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Orchestrating Networked Machine Learning
Applications using Autosteer

Zhenyu Wen, Renyu Yang, Bin Qian, Ringo W.H Sham, Rui Sun, Jie Xu, Pankesh Patel, Omer Rana, Rajiv
Ranjan

Abstract—A platform for orchestrating networked Machine Learning (ML) applications over distributed environments is described. ML

applications are transformed into automated pipelines that manage the whole application lifecycle and production- grade

implementations are automatically constructed. We present AUTOSTEER, a software platform that can deploy ML applications on

various hardware resources interconnected using heterogeneous network resources, across cloud and edge devices. Device

placement optimization and model adaptation are used as control actions to support application requirements, and maximize the

performance of ML model execution over heterogeneous computing resources. The performance of deployed applications are

continually monitored at runtime to overcome performance degradation due to incorrect application parameter settings or model decay.

Three real-world applications are used to demonstrate how AUTOSTEER can support application deployment and runtime performance

guarantees.

Index Terms—machine learning, application deployment, runtime optimization, model update

✦

1 INTRODUCTION

Machine Learning (ML) systems and applications are
intrinsically non-deterministic and need to operate in an en-
vironment which is constantly-evolving, and contains ever-
changing data. Typically, a networked machine learning
application consists of a variety of components for data col-
lection, device control, model inference (e.g., speech recog-
nition, object detection), which are deployed and managed
at different locations, i.e. either on locally managed servers
or remotely in cloud data centers or edge environments.

ML applications executing over a networked platform
are arguably complex systems which have to be contin-
uously updated and maintained. ML applications need
to be transformed into automated pipelines that manage
the whole application lifecycle and build production-grade
machine learning implementations. A pipeline workflow,
typically in the form of a graph representing the component
interconnections in an ML application, can comprise: data
management, model learning (model selection, training and
hyper-parameter selection), model testing and validation
and model deployment. Thereafter, run time management
is responsible for ensuring performance guarantee, i.e.,
end-to-end model performance optimization and model
update [1], so that the deployed ML applications can be
dynamically modified to run time environment.

Doing so manually is generally unrealistic and not scal-
able, particularly when thousands of ML applications are
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submitted and maintained in edge and cloud platform that
may be composed of hundreds of devices with heteroge-
neous hardware and software specifications. Continuous
and automatic orchestration plays a pivotal role in de-
ploying, managing and synchronizing models of the ML
applications across multiple tiers in a distributed comput-
ing environment. For instance, the trained models will be
published and delivered to specific cloud servers or edge
devices to run inference. Some specific applications, e.g.,
federated learning tasks require on-device training, indi-
cating more complex device placement and model syn-
chronization. Moreover, model decay arising from changes
in data, would inevitably diminish model accuracy over
time. Hence, an orchestrator calls for observation of the
performance deviation and redeployment of the updated
models.

Deploying such networked machine learning systems,
particularly in an IoT and edge environment can be chal-
lenging due to the difficulty in managing the complexity of
heterogeneous network and hardware resources. A variety
of devices are used for data exchange, model training and
data analysis encompassing edge devices (such as IoT gate-
ways and base stations) and servers (such as GPU, CPU,
and TPU-based devices). Existing ML model development
can be computationally expensive and resource intensive,
which impede the effective deployment of applications, par-
ticularly those with strict latency requirements to resource-
constrained devices.

In this article, we propose a platform solution to de-
ployment and runtime management for the pipelines of
networked machine learning applications. We devise AU-
TOSTEER, a management system that can automatically de-
ploy networked machine learning applications over hetero-
geneous network and hardware resources while ensuring
their performance through deployment plan optimization
and model adaptation. At runtime, AUTOSTEER continually

xxx-x-xxxx-xxxx-08/19/$31.00 ©2019 IEEE
IEEE Network
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monitors the performance of deployed applications and
automatically performs model update to mitigate perfor-
mance degradation caused by obsolete application parame-
ters setting or model decay. Finally, we use three real-world
applications that are executed upon AUTOSTEER to show-
case how the mechanisms are engaged in the application
deployment and run-time maintenance.

2 MOTIVATION

2.1 Motivating Examples

We primarily categorize the networked machine learning
applications into a) centralized off-site ML applications that
can be trained offline or offsite, and b) distributed on-
site/federated ML applications that must build their models
using local dataset on individual device and, in some cases,
share and aggregate models with other peer devices.

Centralized off-site learning applications. A smart home
application allow users to observe the occupancy of their
house, remotely control the smart devices (e.g., LEDs, air
conditioner) via smartphone and even automatically control
the smart devices. For example, a smart home application
can automatically adjust the temperature of air conditioners
based on the occupancy, weather and so on.

Distributed on-site/federated learning applications. A
high-quality brain tumor detection application relies on a
huge amount of magnetic resonance imaging (MRI) data
that is only locally available and managed within a specific
institution domain due to GDPR and other privacy regu-
lations. A shared model is typically distributed to different
data owners and trained locally. Locally-trained models will
be combined into a consensus model.

2.2 Research Scope and Overview

In general, the pipeline for such an application can be
depicted as the workflow in Fig. 1. The pipeline starts with
and augments an initial model that has been trained offline
along with a reference to meta data and the associated data
sources on which the model has been trained. Thereafter,
the workflow management platform typically addresses
two fundamental problems: planning for device placement
and model adaptation in the deployment phase and model
execution performance guarantee in the runtime phase.

Determining the placement of ML components on avail-
able resources remains a key challenge – especially due
to heterogeneity of resources. Additionally, models have
to be converted, for example through model pruning [2],
post-training quantization [3], and identifying a “focus” for
the associated model through distillation techniques. This
enables the generated models to best fit the target device,
balancing the model size with accuracy of prediction. Signif-
icant recent efforts in this area include TinyML and EdgeML.

Once the plan of deployment comes into effect, run
time management ensures that the model performance can
be monitored and overcomes model staleness. In the au-
tomated and continuous pipeline, triggers can be used to
update application parameters or retrain the stale model
with fresh data when performance observably degrades due
to dynamic environment changes, such as network speed
drop, workload bursting, model drift or lack of generaliza-
tion. For applications of federated learning and distributed

training, the platform run time also needs to enforce efficient
on-device training.

A key focus of this work is to devise an orchestration
system for supporting multiple ML model development
and performance optimization. Additionally, the system
needs to scale to support both application size and resource
heterogeneity. To underpin precise performance monitoring
and anomaly detection while measuring platform health
and resource utilization, we also need to track and inspect
(distributed) system fingerprints – consisting of various per-
formance indicators and application metrics such as drift
and prediction scores.

3 CHALLENGES

We elaborate on these specific challenges facing the ML
workflow platform in the following notable aspects:

Complexity of device placement and model adaptation.
Planning for a pipeline of a given ML application indicates
a mapping procedure between awaiting models and avail-
able computing resources on the devices. To accommodate
the specific demands of diverse distributed or federated
learning applications, infrastructure resources have become
increasingly heterogeneous, making the planning a far more
intricate task:

1) Device placement: Successfully deploying sizeable com-
ponents of the ML applications served in the platform
requires stringent capacity check and optimization solution
under numerous constraints. The manifestation of hetero-
geneity intrinsically stems from the static attributes of the
hardware, such as CPU, GPU, memory, SSD and network
bandwidth, and of the software including operating system
version, clock speed, and particularly software libraries.
The compatibility of a given hardware or library version
even becomes a hard constraint, for any violations of such
requirements would completely fail the deployment. For ex-
ample, some components are compiled for ARM MALI can-
not be executed on Nvidia GPU. The network constraints,
such as bandwidth sharing among co-located components
or network latency specified by each individual component,
will further exacerbate the planning complexity.

2) Model adaptation: The advancement of deep models
such as RNNs and CNNs leads to the substantially in-
creased parameter number and the resultant computational
cost, which hinders the real-world model deployment into
embedded and edge devices. Hence, model pruning and
compression can be used to reduce model size, remove
redundant weights such that pre-trained models can bet-
ter adapt to portable devices with limited resources (e.g.
memory, CPU, power and bandwidth) and be applied into
real-time applications.

3) Enabling dependent components within a pipeline: Each
individual ML model has its own specification and format
of input and output data. Dependencies are referred to
as the interactions, such as the data flows and remote
callings, among interconnected components. This would be
problematic and challenging particularly when components
deployed on various devices are interconnected via different
network types and protocols. Hence, it is imperative to
design an effective data messaging system to orchestrate the
data flow and manage the network traffic across different
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Fig. 1: Conceptual workflow

models whilst considering the particular specification and
data format.

Optimized runtime management. Improper application
parameter setting or model decay could result in poor
performance of a ML application and even failures. The first
task of runtime management is to perform end-to-end and
intra-application optimization. Application parameters (e.g.,
model accuracy, task off-loading rate) need to be adjusted
at runtime to ensure the allocated resource can guarantee
the expected performance level. To do so, the orchestration
system should be capable of automatically detecting any
performance degradation of the deployed applications and
then dynamically work out the optimal configuration to res-
cue the abnormal performance. Secondly, in the face of any
model failures, the orchestration system should automat-
ically perform local on-device training while synchronize
and aggregate the up-to-date global models on the fly.

Low-cost platform monitoring and troubleshooting. Moni-
toring is one of the primary issues in maintaining ML appli-
cations and systems; outline or anomaly detection is impor-
tant to find out unexpected model prediction or any system-
wide issues in the early stage. However, anomaly detection
and trouble-shooting could be challenging as high-quality
labeled data is sparse and difficult to obtain and hence
only semi-supervised or unsupervised approaches could be
applied. The overhead is another non-negligible considera-
tion when designing application instrumentation and metric
collection. This usually indicates a tradeoff between the
accuracy and granularity of the measured data. Hence, the
platform solution of infrastructure monitor should have an
overall co-design of metric sampling, storage and real-time
analysis.

4 SYSTEM DESIGN

In response to the aforementioned challenges, we develop
AUTOSTEER, an orchestration platform for application de-
ployment and runtime management. In this section we
mainly highlight a set of key techniques used for imple-
menting the orchestration mechanism. Fig. 2 describes the
architecture of AUTOSTEER.

4.1 Automatic Application Deployment

Application and resource specification. The user submits
a ML application with execution logic, pre-trained models

and specifies the pertaining requirements such as model
accuracy, end-to-end latency, etc. To achieve an automatic
deployment, we need to translate these knowledge to
machine-understandable language. We use a UML-based
visual domain specific language [4] that can easily rep-
resent the component dependencies within an application
and specify the format and source of input and output of
each individual component. As a result, the interactions be-
tween components, such as data flows and service calls, are
loosely-coupled through interfaces and agnostic about any
model updates. Apart from the application specification,
standardized resource specification is the key to automatic
and efficient deployment. we exploit TOSCA [5] for speci-
fying the available underlying computing resources and the
hardware and software requirements of each application.

Planning optimization for device placement. To navigate
the algorithmic complexity, the orchestrator in AUTOSTEER

adopts two optimization techniques: gradient based opti-
mization [6] and reinforcement learning (RL) [7]. Gradient-
based approaches work upon a realistic model to formalize
an optimization problem and usually have relatively low
time complexity without the need of apriori knowledge or
experience, which are therefore suitable for new applica-
tions. In contrast, RL-based methods can learn the optimal
planning from the experiences and can better support the
uncertainties compared the Gradient-based solutions.

We also construct an efficient data messaging subsystem
where two types of dependencies are defined – data flow
and service call. Since the orchestration system needs to
deliver a large volume of data in distributed environments,
high system throughput becomes a critical system objective.
We employ the publish/subscribe paradigm implemented
in Apache Kafka to underpin the data flows. The service
call, on the other hand, is implemented through RESTful
APIs, as the precise command delivery is the primary goal.
Both the publish/subscribe and RESTful paradigms can be
implemented upon the a vast majority of network types
and protocols, hence capable of supporting most networked
machine learning applications.

4.2 Model Adaptation

Computation optimization aims to improve the execution
efficiency of different computation units associated with the
model (e.g., vector-vector, vector-matrix and matrix-matrix
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operations) on various hardware. Optimizing the execution
pipeline of the computation graph of a neural network
can further improve model performance. We use TensorRT
along with the adjustment of weights and numerical pre-
cision associated with the activation function (e.g., INT8
and FP16). Model architecture optimization improves the
efficiency of on-device computation through well-designed
models such as MobileNetV2, ShuffleNet etc – part of the
TensorFlow-Lite toolkit). We use YOLOv3 [8] to strike a bal-
ance between computation efficiency and model accuracy.

In addition, more advanced and customizable ap-
proaches such as neural architecture search (NAS) [9] and
model compression can be implemented in AUTOSTEER

further. NAS automates the search of an optimal network
structure with the aid of reinforcement learning or Ge-
netic Algorithm (GA) based approaches. However, it is
computation-intensive and tend to be problematic given the
portable devices with limited resources. Model compression
is thus extensively studied in three notable aspects: model
pruning that removes the redundant parameters within the
networks; quantization that reduces the weights precision
and knowledge distillation [10] that trains a new small model
based on a larger model. Quantization is the most straight-
forward approach at the risk of precision degradation and
model pruning is the most well-established approach but
requires extra calibration process. Integrating mixed tech-
niques in the platform is already underway for building
more adaptive and robust models.

4.3 End-to-end Application Optimization

In a networked machine learning system, computational
and network resources are dynamically available at different
levels. Application parameters such as input rate and the
targeted accuracy need to be adjusted, in response to the
ever-changing traffic congestion, to assure the end-to-end
latency or system throughput.

We specify model parameters based on extensive bench-
marking experiments and transform the problem of find-

ing the “best ” setting of parameters into an optimization
problem using techniques such as convex optimization, evo-
lution based and gradient based methods. Reinforcement
learning is an alternative approach that use statistical or
deep learning model where the application parameters are
the actions of the agent, and the available computing re-
sources represent the environment. The system performance
is represented by the reaction of the environment to the
actions. As opposed to the optimization-based approaches
that have better interpretability but need extra hand-crafted
modeling process, the reinforcement learning based ap-
proaches have better representation capabilities and can
learn to set optimal application parameters from experience.

4.4 Model Update

Coping with the drift. During the lifecycle of a ML ap-
plication, the relationship between the input variables and
the performance of the targeting prediction inevitably ex-
periences constant change and drift over time. The model
drift usually originates from the following aspects: 1) invalid
measurement indicator: the replacement of data collection
devices may give rise to different value spaces and a broken
device could always deliver nil reading. 2) concept drift: data
distribution or statistical characteristics, which is uncertain
and frequently varying over time, may lead to concept drift.
3) data drift: The model effectiveness is also prone to inherent
changes such as the seasonal temperature rise and fall. Drifts
can be roughly categorized into several classes: sudden drift
(sudden change of the data pattern). gradual/incremental
drift (new pattern that replaces the old ones within a period
of time), and reoccurring drift (old patterns re-pop up later).

It is imperative to detect such drifts, understand the de-
gree of drift and intervene the model for adapting to chang-
ing environments. There are three representative classes of
drift detection: 1) error rate based approaches focus on the
online detection of errors or sudden changes for triggering
the model update. 2) data distribution based approaches
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mainly measure the statistical similarities between the origi-
nal data and the new data and check if the difference is suffi-
cient for model update. 3) hypothesis test based approaches,
built upon the previous two methods, apply various hy-
pothesis tests to quantify further the severity of model drift.
Base on these approaches, our solution can determine when
to intervene according to the starting and ending points of
the drift, where to intervene, i.e., localizing the concept/data
drift in the feature space. and how to intervene, in the light of
the type and degree of the drift, by adaptively choose model
update strategies. The most straightforward approach is the
model retraining and updating. For concept drift, we en-
semble several base classifiers or utilize knowledge transfer
learning for the emerging new target variables.

System implementation. The amount of data engaged in
the model update has an impact on the training effectiveness
and the system overhead: less data can reduce computation
and storage cost but only reflect the latest data distribution;
more data is beneficial for reshaping models with higher
precision, along with increased overhead. We employ an
adaptive window-based solution to select the optimal data
amount used for on-device training and/or global model
synchronization via ADWIN [11] algorithm: instead of using
a fixed time window, the algorithm calculates the drift rate
from all possible windows and selects the best cut that re-
veals the optimal drift level. We modularize and implement
the drift detection and alarming system in AUTOSTEER. The
detection module is responsible for data retrieval and ex-
traction of data statistical properties, and we then leverage
hypothesis tests to evaluate the drift degree. Once the alarm-
ing system confirms the existence of the model drift, we
employ techniques in §4.2 for efficient on-device training.
For federated learning applications, once local model has
been updated, we also trigger gradient aggregation to keep
the global model up-to-date.

4.5 Infrastructure Monitor and Maintenance

To learn how the applications perform, we either collect
general-purpose telemetry metrics in a black-box manner
or instrument, as an integral part of the models, subsystems
or system services, in a white-box manner. The metric track-
ing and tracing system of our orchestration infrastructure
collects system logs, model metrics (task execution status,
prediction statistics and evaluation metrics as baselines),
system metrics (request latency, error rates, network sta-
tus, etc.), and resource metrics (CPU utilization, memory
utilization, GPU usage, etc.) in real time, and ships them
to a centralized analytic platform. We adopt the random
sampling mechanism on each agent that is deployed on each
physical node, for reducing the overhead of data collection.
More advanced technologies such as sketch [12] can be
further added. Anomaly Detector comprises real-time event-
based processing units, used for identifying per-application
performance degradation while Root-cause Analyzer is imple-
mented to troubleshoot the causes of performance degrada-
tion based on the collected performance indicators.

5 CASE STUDY

In this section, we showcase several real-world applications
backed up by the deployment and runtime management

mechanisms in AUTOSTEER.

Case A: adaptive air quality monitoring. We develop and
deploy an air quality monitoring application, comprising air
quality sensors and traffic cameras installed on the streets.
It is capable of monitoring real-time air quality level around
the city and predict the trends in the short run. Fig. 3 il-
lustrates how components are pipelined and orchestrated in
our platform – We first automatically deploy the application
on a basis of pre-trained models in a distributed environ-
ment and continuously refine the prediction models taking
into account new data through fine-tuning or retraining,
followed by a model re-deployment.

More specifically, there are three separate stages: Initial
stage: Both controller and agent start by performing a reg-
istration and initialization of API endpoints. Training stage:
A container in the cloud server is launched, overseen by
the controller, for training a model that can predict the air
quality in the next hour. The trained model is stored in the
cloud storage (e.g., Github, Google Drive) which maintains
all historical versions. Deploy stage: Once the controller de-
tects a new model version, it instructs all necessary agents
to deploy or re-deploy the application.

Case B: edge-based real-time video analytics. As shown
in Fig. 4(a), we develop an video analytical application
following the edge-cloud paradigm. A set of video gen-
erating devices (e.g., traffic surveillance cameras, drones,
mobile phones) produce live video streams which are then
processed either on low-power edge devices (e.g. Raspberry
pi, Jetson Nano, computing chips), or GPU cluster in Cloud
datacenters. We prototype the video analytic application via
object detection models yolo3 and the Wide Area Network
(WAN) communication between edge devices and the data
center is implemented by using the real time video stream
transmission protocol (RTSP).

The heterogeneity of edge nodes and the interplay
among the edge and cloud introduce uncertainties regard-
ing network latency, hardware slowdown or failures. As
discussed in §4.3, the collected fingerprints and system sta-
tus are mathematically modeled with a hierarchy queuing
model that reveals the relationships between the workload
offloading rate (between the edge and cloud) and the system
latency and throughput. We then formulate a min-latency
optimization problem bounded by a minimal throughput
threshold. For model optimization, we implement two
gradient-based optimization algorithms (i.e., PGD-VAO,
PGS-VAO) to ascertain a solution to minimizing the overall
latency. Fig. 4(b) shows that our solution outperforms other
state-of-the-art task-offloading approaches.

Case C: federated learning enabled connected and au-
tonomous vehicles (CAV). Understanding the road en-
vironments is essential for enabling autonomous vehicles
into reality with reduced traffic accidents and increased
transportation efficiency. However, road environments are
miscellaneous and dynamic due to road types, weather and
road conditions, etc. Fig. 5 illustrates a practical solution
underpinned by our orchestration platform.

The orchestrator first deploys a shared model onto differ-
ent base stations with a complete knowledge of the original
model and onto CAVs with adaptive versions. We transform
the shared model into various size by using knowledge dis-
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tillation and enable the execution smoothness on different
type of CAVs with diverse computing resources. If a vehicle
detects the change of the road environment, the deployed
model will be retrained and updated locally. In the current
prototype, once a vehicle comes into the networking area
covered by a base station, the vehicle attempts to exchange
its local update, e.g., the gradients, with the global model in
the base station. As a result, the global model can always be
kept up-to-date and shared among other CAVs.

6 CONCLUSION

Most prior work related to ML applications focuses on
algorithm design and optimization for better training ML
models. Although such work is essential for specific ap-
plications, there are few studies on the holistic orchestra-
tion solution to maintaining the lifecycle of networked ML
applications. In this article, we firstly highlight several key
challenges facing the orchestration systems. We then present
a set of techniques to deploy ML applications onto resources
across cloud and edge devices and assure their runtime
performance, making models being served free from model
decay and performance degradation due to inappropriate
parameter setting. These assist in finding effective pathways
to automating the management of networked ML applica-
tions at production level, although, admittedly, it still calls

for significant effort in large-scale engineering practices and
integration with wider domain-specific scenarios.
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