bases into the gene. This 
computation is only performed on genes at least 600bp long 
and with at least 5 unambiguous reads. A gene with even 
coverage in both its 3' and 5' windows would have a bias of 
0.5; bias near 1 or 0 may indicate degradation 

 

 

Any sample that is 4 SD from the 
mean in either the lower or 
upper tail of distribution 
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3’ bias std As Median 3’ bias Any sample that is 4 SD from the 
mean in either the lower or 
upper tail of distribution 

3’ bias MAD std As Median 3’ bias Any sample that is 4 SD from the 
mean in either the lower or 
upper tail of distribution 

3’ bias 25th percentile As Median 3’ bias Any sample that is 4 SD from the 
mean in either the lower or 
upper tail of distribution 

3’ bias 75th percentile 

 

As Median 3’ bias Any sample that is 4 SD from the 
mean in either the lower or 
upper tail of distribution 

Median transcript coverage coefficient 
of variation 

The statistics are the median of a given aggregate statistic of 
transcript coverage. Transcript coverage is computed by 
dropping the first and last 500bp of each gene and measuring 
the high-quality coverage over the remainder of the gene.  

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

Median exon coefficient of variation The median coefficient of variation of exon coverage. Exon 
coverage is computed by dropping the first and last 500bp of 
each gene and measuring  

Any sample that is 4 SD from the 
mean the upper tail of 
distribution 
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End 1 antisense rate * Number of End 1 reads that were sequenced in the antisense 
direction divided by total mapped reads 

Any sample that is 4 SD from the 
mean in either the lower tail of 
distribution 

End 2 antisense rate * Number of End 2 reads that were sequenced in the antisense 
direction divided by total mapped reads 

Any sample that is 4 SD from the 
mean in either the upper tail of 
distribution 

Low mapping quality rate * Number of low mapping quality reads divided by total mapped 
reads 

Any sample that is 4 SD from the 
mean in the upper tail of 
distribution 

Non globin reads rate * Number of reads excluding reads which aligned to Globin 
genes divided by total mapped reads 

Less than 0.9 

Unique mapping vendor QC passed 
reads rate # 

The count reads without the secondary or QC fail flags set. For 
a true count of total alignments use total reads divided by total 
mapped reads 

Less than 0.5 

Table 3-5 – RNASeQC quality control (QC) measures used to QC ROSMAP, MSBB and MayoRNASeq RNA-seq data 

All QC measures were as generated by RNASeQC apart from metrics with * which were calculated by dividing the metric by total mapped reads to produce rate, and # which 
were calculated by dividing the metric by total reads to produce rate.
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3.2.9 Read count filtering and normalisation  

 

Raw RNA-seq counts were converted to counts per million (CPM) using EdgeR 

(Robinson et al. 2010) and the function filterByExpr was used to filter out lowly 

expressed genes. The EDASeq package (Risso et al. 2011) was used to determine gene 

length and GC content.  Conditional Quantile Normalization (CQN) (Hansen et al. 

2012) was performed on the raw counts and used to normalise for gene length, 

guanine-cytosine (GC) content and library size using the CQN package. This was 

performed on counts for each study individually, then data sets were combined only 

keeping genes in common between the three datasets. This resulted in 16,485 genes 

in common between the three datasets. This was all performed in R version 3.6.1. 

 

3.2.10 PCA plots and scree plots 

 

The data was further explored via PCA and plotting principal component (PC) biplots 

to investigate batch effects. Additionally, scree plots were generated to determine 

how many principal components to include in the LMEM analysis.   

 

3.2.11 Linear mixed-effect models 

 

Linear mixed-effect models (LMEMs) were implemented to correct for batch effects 

and hidden confounders when combining the three datasets together. This was 

achieved using the lmer function in the lme4 package in R. Equation 1 is the LMEM 

for the combined AMP-AD data: 

 

 𝐺𝐸	~	𝑆𝑒𝑥 + 𝐴𝑔𝑒 + 𝑃𝐶1 + 𝑃𝐶2 + 𝑃𝐶3 + (1|𝐵𝑎𝑡𝑐ℎ) + (1|𝐼𝐷) (1) 

 

where GE is gene expression and the response variable, age is age at death in years, 

and PC1, PC2 and PC3 are the first three multivariate principal components. All these 
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variables are fixed effects. Batch is sequencing batch and ID is individual ID to reflect 

that some individuals in this data have multiple samples. Sequencing batch and 

individual ID have been included in the model as random effects which are indicated 

by the bar symbol (|). The residuals of this regression were then saved for use in 

further analyses in future chapters. 

 

3.2.12 Checking for batch effects  

 

To determine the effects of LMEM on the normalisation of batch effects, principal 

component biplots were inspected. The purpose of this was to identify any obvious 

remaining batch effects or sources of unwanted variation and that they had been 

removed from the gene expression data to allow it to be used in further analyses.  

 

3.3 Results 

 

3.3.1 Sample demographics 

 

The number of samples remaining after each stage of QC can be seen in Table 3-6. 

The MayoRNAseq and ROSMAP studies only included one sample per individual 

whereas the MSBB had multiple samples from different tissues for some individuals 

which is reflected in Table 3-6. The total number of individuals and samples retained 

for analysis and their demographics can be seen in Table 3-7. 
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MayoRNAseq ROSMAP MSBB 

(Individuals/Samples) 

Initial sample number 278 632 315/1277 

Samples after removal 
based on diagnosis 

160 452 239/969 

Samples after removal 
as flagged by original 
investigators or 
duplicates 

150 409 219/797 

Samples after removal 
as no WGS/RNA-seq 
sample or European 
ancestry 

147 395 170/503 

Samples after removal 
due to missing 
phenotype data 

106 394 170/503 

Samples after removal 
due to VerifyBamID 

104 376 169/497 

Samples after removal 
due to RNASeQC 

90 369 168/471 

Table 3-6 - Number of samples and individuals remaining after each stage of the QC process for the 
MayoRNAseq, ROSMAP and MSBB studies.  
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MayoRNAseq 
 

ROSMAP 

 

MSBB 

 

TOTAL 

Individuals 
in cohort 

90 369 168 627 

Sex F: 50  

(55.6%) 

M: 40 

(44.4%) 

F: 242 

(65.6%) 

M: 127 

(34.4%) 

F: 111 

(66.1%) 

M: 57 

(33.9%) 

F: 403 

(64.3%) 

M: 224 

(35.7%) 

Age at 
death 

(years) 

Mean: 82.7 

SD: 7.6 

Mean: 86.4 

SD: 4.9 

Mean: 83.8 

SD: 7.3 

Mean: 85.1 

SD: 6.2 

Diagnosis AD: 42 

(61.9% F) 

Control: 35 

(68.6% F) 

AD: 204 

(69.1% F) 

Control: 165 

(61.2 % F) 

AD:  

133 (67.7% F) 

Control: 35 

(60.0% F) 

AD: 379 (613 samples) 

Control: 248 (317 
samples) 

Tissue TCX: 90 DLFRC: 369 BM10: 135 

BM22: 105 

BM36: 113 

BM44: 118 

Total individuals: 627  

Total samples: 930 

Table 3-7 – Sample demographics for the MayoRNAseq, ROSMAP, and MSBB QCed datasets and their 
combined totals 

 

3.3.2 Initial investigation of MayoRNAseq dataset 

 

Initially boxplots were plotted for PMI, RIN, Braak score and age at death by diagnosis as per 

Figure 3-4. Boxplots were also plotted for age at death, RIN and PMI by Braak score (Figure 

3-5). A correlation analysis was performed to understand the relationship between covariates 

(PMI, RIN, Braak score and age at death) as seen in Figure 3-6 for the MayoRNAseq dataset. 

RIN differed between case and control status and correlated significantly with Braak score 

albeit weakly (r=0.04, p-value =1.58x10-05). PMI also correlated with age at death (r=0.32; p-
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value =1.58x10-05). The reason for this correlation cannot be determined through the 

available data, however it has previously been shown that PMI can be influenced by a range 

of factors. These include grieving time required by families, arrangement of tissue recovery 

by the brain bank and time required for legal processes to occur (White et al. 2018). PMI and 

Braak score were not significantly correlated (r = -0.05; p-value = 0.58). CERAD score was not 

included in this analysis as individual-level data was unavailable for the participants in the 

MayoRNAseq study. 

 

 

Figure 3-4 – Boxplots for a) post-mortem interval (PMI) in hours by diagnosis, b) RNA integrity number (RIN) 
by diagnosis, c) Braak score by diagnosis and d) age at death in years by diagnosis for the MayoRNAseq 
dataset 
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Figure 3-5 – Boxplots for a) age at death in years by Braak score, b) RNA integrity number (RIN) by Braak 
score and c) post-mortem interval (PMI) in hours by Braak score for the MayoRNAseq dataset. 
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Figure 3-6 – Correlation between Braak score, post-mortem interval number in hours (PMI), age at death in 
years, and RNA integrity number (RIN) for the MayoRNAseq dataset (top value is correlation and bottom 
value is  p-value) 

 

 

3.3.3 Initial investigation of ROSMAP dataset 

 

For the ROSMAP dataset, age at death differed between cases and controls, and there were 

six significant covariate correlations. Braak score and CERAD score were positively correlated 

(r=0.61; p-value = 2.41 x 10-39) and this is consistent with the wider literature (Boluda et al. 

2014). Additionally, Braak scores were positively significantly correlated with age at death 

(r=0.44; p-value = 8.06 x 10-19) and negatively with RIN (r=-0.18; p-value = 5.78 x 10-04). CERAD 

scores were also significantly correlated with age at death (r=0.32, p-value = 3.63x10-10), and 

RIN (r=-0.14; p-value=6.37x10-03) (Figure 3-10). PMI and Braak score were not significantly 

correlated (r = 0.08; p-value = 0.15). From the data available we cannot explain the reason as 

to why there are negative correlations between Braak and RIN and CERAD and RIN. A previous 

study has shown that brain samples with AD show greater RNA degradation than brain 

samples with no disease pathology. No difference in RNA degradation was seen when 

comparing brain samples with Parkinson’s disease or Huntington’s disease to controls 

samples, suggesting that this degradation is seen specifically in AD (Highet et al. 2021).  

MayoRNASeq

Braak score PMI Age at death RIN

Braak score -0.06
0.58

-0.04
0.69

0.44
1.58x10-5

PMI 0.32
2.22x10-3

0.04
0.69

Age at death 0.09
0.38

RIN



 65 

 
 

Figure 3-7 Boxplots for a) post-mortem interval (PMI)in hours by diagnosis, b) post-mortem interval (PMI) in 
hours by diagnosis, c) Braak score by diagnosis, d) age at death in years by diagnosis for the ROSMAP 
dataset 
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Figure 3-8 - Boxplots for a) age at death in years by Braak score, b) RNA integrity number (RIN) by Braak 
score and c) post-mortem interval (PMI) in hours by Braak score for the ROSMAP dataset  
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Figure 3-9 Boxplots for a) age at death in years by CERAD score, b) RNA integrity number (RIN) by CERAD 
score and c) post-mortem interval (PMI) in hours by CERAD score for the ROSMAP dataset 
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Figure 3-10 Correlation between Braak score, post-mortem interval number in hours (PMI), age at death in 
years, RNA integrity number (RIN) and CERAD score for the ROSMAP dataset (top value is correlation and 
bottom value is  p-value) 
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3.3.4 Initial investigation of MSBB dataset 

 

For the MSBB dataset Braak and CERAD score were also strongly correlated (r=0.81; p-value 

= 4.93x10-40. Braak scores were also significantly correlated with PMI (r=0.61; p-value = 2.41 

x 10-39) and RIN (r=0.61; p-value = 2.41 x 10-39). CERAD score was also significantly correlated 

with PMI and RIN as well as PMI and age at death (Figure 3-13).  

 

As a result, these relationships may need to be taken into account when utilising the full 

dataset to make sure any association is with the effect of interest and not a potentially related 

covariate. 
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Figure 3-11 Boxplots for a) post-mortem interval (PMI) in hours by diagnosis, b) RNA integrity number (RIN) 
by diagnosis c) Braak score by diagnosis, d) age at death in years by diagnosis for the MSBB dataset 
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Figure 3-12 Boxplots for a) age at death in years by Braak score, b) RNA integrity number (RIN) by Braak 
score and c) post-mortem interval (PMI) in hours by Braak score for the MSBB dataset 
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Figure 3-13 Boxplots for a) age at death in years by CERAD score, b) RNA integrity number (RIN) by CERAD 
score and c) post-mortem interval (PMI) in hours by CERAD score for the MSBB dataset 
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Figure 3-14 Correlation between Braak score, post-mortem interval number in hours (PMI), age at death in 
years, RNA integrity number (RIN) and CERAD score for the MSBB dataset (top value is correlation and 
bottom value is  p-value) 

 

 

3.3.5 Analysis of MayoRNAseq, ROSMAP, and MSBB biplots to identify potential confounding 

 

For each of the three studies, PC biplots were inspected to detect any obvious batch effects 

or sources of unwanted variation. PC biplots were generated and inspected for the three 

datasets for the first 10 principal components and individuals labelled for the following 

variables: age at death, APOE genotype, sequencing batch, diagnosis, PMI, RIN, sex, sample 

source and additionally tissue type for the MSBB data.   

 

The normalisation process of the MayoRNAseq RNA-seq data resulted in 17,392 genes. Initial 

investigation of the PCs on the normalised gene expression data identified no obvious known 

batch effects as per Figure 3-15 which suggests slight separation on AD case or control 

diagnosis.  
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The normalisation process on the ROSMAP data resulted in 16,960 genes. Initial analysis of 

the PCs on the normalised data identified that sequencing batch (Figure 3-16) was an 

unwanted batch effect. From the PC biplot, it is possible to see that sequencing batch 7 forms 

a cluster which is completely segregated. Additionally there is some segregation within the 

larger cluster by sequencing batch.  

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−150

−100

−50

0

50

100

−100 0 100
PC1 (28.50%)

PC
2 

(1
4.

32
%

)

Diagnosis
●

●

AD

Control

MayoRNASeq samples Biplot − PC1 vs PC2
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Figure 3-16 - A PCA biplot of the first principal component (PC1) vs the second (PC2) with the sample points 
coloured by RNA sequencing batch for normalised gene expression data from the ROSMAP study. The 
percentage figures refer to the variance that each principal component captures.  

 

 

The normalisation process on the MSBB data resulted in 17,810 genes. Initial analysis of the 

PCs on the normalised data also identified that sequencing batch was an unwanted source of 

variation as seen in Figure 3-17.  
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Figure 3-17 - A PCA biplot of the first principal component (PC1) vs the second (PC2) with the sample points 
coloured by RNA sequencing batch for normalised gene expression data from the MSBB study.  The 
percentage figures refer to the variance that each principal component captures.  

 

 

 

3.3.6 Merging datasets 

 

After merging the three datasets, a total of 16,485 genes were left in common for analysis 

with 930 samples coming from 627 unique individuals. Once the datasets had been merged, 

PCA was performed to detect any batch effects. Unsurprisingly a large batch effect can be 

seen in Figure 3-18 as the samples clearly separate by study as three clusters have formed.  
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Figure 3-18 PCA biplot of the three studies combined showing segregation by study  

 

 

Figure 3-19 (next page) also shows the segregation by sequencing batch is still present within 
the three clusters.   
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Figure 3-19 – PCA biplot of the three studies combined showing segregation by sequencing batch 

 
A scree plot was generated to inspect the proportion of variance explained by the first 10 

principal components which can be seen in Figure 3-20. The elbow of the scree plot was used 

to determine the number of PCs to obtain. Figure 3-20 shows that PC1 explains 35% of the 

variance, PC2 17%, PC3 12%, and PCs 4 and 5 both explain 3%. As the plot levels off from PC4 

onwards, the first three PCs were retained to include in the LMEM. 
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Figure 3-20 – A scree plot showing proportion of variation for each principal component for AMP-AD data 
 

After performing the LMEM correcting for age at death, sex and the first three principal 

components as fixed effects in addition to individual ID and sequencing batch as random 

effects, the resulting biplot for study can be seen in Figure 3-21. Figure 3-22 shows the biplot 

of PC1 and PC2 using the residuals from the LMEM analysis and shows no segregation based 

on sequencing batch. Biplots for age at death, sex, RIN and PMI were also inspected and no 

segregation was seen based on these suggesting adequate correction for these variables 

(Figure 3-23).  
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Figure 3-21 – Biplot of PC1 vs PC2 of the residuals from the linear mixed-effect model showing correction for 
originating study. The percentage figures refer to the variance that each principal component captures.  
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Figure 3-22- Biplot of PC1 vs PC2 of the residuals from the linear mixed-effect model showing correction for 
sequencing batch. The percentage figures refer to the variance that each principal component captures. 
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Figure 3-23 – PCA biplots of PC1 vs PC2 of the residuals from the linear mixed-effect model for a) age at 
death, b) post-mortem interval, C) RNA integrity number and d) sex 
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3.4 Discussion 

 

The overall aim of this work was to produce a single, homogenous  dataset consisting of RNA-

seq data linked with genetic and phenotypic information using the data made available from 

the AMP-AD reprocessing initiative. This dataset can then be used in downstream analyses to 

hopefully help increase our understanding of the biology of Alzheimer’s disease.  

 

The first aim was to determine and define the phenotypic labels that can be used 

downstream. These were CERAD scores, Braak scores and AD case and control status. 

Defining these variables so that they were harmonious across the three studies was 

challenging as the three studies did not capture the phenotypic information in the same way.  

 

The CERAD score which is an age-related measure of post-mortem neuropathology was a 

major source of disharmony. Individual-level data was not available to download in the 

MayoRNAseq data, although the authors confirm that control subjects had a CERAD neuritic 

and cortical plaque density of 0 (none) or 1 (sparse) (Allen et al. 2016). As a result, 

MayoRNAseq samples were excluded from any analyses using CERAD scores. Additionally, the 

ROSMAP study used a modified CERAD criteria in that it was an absolute measure of the 

pathology rather than an age-corrected measure of pathology (Mirra 1997; Bennett et al. 

2012a; Bennett et al. 2012b). In contrast the MSBB study did follow the CERAD criteria for the 

generation of their CERAD scores (Mirra 1997; Wang et al. 2018). 

 

The Braak score is a staging system for neurofibrillary tangles, and it has also been previously 

criticised for significant inter-rater variability (Boluda et al. 2014). The three studies used 

slightly different protocols to generate their Braak scores with the MayoRNAseq study being 

the only study to report half scores highlighting a phenotypic inconsistency.  

 

The third phenotype was AD case-control status. The most up-to-date method of diagnosing 

AD post-mortem is to use the National Institute on Aging-Alzheimer’s Association (NIA-AA) 
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criteria. These guidelines base a diagnosis on a combination of Thal Ab amyloid phase, Braak 

score and CERAD score (DeTure and Dickson 2019). 

 

MayoRNAseq used the NINCDS-ADRDA criteria in the diagnosis of AD case and AD control 

status which is the diagnosis criteria that was the predecessor to the NIA-AA criteria. The 

NINCDS-ADRDA criteria was based on the hypothesis that AD is a disease mostly comprising 

of both clinical and pathological symptoms and that these two are closely related (McKhann 

et al. 1984). As research has progressed it has become apparent that this clinical-pathological 

relationship is not consistent (Jack et al. 2011).  

 

A limitation of this study is that the definition of AD case status presented in this thesis does 

not reflect the current gold standard of diagnosis. Another is that the phenotypes are not 

completely harmonious. However, these limitations are seen across AD research. For 

example, the ADGC consortium consists of samples from ROSMAP and the Mayo clinic along 

with 14 other cohorts and with often differing definitions of case-control status (Naj et al. 

2011). The ADGC consortium regularly contributes to larger studies as seen in more recent 

GWAS and GWAS-by-proxy (GWAX) studies (Kunkle et al. 2019; Schwartzentruber et al. 2021). 

Thus, demonstrating that despite inconsistencies in phenotypes, our understanding of AD can 

still be advanced and henceforth the inclusion of these less than perfect variables. 

 

The second aim was to extensively QC the available RNA-seq data. At present there is no best 

practise on how to pre-process and normalise RNA-seq data for downstream processes such 

as differential gene expression analysis. Studies often neglect to fully report their QC 

processes or perform them only on a limited basis. Extensive QC is vital for RNA-seq 

experiments as it helps to improve the reproducibility of the biological results even if it is a 

bioinformatic challenge to do so (Sheng et al. 2016). 

 

The samples included in this analysis underwent extensive pre-processing and quality control 

using a multi-faceted approach. They underwent between-sample and within-sample 
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normalisation to remove as much technical variation as possible. RNA samples were also 

cross-referenced with their reported genetic sample to minimise the risk of sample swaps. 

This was all performed to produce a high-quality dataset that can be utilised in further 

analyses and minimise spurious findings in future analyses. 

 

During the QC process, 159 MayoRNAseq, 181 ROSMAP and 76 MSBB individuals were 

excluded from the analysis due to diagnosis or missing phenotype data. This was a total of 

374 across the three cohorts (33.59%). The main reason for such a high sample loss is that 

many of the samples were either MCI, so did not meet the threshold for AD case or were 

diagnosed with another disorder such as PSP. 29 MayoRNAseq, 82 ROSMAP and 71 MSBB 

individuals were excluded from the analysis due to sample QC. This was a total of 182 

individuals across the three studies (14.9%). Factors contributing to this sample drop were 

mainly due to the original investigators flagging problems associated with these samples 

(such as sex mismatch), no genetic data being available, or the individuals were not of 

European ancestry.  

 

After the QC workflow, initial investigation of the three datasets determined that there was 

likely unwanted technical variation. RIN and PMI were identified as potential confounders so 

needed to be considered during the LMEM and PCA step. In this analysis it was found that 

Braak score and CERAD score were correlated which is consistent with the literature (Boluda 

et al. 2014). Some of the other correlations could not be explained. For example, in the 

analysis of the MayoRNAseq cohort, PMI was correlated with age at death (r=0.32, p-

value=1.58x10-05). It is not possible to confirm the origin of this association given the data 

available. It could be a spurious association, but it could also be a result of some of the factors 

occurring during collection. For example, it could be that due to control brain samples being 

harder to recruit, these samples were prioritised for collection by the brain bank and 

expedited. This results in samples from individuals with a younger age at death having a lower 

PMI (as controls are generally younger than the AD individuals within this study). Further 

study would be required to determine the true nature of this relationship and therefore this 

comment is purely speculative.  
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The final aim was to use LMEM with PCA to combine the three datasets to create a more 

powerful one, to help enhance the biological signal in downstream analyses. Combining 

independently generated datasets is challenging and this partially stems from the fact that 

different studies will use different experimental methods. These and other unknown 

technical artefacts can remain in RNA-seq data. This unwanted source of variation can lead 

to spurious results in future analyses if not carefully corrected for.  

 

Correcting for batch effects and unwanted variation in RNA-seq data is still a developing field 

and best practice has not yet been defined. RIN was determined to be a potential confounder 

and it is regularly corrected for in RNA-seq studies. One method to determine RIN is by placing 

RNA on a Bioanalyzer and obtaining a tracing of fragment sizes per sample. RIN ranges from 

0 (completely degraded RNA) to 10 (high quality RNA). RNA quality biases can affect 

downstream differential expression analyses. It has been shown that standard RIN correction 

such as including RIN as a covariate in a model may not be the best approach. One paper 

found that adjusting for RIN largely fails to remove RNA degradation bias (Jaffe et al. 2017). 

The approach taken in this thesis was to allow for general PCA to correct for confounding. In 

the same paper above, the authors propose their own method of quality surrogate variable 

analysis (qSVA) to correct for such biases. The qSVA method is available under the SVA 

Bioconductor package.  The authors claim that the qSVA approach may have an advantage 

over PCA as there is less risk of removing true signals along with noise. However, a comparison 

was not performed and so the best approach remains to be seen (Jaffe et al. 2017).  

 

All sources of unwanted variation cannot be accounted for. The use of including PCs in the 

model as performed in this analysis, helps to remove some of this unwanted variation. Using 

LMEM in combination with PCA, it was possible to account for some of the known and 

unknown unwanted technical variation in the three individual datasets. After performing the 

LMEM, no obvious batch effects in the first 10 PCs were seen including for RIN and PMI, each 

of which was identified as a potential confounder.  
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In order to determine the number of PCs to include in the model, scree plots were used. Scree 

plots have been criticised for being ambiguous, however they have the advantage of being 

simple to implement (Ledesma et al. 2015). For the combined analysis, the scree plot 

suggested that 3 PCs may be enough to include in the model. The 3PC model identified no 

obvious batch effect in the first 10 PCs. Models beyond 3PC were also explored and little to 

no batch effects were noticed. Due to diminishing variance importance, including these 

additional principal components would be unnecessary and potentially start to take away 

from any actual explanatory effect in future analyses. The downside to correcting with PCs is 

that it can be conservative as the PCs could also comprise or capture some of the main effect 

of interest. 

 

Sequencing batch and original study were sources of unwanted variation seen in this analysis. 

The rationale behind using LMEMs was that these obvious batch effects are non-independent. 

Using LMEMs allowed me to include sequencing batch and individual ID in a model as random 

effects and thus overcome the sequencing batch grouping factor and the repeated measures 

seen in the MSBB data.  

 

One important point to make of the work presented here is that gene expression data from 

different brain regions have been combined. They have been combined in order to increase 

sample size with the caveat that this may increase the heterogeneity of the disease-relevant 

biology. Each of the three studies contributed samples from different brain regions with no 

region overlapping between studies. Therefore, it is challenging to disentangle any effect seen 

for region as it is correlated with the study effects.  

 

All the brain regions included in this analysis are known to be implicated in AD albeit to varying 

extents. The ROSMAP study used DLPFC which is thought to contribute to abstract thought, 

working memory and complex cognition all of which can be affected in AD (Cieslik et al. 2012). 

The MSBB study contributed tissue from BM10, BM22, BM36 and BM44 areas. BM10 

constitutes part of the prefrontal cortex but its function is not well understood but thought 

to contribute to episodic and working memory and decision making (Gilbert et al. 2006; Soon 
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et al. 2008; Knowlton et al. 2012). There is evidence that APOE ε4 carriers show different brain 

activity patterns in this area in comparison to non-carriers during working memory tasks 

(Wishart et al. 2006). BM22 is part of Wernicke’s area, which is an area thought to be vital for 

speech production and known to be especially vulnerable in AD (Haroutunian et al. 2009; 

Binder 2015; Wang et al. 2016). BM36 has been found to be affected by tau-pathology in AD 

(Berron et al. 2021).  BM36 and BM44 have previously been described as two of the most 

vulnerable regions to AD (Wang et al. 2018) . The MayoRNAseq study utilised temporal cortex 

(TCX) which is one of the first regions affected with AD neuropathology (Allen et al. 2016).  

The study also utilised the cerebellum, however as its involvement in AD is not well 

understood and its distinct gene expression profile in comparison to brain cortex, the 

cerebellum was excluded from this analysis  (Allen et al. 2016; Jacobs et al. 2017).  

 

The purpose of the analysis presented in this thesis is to produce a dataset that will  be used 

to identify quantitative changes in expression levels in the brain cortex between AD cases and 

controls. A limitation of this approach is that the resolution for region specific gene expression 

differences are reduced, and it may not be able to detect differences that vary extensively 

among the different brain regions as their effects may be diluted. However, AD gene 

expression profiles have previously been found to be similar between different cortical 

regions of the brain (Chappell et al. 2018). Additionally, the approach taken in this analysis is 

in line with other published work that has utilised these datasets together. One is an eQTL 

analysis where the ROSMAP and MayoRNAseq studies were combined with the Common 

Mind Consortium data (Sieberts et al. 2020). Initially the studies were analysed individually 

and then meta-analysed. Focusing on the cortex could still offer novel insights into the 

pathophysiology and aetiology of AD. 

 

LMEMs have previously been applied individually to the MayoRNASeq and MSBB datasets. 

LMEMs have been used to include individual ID as a random effect to adjust for the inclusion 

of multiple samples from different tissues from the same individual (Wan et al. 2020). The 

work presented in this chapter is the first time that LMEMs have been applied to the three 

AMP-AD studies to produce a single dataset ready for future analyses such as differential 

expression or eQTL analysis. Both of these will be discussed in the following chapters.  
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Chapter 4 – Differential Expression and 
Gene Ontology enrichment analysis of the 
combined AMP-AD dataset  
 

4.1 Introduction 

 

4.1.1 Differential gene expression and gene ontology enrichment analysis 

 

The first big genomic studies in Alzheimer’s disease (AD) were case-control genome-wide 

association studies (GWAS).  GWAS have identified many genetic loci associated with AD 

increasing our knowledge of the genetic architecture of AD, but they do not account for the 

total heritability of AD (Lambert et al. 2013; Kunkle et al. 2019). Twin studies have estimated 

the heritability to be between 58-79% but the heritability based on common genome-wide 

SNPs is estimated to only be between 27 and 55%  (Gatz et al. 2006; Cuyvers and Sleegers 

2016; Escott-Price et al. 2017b). Additionally, translation of these loci to therapeutics or 

biomarker discoveries has been disappointing. The next challenge is to identify risk genes and 

functional variants at these risk loci and the role they may play in the development of AD. 

Expanding into other data from other omics could hold the key to new understanding of the 

aetiology of AD.  

 

Genetic and environmental risk factors can influence gene expression (Fenoglio et al. 2018) 

and in doing so could perturb biological pathways contributing to the aetiology of AD.  

Detecting potential perturbed biological pathways is possible through bioinformatic analyses 

and one approach is to use differential gene expression (DGE) analysis. Using DGE analysis, it 

is possible to measure and compare gene expression between phenotypic groups to identify 

differentially expressed genes. Common tools for this approach are DESeq2 (Love et al. 2014), 

EdgeR (Robinson et al. 2010) and Limma-Voom (Ritchie et al. 2015), which are all available as 

R packages. Identified pathways can then be investigated further to determine if they are 

implicated in the aetiology of disease (Ertekin-Taner 2017). 
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4.1.2 Aims 

 

The first aim of this chapter was to initially normalise gene expression data from the ROSMAP 

study using LMEM and then peform a logistic regression (LR) on the resulting normalised 

residuals to identify differentially expressed genes. This approach will herein be referered to 

as: LMEM + LR. The next step was to then compare the overlap of differentially expressed 

genes from the LMEM + LR approach  to two well-known DGE packages, namely DESeq2 and 

Limma-Voom to find differentially expressed genes using the ROSMAP dataset only.  

 

The second aim of this chapter was to perform DGE analyses for Braak and CERAD score 

phenotypes. To achieve this, a DGE analysis was performed using the residuals from the 

combined and normalised AMP-AD gene expression data (ROSMAP, MSBB and MayoRNASeq) 

from the previous chapter. A comparison of the use of logistic regression vs ordinal regression 

for each of the phenotypes was also performed.  

 

The third aim was to produce a list of differentially expressed genes for case-control status 

using a logistic regression model. This made use of the residuals from the combined  and 

normalised AMP-AD gene expression data that was generated in the previous chapter. 

 

The fourth aim was to use lists of differentially expressed genes to perform gene ontology 

(GO) enrichment analysis to determine potential pathways of biological interest.   

 

The final aim was to identify if significant GO terms as identified by a previous GWAS through 

their MAGMA analysis (Kunkle et al. 2019) were also significant GO terms in the GO 

enrichment analysis as identified in the previous aim.  
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4.2 Methods 

 

4.2.1 Differential gene expression analysis of ROSMAP data 

 

Initially, a DGE analysis was performed on the ROSMAP dataset. This was performed in order 

to identify the overlap of differentially expressed genes as a result of the LMEM + LR method 

compared to two more established DGE analysis tools (limma-voom and DESeq2). This 

analysis only used the ROSMAP dataset as opposed to using the combined AMP-AD data (of 

ROSMAP, MSBB and MayoRNAseq). This was due to the other two tools not being designed 

to handle combining RNA-seq datasets. Therefore, the larger of the three cohorts (ROSMAP) 

was selected to identify differentially expressed genes.  

 

The details of the QC methods performed on the ROSMAP data were discussed in the previous 

chapter. A brief recap of this is that samples were excluded if they: had been flagged by 

original investigators, were not of a European ancestry, had missing phenotype or genotype 

data, VerifyBamID indicated genetic and RNA-seq sample mismatch or contamination over 

10%, or PCA plots indicated sample outlier. Low count genes were excluded, and the 

remaining genes underwent CQN normalisation for GC content, library size and gene length 

were performed.  

 

Correlation and PCA plots were generated to identify batch effects and unwanted 

confounding and scree plots were generated to identify the number of PCs to include in the 

LMEM model.  

 

This procedure resulted in 16,960 genes and 369 samples (204 cases and 165 controls). 

Residuals from the individual LMEM analysis were used in a logistic regression to find 

differentially expressed genes between cases and controls.  
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4.2.2 Comparison of LMEM + logistic regression method to DESeq2 and limma-voom in 
ROSMAP data 

 

DGE analyses using three separate methods were performed to identify differentially 

expressed genes. These were LMEM + LR method, DESeq2 and limma-voom. For all three 

methods, low count genes were excluded and counts underwent conditional quantile 

normalization (CQN). CQN is a method of applying a robust regression algorithm to correct 

for GC content, gene length and library size (Hansen et al. 2012). Each DGE analysis was 

performed on the same genes as described above (16,960 genes and 369 samples). All 

methods included sex, sequencing batch, age at death and the first four principal components 

of the expression data as covariates in the analysis to overcome batch effects and 

confounders. The decision to include four principal components was determined through 

interpretation of scree plots and PC biplots. 

 

4.2.3 Differential expression analysis of AMP-AD data using logistic and ordinal regressions 

 

The combined AMP-AD normalised residuals from the LMEM model discussed in the previous 

chapter were used to perform logistic regressions using the glm function in R and ordinal 

regressions using the polr function in R to assess the statistical significance of each gene.  

 

For each of the Braak and CERAD phenotypes, three regression models were performed (six 

in total). The primary analyses were logistic regressions using the whole dataset with Braak 

scores of 0, 1, 2, 3 vs 4, 5, 6 (coded as 0 vs 1) or CERAD scores of 1, 2 vs 3, 4 (coded as 0 vs 1). 

Braak scores were segregated into a binary phenotype on the same basis that the 

MayoRNAseq study had included Braak scores into their AD case or control phenotype (Allen 

et al. 2016) .  CERAD score was split into 1 and 2 vs 3 and 4 in keeping with recommendation 

on the RADC website which hosts the ROSMAP data 

(https://www.radc.rush.edu/docs/var/detail.htm?category=Pathology&subcategory=Alzhei

mer%27s+disease&variable=ceradsc)  (Mirra et al. 1991; Bennett et al. 2006). 

 



 93 

The second logistic regression pair used a reduced dataset where Braak scores of either 0, 1, 

2 vs 5 or 6 (coded 0 or 1) or CERAD scores of 1 vs 4 (coded 0 or 1) were included. This reduced 

dataset was used for two reasons. The first was to exclude the MayoRNAseq samples that 

were given a score of 3 based on inference, so only known Braak scores were included at the 

cost of a lower sample size. The second was to exclude the intermediate scores of Braak and 

CERAD to find differentially expressed genes between more extreme phenotypes. An 

overview of the Braak and CERAD regressions is given in Table 4-1. 

 

The final pair of regressions were ordinal regressions performed using the whole dataset and 

full sets of Braak and CERAD scores. The ordinal regression was performed to identify changes 

in gene expression associated with the degree of Braak and CERAD pathology present.  

 

Finally, a logistic regression was used for a case-control analysis where cases were coded as 

1 and controls as 0.  

 

 

 Braak score CERAD score 

Logistic regression (0 vs 1) 0, 1, 2 and 3 vs 4, 5 and 6 1 and 2 vs 3 and 4 

Reduced logistic regression 

(0 vs 1) 

0, 1 and 2 vs 5 and 6 

(3 and 4 excluded) 

1 vs 4 

Ordinal regression 0 vs 1 vs 2 vs 3 vs 4 vs 5 vs 6 1 vs 2 vs 3 vs 4 

Table 4-1 – Summary of Braak scores and CERAD scores used in logistic and ordinal regression analyses 

 

4.2.4 Gene ontology enrichment analysis 

 

The GO terms chosen to be included in this analysis were obtained from the “gene2go” file, 

downloaded from NCBI (ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/) on March 11th, 2020. 
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“Parent” GO terms were assigned to genes using the ontology file downloaded from the Gene 

Ontology website (http://geneontology.org/docs/download-ontology/) on the same date. 

GO terms were assigned to genes based on experimental or curated evidence of a specific 

type, so evidence codes IEA (electronic annotation), NAS (non-traceable author statement), 

RCA (inferred from reviewed computational analysis) were excluded. Analysis was restricted 

to GO terms containing between 10 and 2000 genes. This was performed by Peter Holmans 

and distributed by Ioanna Katzourou (see contributions section). GO terms that were obsolete 

as of 02 December 2020 were removed prior to analysis.  

 

The GO enrichment analysis was performed using the software CATMAP (Breslin et al. 2004).  

CATMAP was originally designed for ranked gene lists from microarrays, and provides an 

alternative to methods that require an arbitrary cut-off of top or significant differentially 

expressed genes when performing the gene-set enrichment analysis as it uses the Wilcoxon 

rank sum test. Gene lists were ranked based on the p-value from either the logistic or ordinal 

regressions.  

 

For all phenotypes, three sets of gene lists were produced. Gene list one comprised of 

differentially expressed genes ranked based on the p-value from the significance of the DGE 

analysis without considering direction (termed no-direction). Gene list two consisted of the 

most differentially up-regulated genes (based on log-fold > 0 and p-value) at the top of the 

list and most differentially down-regulated genes at the bottom of the list (termed up-to-

down). Gene list three consisted of the most differentially down-regulated (based on log-fold 

< 0 and p-value) at the top of the list and the most differentially up-regulated at the bottom 

of the list (termed down-to-up). The second and third lists are inverted copies of each other. 

 

As large lists of GO terms can be produced from an analysis such as this, the software “GO-

Figure!” was used and implemented using Python to reduce the GO terms to a more simplified 

list for easier interpretation. This is achieved by grouping terms based on semantic similarity. 

Scatterplots are generated which group together terms with similar functions and are 

coloured by significance of the representative GO term  (log10 p-value) and the size indicates 
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the number of GO terms in the group (Reijnders and Waterhouse 2021). Plots were generated 

from lists for no-direction, up-to-down and down-to-up GO categories (as previous 

paragraph) across the three gene ontologies (Biological Process, Molecular Function, Cellular 

Component). This resulted in nine plots per regression, so 45 in total. As there was a large 

overlap between the pathways, only 18 are presented in this chapter and the remaining are 

in the appendix. The 18 presented are from the analysis using the binomial Braak score 

(0,1,2,3 vs 4,5,6), the binomial CERAD score (1,2 vs 3,4) and the case-control analysis.   

 

4.2.5 Results from MAGMA pathway analysis based on genetic data and their significance in 
gene ontology enrichment analysis using gene expression data 

 

The largest case-control GWAS also published a list of significant GO terms as a result of their 

pathway analysis using MAGMA (Kunkle et al. 2019). MAGMA performs a SNP-wise gene 

analysis of summary statistics (with LD correction) to test whether sets of genes are jointly 

associated with a phenotype compared to other genes across the genome (de Leeuw et al. 

2015). The authors produced two lists of GO terms within their table 3.  One consisting of FDR 

significant results from an analysis using only common variants (MAF ≥ 0.01) and another set 

of results using only rare variants (MAF < 0.01) (Kunkle et al. 2019). FDR significant results 

from their common variant analysis were taken from their published table 3 and those 

selected GO terms were checked to identify if they were significant GO terms using gene 

expression data in the AD case-control analysis described in the previous section of this thesis.   

 

 

4.3 Results 

 

4.3.1 QC and production of the ROSMAP dataset 

 

After QC, the ROSMAP dataset consisted of 16,960 genes and 369 samples. Sample 

demographics can be seen in Table 4-2. In order to determine the number of PCs to include 

in any model to account for confounding, a scree plot was generated (Figure 4-1). From 

inspection of the scree plot, it was determined that the first four principal components from 
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the multivariate data would be included in the LMEM + LR, DESeq2 and limma-voom models 

to account for confounding.  

 

 AD Cases AD Controls All samples 

Sex F: 141 

M: 63 

(69.1% F) 

F: 101 

M: 64 

(61.2% F) 

F: 242 

M: 127 

(65.6% F) 

Age at death  

(years) 

Mean: 88.0 

SD: 3.6 

Mean: 84.4 

SD: 5.5 

Mean: 86.4 

SD: 4.9 

Total 204 165 369 

Table 4-2 – Sample demographics for the ROSMAP only dataset 
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Figure 4-1 – A scree plot of the ROSMAP data to determine the number of principal components to include in 
the linear mixed effect model to account for hidden confounding. First four principal components were 
included as at the fifth principal component showed a levelling off in the proportion of variation explained. 
The beginning of this is indicated by the dashed blue line and all PCs included in the model are left of this line.   

 

4.3.2 Overlap of differentially expressed genes identified using LMEM vs limma-voom and 
DESeq2 using ROSMAP data 

 

To identify how many differentially expressed genes identified by the LMEM + LR method 

overlapped with those identified by more conventional DGE methods, the DESeq2 and 

Limma-Voom packages were utilised. Case-control status was the phenotype of interest with 
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AD controls coded as 0 and AD cases coded as 1. The DGE analysis was performed on the 

ROSMAP dataset only, which was described in the previous section. 

 

DESeq2 determined 1054 differentially expressed genes after FDR (<0.05) correction with 

3693 genes nominally significant (p-value < 0.05). Limma-Voom determined 1260 

differentially expressed genes after FDR (<0.05) correction with 3943 genes nominally 

significant. The LMEM followed by logistic regression identified 352 differentially expressed 

genes after FDR (<0.05) correction with 3182 nominally significant. 265 of the 352 FDR 

significant differentially expressed genes identified by the LMEM + logistic regression method 

were also identified as FDR significant by both DESeq2 and Limma-Voom, while all 352 were 

FDR significant with Limma-Voom alone (Figure 4-2b). For LMEM + logistic regression, only 25 

nominally significant differentially expressed genes did not have a consensus with one of the 

other tools (0.05%) as can be seen in the red portion of the Venn diagram in Figure 4-2a. 

 

 

Figure 4-2 a) The overlap of nominally significant (p-value < 0.05) differentially expressed genes (DEGs) 
between three methods of limma-voom, DESeq2 and linear mixed-effect models + logistic regression (LMEM 
+ LR); b) The overlap of FDR (<0.05) significant DEGs between the three methods of limma-voom, DESeq2 
and LMEM + LR. 

DESeq2 is in blue, limma-voom is in green and LMEM + LR is in red. 
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Pairwise hypergeometric tests were performed to determine if the overlaps of FDR significant 

differentially expressed genes between methods were more than what one would expect by 

chance. Comparisons of overlap were performed for: FDR-significant genes (Figure 4-3), FDR-

significant genes which were up-regulated (Figure 4-4), FDR-significant genes which were 

down-regulated (Figure 4-5). All overlaps were more than expected through chance alone 

indicating that all three methods were finding similar differentially expressed genes. To 

confirm that the direction of effect was consistent between methods, a down-regulated vs 

up-regulated comparison was performed and then an up-regulated vs down-regulated 

comparison. All comparisons showed no overlap of differentially expressed genes meaning 

that the three methods were reporting genes with a consistent direction of effect.  

 

 

Figure 4-3 – Pairwise overlap of FDR (< 0.05) significant differentially expressed genes (DEG) between the three 
methods. 

 a) shows the overlap of DEG between Limma-Voom and LMEM + LR; b) shows the overlap of DEG between 
DESeq2 and LMEM + LR; c) shows the overlap of DEG between Limma-Voom and DESeq2. P-values resulting from 
hypergeometric test of gene overlap. Limma-Voom in green, LMEM + LR in red and DESeq2 in blue.  

 

Figure 4-4 - Pairwise overlap of FDR (< 0.05) significant up-regulated differentially expressed genes (DEG) 
between the three methods. 
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 a) shows the overlap of up-regulated DEG between Limma-Voom and LMEM + LR; b) shows the overlap of up-
regulated DEG between DESeq2 and LMEM + LR; c) shows the overlap of up-regulated DEG between Limma-
Voom and DESeq2. P-values resulting from hypergeometric test of up-regulated gene overlap. Limma-Voom in 
green, LMEM + LR in red and DESeq2 in blue. 

 

 
Figure 4-5 - Pairwise overlap of FDR (< 0.05) significant down-regulated differentially expressed genes (DEG) 
between the three methods. 

 a) shows the overlap of down-regulated DEG between Limma-Voom and LMEM + LR; b) shows the overlap of 
down-regulated DEG between DESeq2 and LMEM + LR; c) shows the overlap of down-regulated DEG between 
Limma-Voom and DESeq2. P-values resulting from hypergeometric test of down-regulated gene overlap. Limma-
Voom in green, LMEM + LR in red and DESeq2 in blue. 

 

 
 

QQ plots for the three methods were generated to compare the distribution of p-values 

generated from three different DGE analysis tools to the null model (Figure 4-6). As can be 

seen, all methods have an excess of small p-values compared to the null model as represented 

by the blue lines on each plot. The QQ plot for the LMEM + LR method (Figure 4-6c) provides 

evidence that the p-values for the LMEM + LR are more conservative in comparison to the 

other two tools (Figure 4-6a and b).   
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Figure 4-6 – QQ plots of p-values from the three differential gene expression analyses utilising a) limma-voom, b)DESeq2 
and c) linear mixed-effect models (LMEM) + logistic regression. Each point represents the p-value (log-scale) from a test. 
Expected values are plotted on the x-axis and observed values on the y-axis. The blue lines in each plot are created using 
the function ‘qqline’ within R. ‘qqline’ adds a theoretical line for the expected values using a normal distribution.  

 

The overlap of differentially expressed genes between methods, and the QQ plots provide 

evidence that the LMEM + LR method may be more conservative but can identify differentially 
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expressed genes with a consensus to another two tools. Therefore, for future experiments 

the LMEM + LR method was used for DGE analysis as the approach also allows the use of 

samples from the MSBB and MayoRNASeq studies.  

 

 

 

 

4.3.3 Differential expression and GO enrichment analysis of Braak data 

 

Using normalised residuals from LMEM, three regression models were performed to 

determine differentially expressed genes. The first, a logistic regression with Braak scores of 

0, 1, 2, 3 vs 4, 5, 6 (coded 0 vs 1) respectively, resulted in 2196 significant (FDR < 0.05) 

differentially expressed genes.  The second, also a logistic regression but with only a subset 

of the data contrasting Braak scores of 0, 1, 2 vs 5, 6 (coded 0 vs 1) resulted in 514 significant 

(FDR < 0.05) differentially expressed genes. The third, an ordinal regression including all Braak 

scores (0-6), resulted in 2049 significant (FDR < 0.05) differentially expressed genes. The top 

10 differentially expressed genes from these three analyses, can be seen in Table 4-3, Table 

4-4 and Table 4-5. Seven genes appeared in the top ten results from at least two analyses 

(LPO, LINC01844, OCRL, ANKRD18DP, CBX5, NCDN, KCNK9).  
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Gene Chr:start-end Beta  p-value FDR corrected  

p-value 

OCRL X:129,539,849-
129,592,561 0.58 1.32x10-10 1.09x10-06 

LINC01844 5:142,716,229-
142,761,035 -0.61 7.86x10-11 1.09x10-06 

NCDN 1:35,557,473-
35,567,274 0.57 2.22x10-09 5.47x10-06 

NCOA1 2:24,491,254-
24,770,702 0.56 2.32x10-09 5.47x10-06 

CREB3L1 11:46,277,662-
46,321,409 -0.54 2.07x10-09 5.47x10-06 

KCNK9 8:139,600,838- 
139,704,109 0.52 1.89x10-09 5.47x10-06 

DRD1 5:175,440,036-
175,444,182 0.60 1.08x10-09 5.47x10-06 

PAFAH1B3 19:42,297,033-
42,303,546 0.54 2.99x10-09 5.48x10-06 

CRH 8:66,176,376-
66,178,464 -0.55 2.77x10-09 5.48x10-06 

ANKRD18DP 3:198,053,522-
198,080,737 -0.51 4.13x10-09 6.80x10-06 

Table 4-3 - Top 10 differentially expressed genes from LMEM model including 3PCs after logistic regression 
with Braak scores 0, 1, 2, 3 vs 4, 5, 6 (coded 0 vs 1).  Genes were ranked based on their FDR corrected p-value 
and the top 10 most significant are reported with their beta coefficient from regression analyses and each 
gene’s p-value and FDR corrected p-value (FDR >0.05). Gene Chr:start-end refers to gene chromosome and 
start and end base position. All in build GRCh38 (www.gencodegenes.org/human/release_24.html).   
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Gene Chr:start-end Beta  p-value FDR corrected  

p-value 

CIC 19:42,268,537-
42,295,797 0.63425239 1.88x10-07 1.65x10-03 

EPB41L1 20:36,091,504-
36,232,799 0.60735661 3.99x10-07 1.65x10-03 

LINC01844 5:142,716,229-
142,761,035 -0.6063251 3.66x10-07 1.65x10-03 

PEG13 8:140,094,894-
140,100,543 0.59688507 3.93x10-07 1.65x10-03 

CBX5 12:54,230,942-
54,280,133 0.59533403 7.99x10-07 2.64x10-03 

OCRL X:129,539,849-
129,592,561 0.55043237 2.02x10-06 3.03x10-03 

ATP6V1C1 8:103,021,063– 
103,073,051 0.56635713 1.71x10-06 3.03x10-03 

LPO 17:58,218,548-
58,268,518 -0.4996428 1.95x10-06 3.03x10-03 

MECP2 X:154,021,573-
154,137,103 0.52359314 1.47x10-06 3.03x10-03 

KCNK9 8:139,600,838- 
139,704,109 0.56733674 1.26x10-06 3.03x10-03 

Table 4-4 - Top 10 differentially expressed genes from LMEM model including 3PCs after logistic regression 
on reduced data with Braak scores 0, 1, 2 vs 5, 6 (coded 0 vs 1). Genes were ranked based on their FDR 
corrected p-value and the top 10 most significant are reported with their beta coefficient from regression 
analyses and each gene’s p-value and FDR corrected p-value (FDR < 0.05). Gene Chr:start-end refers to gene 
chromosome and start and end base position. All in build GRCh38 
(www.gencodegenes.org/human/release_24.html).   
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Gene Chr:start-end Beta  p-value FDR corrected  

p-value 

LPO 17:58,218,548-
58,268,518 -0.50 8.26x10-11 6.81x10-07 

LINC01844 5:142,716,229-
142,761,035 -0.50 5.63x10-11 6.81x10-07 

OCRL X:129,539,849-
129,592,561 0.47 1.43x10-10 7.87x10-07 

ANKRD18DP 3:198,053,522-
198,080,737 -0.44 3.12x10-10 1.28x10-06 

VPS26B 11:134,224,671-
134,247,788 0.45 7.17x10-10 2.37x10-06 

CBX5 12:54,230,942-
54,280,133 0.46 1.29x10-09 3.03x10-06 

POU6F1 12:51,186,936-
51,218,062 0.45 1.10x10-09 3.03x10-06 

SCAMP5 15:74,957,219-
75,021,495 0.48 1.81x10-09 3.74x10-06 

NCDN 1:35,557,473-
35,567,274 0.45 4.42x10-09 8.10x10-06 

COL17A1 10:104,031,286-
104,085,880 -0.41 5.03x10-09 8.25x10-06 

Table 4-5 Top 10 differentially expressed genes from LMEM model including 3PCs after ordinal regression  
with all Braak scores 0 – 6 included. Genes were ranked based on their FDR corrected p-value and reported 
with their beta coefficient from regression analyses and each gene’s p-value and FDR corrected p-value (FDR 
>0.05).  Gene Chr:start-end refers to gene chromosome and start and end base position. All in build GRCh38 
(www.gencodegenes.org/human/release_24.html).     

 

A list of prioritised genes from the largest AD case-control GWAS was taken from figure 2 as 

published in their paper (Kunkle et al. 2019). In this paper, the prioritisation of genes was 

based on eight criteria. These were: (1) deleterious coding, loss of function or splicing variant 

in the gene; (2) significant gene-based tests; (3) expression in an AD relevant tissue; (4) a 

microglial-enriched gene; (5) having an eQTL effect; (6) being involved in a biological pathway 
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enriched in AD; (7) expression correlated with Braak stage; (8) DGE evidence in an AD case-

control study.  

 

 I then checked to see if these genes were differentially expressed in the three Braak 

differential expression analyses. The full list of prioritised genes from the Kunkle et al. paper 

and results from my DGE analysis can be seen in Table 4-6. Only one gene was found to be 

significantly differentially expressed (FDR < 0.05) across all three regression analyses. This 

gene was CLU with p-values 2.88x10-03, 1.07x10-03, and 4.49x10-04 and FDR corrected p-values 

of 0.03, 0.04 and 0.01 for the Braak logistic, reduced Braak logistic and ordinal models 

respectively. The direction of effect was consistent suggesting that CLU is upregulated in cases 

in comparison to controls.  

 

PSMB9 and AGFG2 were both FDR significant in the Braak logistic and Braak ordinal 

regressions. They were only nominally significant in the reduced Braak logistic model. PSMC5 

was FDR significant in the Braak logistic and nominally significant in the Braak ordinal and 

reduced Braak logistic models. ACP2, FAM131B, PILRA, WDR18, and YOD1 were nominally 

significant in at least one of the models. Full results can be seen in Table 4-6 where results 

that were at least nominally significant have been marked in bold.  

  

The Kunkle et al. GWAS prioritised genes were used as a gene set and a one-sided Wilcoxon 

rank sum test used to see if these Kunkle et al. GWAS prioritised genes ranked higher in the 

DGE analysis than expected by chance for each of the three regression analyses. This analysis 

was non-directional and did not specify nor differentiate between up or down regulation. 

None of the three tests for the Braak score logistic regression (p-value: 0.83), reduced Braak 

score logistic regression (p-value: 0.82), nor the ordinal Braak score regression (p-value: 0.84) 

were statistically significant. This indicates that the Kunkle et al. GWAS prioritised genes were 

not enriched in the Braak score differential gene expression analysis. Boxplots demonstrating 

the difference in p-value between GWAS prioritised and non-prioritised genes can be seen in 

Figure 4-7. 
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Figure 4-7 - Boxplots demonstrating the differences in p-value resulting from the AD Braak score gene 
expression analyses. ‘GWAS’ refers to the GWAS prioritised genes and ‘Not GWAS’ refers to any gene not in 
this set 
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 Chr:start-end Braak score Logistic regression Reduced Braak score logistic 
regression 

Braak score ordinal regression 

Beta p-value FDR p-
value 

Beta p-value FDR p-
value 

Beta p-value FDR p-
value 

ABCA7 
19:1,039,997-
1,065,572 0.17 0.09 0.24 0.13 0.29 0.58 0.14 0.13 0.31 

ACP2 11:47,239,302-
47,248,906 -0.20 0.05 0.17 -0.19 0.14 0.42 -0.18 0.05 0.18 

ADAM10 15:58,588,809-
58,749,791 0.14 0.11 0.28 0.07 0.48 0.74 0.10 0.16 0.36 

ADAMTS1 21:26,835,755-
26,845,409 0.07 0.55 0.73 0.01 0.91 0.97 0.04 0.71 0.84 

AGFG2 
7:100,539,203-
100,568,220 0.30 4.69x10-03 0.04 0.34 0.02 0.15 0.26 

5.27x10-

03 0.05 

BIN1 
2:127,048,027-
127,107,288 -0.12 0.17 0.36 -0.14 0.20 0.50 -0.10 0.19 0.40 

C1QTNF4 
11:47,589,667-
47,594,411 0.007 0.92 0.96 0.003 0.97 0.99 0.04 0.57 0.75 

C4A 
6:31,982,052-
32,002,681 0.10 0.38 0.59 0.18 0.18 0.47 0.12 0.26 0.48 
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C7orf43 
7:100,154,420-
100,158,723 0.05 0.48 0.68 0.08 0.40 0.68 0.07 0.32 0.54 

CASS4 
20:56,412,112-
56,460,387 0.11 0.22 0.43 0.18 0.14 0.41 0.13 0.12 0.31 

CD2AP 
6:47,477,789-
47,627,263 0.16 0.07 0.20 0.15 0.20 0.50 0.13 0.08 0.25 

CD55 1:207,321,519-
207,386,804 0.01 0.91 0.96 -0.08 0.54 0.78 -0.006 0.94 0.97 

CELF1 
11:47,465,933-
47,565,569 0.25 4.89x10-03 0.04 0.17 0.16 0.45 0.18 0.02 0.11 

CLU 
8:27,596,917-
27,614,700 0.28 2.88x10-03 0.03 0.39 

1.07x10-

03 0.04 0.29 
4.49x10-

04 0.01 

CNN2 
19:1,026,586-
1,039,068 -0.11 0.22 0.43 -0.12 0.28 0.58 -0.07 0.38 0.60 

CR1 
1:207,496,147-
207,641,765 -0.03 0.78 0.88 -0.02 0.84 0.94 -0.02 0.82 0.91 

ECHDC3 
10:11,742,366-
11,764,070 0.06 0.48 0.68 0.07 0.58 0.81 0.06 0.46 0.67 

EED 
11:86,244,753-
86,278,813 0.003 0.97 0.99 -0.02 0.89 0.96 -0.02 0.78 0.88 
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EPHB4 
7:100,802,565-
100,827,523 -0.006 0.94 0.97 0.04 0.75 0.89 0.03 0.73 0.85 

FAM131B 
7:143,353,400-
143,362,770 0.21 0.02 0.08 0.26 0.03 0.19 0.17 0.02 0.10 

GAL3ST4 
7:100,159,244-
100,168,617 -0.12 0.18 0.38 -0.02 0.89 0.96 -0.09 0.31 0.54 

GPSM3 
6:32,190,766-
32,195,523 0.08 0.30 0.52 0.05 0.59 0.81 0.05 0.52 0.72 

HLA-DPA1 
6:33,064,569-
33,080,775 0.03 0.76 0.87 0.04 0.74 0.89 0.01 0.91 0.96 

HLA-DQA1 6:32,628,179-
32,647,062 0.13 0.20 0.41 0.14 0.27 0.57 0.11 0.23 0.45 

HLA-DRB1 
6:32,577,902-
32,589,848 0.08 0.42 0.63 0.11 0.42 0.70 0.06 0.49 0.69 

HLA-DRB5 
6:32,517,353-
32,530,287 0.03 0.79 0.89 0.01 0.93 0.97 0.005 0.96 0.98 

HMHA1 
19:1,065,923-
1,086,628 0.10 0.29 0.51 0.06 0.65 0.84 0.04 0.59 0.76 

INPP5D 
2:233,059,967-
233,207,903 0.19 0.06 0.19 0.22 0.09 0.34 0.15 0.10 0.27 
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IQCK 
16:19,716,456-
19,858,467 0.10 0.23 0.44 0.13 0.24 0.54 0.07 0.30 0.52 

MAF 
16:79,585,843-
79,600,737 0.10 0.30 0.52 0.22 0.09 0.34 0.11 0.19 0.40 

MS4A4 
11:60,185,657-
60,318,080 0.13 0.20 0.41 0.08 0.55 0.78 0.06 0.52 0.72 

MS4A6A 
11:60,172,015-
60,184,666 0.11 0.30 0.52 0.08 0.57 0.80 0.06 0.52 0.72 

MS4A7 
11:60,378,485-
60,395,951 0.20 0.06 0.18 0.17 0.21 0.51 0.14 0.13 0.33 

MTCH2 
11:47,617,315-
47,642,607 -0.10 0.33 0.54 -0.06 0.64 0.84 -0.09 0.32 0.55 

NDUFS3 
11:47,565,336-
47,584,562 -0.04 0.62 0.78 -0.13 0.23 0.53 -0.09 0.24 0.47 

NUP160 
11:47,778,087-
47,848,555 0.10 0.26 0.48 0.07 0.55 0.79 0.10 0.18 0.39 

PICALM 
11:85,957,175-
86,069,882 0.00 0.96 0.98 -0.02 0.87 0.95 -0.01 0.86 0.93 

PILRA 
7:100,367,530-
100,400,096 0.20 0.03 0.13 0.27 0.03 0.19 0.18 0.03 0.13 
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PSMB8 
6:32,840,717-
32,844,679 -0.11 0.19 0.40 -0.16 0.15 0.43 -0.12 0.13 0.32 

PSMB9 
6:32,844,136-
32,859,851 -0.27 1.18x10-03 0.02 -0.35 

1.76x10-

03 0.05 -0.26 
4.21x10-

04 
9.44x10-

03 

PSMC3 
11:47,418,769-
47,426,473 -0.08 0.36 0.57 -0.17 0.15 0.42 -0.10 0.19 0.39 

PSMC5 
17:63,827,152-
63,832,026 0.28 7.24x10-04 0.01 0.21 0.04 0.23 0.20 

8.21x10-

03 0.06 

PTK2B 
8:27,311,482-
27,459,391 0.12 0.22 0.42 -0.001 0.99 1.00 0.05 0.55 0.73 

RIN3 
14:92,513,781-
92,688,994 0.05 0.57 0.75 0.06 0.60 0.81 0.03 0.68 0.83 

SORL1 
11:121,452,314-
121,633,763 -0.05 0.56 0.74 0.02 0.86 0.95 -0.05 0.55 0.74 

SPI1 
11:47,354,860-
47,378,547 0.09 0.33 0.55 0.11 0.36 0.65 0.05 0.51 0.71 

STYX 
14:52,730,166-
52,774,989 -0.09 0.28 0.50 -0.08 0.44 0.71 -0.08 0.28 0.50 

TREM2 
6:41,158,506-
41,163,186 0.16 0.13 0.31 0.20 0.13 0.40 0.14 0.15 0.35 
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WDR18 
19:984,332-
998,438 -0.17 0.06 0.19 -0.25 0.03 0.20 -0.20 0.01 0.07 

WWOX 
16:78,099,400-
79,212,667 0.09 0.30 0.51 0.18 0.12 0.39 0.11 0.15 0.35 

YOD1 
1:207,043,849-
207,052,980 0.21 0.02 0.09 0.24 0.04 0.22 0.19 0.02 0.09 

ZKSCAN1 7:100,015,572-
100,041,689 -0.12 0.27 0.49 -0.16 0.23 0.53 -0.14 0.14 0.34 

Table 4-6 – Results from the Braak score differential gene expression analysis for top-prioritised genes from the largest AD case-control GWAS (Kunkle et al. 2019) Gene 
Chr:start-end refers to gene chromosome and start and end base position. All in build GRCh38 (www.gencodegenes.org/human/release_24.html).  
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4.3.4 GO enrichment analysis of AMP-AD Braak data 

 

GO enrichment analysis on the Braak score logistic regression differentially expressed genes 

resulted in 1026 statistically significant GO categories that are up-regulated and 153 

statistically significant GO categories that are down-regulated.  27 were significant in the 

analysis that did not define direction.  

 

The analysis on the reduced logistic regression differentially expressed genes resulted in 1045 

statistically significant GO categories that are up-regulated and 95 statistically significant GO 

categories that are down-regulated. 31 were significant in the non-directional analysis.  

 

Additionally, the analysis on the ordinal regression differentially expressed genes resulted in 

1015 statistically significant GO categories that are up-regulated and 147 statistically 

significant GO categories that are down-regulated. 38 were significant in the non-directional 

analysis. For all, statistically significant refers to an FDR-corrected p-value of less than 0.05 

and the categories include biological process, molecular function and cellular component.  

 

The python package GO-Figure! was used to reduce these large lists of GO terms to a 

summarised list of terms based on semantic similarity to make them easier to comprehend 

(Reijnders and Waterhouse 2021). This was performed across the three GO categories of 

biological process, molecular function and cellular component. GO terms have been reduced 

based on semantic similarity using GoFigure! (Reijnders and Waterhouse 2021). Colour refers 

to log10 p-value, size of circle refers to number of GO terms clustered (larger the circle, more 

GO terms clustered) and only the top 20 similar terms are labelled on scatterplots.  

 

Across all three regression analyses, enriched biological process GO terms related to cell-

signalling and response to stimulus and they were up-regulated as demonstrated in an 

example plot from the logistic regression analysis in Figure 4-9. Enriched GO categories such 

as SRP-dependent cotranslational protein targeting to membrane, viral transcription, 
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apoptosis and mitochondrial pathways were found to be down-regulated as can be seen in 

an example in Figure 4-10. 

 

Molecular function GO terms that were enriched for up-regulated differentially expressed 

genes were related to protein and transcription factor binding and transporter activity (Figure 

4-12) whereas ribosome and catalytic activity were GO terms that were enriched for down-

regulated differentially expressed genes (Figure 4-13).  

 

Cellular component GO terms that were enriched for up-regulated differentially expressed 

genes mainly related to the synapses and neurons (Figure 4-15) whereas down-regulated GO 

terms were related to the mitochondria, ribosome and endoplasmic reticulum (Figure 4-16).  

 

Amongst all the plots, the cellular component GO term plots showed the clearest clustering 

and segregation (Figure 4-14 - Figure 4-16).  The software works by grouping GO terms 

together based on semantic similarity or in other words based on terms with similar functions. 

The GO terms that were enriched from this analysis were identifying clear clusters of cellular 

components with distinct functions whereas for molecular function and biological process 

these were less distinct.  
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Figure 4-8 Scatterplot of biological process gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the Braak score logistic regression (0,1,2,3 vs 4,5,6).  
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Figure 4-9 Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values and betas from the Braak score logistic regression (0,1,2,3 vs 4,5,6) 
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Figure 4-10 Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values and betas from the Braak score logistic regression (0,1,2,3 vs 4,5,6) 

 



 119 

 
Figure 4-11 Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the Braak score logistic regression (0,1,2,3 vs 4,5,6). 
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Figure 4-12 – Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values and betas from the Braak score logistic regression (0,1,2,3 vs 4,5,6) 
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Figure 4-13 – Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values and betas from the Braak score logistic regression (0,1,2,3 vs 4,5,6) 
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Figure 4-14 Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the Braak score logistic regression (0,1,2,3 vs 4,5,6). 
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Figure 4-15 Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values and betas from the Braak score logistic regression (0,1,2,3 vs 4,5,6) 
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Figure 4-16 – Scatterplot of cellular component gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values and betas from the Braak score logistic regression (0,1,2,3 vs 4,5,6) 

 

4.3.5 Differential gene expression analysis of AMP-AD CERAD data  

 
Using normalised residuals from the LMEM normalisation step as performed in chapter 3, 

three regression models were performed to determine differentially expressed genes. The 

first was a logistic regression with CERAD scores of 1, 2 vs 3, 4, (coded 0 vs 1) respectively and 

resulted in 76 significant differentially expressed genes (FDR <0.05).  The second, also a 

logistic regression with only a subset of the data contrasting CERAD scores of 1 vs 4 (coded 0 

vs 1) resulted in 31 significant (FDR < 0.05) differentially expressed genes. The third, an ordinal 

regression including all CERAD scores  (1-4), resulted in 253 significant (FDR < 0.05) 

differentially expressed genes. The top 10 differentially expressed genes from these three 

analyses can be seen in Table 4-7, Table 4-8 and Table 4-9. Seven genes appeared in the top 

ten results  from at least two analyses (DNAJC19, LPO, DRD1, GCSH, TIMM8B, FAM19A2, 

KCTD8).  
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Gene Chr:start-end Beta  p-value FDR corrected  

p-value 

DNAJC19 3:180,983,697-
180,989,774 -0.46 4.15x10-07 6.83x10-03 

LPO 17:58,218,548-
58,268,518 -0.45 1.21x10-06 9.94x10-03 

DRD1 5:175,440,036-
175,444,182 0.51 2.17x10-06 0.01 

GIPC2 1:77,979,542-
78,138,444 -0.42 8.36x10-06 0.02 

GCSH 16:81,081,945-
81,096,395 -0.41 5.97x10-06 0.02 

TIMM8B 11:112,084,800-
112,086,798 -0.40 4.31x10-06 0.02 

KCNK9 8:139,600,838-
139,704,109 0.43 1.01x10-05 0.02 

IQGAP3 1:156,525,405-
156,572,604 -0.47 7.61x10-06 0.02 

PABPC1L2A X:73,077,276-
73,079,512 0.38 9.84x10-06 0.02 

LINC01844 5:142,716,229-
142,761,035 -0.45 8.49x10-06 0.02 

Table 4-7 - Top 10 differentially expressed genes from LMEM model including 3PCs after logistic regression 
with CERAD scores 1, 2 vs 3, 4 (coded 0 vs 1).  Genes were ranked based on their FDR corrected p-value and 
reported with their beta coefficient from regression analyses and each gene’s FDR corrected p-value (FDR 
<0.05). Gene Chr:start-end refers to gene chromosome and start and end base position. All in build GRCh38 
(www.gencodegenes.org/human/release_24.html).  
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Gene Chr:start-end Beta  p-value FDR corrected  

p-value 

TIMM8B 11:112,084,800- 
112,086,798 -0.49 2.59x10-06 0.02 

FAM19A2 12:61,708,273-
62,279,150 0.57 3.09x10-06 0.02 

DNAJC19 3:180,983,697-
180,989,774 -0.53 1.11x10-06 0.02 

GCSH 16:81,081,945-
81,096,395 -0.47 9.41x10-06 0.02 

LPO 17:58,218,548-
58,268,518 -0.45 9.23x10-06 0.02 

KCTD8 4:44,173,903-
44,448,809 0.50 8.29x10-06 0.02 

DRD1 5:175,440,036-
175,444,182 0.59 6.17x10-06 0.02 

UBE2E1 3:23,805,955-
23,891,640 -0.49 1.15x10-05 0.02 

UBE2K 4:39,698,109-
39,782,792 0.48 2.93x10-05 0.03 

PPP2R5C 14:101,761,709-
101,927,989 -0.52 2.11x10-05 0.03 

Table 4-8 - Top 10 differentially expressed genes from LMEM model including 3PCs after logistic regression 
with the reduced CERAD score dataset 1 vs 4 (coded 0 vs 1). Genes were ranked based on their FDR corrected 
p-value and reported with their beta coefficient from regression analyses and each gene’s FDR corrected p-
value (FDR <0.05). Gene Chr:start-end refers to gene chromosome and start and end base position. All in build 
GRCh38 (www.gencodegenes.org/human/release_24.html).   
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Gene Chr:start-end Beta  p-value FDR corrected  

p-value 

LPO 17:58,218,548-
58,268,518 -0.42 1.47x10-07 2.42x10-03 

EPB41L1 20:36,091,504-
36,232,799 0.41 1.58x10-06 3.82x10-03 

CBX5 12:54,230,942-
54,208,133 0.40 2.55x10-06 3.82x10-03 

GCSH 16:81,081,945-
81,096,395 -0.35 2.10x10-06 3.82x10-03 

TIMM8B 11:112,084,800- 
112,086,798 -0.35 1.41x10-06 3.82x10-03 

COA4 11:73,872,667-
73,876,901 -0.37 1.87x10-06 3.82x10-03 

KCTD8 4:44,173,903-
44,448,809 0.37 2.32x10-06 3.82x10-03 

POU6F1 12:51,186,936-
51,218,062 0.39 1.87x10-06 3.82x10-03 

DRD1 5:175,440,036-
175,444,182 0.43 1.24x10-06 3.82x10-03 

FAM19A2 12:61,708,273-
62,279,150 0.44 8.44x10-07 3.82x10-03 

Table 4-9 - Top 10 differentially expressed genes from LMEM model including 3PCs after ordinal regression 
with CERAD scores 1, 2 vs 3, 4 (coded 0 vs 1. Genes were ranked based on their FDR corrected p-value and 
reported with their beta coefficient from regression analyses and each gene’s FDR corrected p-value (FDR < 
0.05). Gene Chr:start-end refers to gene chromosome and start and end base position. All in build GRCh38 
(www.gencodegenes.org/human/release_24.html).   

 

Like the Braak score analysis, prioritised genes from Kunkle et al.’s AD GWAS were used, and 

their differential expression were investigated in the three CERAD score regressions. No 

differentially expressed genes survived multiple hypothesis testing correction. CELF1, 

FAM131B, PSMB8, and PSMB9 were nominally significant across all three CERAD score 

regression DGE analyses. The direction of effect was consistent for both CELF1 and FAM131B, 



 128 

which was overexpressed in cases in comparison to controls. Both were at least nominally 

significant in the previous Braak logistic analysis. The direction of effect for PSMB8 and PSMB9 

was consistent for both, which was down-regulated in cases in comparison to controls. 

PSMB9 was significantly differentially expressed in the Braak score analysis but PSMB8 was 

not. 

 

The following genes were nominally significant in at least one of the CERAD analyses: 

ADAM10, C4A, C7ORF43, MTCH2, PSMC5, WDR18. PSMC5 and WDR18 were also found to be 

at least nominally significant in at least one of the previous Braak score analyses. Results from 

the Braak score analyses can be seen in Table 4-6 and CERAD score results can be seen in 

Table 4-10. Results that were at least nominally significant are marked in bold.  

 

The Kunkle et al. GWAS prioritised genes were then used as a gene set and a one-sided 

Wilcoxon rank sum test used to see if these GWAS genes were differentially expressed more 

than we would expect by chance for each of the three regression analyses. The tests for the 

CERAD score logistic regression (p-value = 0.996), reduced CERAD score logistic regression (p-

value: 0.969) and the ordinal CERAD score regression (p-value = 0.986) were not statistically 

significant. This suggests that when considering the rank of the differentially expressed genes, 

there is no evidence for GWAS-prioritised genes being enriched in this DGE analysis of CERAD 

scores. Boxplots demonstrating the difference in p-value between GWAS prioritised and non-

prioritised genes can be seen in Figure 4-17. In general, Kunkle et al. GWAS prioritised genes 

were less significant than non-prioritised genes.  
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Figure 4-17 - Boxplots demonstrating the differences in p-value resulting from the AD CERAD score gene 
expression analyses. ‘GWAS’ refers to the GWAS prioritised genes and ‘Not GWAS’ refers to any gene not in 
this set. 
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Gene Chr:start-end CERAD score Logistic regression Reduced CERAD score logistic 
regression 

CERAD score ordinal regression 

Beta p-value FDR p-
value 

Beta p-value FDR p-
value 

Beta p-value FDR p-
value 

ABCA7 
19:1,039,997-
1,065,572 0.11 0.32 0.63 0.11 0.39 0.74 0.12 0.21 0.54 

ACP2 
11:47,239,302-
47,248,906 -0.21 0.06 0.31 -0.16 0.22 0.61 -0.12 0.21 0.54 

ADAM10 
15:58,588,809-
58,749,791 0.23 0.03 0.23 0.17 0.14 0.51 0.17 0.05 0.28 

ADAMTS1 21:26,835,755-
26,845,409 -0.02 0.88 0.96 0.01 0.95 0.99 0.02 0.88 0.96 

AGFG2 7:100,539,203-
100,568,220 0.14 0.23 0.54 0.17 0.18 0.57 0.16 0.12 0.42 

BIN1 2:127,048,027-
127,107,288 0.07 0.48 0.75 0.06 0.62 0.87 0.01 0.87 0.96 

C1QTNF4 11:47,589,667-
47,594,411 0.05 0.56 0.80 0.02 0.79 0.94 0.01 0.91 0.97 

C4A 6:31,982,052-
32,002,681 0.01 0.93 0.98 0.02 0.90 0.97 0.01 0.90 0.97 
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C7ORF43 
7:100,154,420-
100,158,723 0.17 0.04 0.26 0.19 0.06 0.37 0.13 0.07 0.32 

CASS4 
20:56,412,112-
56,460,387 0.05 0.63 0.84 0.09 0.44 0.77 0.08 0.36 0.67 

CD2AP 
6:47,477,789-
47,627,263 0.03 0.78 0.92 0.06 0.60 0.86 0.08 0.33 0.65 

CD55 
1:207,321,519-
207,386,804 -0.002 0.98 0.99 -0.01 0.92 0.98 0.01 0.93 0.98 

CELF1 
11:47,465,933-
47,565,569 0.22 0.03 0.24 0.30 0.01 0.21 0.23 0.01 0.13 

CLU 
8:27,596,917-
27,614,700 0.07 0.51 0.77 0.16 0.18 0.56 0.10 0.28 0.61 

CNN2 
19:1,026,586-
1,039,068 -0.07 0.49 0.76 -0.05 0.63 0.87 -0.03 0.74 0.91 

CR1 
1:207,496,147-
207,641,765 -0.04 0.73 0.89 -0.03 0.77 0.93 0.00 0.99 1.00 

ECHDC3 10:11,742,366-
11,764,070 -0.06 0.58 0.82 -0.02 0.85 0.96 -0.04 0.68 0.88 

EED 11:86,244,753-
86,278,813 0.11 0.25 0.57 -0.02 0.88 0.97 -0.02 0.81 0.94 
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EPHB4 
7:100,802,565-
100,827,523 -0.08 0.40 0.70 -0.05 0.67 0.89 -0.04 0.67 0.87 

FAM131B 
7:143,353,400-
143,362,770 0.20 0.04 0.25 0.24 0.04 0.33 0.21 0.01 0.16 

GAL3ST4 
7:100,159,244-
100,168,617 -0.02 0.87 0.95 -0.05 0.67 0.89 -0.04 0.64 0.86 

GPSM3 
6:32,190,766-
32,195,523 0.07 0.37 0.67 0.07 0.44 0.77 0.05 0.47 0.75 

HLA-DPA1 
6:33,064,569-
33,080,775 -0.04 0.70 0.88 -0.06 0.64 0.88 -0.03 0.73 0.90 

HLA-DQA1 
6:32,628,179-
32,647,062 0.02 0.85 0.95 0.07 0.56 0.84 0.06 0.56 0.81 

HLA-DRB1 
6:32,577,902-
32,589,848 0.01 0.91 0.97 0.03 0.80 0.94 0.02 0.80 0.93 

HLA-DRB5 
6:32,517,353-
32,530,287 -0.01 0.95 0.98 -0.01 0.94 0.98 -0.01 0.91 0.98 

HMHA1 19:1,065,923-
1,086,628 -0.02 0.83 0.94 -0.03 0.81 0.94 -0.01 0.91 0.98 

INPP5D 2:233,059,967-
233,207,903 0.11 0.34 0.65 0.17 0.18 0.57 0.14 0.16 0.48 



 133 

IQCK 
16:19,716,456-
19,858,467 0.02 0.85 0.95 0.04 0.71 0.91 0.04 0.62 0.85 

MAF 
16:79,585,843-
79,600,737 0.16 0.14 0.44 0.12 0.35 0.71 0.09 0.33 0.65 

MS4A4 
11:60,185,657-
60,318,080 -0.03 0.77 0.91 -0.02 0.87 0.96 -0.02 0.84 0.95 

MS4A6A 
11:60,172,015-
60,184,666 0.002 0.99 1.00 0.02 0.86 0.96 0.01 0.89 0.97 

MS4A7 
11:60,378,485-
60,395,951 0.14 0.24 0.56 0.17 0.20 0.59 0.15 0.15 0.47 

MTCH2 
11:47,617,315-
47,642,607 -0.16 0.14 0.44 -0.15 0.23 0.61 -0.10 0.28 0.61 

NDUFS3 
11:47,565,336-
47,584,562 -0.16 0.08 0.36 -0.18 0.08 0.43 -0.15 0.06 0.32 

NUP160 
11:47,778,087-
47,848,555 0.04 0.71 0.88 0.12 0.30 0.68 0.08 0.34 0.66 

PICALM 11:85,957,175-
86,069,882 0.08 0.42 0.71 0.14 0.28 0.66 0.10 0.27 0.59 

PILRA 7:100,367,530-
100,400,096 0.06 0.54 0.79 0.14 0.24 0.63 0.13 0.14 0.45 
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PSMB8 
6:32,840,717-
32,844,679 -0.21 0.03 0.23 -0.23 0.04 0.33 -0.17 0.04 0.25 

PSMB9 
6:32,844,136-
32,859,851 -0.24 0.01 0.16 -0.25 0.01 0.23 -0.20 0.01 0.15 

PSMC3 
11:47,418,769-
47,426,473 -0.20 0.04 0.25 -0.13 0.26 0.65 -0.09 0.26 0.59 

PSMC5 
17:63,827,152-
63,832,026 0.13 0.15 0.45 0.19 0.07 0.40 0.18 0.02 0.20 

PTK2B 
8:27,311,482-
27,459,391 0.01 0.89 0.96 0.05 0.67 0.89 0.05 0.58 0.83 

RIN3 
14:92,513,781-
92,688,994 0.01 0.94 0.98 0.02 0.84 0.95 0.002 0.98 1.00 

SORL1 
11:121,452,314-
121,633,763 -0.05 0.64 0.85 -0.05 0.67 0.89 -0.04 0.66 0.87 

SPI1 
11:47,354,860-
47,378,547 0.01 0.91 0.97 0.03 0.79 0.94 0.01 0.96 0.99 

STYX 14:52,730,166-
52,774,989 -0.002 0.98 0.99 -0.09 0.40 0.75 -0.06 0.46 0.75 

TREM2 6:41,158,506-
41,163,186 0.21 0.08 0.35 0.18 0.17 0.55 0.16 0.11 0.41 

WDR18 19:984,332-998,438 -0.17 0.09 0.37 -0.25 0.03 0.32 -0.16 0.06 0.30 
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WWOX 
16:78,099,400-
79,212,667 0.02 0.85 0.94 0.0008 0.99 1.00 0.02 0.82 0.94 

YOD1 
1:207,043,849-
207,052,980 0.20 0.06 0.30 0.13 0.25 0.64 0.12 0.15 0.47 

ZKSCAN1 
7:100,015,572-
100,041,689 -0.03 0.83 0.94 0.05 0.75 0.92 0.01 0.95 0.99 

Table 4-10 - Results from the CERAD score differential gene expression analysis for top-prioritised genes from the largest AD case-control GWAS (Kunkle et al. 2019). 
Gene Chr:start-end refers to gene chromosome and start and end base position. All in build GRCh38 (www.gencodegenes.org/human/release_24.html). 
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4.3.6 GO enrichment analysis of AMP-AD CERAD data 

 

GO enrichment analysis on the CERAD score logistic regression differentially expressed genes 

resulted in 337 statistically significant GO categories that are enriched for up-regulated genes 

and 331 statistically significant GO categories that are enriched for down-regulated genes. 57 

GO terms were significant in the non-directional analysis.  

 

The analysis on the reduced logistic regression differentially expressed genes resulted in 348 

statistically significant GO categories that are enriched for up-regulated differentially 

expressed genes and 387 statistically significant GO categories that are enriched for down-

regulated genes. 102 GO terms were significant in the non-directional analysis.  

 

Additionally, the analysis on the ordinal regression differentially expressed genes resulted in 

398 statistically significant GO categories that are enriched for up-regulated genes and 365 

statistically significant GO categories that are enriched for down-regulated genes. 84 GO 

terms were significant in the non-directional analysis. For all, statistically significant refers to 

an FDR-corrected p-value of less than 0.05 and the categories include biological process, 

molecular function and cellular component.  

 

The python package GO-Figure! was used to reduce these large lists of GO terms to a 

summarised list of terms across the three GO categories of biological process, molecular 

function and cellular component (Reijnders and Waterhouse 2021).  

 

Across all three regression analyses,  biological process GO terms that were enriched for up-

regulated differentially expressed genes related to synaptic processes and transcription 

(Figure 4-19). GO categories enriched for down-regulated genes included terms such as SRP-

dependent cotranslational protein targeting to membrane, viral transcription, and 

mitochondrial pathways (Figure 4-20). This is very similar to what was seen for the Braak 

phenotype.  
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Molecular function GO terms that were enriched for up-regulated differentially expressed 

genes were related to glycine binding, DNA binding, transcription and transporter activity 

(Figure 4-21) whereas ribosome and catalytic activity were GO terms that were down-

regulated (Figure 4-22) both of which are quite similar to the Braak phenotype.  

 

Cellular components GO terms that were up-regulated mainly related to the synapses and 

neurons and plasma membrane (Figure 4-25) whereas down-regulated GO terms were 

relating to the mitochondria, ribosome and endoplasmic reticulum (Figure 4-26). Again, these 

results for the CERAD phenotype were similar to the Braak phenotype.  

 

 

Figure 4-18 Scatterplot of biological process gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-19 Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values and betas from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-20 Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values and betas from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-21 Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-22 Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values and betas from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-23 Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values and betas from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-24 Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-25 Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values and betas from the CERAD score logistic regression (1,2 vs 3,4) 
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Figure 4-26 Scatterplot of cellular component gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values and betas from the CERAD score logistic regression (1,2 vs 3,4) 

 

 
4.3.7 Differential gene expression analysis of AMP-AD case-control data 

 
Using residuals from the LMEM normalisation step in the previous chapter, one regression 

model was performed to determine differentially expressed genes. This was a logistic 

regression of controls vs cases (coded 0 vs 1 respectively) and resulted in 1270 significant 

(FDR < 0.05) differentially expressed genes. The top 10 differentially expressed genes can be 

seen in Table 4-11.   
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Gene Chr:start-
end 

Beta  p-value FDR corrected  

p-value 

PAFAH1B3 

19:42,297,0
33-

42,303,546 0.67 3.18x10-12 5.24x10-08 

CLTB 

5:176,392,5
01-

176,416,539 0.58 4.68x10-09 3.86x10-05 

ADAMTS2 

5:179,110,8
53-

179,345,461 0.64 1.17x10-08 5.84x10-05 

DRD1 

5:175,440,0
36-

175,444,182 0.57 1.77x10-08 5.84x10-05 

SCGN 

6:25,652,20
1-

25,701,783 0.48 1.50x10-08 5.84x10-05 

NGB 

14:77,265,4
83-

77,271,206 0.52 2.18x10-08 5.98x10-05 

OCRL 

X:129,539,8
49-

129,592,561 0.51 2.66x10-08 6.26x10-05 

KREMEN2 
16:2,964,21
6-2,968,383 -0.55 3.37x10-08 6.94x10-05 

CBX5 

12:54,230,9
42-

54,280,133 0.51 6.86x10-08 9.16x10-05 

FBXO44 

1:11,654,37
5-

11,663,327 0.50 6.27x10-08 9.16x10-05 

Table 4-11 - Top 10 differentially expressed genes from LMEM model including 3PCs after logistic regression 
with controls vs cases (coded 0 vs 1). Genes were ranked based on their FDR corrected and reported with their 
beta coefficient from regression analyses and each gene’s FDR corrected p-value (FDR < 0.05). Gene Chr:start-
end refers to gene chromosome and start and end base position. All in build GRCh38 
(www.gencodegenes.org/human/release_24.html).  
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Similar to previous analyses, Kunkle et al. AD GWAS prioritised genes inspected for evidence 

for differential expression. AGFG2 and WDR18 were the only genes that were differentially 

expressed, and that significance survived FDR correction (AGFG2: p-value: 2.02x10-03; FDR p-

value: 0.04 and WDR18: p-value: 2.12x10-03; FDR p-value: 0.04).  

 

The following genes were at least nominally significant: ACP2, C1QTNF4, CD2AP, CLU, PSMB8, 

PSMC5, WWOX and YOD1. PSMB9 was the only gene that had been differentially expressed 

with at least nominal significance across all Braak, CERAD and case-control analyses. 

C1QTNF4, CD2AP, and WWOX were the only nominally significant genes in the case-control 

analysis that did not have a significant result in the previous analyses. The results of this case-

control analysis can be seen in Table 4-12. 

 

Kunkle et al. AD GWAS prioritised genes were also tested for enrichment for differentially 

expressed genes . This test was not significant (p-value: 0.95), indicating that GWAS prioritised 

genes were not more enriched in this DGE analysis than would be expected through chance 

alone. A boxplot demonstrating the difference in p-value between GWAS prioritised and non-

prioritised genes can be seen in Figure 4-27. The boxplot shows that the non-GWAS prioritised 

genes tended to have lower p-values. 
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Figure 4-27 - A boxplot demonstrating the differences in p-value resulting from the AD case-control differential 
expression analysis. ‘GWAS’ refers to the GWAS prioritised genes and ‘Not GWAS’ refers to any gene not in 
this set. 
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Gene Chr:start-end DGE case-control score Logistic 
regression 

Beta p-value FDR p-value 

ABCA7 19:1,039,997-
1,065,572 0.18 0.08 0.28 

ACP2 11:47,239,302-
47,248,906 -0.23 0.03 0.16 

ADAM10 15:58,588,809-
58,749,791 0.17 0.06 0.24 

ADAMTS1 21:26,835,755-
26,845,409 0.08 0.46 0.70 

AGFG2 7:100,539,203-
100,568,220 0.34 2.02x10-03 0.04 

BIN1 2:127,048,027-
127,107,288 -0.14 0.12 0.34 

C1QTNF4 11:47,589,667-
47,594,411 0.04 0.61 0.80 

C4A 6:31,982,052-
32,002,681 0.09 0.40 0.66 

C7ORF43 7:100,154,420-
100,158,723 0.10 0.20 0.45 

CASS4 20:56,412,112-
56,460,387 0.06 0.55 0.77 

CD2AP 6:47,477,789-
47,627,263 0.18 0.04 0.18 

CD55 1:207,321,519-
207,386,804 0.06 0.57 0.78 

CELF1 11:47,465,933-
47,565,569 0.17 0.07 0.25 

CLU 
8:27,596,917-
27,614,700 0.26 0.01 0.06 

CNN2 19:1,026,586-
1,039,068 -0.09 0.34 0.59 
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CR1 1:207,496,147-
207,641,765 -0.04 0.63 0.81 

ECHDC3 10:11,742,366-
11,764,070 0.03 0.79 0.90 

EED 11:86,244,753-
86,278,813 0.07 0.42 0.67 

EPHB4 7:100,802,565-
100,827,523 0.07 0.50 0.71 

FAM131B 7:143,353,400-
143,362,770 0.26 0.07 0.25 

GAL3ST4 7:100,159,244-
100,168,617 -0.05 0.59 0.79 

GPSM3 6:32,190,766-
32,195,523 0.01 0.92 0.97 

HLA-DPA1 6:33,064,569-
33,080,775 -0.0003 1.00 1.00 

HLA-DQA1 6:32,628,179-
32,647,062 0.05 0.61 0.80 

HLA-DRB1 6:32,577,902-
32,589,848 -0.03 0.78 0.90 

HLA-DRB5 6:32,517,353-
32,530,287 -0.004 0.97 0.99 

HMHA1 19:1,065,923-
1,086,628 -0.04 0.69 0.85 

INPP5D 2:233,059,967-
233,207,903 0.15 0.14 0.37 

IQCK 16:19,716,456-
19,858,467 0.09 0.31 0.57 

MAF 16:79,585,843-
79,600,737 0.13 0.18 0.43 

MS4A4 11:60,185,657-
60,318,080 0.04 0.70 0.85 
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MS4A6A 11:60,172,015-
60,184,666 0.03 0.82 0.92 

MS4A7 11:60,378,485-
60,395,951 0.12 0.28 0.54 

MTCH2 11:47,617,315-
47,642,607 -0.08 0.46 0.70 

NDUFS3 11:47,565,336-
47,584,562 0.03 0.70 0.86 

NUP160 11:47,778,087-
47,848,555 0.09 0.33 0.58 

PICALM 11:85,957,175-
86,069,882 -0.01 0.88 0.95 

PILRA 7:100,367,530-
100,400,096 0.03 0.75 0.88 

PSMB8 
6:32,840,717-
32,844,679 -0.13 0.15 0.38 

PSMB9 
6:32,844,136-
32,859,851 -0.21 0.01 0.10 

PSMC3 
11:47,418,769-
47,426,473 -0.05 0.57 0.78 

PSMC5 
17:63,827,152-
63,832,026 0.22 9.75x10-03 0.08 

PTK2B 
8:27,311,482-
27,459,391 0.03 0.75 0.88 

RIN3 
14:92,513,781-
92,688,994 0.003 0.97 0.99 

SORL1 11:121,452,314-
121,633,763 -0.12 0.20 0.45 

SPI1 11:47,354,860-
47,378,547 -0.01 0.91 0.96 

STYX 14:52,730,166-
52,774,989 -0.10 0.21 0.47 
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TREM2 6:41,158,506-
41,163,186 0.12 0.26 0.52 

WDR18 
19:984,332-
998,438 -0.29 2.12x10-03 0.04 

WWOX 
16:78,099,400-
79,212,667 0.22 0.02 0.13 

YOD1 1:207,043,849-
207,052,980 0.20 0.04 0.17 

ZKSCAN1 7:100,015,572-
100,041,689 -0.13 0.25 0.50 

Table 4-12 - Results from the case-control differential gene expression analysis for top-prioritised genes from 
the largest AD case-control GWAS (Kunkle et al. 2019). All in build GRCh38 
(www.gencodegenes.org/human/release_24.html).  

 

 

4.3.8 GO enrichment analysis of AMP-AD case-control data  

 
GO enrichment analysis of the case-control logistic regression differentially expressed genes 

resulted in 1092 statistically significant GO categories that are enriched for up-regulated 

genes and 79 statistically significant GO categories that are enriched for down-regulated 

genes.  33 were significant in the non-directional analysis. For all, statistically significant refers 

to an FDR-corrected p-value of less than 0.05 and the categories include biological process, 

molecular function and cellular component.  

 

The python package GO-Figure! was used to reduce the lists of GO terms to a summarised list 

of terms across the three GO categories of biological process, molecular function and cellular 

component. 

 

For the case-control data, biological process GO terms enriched for upregulated genes related 

to signalling which is more in line with the results for the Braak phenotype than the CERAD 

phenotype (Figure 4-29). Enriched GO categories such as SRP-dependent cotranslational 

protein targeting to membrane, viral transcription, and mitochondrial pathways were found 
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to be down-regulated (Figure 4-30). This is very similar to what was seen for the Braak and 

CERAD phenotypes. 

 

Enriched molecular function GO terms that were up-regulated were related to binding, 

transcription and transporter activity (Figure 4-32) whereas ribosome and catalytic activity 

were GO terms that were down-regulated (Figure 4-33), again reinforcing what was found 

with the Braak and CERAD phenotypes. 

 

Cellular components GO terms that were up-regulated mainly related to the synapses and 

neurons and plasma membrane (Figure 4-35) whereas down-regulated GO terms were 

relating to the mitochondria, ribosome and endoplasmic reticulum (Figure 4-36). Again, 

supporting the results from the Braak and CERAD phenotypes. 

 

 

 
Figure 4-28 Scatterplot of biological process gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the case-control logistic regression  
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Figure 4-29 Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values from the case-control logistic regression  

 

 

 



 155 

 
Figure 4-30 Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values from the case-control logistic regression  
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Figure 4-31 Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the case-control logistic regression  
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Figure 4-32 Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values from the case-control logistic regression  
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Figure 4-33 Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values from the case-control logistic regression  
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Figure 4-34 - Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO 
enrichment analysis using gene p-values from the case-control logistic regression  
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Figure 4-35 Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment 
analysis using gene p-values from the case-control logistic regression  
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Figure 4-36 Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment 
analysis using gene p-values from the case-control logistic regression  

 

4.3.9 MAGMA pathways and comparison with results from CATMAP 

 
Results from a MAGMA pathway analysis from the largest AD GWAS (Kunkle et al. 2019) were 

used to check if a similar enrichment of terms was found in the GO enrichment analysis using 

AD case-control gene expression data.   

 

From the MAGMA pathway analysis, nine GO terms were found to be statistically significant 

after FDR correction as published in their paper. These GO terms related to APP 

metabolism/amyloid-beta formation, tau protein binding, lipid metabolism and immune 

response. None of the nine GO terms were statistically significant after FDR correction or at 

a nominal p-value of 0.05 in my non-directional GO enrichment analysis using case-control 
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gene expression data.  The was also true of the GO enrichment analysis that ranked down-

regulated genes higher (down-to-up analysis). Five GO terms were nominally significant in the 

GO enrichment analysis that gave upregulated genes a higher rank (up-to-down analysis) and 

two of which were also FDR significant (<0.05). The two FDR significant GO terms included tau 

protein binding (GO:0048156) and activation of immune response (GO:0002253).   The results 

of the MAGMA analysis (from the Kunkle et al. paper) and my case-control analysis are 

presented in Table 4-13.  
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GO term Description GWAS  

P-value 

GWAS 
FDR 
corrected 
p-value 
 

Non-
directional 
CATMAP  

p-value 

Non-
directional 
FDR 
corrected 
p-value  

Up-to-
down 
CATMAP 
p-value 

Up-to-
down 
FDR 
corrected 
p-value 

Down-
to-up 
CATMAP 
p-value 

Down-to-
up FDR 
corrected 
p-value 

GO:0065005 Protein-lipid complex 
assembly 

1.4x10-07 

 

9.5x10-04 0.49 0.99 0.03 0.21 0.97 1.00 

GO:1902003 Regulation of amyloid-
beta formation 

4.5x10-07 

 

1.4x10-03 0.58 0.99 0.10 0.39 0.90 1.00 

GO:0032994 Protein-lipid complex 

 

 

 

1.1x10-06 

 

2.5x10-03 0.12 0.89 0.44 0.75 0.56 1.00 

GO:1902991 Regulation of amyloid 
precursor protein 
catabolic process 

3.5x10-06 

 

5.8x10-03 0.40 0.99 0.02 0.16 0.98 1.00 

GO:0043691 Reverse cholesterol 
transport 

5.5x10-06 

 

6.7x10-03 0.38 0.99 0.90 0.99 0.10 1.00 

GO:0071825 Protein-lipid complex 
subunit assembly 

6.1x10-06 

 

6.7x10-03 0.36 0.99 0.41 0.72 0.60 1.00 

GO:0034377 Plasma lipoprotein 
particle assembly 

 

1.6x10-05 

 

1.5x10-02 0.59 0.99 0.03 0.22 0.96 1.00 

GO:0048156 Tau protein binding 3.1x10-05 

 

2.6x10-02 0.08 0.86 1.2x10-03 0.02 1.00 1.00 

GO:0002253 Activation of immune 
response 

6.3x10-05 4.6x10-02 0.99 0.99 1.3x10-03 0.02 1.00 1.00 

Table 4-13 - A list of significant GO terms as published in the largest AD case-control GWAS (Kunkle et al. 2019). 
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4.4. Discussion  
 

In this chapter, RNA-seq data that had been quality controlled and normalised were used in 

logistic and ordinal regressions to perform DGE analysis. These lists of differentially expressed 

genes were then used to perform GO enrichment analysis.  

 

Initially the aim was to utilise only the ROSMAP dataset to determine if using LMEM to 

normalise gene expression data along with logistic regression (to perform a DGE analysis) 

produced differentially expressed genes which overlapped with those identified using more 

conventional methods. These two other methods were limma-voom and DESeq2. The results 

presented in this chapter showed that the LMEM + LR method produced significant 

differentially expressed genes that largely overlapped with the two tools. Genes from LMEM 

+ LR showed greater overlap to those from the limma-voom analysis than the DESeq2 

analysis. This could be explained in part as DESeq2 assumes a negative binomial distribution 

of the RNA-seq data. In contrast limma-voom assumes a normal distribution so as a method 

its more comparable to LMEM + LR as that also assumes a normal distribution.  

 

In a previous review of available software tools for DGE analysis, DESeq2 and Limma-Voom 

were the best performing parametric tools. They achieved true positive rates of 84% and 81% 

resepectively when compared with results from qRT-PCR. The authors also identified that 

differentially expressed genes identified through multiple approaches were more likely to be 

true differentially expressed genes  (Costa-Silva et al. 2017). The LMEM + LR method identified 

352 significant differentially expressed genes (FDR < 0.05)  all of which were also differentially 

expressed in the limma-voom and/or DESeq2 analyses. This was fewer than both the DESeq2 

and limma-voom methods (1054 and 1260 respectively).  It is possible that the LMEM + LR 

method is more conservative than the other two methods explored. However, it has the 

added benefit of being easier to implement. It also enables multiple datasets to be combined, 

which cannot easily be done using the other two packages. This benefit was exploited in 

combining the ROSMAP data with data from the MSBB and MayoRNASeq cohorts to form a 
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single dataset (refered to as combined AMP-AD) to perform DGE analyses for the Braak, 

CERAD and case-control phenotypes.  

 

In the analysis of the combined AMP-AD data, the analysis initially focused on the Braak score 

phenotype. The following seven genes were in the list of top 10 differentially expressed genes 

at least twice across the three regression models: LPO, LINC01844, OCRL, ANKRD18DP, CBX5, 

NCDN, KCNK9. Two of these have been implicated in neurodegeneration before. Deletion of 

the LPO gene in model mice has been found to result in multisystem inflammation and 

degenerative changes in neuropathology. It has also been proposed to play a role in the 

pathogenesis of Parkinson’s disease (Fernández-Espejo et al. 2021; Yamakaze and Lu 2021). 

CBX5 has not been found previously to be implicated in AD. It has been found to be an 

upregulated gene in drug-naive patients with Parkinson’s disease in comparison to controls 

(Calligaris et al. 2015). CBX5 was found to also be upregulated in my Braak analysis (fold-

change=0.52 ; FDR p-value = 1.63 x 10-05).  

 

For the CERAD score phenotype, the following seven genes were in the list of top 10 

differentially expressed genes at least twice across the three regression models: DNAJC19, 

LPO, DRD1, GCSH, TIMM8B, FAM19A2, KCTD8. Some of these have been associated with 

neurodegeneration before. DNAJC19 is a gene which encodes for a protein with 

mitochondrial functions and mutations in which can result in dilated cardiomyopathy and 

ataxia (Zarouchlioti et al. 2018). This gene has been reported to be a differentially expressed 

gene in hippocampus RNA-seq data in AD cases and controls from The Banner Sun Health 

Research Insitute. (Dharshini et al. 2019). It is important to note that the controls used in this 

study potentially overlap with those included in the MayoRNASeq data as they were also 

sourced from the Banner Sun Health Research Institute (Allen et al. 2016). Additionally, 

variations in DRD1 have been previously associated with behaviour changes in AD. These 

include aggression and psychotic symptoms and poorer cognition (Holmes et al. 2001; Tsang 

et al. 2015).  
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For the case-control phenotype, the following seven genes were in the list of top 10 

differentially expressed genes: DNAJC19, LPO, DRD1, GCSH, TIMM8B, FAM19A2, KCTD8. All 

of which have featured in either the top 10 Braak or CERAD DGE list. 

 

PSMB9 was the only Kunkle prioritised GWAS gene to be at least nominally significant across 

all analyses of Braak, CERAD and case-control phenotypes. PSMB8 (chr6:32,840,717-

32,844,679) and PSMB9 (chr6:32,844,136-32,859,851) were both downregulated in AD cases 

in comparison to controls, at least with nominal significance across all regressions for PSMB9 

and CERAD regressions for PSMB8. The role these genes play in AD is unclear. PSMB9 and 

PSMB8 are subunits of the immunoproteasome. Under inflammatory conditions, PSMB9 and 

PSMB8 replace the constitutively expressed subunits PSMB5 and PSMB6. This leads to the 

creation of different peptides during inflammation (Kloetzel 2001; Kalaora et al. 2020). An 

association between over-expression of both PSMB8 and PSMB9 and improved survival and 

enhanced response to immune-checkpoint inhibitors such as anti-programmed cell death 

protein 1 (anti-PD1) in melanoma patients has been shown (Kalaora et al. 2020). Immune-

checkpoint inhibitors have been proposed as a potential therapy for AD (Schwartz et al. 2019). 

In mouse models, exposure to with anti-PD1 resulted in clearance of amyloid and tau 

pathology and improved cognition (Rosenzweig et al. 2019; Schwartz et al. 2019). However, 

these findings have failed to replicate (Lin et al. 2020).  

 

Six genes that were identified as prioritised genes in the Kunkle et al. GWAS were found to be 

differentially expressed after FDR correction in at least one of the phenotypes. These were 

AGFG2, CELF1, CLU, PSMB9, PSMC5, WDR18. CLU is considered to be the third most significant 

common variant implicated genetic risk factor for AD after APOE and BIN1 (Foster et al. 2019). 

However, when GWAS prioritised genes were tested as a gene-set, there was no evidence for 

this group of genes being enriched in any of the DGE analyses.  

 

There are a number of possible reasons as to why the GWAS prioritised genes were not 

enriched in the DGE analysis. GWAS identified common variants are significantly more likely 

to be eQTLs. Therefore gene expression has been suggested as a intermediary between DNA 
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variation and complex phenotypes  (Nicolae et al. 2010; Porcu et al. 2021). GWAS trait 

associated SNPs largely fall in the non-coding region. Connecting causal variants with their 

probable causal gene is not clear-cut. This analysis used GWAS prioritised genes, but it is not 

known if they are the true causal genes.  It could be that the prioritised genes are not the true 

causal genes and therefore not enriched in the DGE analysis. Conversely, it could be that the 

DGE analyses are identifying differentially expressed genes that are not a cause of disease but 

a result of disease so not reflected in the GWAS findings. Additionally the DGE analysis was 

performed in bulk brain cortex tissue, there may be more disease specific tissues that would 

identify genes associated with cause of disease better than result of disease. Another 

explanation could be that the identified genes possibly have another form of mechanistic 

involvement in AD if they are involved in the aetiology of disease.   

 

The next aim of this chapter was to perform GO enrichment analyses. Across all phenotypes 

and regression analyses GO terms such as SRP-dependent cotranslational protein targeting 

to membrane, the ribosome, the endoplasmic reticulum, viral transcription, and 

mitochondrial pathways were found to be enriched. These findings are consistent with 

previous reports. One study used downloaded microarray data from Gene Expression 

Omnibus (GEO) database. In this study the authors performed weighted gene co-expression 

network analysis to explore the relationship between gene sets (modules) associated with AD 

and MCI. They performed functional enrichment analysis on the AD and MCI modules and 

identified that AD module genes showed an enrichment of SRP-dependent cotranslational 

protein targeting to membrane, protein targeting to ER and and cytosolic ribosome (Tao et 

al. 2020).  

 

The analysis presented in this chapter has now also provided evidence for pathways that are 

also implicated in the Braak and CERAD phenotypes. There was some discrepancy between 

the CERAD phenotype and the Braak and case-control phenotypes in the up-regulated 

biological process GO pathways. The Braak and case-control phenotypes’ up-regulated 

pathways mainly referred to cell signalling whereas for CERAD  it was more related to synaptic 

processes and transcription. Molecular function and cellular component GO terms were 

consistent across all phenotypes. One would expect a consensus between the results from 
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the Braak and CERAD phenotypes given that these phenotypes are so closely correlated. 

Whether the discrepancy between Braak and CERAD is because different pathways play a role 

in how these different pathologies develops needs to be further explored.  

 

Finally GO terms from the DGE analysis were compared to the nine significant GO terms from 

the MAGMA pathway analysis on genetic data published in the largest case-control GWAS 

(Kunkle et al. 2019). No significant GO terms from the Kunkle et al. analysis overlapped with 

FDR significant (< 0.05) GO terms from the non-directional and down-regulated analyses using 

RNA-seq data. Two GO terms were FDR significant in both the Kunkle et al. GWAS analysis  

and the up-regulated analysis. These were: Tau Protein Binding (GO:0048156) and activation 

of immune response (GO:0002253). 

 

The work presented in this chapter has shown that LMEM + LR can be used as a method to 

not only combine datasets, but also integrate multiple brain areas to discover differentially 

expressed genes with a consensus to other tools. The DGE analysis has found genes that have 

been associated with AD before and implicated some new genes such as CBX5 

(chr12:54,230,942-54,280,133). The analysis suggests that GWAS prioritised genes as a group 

were not particularly differentially expressed in AD cases and controls. This suggests that they 

possibly have another form of mechanistic involvement in AD if they are involved in the 

aetiology of disease. Finally, pathway enrichment analysis has suggested differentially 

expressed genes play a role in cell death, cell signalling, neuronal and synaptic processes.   

 

Results from DGE analyses are often criticised for being vague and harbouring too many false 

positives (Li et al. 2022b). A limitation of the DGE approach is that it is not possible to tell 

which differentially expressed genes and associated pathways may be a cause of AD, may be 

a consequence of AD, or reflect uncontrolled confounders. The results of this analysis are 

tentative and firm conclusions cannot be drawn from them yet.  Nevertheless, the results in 

this analysis have plausible biological relevance, and supported by existing evidence and are 

thus encouraging. 
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AD is likely due to the outcome of perturbations of gene networks by the co-action of genetic 

and environmental risk factors. So, it is necessary to look beyond genotypes in isolation to 

understand these perturbations and mechanisms of disease. The next chapter aims to build 

on this work by integrating genetic and gene expression data in an eQTL analysis and will 

investigate the relationship between genotypes and differentially expressed genes. 
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Chapter 5 – Expression Quantitative Trait 
loci (eQTL) analysis of AMP-AD 
 

5.1 Introduction 

 

5.1.1 From GWAS to expression quantitative loci 

 

There are many factors that can contribute to gene expression variation. These include 

environmental exposures, genetics, technical artefacts, stochastic variation as well as sex and 

age differences (Leek and Storey 2007).  When considering lists of differentially expressed 

genes, it is not easy to disentangle which sources of variation may be contributing to gene 

expression changes. The heritable component of gene expression is considered by some to 

be a crucial bridge in the linking of genomic variation to disease biology (Albert et al. 2018).  

 

Many GWAS have identified SNPs that are associated with the AD phenotype. Translating 

these findings into understanding of the mechanisms behind how these variants contribute 

to disease risk has been difficult. GWAS identified SNPs are representatives for often a large 

number of SNPs in the region (tagging or index SNPs) and are not necessarily causal. Usually, 

the nearest gene to the index SNP is reported. It is possible that other SNPs (genes) in high LD 

with the array-identified SNPs are causal for the disease. Many risk-associated SNPs are 

located in non-coding regions and are likely to exert their biological function by modulating 

gene expression (Ni et al. 2020). Improved understanding of the relationship between non-

coding variation and clinical AD is vital to increase understanding of disease biology and 

identify potential therapeutic targets.  

 

One method to try and disentangle the genetic cause of gene expression and prioritise SNPs 

associated with disease is expression quantitative trait loci (eQTL) analysis. An eQTL analysis 

is a genetic/transcriptomic association approach for identifying genetic variants (such as 

SNPs) associated with the differential expression of a gene. EQTLs have frequently been used 
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to highlight candidate causal variants, genes, and provide a potential link between them and 

the biological processes they affect (Albert and Kruglyak 2015).  

 

Research in AD using eQTLs has suggested that altered gene expression plays a role in the 

aetiology of AD however most studies focus only on cis-eQTLs (Zou et al. 2010; Sieberts et al. 

2020; Patel et al. 2021). Cis-eQTLs (also known as local eQTLs) are those that are located near 

the gene-of-origin (gene which produces the transcript or protein) as opposed to trans-eQTLs 

which are distant from their gene-of-origin (Goswami and Sanan-Mishra 2022). There is no 

standard quantification of what is meant by local or distant. Researchers will normally specify 

these distances on the basis of the experiment being performed. The focus in AD research to 

date has mainly been on cis-eQTLs because detecting trans-eQTLs is more difficult.  Trans-

eQTLs tend to have weak effect sizes and therefore require larger sample sizes to detect than 

cis-eQTLs (GTEx-Consortium 2013; Clyde 2017; Võsa et al. 2021). Additionally trans-eQTL 

analyses involve a greater amount of tests of association between SNPs and genes than a cis-

eQTL analysis resulting in a greater computational burden. 

 

5.1.2 Aims 

 

The first aim of this chapter is to perform a cis-eQTL analysis using MatrixEQTL to find  

AD GWAS index SNPs that are associated with genes that are differentially expressed between 

cases and controls which were identified in chapter four. 

 

The second aim of this chapter is to perform a cis-eQTL analysis expanded to the 100kb region 

either side of significant eQTLs from aim one. This is to locate other potentially causal SNPs 

associated with differentially expressed genes. This 100kb region was selected as at least 80% 

of common variants identified in published GWAS that use imputed data were within 33.5 kb 

of causal variants, and over 90% within 100kb (Wu et al. 2017). 
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The final aim of this chapter is to then perform a trans-eQTL analysis using AD GWAS index 

SNPs to find associations with AD case-control differentially expressed genes.   

 

 
5.2 Methods 

 

5.2.1 An overview 

 
The overall strategy for analysis was to use 594 samples with genetic and gene expression 

information, and perform a cis- and trans- eQTL analysis to identify AD candidate genes. An 

overview of the methodology is given in Figure 5-1 and described in more detail in each of 

the following sections.  

 
 
Figure 5-1 – An overview of the methodology used for the eQTL analysis applied to AMP-AD data 

 

5.2.2. Gene expression data 

 

The RNA-seq data used in the eQTL analysis is the same normalised pre-processed data as in 

previous chapters. As some individuals from the MSBB cohort have multiple samples from 

Index SNPs from 5 
GWAS/GWAX

Expression data for differentially expressed genes in 
AD cases/controls (as identified in chapter 4)

eQTL analysis

Cis-eQTLs
< 1Mb distance

Trans-eQTLs
>  5Mb distance or 

separate chromosome

Select all SNPs within 
100kb of FDR significant eQTL

Cis-eQTL analysis

GeneMania STRING
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different tissues, only BM10 samples were included in this analysis. To maintain power in the 

analysis, BM10 was selected over BM22, BM36 and BM44 as this retained the largest number 

of samples. This resulted in a total of 594 samples from 594 distinct individuals in the analysis. 

In the previous chapter 1270 genes were identified as differentially expressed as they had an 

FDR corrected p-value of less than 0.05.  

 

5.2.3 Genotype QC, SNP selection and genotype 

 

The genetic data have been described in previous chapters. SNPs for this analysis were 

selected for inclusion if they had a MAF ≥ 0.01 and were identified as an index SNP in at least 

one of five GWAS and GWAS-by-proxy (GWAX) studies. The five studies included one GWAS 

from 2013, a GWAX from 2018, a GWAS and a GWAX from 2019 and a GWAX from 2021. A 

summary of these can be found in Table 5-1.  

 

It is important to note that the GWAS/GWAX studies mentioned in Table 5-1 are not 

independent from one another. Samples from Lambert et al. were included in the Kunkle et 

al., Jansen et al., and the Wightman et al. studies. Samples from Marioni et al, were included 

in the Jansen et al. and Wightman et al. studies. Samples from the Kunkle et al. study were 

also included in the Wightman et al. GWAX (Escott-Price and Hardy 2022). It is impossible to 

delineate the true sample overlap without the raw data and the fact that these studies are 

not independent is an important limitation. 
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Study type Author Year Sample 

number 

GWAS Lambert et al.  2013 74,046 

GWAX Marioni et al.  2018 388,324 

GWAX Jansen et al. 2019 534,403 

GWAS Kunkle et al. 2019 94,437 

GWAX Wightman et al. 2021 1,126,563 

Table 5-1 – The five genome-wide association studies (GWAS) and genome-wide association by proxy studies 
(GWAX) used to identify index SNPs for inclusion in this analysis. Sample number refers to total number of 
individuals included in the study. 

 

 

SNP genotypes were coded as the number of minor alleles (0, 1 or 2). Files were generated 

using the software PLINK, and 103 AD index SNPs were included in the cis-eQTL and trans-

eQTL analyses. A full list of the SNPs included in the analysis can be found in the appendix.  

 

After an initial cis-eQTL analysis, a second cis-eQTL analysis was performed. Significant eQTLs 

and all SNPs 100kb either side of it were included in the second cis-eQTL analysis after 

removing SNPs with a MAF < 0.05.   

 

5.2.4 Cis- and trans-eQTL generation using MatrixEQTL 

 

MatrixEQTL is an R package which is designed for fast analysis of large datasets with no loss 

of precision and is able to perform both cis- and trans-eQTL analysis (Shabalin 2012). The tool 

is widely used and the package is an official tool of the GTEx project (GTEx-Consortium 2013). 

MatrixEQTL works by performing a separate linear regression model for each gene-SNP pair 
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and reporting the test statistic, the effect size estimate and p-value. MatrixEQTL performs its 

analysis fast by avoiding unnecessary calculations and thus does not calculate residuals or the 

significance and effect sizes of any covariates (Shabalin 2012). As a result, the package was 

chosen to be used to generate the eQTLs presented in this chapter.  

 

For all cis-eQTL analyses, the cis-eQTL mapping window was defined as 1Mb upstream of the 

transcription start site to 1Mb downstream of the gene end. The trans-eQTL mapping window 

was defined to be either at least 5Mb if on the same chromosome or on separate 

chromosomes.  EQTLs that resided on the same chromosome but were less than 5Mb from 

their eGenes (the gene in the eQTL SNP-gene pair) were not included in this analysis to avoid 

confounding by long-range LD patterns.  

 

For the eQTL analysises, a linear regression model was chosen as is as follows: 

 

 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 + 𝐴𝑔𝑒	𝑎𝑡	𝑑𝑒𝑎𝑡ℎ + 𝑆𝑒𝑥 + 𝑃𝐶1
+⋯	+ 	𝑃𝐶10 

(1) 

 

where expression is the normalised expression level of the gene, genotype is in respect to the 

number of minor alleles. Diagnosis, age at death, sex, and the first 10 ancestry principal 

components were included as covariates.  

 

After the initial cis-eQTL results, three of the seven significant results were based on 

chromosome 19. As a result, the analysis was rerun to include APOE ε4 allele status (coded 

as 0, 1 or 2 indicating the number of ε4 alleles present) into the cis-eQTL model as follows:  

 

 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑖𝑠 + 𝐴𝑔𝑒	𝑎𝑡	𝑑𝑒𝑎𝑡ℎ + 𝑆𝑒𝑥 + 𝑃𝐶1 +
⋯	+ 	𝑃𝐶10 + 	APOE	E4	status  

(2) 
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5.2.5 Multiple hypothesis testing correction and comparison of results 

 

To correct for multiple hypothesis testing the Benjamini-Hochberg method was also used to 

calculate FDR corrected p-values (Benjamini and Hochberg 1995). This was performed by 

using the p.adjust function in R and using the ‘BH’ option. Only results meeting these 

thresholds were considered statistically significant. 

 

 

5.2.6 Analysis of trans-eQTL results 

 

 

Results from the trans-eQTL analysis were input into GeneMANIA (Warde-Farley et al. 2010).  

GeneMANIA aims to predict the function of a network of genes and gene-gene interactions.  

GeneMANIA was accessed through its web-based platform: https://genemania.org/ 

(Accessed 29/04/2022). 

 

STRING (version 11.5) was used to identify protein-protein interactions (Szklarczyk et al. 

2018).  The search performed was “multiple proteins”. This was accessed through its web 

platform: https://string-db.org/ (accessed 29/04/2022). 
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5.3 Results 

 

5.3.1 Sample demographics 

 

Some MSBB tissue samples were removed to reduce the need for LMEM in the eQTL analysis. 

The reduced sample demographics can be seen in Table 5-2. It led to a total of 594 samples 

being included in the eQTL analyses.  

 
 

MayoRNAseq ROSMAP MSBB 

(BM10 only) 

Total 

Sex F: 50 

M: 40 

F: 242 

M: 127 

F: 88 

M: 47 

F: 380 

M: 214 

Age at 
death 

(years) 

Mean: 82.7 

SD: 7.6 

Mean: 
86.4 

SD: 4.9 

Mean: 84.0 

SD: 7.16 

Mean: 84.8 

SD: 6.5 

Diagnosis AD: 42 

(61.9% F) 

Control: 35 

(68.6% F) 

AD: 204 

(69.1% F) 

Control: 
165 

(61.2 % F) 

AD: 104 

(67.3% F) 

Control: 31 

(58.1% F) 

AD: 350 

(67.7% F) 

Control: 244 

(58.6% F) 

Total 
samples: 

90 369 135 594 

Table 5-2 – The summary statistics for samples that were included in the cis- and trans- eQTL analysis 

 

5.3.2 Cis-eQTL analysis of index SNPs and differentially expressed genes from an AD case-
control study 

 

A total of 220 cis-eQTL-gene pair associations were found, with eight of them being FDR 

significant and 24 being nominally significant. The results for the FDR significant eQTLs can 

be seen in Table 5-3.   Three of the seven results (rs12151021 and rs2452170 - which was a 

significant eQTL twice for genes SEC1P and NTN5) were on chromosome 19, leading to 
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concerns that this might be due to linkage with APOE. The SNP rs12151021 had a D’ score of 

0.26 and 0.11 with rs249358 and rs7412 respectively (the two common SNPs of APOE).  The 

SNP rs2452170 had a D’ score of 0.06 and 0.02 with rs429358, and rs7412 respectively.  As 

there was some evidence for LD, the analysis was rerun with APOE ε4 allele added as a 

covariate. The addition of APOE ε4 as a covariate did not affect the existing results but did 

increase the significance of rs9381040. The results can be seen in Table 5-4.
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GWAS 
study SNP SNP 

chr:pos:allele Gene  Gene 
chr:pos:allele beta 

eQTL 

p-value 

eQTL FDR  

p-value 

Kunkle 

Z-score 

Kunkle 

p-value 

Wightman 

Z-score 

Wightman  

p-value 

W21 rs2452170 19:48710247:G SEC1P 
19:48638071-
48682245 -0.32 1.17x10-13 2.57x10-11 1.85 0.06 4.57 

 

1.72x10-08 

W21 rs2452170 19:48710247:G NTN5 
19:48661407-
48673081 -0.30 2.32x10-10 2.55x10-08 1.85 0.06 4.57 1.72x10-08 

W21 rs708382 17:44364976:C FAM171A2 
17:44353215-
44363853 -0.19 2.23x10-06 1.64x10-04 -2.07 0.04 4.93 1.98x10-09 

X19 rs113260531 17:5235685:A CHRNE 
17:4897771-
4934438 0.36 1.24x10-05 6.81x10-04 3.78 1.56x10-04 5.82 5.72x10-09 

X18 rs7225151 17:5233752:A CHRNE 
17:4897771-
4934438 0.35 2.18x10-05 9.58x10-04 3.82 1.31x10-04 5.78 7.29x10-09 

W21 rs12151021 19:1050875:A WDR18 
19:984332-
998438 -0.17 1.25x10-04 4.57x10-03 3.78 1.56x10-04 5.82 5.72x10-09 

W21 rs7209200 17:5066645:T CHRNE 
17:4897771-
4934438 0.18 1.40x10-03 4.39x10-02 1.33 0.18 5.54 3.11x10-08 

Table 5-3 - Significant Benjamini-Hochberg FDR corrected cis-eQTL results of GWAS index SNPs and AD case-control differentially expressed genes  

Genome-wide association study (GWAS): W21 = (Wightman et al. 2021); X19 = (Jansen et al. 2019); X18 =(Marioni et al. 2018) . Kunkle refers to Kunkle et al. GWAS (Kunkle 
et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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GWAS 
study SNP SNP 

chr:pos:allele Gene  Gene 
chr:pos:allele beta 

eQTL 

p-value 

FDR  

p-value 

Kunkle 

Z-score 

Kunkle 

p-value 

Wightman 

Z-score 

Wightman  

p-value 

W21 rs2452170 19:48710247:G SEC1P 
19:48638071-
48682245 -0.33 4.69x10-14 1.03x10-11 1.85 0.06 4.57 

 

1.72x10-08 

W21 rs2452170 19:48710247:G NTN5 
19:48661407-
48673081 -0.30 1.87x10-10 2.05x10-08 1.85 0.06 4.57 1.72x10-08 

W21 rs708382 17:44364976:C FAM171A2 
17:44353215-
44363853 -0.19 1.14x10-06 8.39x10-05 -2.07 0.04 4.93 1.98x10-09 

X19 rs113260531 17:5235685:A CHRNE 
17:4897771-
4934438 0.37 1.15x10-05 6.30x10-04 3.78 1.56x10-04 5.82 5.72x10-09 

X18 rs7225151 17:5233752:A CHRNE 
17:4897771-
4934438 0.35 2.00x10-05 8..80x10-04 3.82 1.31x10-04 5.78 7.29x10-09 

W21 rs12151021 19:1050875:A WDR18 
19:984332-
998438 -0.17 8.94x10-05 3.28x10-03 3.78 1.56x10-04 5.82 5.72x10-09 

W21 rs7209200 17:5066645:T CHRNE 
17:4897771-
4934438 0.18 1.37x10-03 0.042 1.33 0.18 5.54 3.11x10-08 

X18 rs3752231 19:1043639:T WDR18 
19:984332-
998438 -0.15 1.75x10-03 0.046 5.39 7.40x10-08 6.62 3.62x10-11 

X18 rs9381040 6:41186912:T TAF8 
6:42050513-
42087461 0.13 1.90x10-03 0.046 -3.73 1.87x10-04 -5.85 5.05x10-09 

Table 5-4 Significant Benjamini-Hochberg FDR corrected cis-eQTL results of GWAS index SNPs and AD case-control differentially expressed genes with APOE E4 allele status 
added to the MatrixEQTL model. Genome-wide association study (GWAS): W21 = (Wightman et al. 2021); X19 = (Jansen et al. 2019); X18 =(Marioni et al. 2018) . Kunkle 
refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021)
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The next step in the analysis was to search the 100kb around each of the index SNPs identified 

in Table 5-4. None of the index SNPs were the top eQTL in the 100kb surrounding region. 

Results for each of the SNPs are summarised below: 

 

100kb around rs2452170 

 

A cis-eQTL analysis was re-run including SNPs in the 100kb region either side of rs2452170, to 

determine associations of these SNPs with SEC1P and NTN5. 274 SNP-gene pairs were found 

for SNPs associated with SEC1P with 163 being FDR (<0.05) significant.  

274 SNP-gene pairs were found for SNPs associated with NTN5 with 135 being FDR (<0.05) 

significant. The top eQTLs for SEC1P and NTN5 were jointly rs601338 and rs516246 (Table 

5-5) and differed from the previously identified index SNP rs2452170. Both rs601338 and 

rs516246 were in high LD with the index SNP rs2452170 with an r2 of 0.85 and 0.84 

respectively.    
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SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 

Wightman  

Z-score 

Wightman  

p-value 

rs601338 19:48703417:A SEC1P 
19:48638071-
48682245 0.33 2.34x10-14 2.11x10-12 0.85 1.40 0.16 3.24 0.62 

rs516246 19:48702915:T SEC1P 
19:48638071-
48682245 0.33 2.34x10-14 2.11x10-12 0.84 1.44 0.15 3.23 1.21x10-03 

rs601338 19:48703417:A NTN5 
19:48661407-
48673081 0.32 1.15x10-11 1.06x10-09 0.85 1.40 0.16 3.24 0.62 

rs516246 19:48702915:T NTN5 
19:48661407-
48673081 0.32 1.15x10-11 1.06x10-09 0.84 1.44 0.15 3.23 1.21x10-03 

Table 5-5 – Top eQTLs for SNPs in the 100kb region either side of rs2452170 associated with SEC1P and NTN5 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs708382 

 

130 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb either side of rs708382 that were associated with FAM171A2. 

19 of them were FDR (<0.05) significant. The most significant eQTLs for association with FAM171A2 can be found in Table 5-6. The top eQTL for 

FAM171A2 was rs850732 which had an r2 of 0.92 with rs708382.  

 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs850732 17:44376875:T FAM171A2 
17:44353215-
44363853 -0.20 1.03x10-06 1.81x10-05 0.92 2.50 0.01 4.46 5.07x10-06 

rs5910 17:44372421:A FAM171A2 
17:44353215-
44363853 -0.20 1.03x10-06 1.81x10-05 0.93 2.48 0.01 4.57 4.90x10-06 

rs850733 17:44373937 FAM171A2 
17:44353215-
44363853 -0.20 1.03x10-06 1.81x10-05 0.93 2.49 0.01 4.58 4.73x10-06 

rs5911 17:44375697 FAM171A2 
17:44353215-
44363853 -0.20 1.03x10-06 1.81x10-05 0.92 -2.50 0.01 4.20 2.611x10-05 

Table 5-6 - Top eQTLs for SNPs in the 100kb region either side of rs708382 associated with FAM171A2 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs113260531 

 
247 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb either side of rs113260531 that were associated with CHRNE. 

81 of them were FDR (<0.05) significant. The top eQTL for association with CHRNE can be found in Table 5-7. The top eQTL for CHRNE was 

rs113260531 which had an r2 of 0.63 with rs113260531. 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs2289101 17:5138409:G CHRNE 17:4897771-4934438 0.42 7.84x10-07 2.34x10-05 0.63 -2.86 4.28x10-03 3.01 2.64x10-03 

Table 5-7 - Top eQTL for SNPs in the 100kb region either side of rs113260531 associated with CHRNE 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs7225151 

 
The results for rs7225151 were similar to those for rs113260531. 244 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb 

either side of rs7225151 that were associated with CHRNE. 81 of them were FDR (<0.05) significant. The top eQTL for association with CHRNE can 

be found in Table 5-8. The top eQTL for CHRNE was rs2289101 which had an r2 of 0.61 with rs7225151. 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs2289101 17:5138409:G CHRNE 17:4897771-4934438 0.42 7.84x10-07 2.34x10-05 0.61 -2.86 4.28x10-03 3.01 2.64x10-03 

Table 5-8 - Top eQTL for SNPs in the 100kb region either side of rs7225151 associated with CHRNE 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs12151021 

 
418 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb either side of rs113260531 that were associated with WDR18. 

184 of them were FDR (<0.05) significant. The top eQTL for association with WDR18 can be found in Table 5-9. The top eQTL for WDR18 was 

rs11667292 which had an r2 of 0.04 with rs12151021. 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs11667292 19:998687:T WDR18 19:984332-998438 -0.35 1.27x10-21 5.31x10-19 0.04 1.48 0.14 3.84 1.24x10-04 

Table 5-9 - Top eQTL for SNPs in the 100kb region either side of rs12151021 associated with WDR18 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs7209200 

 

236 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb either side of rs7209200 that were associated with CHRNE. 102 

of them were FDR (<0.05) significant. The top eQTL for association with CHRNE can be found in Table 5-10. The top eQTL for CHRNE was 

rs7222708 which had an r2 of 0.14 with rs7209200. 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs7222708 17:4984816:T CHRNE 17:4897771-4934438 0.79 2.20x10-17 5.19x10-15 0.14 2.94 3.26x10-03 3.72 1.98x10-04 

Table 5-10 - Top eQTL for SNPs in the 100kb region either side of rs7209200 associated with CHRNE 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs3752231 

423 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb either side of rs3752231 that were associated with WDR18. 

184 of them were FDR (<0.05) significant. The top eQTL for association with WDR18 can be found in Table 5-11. The top eQTL for WDR18 was 

rs11667292 which had an r2 of 0.006 with rs3752231. 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs11667292 19:998687:T WDR18 19:984332-998438 -0.35 1.27x10-21 5.31x10-19 0.006 1.48 0.14 3.84 1.24x10-04 

Table 5-11 - Top eQTL for SNPs in the 100kb region either side of rs7209200 associated with WDR18 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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100kb around rs9381040 

 

252 SNP-gene pairs were identified in the cis-eQTL analysis including SNPs 100kb either side of rs9381040 that were associated with TAF8. 144 

of them were FDR (<0.05) significant. The top eQTL for association with TAF8 can be found in Table 5-12. The top eQTL for TAF8 was rs35047410 

which had an r2 of 0.13 with rs9381040. 

 

SNP chr:pos:allele Gene  

Gene  

chr:pos:allele 

eQTL 

beta 

eQTL 

p-value 

eQTL 

FDR  

p-value 

LD r2 

with 
index 
SNP 

Kunkle  

Z-score 

Kunkle  

p-value 
Wightman 
Z-score 

Wightman  

p-value 

rs35047410 6:41203216:A TAF8 6:42050512-42087461 -0.16 3.00x10-05 1.71x10-03 0.13 1.86 0.06 3.37 7.55x10-04 

Table 5-12 - Top eQTL for SNPs in the 100kb region either side of rs7209200 associated with WDR18 

Kunkle refers to Kunkle et al. GWAS (Kunkle et al. 2019), Wightman refers to Wightman et al Genome-wide association study by proxy (Wightman et al. 2021) 
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In summary, in an analysis of AD GWAS index SNPs and AD differentially expressed genes, 

seven cis-eQTLs were identified. When adjusting for APOE ε4 carrier status, all seven 

remained statistically significant and an additional eighth became statistically significant. For 

all eight eQTLs, when refining the signal within a 100kb region, none of the GWAS index SNPs 

remained the strongest signal. For example, eQTL rs2452170 two stronger signals were found 

which were rs601338 with an r2 of 0.85 and rss16246 with an r2 of 0.84.  For other eQTLs, 

pseudo independent SNPs were found such as for rs3752231 a stronger signal was found at 

rs11667292 (r2 = 0.006) and rs9381040 a stronger signal was found at rs35047410 (r2 = 0.13).
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5.3.3 Trans-eQTL analysis of GWAS/GWAX index SNPs and previously identified differentially 
expressed genes between AD cases and controls 

 

For this analysis, trans-eQTLs were defined to be a GWAS index SNP associated with a 

differentially expressed gene (as identified in chapter 4) located at least 5Mb apart or on 

separate chromosomes.  Using MatrixEQTL, 102,150 SNP-gene pair associations were found. 

After FDR correction, four SNP-gene associations remained significant. These all include the 

eQTL rs5011436 being associated with the eGenes SST, TAC1, MAF1 and SCGN. The SNP 

rs5011436 is an intron variant in TMEM106B which has been previously identified as a key 

ageing human brain transcriptome regulator (Yang et al. 2020).  

 

SNP 
SNP 
chr:pos:allele Gene Gene pos 

eQTL 
beta 

eQTL  

p-value 

eQTL FDR 

p-value 

rs5011436 7:12229132:C SST 
3:187668912-
187670394 -0.24 6.63x10-10 6.77x10-05 

rs5011436 7:12229132:C TAC1 
7:97732084-
97740472 -0.27 2.03x10-09 1.04x10-04 

rs5011436 7:12229132:C MAF1 
8:144104461-
144107611 0.19 8.37x10-08 2.85x10-03 

rs5011436 7:12229132:C SCGN 
6:25652201-
25701783 0.22 1.21x10-06 0.03 

Table 5-13 FDR significant trans-eQTL results for GWAS index SNPs and differentially expressed genes 

Chr = Chromosome; pos = position 

 

 

Inputting SST, TAC1, MAF1 and SCGN into GeneMania using default settings (Warde-Farley et 

al. 2010) gave a predicted gene-gene interaction network of 24 genes which can be seen in 

Figure 5-3. As only four genes were input into GeneMania, the predicted network of  genes 

was based on GO annotation patterns.   This included terms such as neuropeptide receptor 

activity and positive regulation of cilium movement and the results are summarised in Table 

5-14.   
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Red circles indicate input genes from the trans-eQTL analysis. Colour of lines: red = physical interaction; purple = 
co-expression; orange= predicted; dark blue = co-localization; green = genetic interactions; light blue = pathway; 
yellow = shared protein domain. Colours are produced by software. 

 

 

 

 

 

 

 

 

Figure 5-3 Results of GeneMania predicted gene-gene interactions using significant genes from trans-eQTL analysis of 
GWAS index SNPs and AD case-control differentially expressed genes. 
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GO term enriched in genes in GeneMANIA 
network  

FDR p-value Coverage 

neuropeptide receptor activity 1.75x10-09 6/21 

G protein-coupled peptide receptor activity 2.56x10-07 7/102 

peptide receptor activity 1.06x10-06 7/132 

positive regulation of cilium movement 1.39x10-06 4/10 

positive regulation of cilium-dependent cell 
motility 1.39x10-06 

4/10 

transcription by RNA polymerase III 2.36x10-06 5/38 

regulation of flagellated sperm motility 2.36x10-06 4/12 

regulation of cilium movement involved in cell 
motility 2.67x10-05 

4/22 

regulation of cilium-dependent cell motility 2.67x10-05 4/22 

G protein-coupled receptor activity 2.92x10-05 7/252 

flagellated sperm motility 5.22x10-05 4/27 

regulation of cilium movement 5.58x10-05 4/28 

regulation of microtubule-based movement 2.28x10-04 4/40 

positive regulation of reproductive process 7.23x10-04 4/54 

sperm motility 1.72x10-03 4/68 

cilium movement involved in cell motility 2.15x10-03 4/73 

cilium-dependent cell motility 2.92x10-03 4/80 

cilium or flagellum-dependent cell motility 4.61x10-03 4/91 

cilium movement 6.17x10-03 4/99 

regulation of reproductive process 6.29x10-03 4/101 

peptide binding 9.76x10-03 5/247 

sperm flagellum 0.02 3/47 

Table 5-14 Results of the predicted functional enrichment provided by GeneMANIA of the genes as per figure 
5-3  
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Changing the settings of GeneMANIA to understand the interactions of only the four genes 

and not the predicted genes shows that SST is co-expressed with SCGN and TAC1. No GO 

terms were enriched for these four genes alone (Figure 5-4).  

 

 

Figure 5-4 – Restricting GeneMANIA analysis to only the four significant eGenes: MAF1, TAC1, SCGN and SST. 
The light purple lines indicate correlated expression patterns (co-expression) between genes SST and SCGN 
and SST and TAC1.   

 

Inputting the four proteins into STRING under default options, the protein-protein interaction 

(PPI) network identified that the proteins SCGN, SST and TAC1 were at least partially 

connected as a group (p-value = 1.25x10-04) with an average local clustering coefficient of 0.75 

(Figure 5-5).  

 

 
Figure 5-5 – Protein-protein interaction network of four genes from trans-eQTL analysis under default 
settings. 
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Adjusting the settings of STRING to remove “textmining” as a source of evidence for 

interaction resulted in TAC1, SCGN and SST no longer forming a connected network as shown 

in Figure 5-6.  

 
Figure 5-6 - Protein-protein interaction network of four genes from trans-eQTL analysis with “textmining” as 
a source of evidence for interaction removed. 

 

The paper that indicated an association between SCGN, TAC1 and SST through text-mining 

included a review article that briefly described work that found that secretagogin+ neurons in 

mice were found to express mRNA transcripts for somatostatin and Tac1 (Maj et al. 2019).  
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5.4 Discussion 

 
The overall aim of this work was to investigate index SNPs as identified from five AD 

GWAS/GWAX studies and their relationship with genes that had previously been shown to be 

differentially expressed in AD cases and controls (in chapter 4) using eQTL analysis.  

 

The first aim was to identify which index SNPs were cis-eQTLs for AD differentially expressed 

genes.  This identified eight SNP-gene pair associations. None of the eight SNPs (comprising 

the SNP-gene pairs), were identified as index SNPs through GWAS, only GWAX (Table 5-3). Six 

of these eight SNPs were at least nominally associated to AD in the GWAS. This could be due 

to the GWAX having larger sample numbers and therefore increased power in comparison to 

the GWAS, due to the inclusion of proxy cases (GWAX included 1,125,563 individuals whereas 

the GWAS included 94,437 individuals).  

 

In the cis-eQTL analysis searching the 100kb region either side of the index SNP none of the 

top eQTLs were GWAS/GWAX index SNPs. Each of the eQTL SNPs were checked for their 

association with AD in both the Kunkle et al. GWAS and Wightman et al. GWAX summary 

statistics. Each are the largest of their respective study types at the time of study. Across the 

board, the Kunkle et al. GWAS p-values were less significant in comparison to the Wightman 

et al. GWAX p-values. Like the previous paragraph, this could be due to GWAX having larger 

sample numbers in comparison to the GWAS and therefore increased power. 

 

Overall, few cis-eQTLs for differentially expressed genes were found through this analysis. 

The search for eQTLs was expanded to the 100kb region either side of the index SNP, as it is 

hypothesised that it is likely that the true causal variant is within this distance (Wu et al. 2017). 

This lack of identified cis-eQTLs could be either because the eQTL analysis was underpowered 

or that AD index SNPs (or their tagged SNPs) are not associated with the genes identified as 

differentially expressed (through mRNA profiling).  
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For the cis-eQTL analysis for both index SNPs and the expanded 100kb region either side of 

the index SNPs, Z-scores and p-values from the Kunkle et al. GWAS and Wightman et al. GWAX 

were included in the results tables. The association of eQTLs to AD was generally inconsistent 

between the two studies. As previously described, the GWAX is by far the larger of the two 

studies, but it is not yet clear if the differences are due to an increase in statistical power or 

if adding the proxies is increasing the heterogeneity of the samples and leading to the 

differences.  

 

GWAS in AD have been criticised for being too heterogenous. In GWAS, the AD clinical 

phenotype is used and often lacks inclusion of specific biomarkers or neuropathologically 

defined phenotypes based on neurofibrillary tangles or amyloid plaques.  Therefore, 

individuals which appear to have clinical AD may be included when they have non-AD related 

neuropathologies such as vascular disease pathology or Lewy body pathology (Andrews et al. 

2020). It is impossible to discern whether the AD cases included in the analysis are true AD 

cases as relatively few have been confirmed pathologically. Additionally, it is impossible to 

know if the controls are true controls. As AD occurs mainly in later life, it could be that controls 

later go on to develop disease. Including proxy cases in GWAX could be adding to the 

heterogeneity of samples included.   

 

A natural extension of the cis-eQTL work presented in this chapter would have been a 

summary-mendelian randomization (SMR) analysis. Briefly, an SMR tests if the effect size of 

a SNP on the phenotype is mediated by gene expression using summary statistics from GWAS 

and independent eQTL study data (Zhu et al. 2016).  A transcriptome-wide SMR analysis has 

previously been performed which uses brain cortex eQTL data from the ROSMAP cohort 

meta-analysed with eQTL data from GTEx and the CommonMind Consortium (CMC) for a 

sample size of 1194, which is approximately double that available in the analysis for this 

thesis. Using those data, SMR analysis identified 12 genes with a significant association with 

AD. Four of these genes passed the heterogeneity in dependent instruments (HEIDI) test 

(NDUFS2, RP11-385F7.1, PRSS36 and AC012146.7) (Lee et al. 2022).  NDUFS2, PRSS36 and 

AC012146.7 were not differentially expressed between AD cases and controls in the analysis 

in chapter four (RP11-385F7.1 was not included in the analysis).  
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Another SMR was reported using the same AMP-AD cohorts as the work in this thesis 

(ROSMAP, MayoRNAseq, and MSBB) so would have had a large sample overlap with the 

samples included in this chapter. They found eight AD candidate risk genes APOC, EED, 

CD2AP, CEACAM19, CLPTM1, MTCH2, TREM2, and KNOP1 when using Kunkle et al. summary 

statistics. They also performed a replication using Jansen et al. summary statistics,  and only 

two of these eight genes did not replicate (MTCH2 and KNOP1)  (Gockley et al. 2021). None 

of these were differentially expressed so these genes were not included in the cis-eQTL 

analysis in this chapter.  

 

The final aim was to perform a trans-eQTL analysis to investigate the relationship between 

GWAS index SNPs and AD differentially expressed genes. Four SNP-gene pairs remained 

significant after FDR correction. All four genes (SST, TAC1, MAF1 and SCGN) were associated 

with the C allele of SNP rs5011436, which is an intron variant in TMEM106B.  The SNP  

rs5011436 was identified as an AD index SNP in the Wightman et al. GWAX (Wightman et al. 

2021). The C allele of rs5011436 has previously been shown to be associated with AD and 

changes in brain morphology in another study (Monereo-Sánchez et al. 2021).  

 

The TMEM106B locus had already been identified as a risk factor for frontotemporal 

degeneration with TDP-43 inclusions (Van Deerlin et al. 2010).  It has also previously been 

identified as a key ageing human brain transcriptome regulator (Yang et al. 2020). Some have 

considered the role of the TMEM106B locus and protein in neurodegeneration to be 

controversial (Fan et al. 2022). Amyloid filaments of TMEM106B have been found in human 

brains, but distinct TMEM106B folds do not characterise different diseases. TMEM106B 

filaments have also been found in individuals without a neurodegenerative disease. 

Additionally it has been shown that number of TMEM106B filaments increase with age so it 

has been suggested that TMEM106B filaments form in an age-dependent manner with no 

clear mechanism to disease (Fan et al. 2022; Schweighauser et al. 2022).  Although the loci 

have previously been associated with neurodegeneration, more work is needed to 

understand this relationship fully. 
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The variant in the TMEM106B locus was found to be associated with four genes: MAF1, TAC1, 

SCGN and SST. MAF1 is a protein coding gene, and little is known of its potential role in AD. 

TAC1 is a protein coding gene that encodes four products of the tachykinin peptide hormone 

family. TAC1 has previously been found to be differentially expressed between AD patients 

and controls in an experiment using microarray data from the Gene Expression Omnibus 

database. The authors of this study identified TAC1 as a hub gene associated with cognitive 

decline using tools including GO and KEGG enrichment analysis and PPI network analysis.  

They validated this finding using RT-qPCR and found that downregulation of Tac1 was 

associated with cognition in the hippocampus of APP/PS1 mice leading the authors to 

conclude that downregulation of TAC1 is associated with cognition in the hippocampus of AD 

patients  (Liu et al. 2021). SCGN is a protein coding gene that encodes for secretagogin, a 

secreted calcium sensor. A significantly reduced level of SCGN has been reported in the 

hippocampus of a mouse model of AD and in Parkinson’s patients and is predicted to lead to 

an accumulation of toxic fibrils (Chidananda et al. 2019). SST encodes the neuropeptide 

hormone somatostatin (SST) which is expressed throughout the brain. Key functions of SST 

include modulating cortical circuits, and cognitive function.  It has been repeatedly reported 

that SST expression is reduced in AD patients and mouse models both in the brain and 

cerebrospinal fluid (Song et al. 2021). Additionally, two independent GWAS in Finnish and 

Chinese cohorts identified the SST gene as a genomic region associated with AD risk 

(Vepsäläinen et al. 2007; Xue et al. 2009). 

 

The findings from this trans-eQTL analysis could indicate a potential mechanism for the 

involvement of these four genes in AD. The evidence for SST, TAC1, MAF1 and SCGN being 

candidate genes are that they are trans-regulated by an AD locus, and they are differentially 

expressed in AD cases and controls. In addition, the PPI network using STRING identified that 

that  SST, SCGN and TAC1 were related through text-mining scientific literature.  Previous 

genetic work has also implicated the SST locus in AD risk before (Vepsäläinen et al. 2007; Xue 

et al. 2009). Functional follow-up work would be required to confirm these findings. 

 

One limitation of the approach taken in this analysis is that only differentially expressed 

genes, identified by this study, were investigated. This means that many other potential genes 
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of interest would have been excluded from this analysis. The eQTL data set available for use 

in this analysis is relatively small (n=594). Therefore, focusing on the differentially expressed 

genes helps reduce the multiple hypothesis testing burden, especially for the trans-eQTL 

analysis.  

 

A second limitation is that the gene expression data are sourced from brain cortex. Although 

the brain is relevant to AD it could be that it is too broad a region, and eQTLs from other more 

as specific brain regions, or specific cellular populations such as microglia or monocytes, may 

be more informative.  

 

A limitation of the trans-eQTL analysis is that a window between SNP and gene of at least 

5Mb was used to define a trans-eQTL. This is a common definition used in trans-eQTL studies. 

It does mean information about eQTLs in the space between 1 to 5 Mb and their associations 

are not captured. A final limitation is that the eQTLs were generated from a relatively small 

dataset, especially for the trans-eQTL analysis. It is highly likely that the trans-eQTL analysis 

was underpowered.  

 

In conclusion, very few cis-eQTLs for AD case-control differentially expressed genes were 

identified. This could be due to the study being underpowered or that AD index SNPs (or their 

tagged SNPs) are not associated with the genes identified as differentially expressed through 

mRNA profiling. Findings also provide evidence that the association of the intron variant 

rs5011436 in TMEM106B to AD may be mediated through SST, TAC1, and MAF1. As 

TMEM106B itself was unchanged, the mechanism by which trans-effects may be acting is 

unclear. The TMEM106B variant rs5011436 is an intronic variant and is in high LD (r2 > 0.8) 

with many other intronic variants. It could be that one of these variants is impacting on 

splicing by interfering with splice site recognition. Alternatively, the variant rs5011436 is also 

in high LD with rs3173615 which is a missense variant so may also be a clue to a potential 

mediating mechanism.  Firm conclusions cannot be drawn at present and functional follow-

up studies are needed to confirm findings.



 201 

Chapter 6 – A comparison of 
transcriptome-wide association studies and 
differential gene expression analysis in 
Alzheimer’s disease. 
 

6.1 Introduction  

 

6.1.1 An overview of transcriptome-wide association studies 

 

One family of methods that aims to prioritise causal genes at GWAS loci are transcriptome-

wide association studies (TWAS). TWAS can utilise either individual-level GWAS data through 

methods such as PrediXcan (Gamazon et al. 2015) or with GWAS summary statistics using 

methods such as Fusion (Gusev et al. 2016) and S-PrediXcan (Barbeira et al. 2018). In essence, 

TWAS works by using eQTL reference panels to train a predictive model of gene expression 

from genotype. This model is then used to predict expression for individuals in the GWAS. A 

TWAS using individual-level data will predict expression directly into genotyped samples using 

effect sizes from the eQTL reference panel and measure the association between predicted 

expression and trait. In contrast, a TWAS using GWAS summary statistics will indirectly 

estimate the association between predicted expression and trait as a weighted linear 

combination of SNP-trait standardised effect sizes while accounting for LD among SNPs 

(Gusev et al. 2016). Both approaches are summarised in Figure 6-1. 
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Figure 6-1 – An overview of the individual and summary-based TWAS approaches. Reproduced from: (Gusev 
et al. 2016) 

 
TWAS have become a popular tool for prioritising candidate causal genes  (genes mediating 

the phenotypic effects of causal genetic variants) and exploring gene expression with a 

genetic basis (Wainberg et al. 2019). One benefit of TWAS is that the multiple hypothesis 

testing burden is smaller in comparison to other variant based approaches. This is because 

TWAS aggregates the effects of multiple eQTLs and directly tests associations between genes 

and diseases. Therefore in a TWAS, only the number of genes needs to be accounted for, 

which is orders of magnitude lower than variant-based tests (Li and Ritchie 2021).   

 

Summary-level TWAS are more commonly used than individual-level TWAS. Individual-level 

TWAS provide more accurate estimates of gene-trait associations but have a higher 

computational burden in comparison to summary-level TWAS. Individual-level GWAS data are 

not as easily accessible to the research community in comparison to GWAS summary 

statistics. Due to these two factors, summary-level TWAS are the more common type of TWAS 

in the literature (Li and Ritchie 2021). One disadvantage to summary-level TWAS is that extra 

noise can be introduced due to mismatch between the reference LD panel and the LD 
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structure of the GWAS cohort (Wainberg et al. 2019).   Therefore, the GWAS needs to have a 

large enough sample size to achieve enough statistical power to overcome this additional 

noise (Li and Ritchie 2021). Due to these limitations, it is important that TWAS are interpreted 

with care and supported with additional validation (Wainberg et al. 2019; Li and Ritchie 2021).  

 

6.1.2 TWAS in Alzheimer’s disease 

 
Several TWAS have been performed to identify candidate genes for AD risk. Raj et al. used 

the (Lambert et al. 2013) IGAP GWAS summary statistics, dorsolateral prefrontal cortex 

(DLPFC) samples from the ROSMAP study for the gene expression data, and FUSION to 

perform their TWAS. They identified 21 genes associated with AD (Raj et al. 2018).  

 

Hao et al. also performed a TWAS using the same 2013 Lambert et al. IGAP summary statistics 

but used gene expression data from whole blood, adipose and brain tissues from GTEx. They 

identified 15 AD risk associated genes after Bonferroni correction including 11 known AD risk 

genes such as BIN1, TOMM40, PICALM, CR1 and CLU  (Lambert et al. 2013; Hao et al. 2019).  

 

A study by Hu et al. used their software UTMOST to perform a TWAS using (Lambert et al. 

2013) IGAP summary statistics and used gene expression data from 44 tissues available in 

GTEx version 6 (Hu et al. 2019). This was in addition to liver gene expression data from 

STARNET and eQTL data from three immune cell types (CD14+ monocytes, CD16+ neutrophils 

and naïve CD4+ T cells) from the BLUEPRINT consortium. They performed single-tissue 

association tests and then a cross-tissue analysis, where they identified 68 putative AD risk 

associated genes. They performed two replications using Alzheimer’s Disease Genetics 

Consortium (ADGC) summary statistics that were not included in the IGAP analysis and a 

GWAS-by-proxy (GWAX) (Liu et al. 2017). 17 and 15 genes of the identified 68 replicated in 

the ADGC and GWAX respectively (Hu et al. 2019).  
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Gerring et al. used S-PrediXcan to analyse (Lambert et al. 2013) IGAP summary statistics but 

with eQTL data from 48 tissues using GTEx version 7 (Gerring et al. 2020). They identified 50 

tissue-specific AD risk associated genes and a meta-analysis of the tissue-specific associations 

identified 73 genes associated with AD (Gerring et al. 2020).  

 

Sun et al. also used an UTMOST framework with S-PrediXcan approach to perform their 

TWAS. They used 10 different brain tissues and spleen from GTEx version 8 to build their gene 

expression genetic prediction models. They used the larger Jansen et al. GWAX in their 

analysis (Jansen et al. 2019) and they found 53 genes associated with AD risk (Sun et al. 2021).  

 

The AMP-AD consortia used a FUSION pipeline to perform their TWAS. They utilised eQTLs 

from the ROSMAP, MayoRNAseq and MSBB cohorts to produce trained expression weights. 

These weights were then used in their TWAS with the Kunkle et al. AD GWAS summary 

statistics (Kunkle et al. 2019). They found eight genes associated with AD (APOC1, EED, 

CD2AP, CEACAM19, CLPTM1, MTCH2, TREM2 and KNOP1) which were also supported by SMR 

evidence (Gockley et al. 2021).  

 

Harwood et al. used FUSION for their TWAS analysis. They utilised monocyte data and 

summary statistics from the Kunkle et al. GWAS, with a replication using Marioni et al. GWAX 

summary statistics (Marioni et al. 2018; Kunkle et al. 2019; Harwood et al. 2021). They also 

compared whether AD-associated changes in gene expression were specific to monocytes or 

across tissues. The authors did this by performing TWAS analyses on the Kunkle et al. GWAS 

summary statistics using expression weights from the GTEx (version 7) consortium,  the young 

Finns study (YFS) whole blood, the Netherlands twin register peripheral blood, and the 

Common Mind Consortium. They found an association between changes in gene expression 

in both naïve and induced CD14+ monocytes and AD for nine genes. Three of these genes 

replicated (PVR, PTK2B and MS4A6E) when using the independent Marioni et al. GWAX 

summary statistics (Marioni et al. 2018; Harwood et al. 2021). The authors also found that 

the PTK2B signal was specific to blood, and the MS4A6E signal was specific to monocytes 

(Harwood et al. 2021).  
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TWAS studies in both AD and other disorders can only utilise cis-eQTLs at present. This is 

partly due to a lack of trans-eQTL resources in disease-relevant tissue. This is because a 

resource of this type would require very large sample sizes to have enough statistical power 

to detect trans-eQTLs. If such a resource were available, it is not clear how well TWAS would 

perform using trans-eQTLs. This is due to cis- and trans-eQTLs potentially having overlapping 

effects such as a cis-eQTL affecting the expression of a nearby gene that is a transcription 

factor, which then regulates the transcription of a distant gene  (Yang et al. 2017; Võsa et al. 

2018)(Li and Ritchie 2021).  

 

This long list of TWAS shows that many studies have been performed in AD, with many 

suggested candidate causal genes. Differentially expressed genes identified through TWAS 

only use common cis-eQTLs to inform differential expression. It has been estimated that 

common cis-eQTLs explain only around 10% of genetic variance in expression (Grundberg et 

al. 2012). In contrast, differentially expressed genes from mRNA profiling will be influenced 

by environment, genetics, stochastic factors and technical artefacts. DGE results are often 

criticised for being a result of disease rather than a cause of disease (Porcu et al. 2021). At 

present, it is not clear how the two methods of TWAS and DGE analysis compare in AD.  

 

Studies in other diseases have compared their significant TWAS results with the results from 

mRNA expression profiling to check for any DGE overlap. This is often performed to provide 

additional evidence for the involvement of TWAS-identified genes in disease risk. This has 

been performed in osteomyelitis (Zhang et al. 2020a), attention deficit hyperactivity disorder 

(ADHD) (Qi et al. 2019), and sporadic amyotrophic lateral sclerosis (ALS) (Li et al. 2022a).  The 

study on osteomyelitis identified 86 candidate genes through TWAS, eight of which that were 

also differentially expressed between cases and controls (Zhang et al. 2020a). The ADHD 

TWAS identified 148 candidate genes and eleven of which were also differentially expressed 

between cases and controls  (Qi et al. 2019). The ALS TWAS identified  761 candidate genes, 

107 of which were also differentially expressed in their mRNA expression profiling study (Li et 

al. 2022a). However none of these studies performed any statistical analysis to identify if 

these overlaps were more than would be expected through chance alone. This comparative 

approach has not been done in AD and it is not yet clear how the genes suggested from TWAS, 
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which identifies the cis- component of gene expression compares to those genes suggested 

from a DGE analysis using mRNA data.  

 
6.1.3 Aims 

 

The overall aim of this chapter is to compare differentially expressed genes through the AD 

case-control mRNA profiling study performed in chapter four to the statistically significant 

genes from three AD TWAS.  

 

The first aim is to compare which genes were significant across all four resulting datasets, to 

see if any genes replicated across methods.  

 

The second aim was to look at the correlation of Z-scores of genes from the four studies to 

compare the similarity of results. Initially Z-scores from the different TWAS were compared 

to identify which TWAS were the most similar. Then the Z-scores from the DGE analysis were 

compared to TWAS.  

 

The final aim was to perform statistical tests (hypergeometric tests and Spearman rank 

correlation) to determine if any observed overlap of candidate genes was more than expected 

through chance alone.  

 

6.2 Methods 

 

6.2.1 Differential gene expression 

 

I described the generation of the AD case-control differentially expressed genes in Chapter 4. 

There were 16,485 genes which were tested for statistical significance of differential 

expression between AD cases and controls. Differentially expressed genes were defined as 

having a Benjamini-Hochberg FDR corrected p-value < 0.05 and this amounted to 1270 

differentially expressed genes in total. 
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6.2.2 Selection of TWAS 

 

Three TWAS in AD were selected for this analysis: a TWAS by Harwood et al. and the two 

AMP-AD TWAS. The two AMP-AD TWAS differ as one uses Kunkle et al. GWAS summary 

statistics and the other uses Jansen et al. GWAX summary statistics. These three studies were 

selected as they are the most recent TWAS in AD. The TWAS by Harwood et al. and the AMP-

AD (GWAS) TWAS both use the largest AD case-control GWAS summary statistics (Kunkle et 

al.) in their TWAS analysis. The Harwood et al. TWAS that was selected for this analysis used 

the latest GTEx eQTL reference panel generated from brain cortex samples. This was chosen 

as the samples from my DGE analysis came from six different regions of the brain cortex, so 

this tissue is the most similar match. The AMP-AD TWAS were selected as an additional 

comparator as the AMP-AD TWAS utilise the same ROSMAP, MayoRNAseq and MSBB cohort 

samples as my DGE analysis. As a result, there is likely to be a large sample overlap between 

those individuals included in my DGE analysis and the AMP-AD TWAS. Therefore, it will be 

possible to compare the TWAS methods between one another but also compare results from 

the TWAS method to the DGE method with a large overlap of samples. A summary of the 

TWAS methods can be found in Table 6-1.  

 

 AMP-AD (GWAS) 

TWAS 

AMP-AD (GWAX) 

TWAS 

Harwood et al. 

TWAS 

GWAS  

summary statistics 

Kunkle et al. (Kunkle 

et al. 2019) 

Jansen et al. (Jansen 

et al. 2019) 

Kunkle et al. (Kunkle 

et al. 2019) 

eQTL  

reference panel 

AMP-AD AMP-AD GTEx brain cortex  

Table 6-1 – An overview of the summary statistics and eQTL panels used in the three TWAS. 
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6.2.3 Harwood et al. TWAS 

 

As described in their paper, Harwood et al. used GWAS stage 1 summary statistics from Kunkle 

et al. for use in their TWAS (Kunkle et al. 2019; Harwood et al. 2021). GTEx (version 7) weights 

for 3883 genes were also used in the TWAS along with the 1000 genomes reference panel 

(European population) which were both downloaded from the FUSION website: 

(http://gusevlab.org/projects/fusion/ . Results for the brain cortex TWAS used for the analysis 

in this chapter were obtained directly from the authors (Harwood et al. 2021). FDR corrected 

p-values were not included in the dataset, so I calculated Benjamini-Hochberg corrected p-

values using the p.adjust function in R.  

 

6.2.4 AMP-AD TWAS 

 

TWAS study methods were originally described in their paper (Gockley et al. 2021). This study 

used ‘CEU’ ancestrally matched genotype and RNA-seq expression profiling across the 

MayoRNAseq, MSBB and ROSMAP AMP-AD cohorts to train predictive weights for 6780 

genes. This enabled the authors to impute the genetic component of expression in patients 

directly from genotype. The training set consisted of 790 genotypes paired to 888 RNA-seq 

profiles across six cortical tissues including temporal cortex, DLPFC, and Brodmann areas 10, 

22, 36 and 44. A modified FUSION pipeline was implemented to support some individuals 

having multiple samples from different tissues. For their analyses, they performed an analysis 

using Kunkle et al.’s GWAS summary statistics and another using the Jansen et al. GWAX 

summary statistics (Jansen et al. 2019; Kunkle et al. 2019). Results for both AMP-AD TWAS 

used for the analyses in this chapter were downloaded from Synapse  

https://www.synapse.org/#!Synapse:syn22231399 (accessed: 07 April 2022). 
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6.3 Results 

 

Initially a comparison of Z-scores from the four studies were compared pair-wise and Pearson 

correlations were calculated. Plots are shown in Figure 6-2. 

The two studies that were the most closely correlated were the AMP-AD TWAS (which used 

the Kunkle et al. GWAS summary statistics) and the Harwood et al. TWAS (which also used 

the Kunkle et al. GWAS summary statistics (Figure 6-2d) but used different gene expression 

reference panels.  The Z-score from my DGE analysis were not significantly correlated with 

any of the TWAS, as seen in Figure 6-2 a, b and c.  
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Figure 6-2 – A comparison of Z-scores from three AD TWAS and differential gene expression (DEG) analysis with Pearson correlations.
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The results from the AD case-control mRNA differential expression analysis were compared 

with three sets of TWAS results. No genes were significant across all four studies at FDR < 0.05 

nor FDR < 0.1. Only four genes were nominally significant across the four studies. These were 

NPEPPS, QPCT, PRKD3 and DECR2. NPEPPS and QPCT  are protein coding genes that have been 

previously implicated in AD outside of these DGE/TWAS analyses (Kudo et al. 2011; Song et 

al. 2015; de Rojas et al. 2021). Although four were found to be nominally significant, the z-

score direction differs when comparing results from TWAS versus DGE analysis for QPCT and 

PRKD3 which can be seen in Table 6-2. Differing z-scores and insignificance after multiple 

hypothesis testing correction indicates that the overlap is more likely due to chance than a 

true association to AD in this case. 

 

The DGE analysis had the largest overlap of differentially expressed genes with the AMP-AD 

TWAS which used the GWAX (Jansen et al. 2019) summary statistics. There was an overlap of 

two genes at FDR p-value < 0.05 (Figure 6-3b) and 90 genes with uncorrected p-value < 0.05 

(Figure 6-3a). Between the three TWAS, the largest overlap of genes was seen between the 

two AMP-AD TWAS with nine genes shared FDR < 0.05 (Figure 6-3b) and 110 shared at the 

nominal significance level (Figure 6-3a). A summary of overlaps between all four studies can 

be seen in Figure 6-3 a-c.   
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Figure 6-3 – Venn diagrams showing overlap of significant genes identified by the AMP-AD (GWAS) and AMP-
AD (GWAX)  TWAS (Gockley et al. 2021),  the Harwood et al. TWAS and my AMP-AD DGE analysis (DEG). A) 
significance of genes set at a nominal p-value of less than 0.05. b)  significance set at an FDR corrected p-value 
of less than 0.05 and c) a significance level set at an FDR corrected p-value of less than 0.1.
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Gene 
Symbol 

Harwood 
et al. 
TWAS  

Z-score 

Harwood 
et al. 
TWAS  

p-value 

Harwood 
et al. 
TWAS 
FDR  

p-value 

AMP-AD 
GWAS TWAS  

Z-score 

AMP-AD 

GWAS 
TWAS  

p-value 

AMP-AD 
GWAS TWAS 
FDR  

p-value 

AMP-AD 
GWAX 
TWAS Z-
score 

AMP-AD 
GWAX 

TWAS p-
value 

AMP-AD 
GWAX 
TWAS FDR 
p-value 

DGE Z-
score 

DGE  

p-value 

DGE 
FDR 

p-value 

NPEPPS 3.56 3.73x10-04 0.11 2.93 3.38x10-03 0.34 2.19 0.03 0.52 3.39 7.05x10-04 0.02 

QPCT -2.65 8.04x10-03 0.47 -2.64 8.26x10-03 0.42 -2.08 0.04 0.57 2.01 0.04 0.20 

PRKD3 -2.60 9.20x10-03 0.47 -2.80 5.10x10-03 0.37 -3.41 6.50x10-04 0.09 2.93 3.36x10-03 0.05 

DECR2 -2.17 0.03 0.59 -2.52 0.01 0.46 -2.12 0.03 0.54 -3.26 1.10x10-03 0.03 

Table 6-2 – Genes that were nominally significant in Harwood et al. TWAS, AMP-AD (Kunkle et al.) GWAS TWAS, AMP-AD (Jansen et al.) GWAX TWAS and differentially 
gene expression (DGE) analysis.  
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With the overlaps found, hypergeometric tests were performed to determine if the overlap 

of genes were more than would be expected by chance. None of the overlaps between 

differentially expressed genes and the three TWAS were statistically significant (Table 6-3).  

 

Comparison Hypergeometric  

(p-value < 0.05) 

Hypergeometric  

(FDR < 0.1) 

DGE & Harwood TWAS 0.86 0.19 

DEG & AMP-AD (GWAS) 

TWAS 

0.66 0.95 

DEG & AMP-AD (GWAX) 

TWAS 

0.72 0.34 

AMP-AD (GWAS) TWAS & 

Harwood TWAS 

4.24x10-39 2.54x10-05 

AMP-AD (GWAX) TWAS & 

Harwood et al. TWAS 

2.98x10-06 No overlap at this threshold 

AMP-AD TWAS vs AMP-AD 

TWAS 

2.81x10-26 3.62x10-17 

Table 6-3 Results from hypergeometric tests when comparing differential gene expression (DGE) data and 
TWAS p-values. 

 

A Spearman rank corelation analysis was also performed to measure the relationship 

between the rank-ordered genes. The results from TWAS were significantly correlated to one 

another but not when TWAS was compared with DEGs. Results are summarised in Table 6-4. 
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Comparison Spearman rho Spearman p-value 

DGE & Harwood TWAS 0.013 0.48 

DGE & AMP-AD (GWAS) 

TWAS 

0.017 0.17 

DGE & AMP-AD (GWAX) 

TWAS 

-0.001 0.94 

AMP-AD (GWAS) TWAS 

& Harwood TWAS 

0.715 2.2x10-16 

AMP-AD (GWAX) TWAS 

& Harwood et al. TWAS 

0.342 2.2x10-16 

AMP-AD TWAS vs AMP-

AD TWAS 

0.393 2.2x10-16 

Table 6-4 Results of pairwise Spearman rank correlation analysis.  
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6.4 Discussion 

 

TWAS and DGE analysis are both supposed to identify differentially expressed genes 

associated with AD. TWAS identifies cis-regulated expression, whereas DGE analysis identifies 

differentially expressed genes associated with AD due to disease related (potentially 

downstream) issues, influences from the environment, genetic factors, stochastic events and 

technical artefacts. The evidence presented in this chapter suggests there is little overlap 

between the two approaches.  

 

The first aim of this chapter was to compare which genes were significant across all three 

TWAS and the DGE analysis to see if any results replicated across methods. Only four genes 

replicated at a nominal p-value with none overlapping after multiple hypothesis testing 

correction. These were: NPEPPS, QPCT, PRKD3, and DECR2. Two of these have additional 

functional evidence for involvement in AD. It has been shown that elevation of Npepps 

activity blocks accumulation of hyperphosphorylated TAU protein in mice and may be a 

therapeutic target in AD (Kudo et al. 2011) . QPCT is known to play a role in human amyloid-

beta formation and its inhibition is considered a potential treatment mechanism in AD 

(Vijayan and Zhang 2019).  Although it is possible to functionally speculate on these results, 

the value of it is limited as they did have opposing Z-scores. Studies in other disorders have 

often presented their work in a similar way i.e. comparing overlap between TWAS and DGE 

analysis and speculating on functional involvement on the overlap. Generally the overlap is 

small and further statistical tests are not performed. This analysis shows that  care does need 

to be taken when speculating on overlapping results from TWAS compared to DGE analysis 

as the overall evidence for consistent involvement is weak and that this small overlap is 

possibly due to chance. 

 

The second aim of this chapter was to determine if there was a correlation of Z-scores 

between the TWAS methods and DGE analysis. Z-scores were significantly correlated between 

the three TWAS but not between any TWAS and DGE analysis. The two TWAS with the 

strongest correlation (r = 0.72, p-value = 2.2x10-16) was between that of the AMP-AD (GWAS) 
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TWAS and Harwood et al. TWAS. These two studies used the same GWAS summary statistics 

(Kunkle et al.) but different eQTL panels.  

 

The two AMP-AD TWAS which used the same reference panel of eQTLs but different summary 

statistics (GWAS vs GWAX) were moderately corelated (r = 0.45, p-value = 2.2x10-16). The 

weaker correlation could be the result of the Jansen et al.GWAX having more statistical power 

than the Kunkle GWAS. The GWAX included 534,403 individuals versus 94,437 individuals for 

the GWAS (Andrews et al. 2020). Alternatively, it could be due to phenotypic and/or genetic 

heterogeneity between the two GWAS methods which then affect the results of the TWAS.  

In the GWAX they used AD cases and controls as well as a self-reported proxy phenotype of 

whether their parents were affected by AD. The self-reported proxy is at risk of individuals 

misremembering or not knowing the difference between dementia and an AD diagnosis. It 

has previously been hypothesised that phenotypic heterogeneity due to misdiagnosed AD 

could lead to genetic heterogeneity and reduced statistical power for GWAS discovery 

(Andrews et al. 2020). It is not clear if by including large numbers of people self-reporting 

their parental history if it leads to an increase in statistical power or just an increase in noise. 

Despite slight differences in correlation, the three TWAS performed similar to one another as 

would be expected.  

 

The final aim of this chapter was to perform hypergeometric tests and Spearman rank 

correlation tests to determine if any observed overlap of candidate genes is more than 

expected through chance alone. On a pairwise comparison basis, any gene overlap between 

any TWAS and DGE analysis had occurred not more than expected by chance (the enrichment 

was not statistically significant). Many studies in other disorders have compared the results 

of their TWAS to lists of differentially expressed genes in order to provide additional support 

to their TWAS findings. However, the findings are often a very small list of genes and rarely 

are further statistical tests performed to determine if these overlaps were likely through 

chance alone. The findings in this chapter highlight the prudency of performing additional 

tests to diminish chance findings.    
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When looking at the whole distribution of Z-scores, enrichment of TWAS signals in 

differentially expressed genes was not found. When focusing on only significant results (FDR 

> 0.1 or p-value > 0.05), no enrichment of TWAS signals in differentially expressed genes was 

found either. This is the case even when there is a large sample overlap. This leads to the 

conclusion that in AD, differentially expressed genes are not enriched for TWAS signals, and 

the two approaches are not comparable.  

 

TWAS is often a misunderstood method for prioritising candidate genes and has been 

mistakenly used as a causal gene test (Wainberg et al. 2019).  TWAS is useful for isolating the 

cis- component of gene expression. DGE analysis on the other hand, is used for finding 

differences between AD cases and controls. It will be subject to a lot more noise in comparison 

to TWAS, as DGE analysis will be identifying genes whose expression is also sensitive to the 

environment, technical artefacts, as well as cis- and trans regulation. The results of DGE 

analyses could well be due to consequences of disease as opposed to causes, so may not be 

as informative to the underlying biology.  

 

A recent study has identified that many gene expression profiles are generic and are highly 

predictable with many of the same genes being differentially expressed across a wide variety 

of phenotypes. These highly predictable differentially expressed genes (referred to as DE 

prior) implicate the immune response, inflammation, the extracellular matrix, stress 

responses and sex. They are likely to be biologically relevant to disease processes in general 

but are not necessarily specific to individual phenotypes (Crow et al. 2019). Future work could 

make use of these predictable genes, to account for some of the redundancy in a DGE 

analysis. 

 

One limitation of the analysis in this chapter is that the TWAS used for comparison in the 

analysis all used the summary-based method FUSION. It is possible that other methodologies 

may produce results with more consistency to the DGE analysis. Another limitation is that the 

DGE analysis and TWAS were all in bulk tissue. Although the brain cortex is disease relevant 

for AD, it is still a very broad tissue type. Performing these methods in specific brain regions, 
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or cell types, may find different results, and the TWAS and DGE analysis may show a greater 

overlap.  

 

In conclusion, the results in this chapter suggest that there is little overlap in the differentially 

expressed genes from DGE analysis and TWAS in AD in brain cortex. The little overlap that 

was found is no more than would be expected through chance. Future work could explore 

the differences in results when using gene expression data from other samples such as 

monocytes or specific brain regions.  Future work could also explore the inclusion of the DE 

prior in the DGE analysis and then compare results to TWAS to see if this affects the overlap 

between the two methods. 
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Chapter 7 General discussion 
 

7.1 Thesis overview 

 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder that currently has no 

cure. Studies of genetics have shed light on some of the potential mechanisms involved in AD 

such as the role of amyloid-beta, immunity and inflammation. However, there is a need to 

move beyond pure genomics to try and shed light on the relationship between genetic 

variants and function in AD.  

 

The work presented in this thesis aims to build on our understanding of AD risk that findings 

from genetics have provided. The result is the application of a range of bioinformatic 

approaches to genetic and transcriptomic data to elucidate underlying mechanisms and 

biology of AD. This thesis also looked to explore if differential gene expression has utility in 

prioritising AD GWAS and TWAS findings. 

 

7.2 Summary of findings 

Chapter one gave an overview of AD including the pathology, progression and epidemiology 

of the disease. This was followed by a discussion of the risk factors associated with disease 

including genetics and how various bioinformatic analyses have been applied to try and 

further our understanding of the disease. This included discussion of methods such as GWAS, 

eQTL analysis, TWAS and DGE analysis.  

 

Chapter two describes the data and methods used throughout this thesis. The chapter began 

with a description of how the three cohorts of ROSMAP, MayoRNASeq and MSBB were 

originally generated and then reprocessed and hosted by AMP-AD. The remainder of the 

chapter describes the various bioinformatic analyses used throughout this thesis.  
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Chapter three describes the work to produce a single cohesive RNA-seq dataset from 

combining the three AMP-AD RNA-seq datasets. An extensive QC pipeline was used to 

produce a high-quality dataset that could be used for downstream analyses. Initial 

investigation of the datasets highlighted that there were batch effects and sources of 

unwanted variation present in the data which could increase the risk of spurious findings if 

left uncorrected. These included sequencing batch and originating study. Linear mixed-effect 

models (LMEM) in combination with principal component analysis (PCA) were used to 

combine the three RNA-seq datasets into a unified dataset. Investigation of the combined 

datasets did not identify any obvious batch effects. This is the first time this approach has 

been used to combine these three datasets together into a single dataset which was then  

used for multiple  downstream analyses.  

 

Another aim of this chapter was to define the phenotypic variables reflecting AD pathology. 

The work to define case-control status highlighted the challenge of defining phenotypes in 

the AD field. The three datasets provided differing amounts of information on the phenotypes 

available. The MayoRNASeq study provided information on case-control status and Braak 

scores. The ROSMAP study provided data on diagnosis based on clinical data, Braak scores 

and non-age modified CERAD scores. The MSBB study provided data on clinical dementia 

rating, CERAD and Braak scores. This is a problem in the AD and dementia field at large, as 

both can be subject to a considerable amount of phenotypic heterogeneity. Failing to capture 

this adequately could lead to misclassification bias or a reduction in power (Ryan et al. 2018).  

The phenotypic definitions included in this analysis do have the added advantage of including 

measures of pathology and clinical characteristics meaning that it is more likely to capture 

true AD than clinical information alone. 

 

Chapter four built on the work in the previous chapter by using the residuals from the 

combined normalised AMP-AD RNA-seq data to perform a DGE analysis. Initially this was 

performed in only the ROSMAP data between cases and controls. This was in order to see 

how the LMEM and PCA method for combining data followed by logistic regression to 

determine differentially expressed genes performs against two frequently used DGE 

packages: limma-voom and DESeq2. A comparative analysis showed that the use of logistic 
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regression following the use of LMEM and PCA to correct for batch effects identified 

differentially expressed genes with a significant overlap to two other tools. Previous work has 

shown that differentially expressed genes which are identified through multiple tools are 

more likely to be truly differentially expressed (Costa-Silva et al. 2017).  

 

A DGE analysis was also performed on the combined AMP-AD RNA-seq data which was 

generated in chapter three for AD case-control, Braak and CERAD score phenotypes. Overall, 

the results for the DGE analysis and GO enrichment analysis were similar for the Braak and 

CERAD score phenotypes. This could be due to the two being highly correlated and/or sharing 

underlying mechanisms. The biological processes involved included GO terms associated with 

mitochondrial processes, the ribosome and endoplasmic reticulum. Results from this analysis 

suggest the involvement of these processes in AD as  described by the Braak and CERAD 

pathology. Although these processes have been previously shown to be involved in AD, they 

are not that well characterised in the disease (Weidling and Swerdlow 2020; Iatrou et al. 2021; 

Shi et al. 2022).  Studying these further could enhance overall understanding of biological 

mechanisms for AD development and progression.  

 

An investigation of whether GWAS prioritised genes are enriched in the DGE analysis was also 

performed, and it was found that they were not for statistically significant differentially 

expressed genes. The DGE analysis was derived from bulk brain tissue. Bulk brain tissue has 

the caveat that it is dominated by the most abundant cell type and does not capture 

information about cell type or composition (Trapnell 2015; Cano-Gamez and Trynka 2020).  

More specific cell-types, with other temporal resolutions may have more utility for GWAS 

gene prioritisation in AD based on the gene expression 

 

Lastly in chapter four, MAGMA pathway analysis results from the largest AD GWAS (Kunkle et 

al. 2019) were checked to see if they overlapped with my gene ontology enrichment analysis 

results from my analysis.  No overlap of FDR-significant terms was found between the GWAS 

and my non-directional and downregulated analysis GO terms (as identified through using 

CATMAP). In the upregulated analysis five of the nine GO terms overlapped at nominal 
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significance (Protein-lipid complex assembly, regulation of amyloid-beta formation, 

regulation of amyloid precursor protein catabolic process, tau protein binding and activation 

of immune response) of which the latter two still remained significant after FDR correction. 

Although the GWAS prioritised genes were not enriched as a set in the differentially expressed 

genes, there is limited evidence for some convergence of pathways identified through both 

genetic and gene expression data.   

 

In chapter five, a cis-eQTL analysis was performed to find associations between index SNPs 

from five AD GWAS and GWAX, and the AD case-control differentially expressed genes 

identified in chapter four. As index SNPs are not necessarily the causal variant, the 100kb 

region either side of the index SNP was investigated, as that is where over 90% of causal 

variants are located (Wu et al. 2017).  The initial cis-eQTL analysis identified seven SNP-gene 

associations. As three of them were located on chromosome 19 there were concerns that this 

might be due to the long-range effects of APOE. Rerunning the analysis with APOE carrier 

status as a covariate resulted in a slight increase in the significance of results with an 

additional SNP-gene pair becoming statistically significant. Therefore, there was evidence 

that the results were not due to APOE. The next step in the analysis was to search the 100kb 

region around each index SNP. For the eight regions searched, none of the index SNPs were 

the top eQTL in the 100kb surrounding region.  

 

A trans-eQTL analysis was also performed to identify associations between AD GWAS/GWAX 

index SNPs and the differentially expressed genes from chapter four. Only four trans-eQTLs 

were identified, which were MAF1, TAC1, SCGN and SST. These were all associated with the 

C allele of rs5011436 in the TMEM106B locus. The evidence presented suggests a potential 

mechanism for the association on chromosome 7. The AD associated SNP could be trans-

regulating these AD case-control differentially expressed genes. A STRING analysis identified 

that at least SST, SCGN and TAC1 were related through text-mining (p-value = 1.25x10-04). 

Previous genetic work has also implicated the SST locus in AD risk in Finnish and Chinese 

cohort (Vepsäläinen et al. 2007; Xue et al. 2009). Although firm conclusions cannot be drawn, 

this may offer an avenue for future functional work.  
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Chapter six compares the results of the DGE analysis (generated in chapter 4) to three existing 

AD TWAS results to identify if these two methods produce comparable results. This has not 

yet been investigated in the field of AD research. The results of this analysis identified that 

AD TWAS produce results with a significant overlap to one another, but not to DGE analysis. 

Although there were some overlapping genes between TWAS and DGE analysis methods, it 

was no more than what was expected by chance and differentially expressed genes are not 

enriched for TWAS signals. A recent study has suggested that differentially expressed genes 

are more likely to be the result of disease processes rather than the cause (Porcu et al. 2021). 

It could also be that current transcriptomic datasets are not using the most informative tissue 

type and that transcriptomic data from microglia or prodromal AD may be more informative 

or are more enriched for TWAS signals.   

 

7.3 Limitations of thesis 

 

One challenge with researching Alzheimer’s disease is that one of the most disease relevant 

tissues to utilise is the brain. Brain tissue is hard to come by, and sample sizes remain 

relatively small. The work presented in this thesis tried to overcome this by combining 

samples from different areas of the brain into a single dataset. This has the benefit of 

increasing the sample size but at the cost of region specificity.  

 

A further limitation is that bulk cortical brain tissue may not be the most disease relevant 

tissue. Although the cortex is affected in AD, it may be that these global changes occur later 

in disease progression. Therefore, using bulk brain cortex tissue may be identifying changes 

due to disease rather than cause of disease or even capturing end-stage of disease which 

would not benefit as much from therapeutic intervention in comparison to earlier stages of 

disease.    

 

Bulk brain tissue is dominated by the most abundant cell type and does not capture 

information about cell type or composition (Trapnell 2015). There is evidence that microglia 
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plays a significant role in AD pathogenesis (Hemonnot et al. 2019) so may be a more relevant 

cell-type for the study of AD.  

 

Building on this, another limitation is that the transcriptomic data comes from post-mortem 

brain tissue. Gene expression can differ between life and death. Post-mortem effects are 

understudied, and little is known as to how expression is affected in the brain upon death 

(Ferreira et al. 2018).  The work presented in this thesis tried to overcome this limitation by 

investigating post-mortem interval (PMI) and found no evidence of PMI batch effects when 

investigating PCA biplots.  

 

Another limitation of the work presented in this thesis is that only individuals of European 

descent were included in the analysis. The decision for this was to avoid population 

stratification bias. Additionally, the data available from non-Europeans in the AMP-AD 

datasets were very small. Therefore, the findings from this thesis may only be applicable to 

those with a European ancestry. Another limitation is that focusing on a homogenous 

population could mean that biological processes that occur in AD in other populations will be 

missed due to a lack of genetic diversity being included in the analysis. Studying other 

populations are likely to inform more about disease processes (Carress et al. 2021).  

 

The work presented in this thesis made use of publicly available RNA-seq, genetic and 

phenotypic data. Many of the limitations of the work in this thesis reflect problems in the 

wider AD field. Larger datasets with deeper phenotyping are required to further 

understanding of AD.  

 

Another limitation is that shortly after the analysis for this thesis was complete, another 

GWAX was published identifying an additional 42 novel loci at the time of publication 

(Bellenguez et al. 2022). This new GWAX prioritised 55 genes in the 42 new loci. Of these 55, 

ATP8B3 was the only differentially expressed gene in my case-control analysis (chapter 4) with 

a p-value of 2.38x10-03 and an FDR corrected p-value of 0.04. Therefore, the same conclusion 
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remains that there is limited enrichment of GWAS prioritised genes in AD case-control 

differentially expressed genes. The Bellenguez et al. GWAX identified novel index SNPs which 

would not have been included in my eQTL analysis which is a further limitation.  

 

One final limitation is that the work in this thesis used a bioinformatics approach to study 

Alzheimer’s disease. Although many potential mechanisms and genes have been identified in 

the work presented in this thesis, conclusions of causality cannot be drawn from these results. 

Instead, it offers avenues for future directions for functional follow-up in laboratory studies. 

 

7.4 Future work and directions 

 

The future work of bioinformatic analyses to improve understanding of the biological 

underpinnings of AD will rely on increasing sample sizes especially in disease relevant cell-

types. GWAS have been a major contributor to identifying variants associated with disease. 

Increasing sample sizes, expansion into using whole genome sequencing data and deeper 

phenotyping will lead to new discoveries in the genetics of AD.  Larger GWAS will lead to the 

discovery of new variants which will typically have smaller effect sizes potentially increasing 

resolution. Identifying causal variants from these findings will continue to be a major 

challenge.  

 

Variants identified from GWAS are used in polygenic risk scores, which is an approach that 

could be integrated into future work. Although polygenic risk scores alone may not have the 

prediction accuracy for personalised medicine they may be beneficial in identifying those at 

the PRS extremes (individuals more than two standard deviations from the mean) (Baker and 

Escott-Price 2020). Recent work has shown that standardising PRS against the population 

mean as opposed to the sample mean makes the individuals’ scores comparable between 

studies (Leonenko et al. 2021). As phenotypic information is often variable between studies, 

polygenic risk scores could be used to identify individuals with high polygenic risk versus low 

polygenic risk burden as a phenotype alternative to case-control and would be comparable 

across studies.  
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AD GWAS have already implicated microglial and immune genes as important factors in the 

development and progress of disease (Efthymiou and Goate 2017).  The transcriptomic data 

used in this thesis were derived from bulk brain tissue which is known to biased by the most 

abundant cell types (Trapnell 2015). The proportion of microglia in the cortex is approximated 

to be 5% so likely to be underrepresented in bulk analyses  (Ochocka and Kaminska 2021). 

Studying microglia and other disease relevant tissues at high resolution is needed to increase 

insights into disease.  At present the ROSMAP study has a sample size of 10 for RNA-seq data 

of prefrontal cortex microglia and 13 of single-cell RNA-seq of prefrontal cortex microglia 

(www.radc.rush.edu/docs/omics.htm). With time, it is likely that these resources will grow 

and allow researchers to further understand the role microglia has in AD and if microglia are 

viable therapeutic targets.    

 

Increasing sample sizes of tissue expression data will also be of benefit to eQTL studies and 

DGE analyses. At present, studies mainly focus on cis-eQTLs due to limited sample sizes and 

statistical power. However cis-eQTL effects are thought to contribute only a small fraction of 

the heritability of gene expression. The majority of this heritability is mainly thought to come 

from the combination of many weak trans-eQTL effects and thought to have greater impact 

on the phenotype than those regulated by strong eQTL effects (Võsa et al. 2021). Furthermore 

tissue-specific eQTLs with larger sample sizes may identify novel genes associated with AD.  

 

The findings in this thesis, such as genes identified through DGE analysis or in the eQTL 

analysis could also be taken up for functional follow-up in model systems such as drosophila 

to help further understanding of AD biology.  

 

The work produced in this thesis made extensive use of differentially expressed genes. DGE 

analysis often produces a large list of disease associated genes that will be the result of 

genetics, the environment, and stochastic and technical factors. Recent work has suggested 

that many differentially expressed genes are highly predictable and are not necessarily 

specific to individual phenotypes but to general disease processes such as inflammation. This 
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can be used to inform a DE prior which can be used to account for this (Crow et al. 2019). 

Future work could use this DE prior to try and elucidate specific AD differentially expressed 

genes and pathways.  

 

Future work could also integrate the current data with the other -omics data which is available 

on the Synapse platform in a multi-omics approach. This could include DNA methylation data 

to try and predict biological age which could be integrated into analysis.  Future work could 

also look at microRNA data. Increasing evidence is building for the involvement on 

microRNAs. This includes not only dysregulation of microRNA in AD but also as a potential 

diagnostic biomarker and so is an important area of research (Wei et al. 2020). The ROSMAP 

dataset does have microRNA data available for download  (Zhang et al. 2013). This data could 

be downloaded and integrated with the genetic and mRNA data used in this thesis to further 

our understanding of AD disease biology.  

 

 

7.5 Implications 

 

The work presented in this thesis has identified and provided additional evidence for the 

involvement of SST, SCGN, MAF1 and TAC1 with an association on chromosome 7 in AD. 

Additionally the work has highlighted the potential involvement of mitochondrial and 

ribosomal processes, in addition to the endoplasmic reticulum. These are under characterised 

in AD, so may offer new avenues for functional follow-up.  

 

Finally, the work from the last results chapter has shown that TWAS signals are not enriched 

in case-control differential gene expression derived from RNA sequencing of bulk brain tissue. 

TWAS are often a misunderstood method, and the work in chapter 6 highlights that TWAS 

can only inform on associations between the common cis- component of gene expression 

whereas differential gene expression will be sensitive to not only genetically controlled 

factors, but environmental, stochastic and technical factors too. Therefore, in AD, the two 

methods at present are not comparable.  



 229 

 

7.6 Conclusions 

 

The work presented in this thesis largely were from the investigation of RNA-seq data from 

three different cohorts combined into a single dataset. The findings of this thesis would 

suggest that case-control differential gene expression data from bulk cortical tissue is not 

informative for follow-up of prioritised genes from GWAS nor TWAS. It could be that this is 

due to gene expression being the result of disease rather than the cause of disease. However, 

pathway analysis of transcriptomic data has identified involvement of mitochondrial and 

endoplasmic reticulum processes which are biologically plausible. Additionally, eQTL analysis 

of differentially expressed genes has highlighted some candidate genes with a good amount 

of evidence that are also biologically plausible, such as for SST.  

 

The onset of AD is hypothesised to start in middle-age.  As transcriptomic datasets grow and 

become more diverse both temporally and with originating tissue, more will be discovered 

about the underlying processes of AD.  Integration with genetics and other -omics data will 

help improve understanding of AD and hopefully lead to new treatments. 

 



 230 

Appendix 1 
 

Go-Figure! results for reduced Braak score logistic regression analysis.  

 

 
 
Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment analysis using 
gene p-values from the reduced Braak score logistic regression 
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Scatterplot of biological process gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment analysis using 
gene p-values from the reduced Braak score logistic regression 
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Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Scatterplot of cellular component gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the reduced Braak score logistic regression 
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Go-Figure! results for Braak score ordinal regression analysis.  
 

 

 

 

 
 
Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment analysis using 
gene p-values from the Braak score ordinal regression 
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Scatterplot of biological process gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 
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Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment analysis using 
gene p-values from the Braak score ordinal regression 
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Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 
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Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 
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Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 
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Scatterplot of cellular component gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 
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Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 

 

 

 

 

 

 

 

 

 

 

 

 

 



 247 

 
 

Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the Braak score ordinal regression 
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Go-Figure! results for reduced CERAD logistic regression analysis.  

 

 
Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment analysis using 
gene p-values from the reduced CERAD logistic regression 
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Scatterplot of biological process gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment analysis using 
gene p-values from the reduced CERAD logistic regression 
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Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Scatterplot of cellular component gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the reduced CERAD logistic regression 
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Go-Figure! results for CERAD ordinalregression analysis.  

 

 

 
 

Scatterplot of biological process gene ontology (GO) terms from the down-to-up GO enrichment analysis using 
gene p-values from the CERAD ordinal regression 
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Scatterplot of biological process gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Scatterplot of biological process gene ontology (GO) terms from the up-to-down GO enrichment analysis using 
gene p-values from the CERAD ordinal regression 
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Scatterplot of molecular function gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Scatterplot of molecular function gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Scatterplot of molecular function gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Scatterplot of cellular component gene ontology (GO) terms from the down-to-up GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Scatterplot of cellular component gene ontology (GO) terms from the non-directional GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Scatterplot of cellular component gene ontology (GO) terms from the up-to-down GO enrichment analysis 
using gene p-values from the CERAD ordinal regression 
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Appendix 2  
 

The list of GWAS index SNPs that were selected from five GWAS and GWAX studies can be 

found below. S13 = GWAS (Lambert et al. 2013) ; X18 = GWAX (Marioni et al. 2018); X19 = 

GWAX (Jansen et al. 2019); S19 = GWAS (Kunkle et al. 2019) ;W21 = GWAX (Wightman et al. 

2021). All in genome build GRCh38 (www.gencodegenes.org/human/release_24.html).  

 

GWAS SNP chr:position 

X19 rs4575098 1:161185602 

S13, X18 rs6656401 1:207518704 

W21 rs679515 1:207577223 

X19 rs2093760 1:207613483 

S19 rs4844610 1:207629207 

X19, W21 rs4663105 2:127133851 

S13, X18, S19 rs6733839 2:127135234 

X19, S19 rs10933431 2:233117202 

S13, X18 rs35349669 2:233159830 

W21 rs7597763 2:233173931 

W21 rs4504245 4:11013198 

X19 rs6448453 4:11024404 

S13 rs190982 5:88927603 

W21 rs871269 5:151052827 

W21 rs6891966 5:157099320 

X18 rs34855541 6:32592048 

S19 rs9271058 6:32607629 

S13 rs111418223 6:32610753 
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X19 rs6931277 6:32615580 

W21 rs1846190 6:32616036 

S19 rs114812713 6:41066261 

X18 rs9381040 6:41186912 

S19 rs9473117 6:47463548 

X18, X19 rs9381563 6:47464901 

S13 rs10948363 6:47520026 

W21 rs9369716 6:47584444 

W21 rs5011436 7:12229132 

S13 rs2718058 7:37801932 

W21 rs7384878 7:100334426 

X19 rs1859788 7:100374211 

S13, X18 rs1476679 7:100406823 

S19 rs12539172 7:100494172 

X18, S19 rs10808026 7:143402040 

W21 rs3935067 7:143407238 

X19 rs7810606 7:143411065 

S13 rs11771145 7:143413669 

X18, X19 rs4236673 8:27607412 

W21 rs1532278 8:27608798 

S13, S19 rs9331896 8:27610169 

W21 rs61732533 8:144053248 

X19 rs11257238 10:11675398 

W21 rs7912495 10:11676714 

X18, S19 rs7920721 10:11678309 

W21 rs7902657 10:59978394 
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S19, W21 rs3740688 11:47358789 

X18 rs12292911 11:47427521 

S13 rs10838725 11:47536319 

S13 rs983392 11:60156035 

S19 rs7933202 11:60169453 

X19 rs2081545 11:60190907 

X18, W21 rs1582763 11:60254475 

X19 rs867611 11:86065502 

W21 rs561655 11:86089237 

S13, X18 rs10792832 11:86156833 

S19 rs3851179 11:86157598 

S13, X18, X19, S19, W21 rs11218343 11:121564878 

W21 rs7146179 14:52832135 

X18, S19 rs17125924 14:52924962 

S13 rs17125944 14:52933911 

S13 rs10498633 14:92460608 

S19 rs12881735 14:92466484 

X18, X19 rs12590654 14:92472511 

X18 rs59685680 15:50709337 

X19 rs442495 15:58730416 

X18, S19 rs593742 15:58753575 

W21 rs602602 15:58764824 

X18, W21 rs117618017 15:63277703 

S19 rs7185636 16:19796841 

X18 rs889555 16:31111250 

X19 rs59735493 16:31121779 
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X18 rs4985556 16:70660097 

S19 rs62039712 16:79321960 

X18 rs12444183 16:81739604 

W21 rs7209200 17:5066645 

X18 rs7225151 17:5233752 

X19 rs113260531 17:5235685 

W21 rs708382 17:44364976 

X19, W21 rs28394864 17:49373413 

X19 rs2526380 17:58320645 

W21 rs2632516 17:58331728 

X18, S19 rs138190086 17:63460787 

W21 rs6504163 17:63468418 

X19 rs76726049 18:58522227 

X19 rs111278892 19:1039324 

X18 rs3752231 19:1043639 

W21 rs12151021 19:1050875 

S19 rs3752246 19:1056493 

S13 rs4147929 19:1063444 

S13, X18, X19 rs41289512 19:44848259 

W21 rs429358 19:44908684 

S19 rs12691088 19:44915229 

W21 rs2452170 19:48710247 

X19 rs3865444 19:51224706 

X18 rs12459419 19:51225221 

W21 rs1354106 19:51234736 

W21 rs1761461 19:54313903 
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W21 rs6069736 20:56408019 

W21 rs6069737 20:56420643 

S19 rs6024870 20:56422512 

X19 rs6014724 20:56423488 

S13 rs7274581 20:56443204 

W21 rs2154482 21:26148613 

S19 rs2830500 21:26784537 
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