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Inverse Dynamics-Based Motion Control

of a Fluid-Actuated Rolling Robot

S.A.Tafrishi, Y.Bai, M. Svinin, E. Esmaeilzadeh, M.Yamamoto

In this paper, the rest-to-rest motion planning problem of a fluid-actuated spherical robot
is studied. The robot is driven by moving a spherical mass within a circular fluid-filled pipe
fixed internally to the spherical shell. A mathematical model of the robot is established and
two inverse dynamics-based feed-forward control methods are proposed. They parameterize the
motion of the outer shell or the internal moving mass as weighted Beta functions. The feasibility
of the proposed feed-forward control schemes is verified under simulations.

Keywords: inverse dynamics, motion planning, spherical robots, fluid actuator

1. Introduction

Spherical robots have gained the attention of robotic researchers in the last decade. These
robots can roll in different environments with a reliance on their symmetric bodies [1]. However,
controlling these robots with the use of conventional actuators is a challenging research problem.
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Based on the actuating schemes, spherical robots can be classified into following types.
They can work by rotating internal wheels, which was named the torque-reaction principle [2, 3].
To control the robots based on the torque-reaction principle, different control strategies were
developed [4, 5]. The control of such robots can be regarded as manipulating an omnidirectional
car inside a ball if the center of mass of the robot always stays in the lower hemisphere. Another
actuation principle is changing the center of mass of the rolling body [6, 7]. This actuation
principle can be realized by moving internal weights connected to rods. Rotating a mass within
the sphere is another alternative way to actuate a rolling robot [8–11]. Trajectory tracking for
pendulum-actuated robots was considered in [4, 12, 13, 25]. The third actuation principle is
based on the conservation of the angular momentum [14–17]. Note that the driving units of
rolling robots can employ combined principles of actuation [10, 18]. Such rolling robots may
have promising agility, but developing control strategies requires an insightful study of their
dynamical models and understanding the correlation between the driving principles.

In our previous work, we introduced a novel fluid-actuated spherical robot [11, 19]. This
robot employs the mass-imbalance principle based on rotating a spherical mass (core) inside
circular pipes. To move the core, a fluid actuator creates pressure in the pipe. However, the
dynamics-based control strategies for this robot have not been studied so far. In this paper, we
establish and test under simulation the feed-forward motion planning strategies based on the
direct specification of either the core or the sphere motion by properly selected time functions.

The paper is organized as follows. In Section 2, the dynamics of the rolling robot are
derived. The inverse dynamics and feed-forward control strategies realizing rest-to-rest motion
are analyzed in Section 3. Simulation results and the performance of the proposed control
strategies are discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Dynamic Model of the Robot

Consider a rolling robot with a fluid-actuation system moving a spherical mass (core) within
a circular pipe, as shown in Fig. 1. The driving mechanism pushes the fluid in the pipe to move
the core. The motion of the core creates a driving moment propelling the whole spherical body.
The driving mechanism is realized as a linear actuator connected through a cylinder [11].

Fig. 1. Rolling motion model along the Y axis with a core in a circular pipe.
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The rolling body consists of a rotating mass-point and a spherical shell, and the fluid effects
on the moving core are modeled by head-loss and drag forces. Let θ be the rotation angle of
the sphere, and let γ be the relative angle of the mass point. By means of the Lagrange –Euler
formalism, the nonlinear dynamics of this rolling system can be established as follows [11, 19]:

M11θ̈ +M12γ̈ +N1 +G1 = 0,

M21θ̈ +M22γ̈ +N2 +G2 = τγ .
(2.1)

The coefficients of the equations of motion are derived as follows:

M11 =MsR
2 + Iw + Is +mcR

2 − 2mcRr cos(γ + θ) +mcr
2,

M12 =M21 = Iw +mcr
2 −mcRr cos(γ + θ),

M22 = Iw +mcr
2, N1 = mcRr(γ̇ + θ̇)2 sin(γ + θ),

N2 = −0.5r2sgn(γ̇)
(
fp

L′
p

Dcg
+ CDρfAc

)
γ̇2, G1 = G2 = m′

crg sin(γ + θ),

(2.2)

where r is the distance from the center of the sphere to the core, R is the radius of the sphere,
mc is the mass of the core, Ms is the mass of the whole system excluding the core and the fluid,
mw = ρf

(
rπ2D2

c/2− νc
)
is the mass of the water within the pipe,m′

c = mc−ρfνc is the apparent
mass of the core, Is = 2MsR

2/3 is the inertia of the spherical shell, Iw = mw

[
(3D2

c/4) + 4r2
]
/4

is the rotational inertia of the water filling the pipe, fp is the Darcy factor, L′
p is the apparent

length of the circular pipe, Dc is the diameter of the core, g is the gravity acceleration, CD is
the drag coefficient, ρf is the fluid density, Ac is the cross-section area of the core, and νc is the
volume of the core.

The input torque τγ , driving the mass point, is τγ = rPpAc, where Pp is the fluid pres-
sure in the main pipe. Note that the model contains the drag and head-loss (N1) as well as
the buoyancy force in the apparent mass of the core (m′). We define the apparent length as
L′
p = Lp + [(KbDc)/fp] where Lp and Kb are the length of the circular pipe and the resistance

coefficient for 180◦ in return bend.

The input fluid pressure to the pipe, Pp, can be found with the use of the Bernoulli equation.
It is obtained as [11, 20]

Pp = Pcl +
ρf
2

[
V 2
cl − V 2

p

]
+ ρfg

[
Zil − Zp (1− cos γil)− hp

]
, (2.3)

where Pcl, Vcl = Ail/AclVil, Vp = VilAil/Ac, Zil, Zp, γil and hp are the pressure and velocity of
the fluid in the cylinder, the velocity of entering fluid to the main pipe, the ground distance of
the injection line and the main pipe’s output port, the angle of the injection line’s port and the
head-loss of entering fluid to the main pipe, respectively. The head-loss hp is given as

hp =
V 2
il

2g

(
fil
Lil
Dil

+Kse

)
, (2.4)

where Vil, fil, Lil, Dil, Kse are the fluid velocity, the Darcy factor, the pipe length and the
diameter of the injection line and the loss coefficient for the transition from the injection to the
main pipe, respectively. The Darcy friction factors for each of the pipe sections are defined by

fp = 64/Rep, fil = 0.316/Re0.25il ,
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where Re is the Reynolds number. Each of the streamlines has its own Reynolds number as
Re = LV ρf/μf where μf is the viscosity of rotating fluid. For instance, the Reynolds number
for the pipe with the core p is Rep = LpVpρf/μf .

Finally, the linear actuator model is taken into consideration. It is expressed as [11, 21]

Ẋl = Vl,

V̇l =
2πη

ml�(1 + μl)
Tm,

(2.5)

where Xl, Vl, η, ml, l, μl, Tm are the displacement and velocity of the linear actuator’s rod,
the efficiency of linear actuator, the mass of the rod and the connected joint, the lead gap, the
friction coefficient between the rotating body and the rod, and also the DC motor torque input,
respectively. Since the linear actuator changes its cycle in each arrival to the endpoint of the
cylinder tank, the cross-section area of cylinder Acl changes by

Acl =

{
πD2

2/4, forward actuation

π
(
D2

2 −D2
1

)
/4, reverse actuation

(2.6)

where D1, D2 are, respectively, the rod diameter and the pusher diameter in the cylinder. Note
that forward/reverse actuation only exists due to the effecting area of the rod with the diameter
of D1 in the one side of the cylinder tank (see Fig. 1).

3. Inverse Dynamics-Based Motion Planning

In this section, we consider an inverse-dynamics based motion planning for the rest-to-rest
movement of the robot. The planning problem can be formulated for two cases. In one case,
the motion of the core (γ(t), γ̇(t), γ̈(t)) is given, and in the other case, the motion of the sphere

(θ(t), θ̇(t), θ̈(t)) is specified by time functions.

In the first case, the first equation in (2.1) is rearranged as

θ̈ = − 1

M11
(M12γ̈ +N1 +G1), (3.1)

and the second equation in (2.1) is used for establishing the driving torque. The singularity
(similar to the one established for pendulum driven rolling robots in [22, 23]) may appear
in (3.1) when M11 becomes zero. It can be shown that

M11 = (MsR
2 + Iw + Is) +mc

(
R2 − 2Rr cos(γ + θ) + r2

)
,

and the condition M11 > 0 always holds true since

MsR
2 + Iw + Is > 0,

and

R2 − 2Rr cos(γ + θ) + r2 � (R− r)2 � 0.

Similar to what has been developed in [13], we presume that the core follows a two-phase
motion profile shown in Fig. 2. In the first phase of this scenario, the core moves counterclockwise
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Fig. 2. Two-phase motion of the rotating core using the defined Beta function.

to −γmax, and in the second step, it returns to zero states moving clockwise. This motion profile
can be captured by the 2nd order derivative of the 4th order Beta function, that is,

γ(t) = a

(
−840

T 7
t5 +

2100

T 6
t4 − 1680

T 5
t3 +

420

T 4
t2
)
, (3.2)

where T is the duration of the given movement, and the parameter a is defined for the condition
that θ(T ) = θdes, where θdes is the desired displacement of the sphere. Similar to what has been
established in [13], one can show that with the selection of this motion profile the condition

θ̇(T ) = 0 is always satisfied.
In the second case, when the motion of the sphere is specified by a time function, the first

equation in (2.1) is rearranged as

γ̈ = − 1

M12

(
M11θ̈ +N1 +G1

)
, (3.3)

and the second equation in (2.1) is used for establishing the driving torque.
It can be shown that the condition M12 > 0, that is,

Iw +mcr
2 −mcRr cos(γ + θ) = mwr

2 +
3

16
mwD

2
c +mcr

2 −mcRr cos(γ + θ) > 0, (3.4)

is satisfied for any γ and θ if
mw

mc

(
1 +

3D2
c

16r2

)
+ 1 >

R

r
. (3.5)

Note that neglecting the mass of fluid (mw = 0) leads to R
r < 1, which does not hold true

and thus implies the existence of singular configurations when M12 becomes zero. However, the
proper selection of the mass of the fluid so that condition (3.5) is satisfied removes the singularity
from consideration.

The motion of the sphere in the second case can be specified with the use of the Beta
function of the 4-th order, that is,

θ(t) = a

(
− 20

T 7
t7 +

70

T 6
t6 − 84

T 5
t5 +

35

T 4
t4
)
, (3.6)

where a = θ(T ).
Having established the motion of the robot, θ(t) and γ(t) (by integrating (3.1) or (3.3),

depending on the chosen case) and having computed the driving torque τγ(t), one can then
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define the fluid pressure Pp in the circular pipe. Note that the driving torque τγ is related to Pp
as [11]

τγ = rPpAc. (3.7)

Therefore, upon substituting the second equation in (2.1) with the terms from (2.2) (apparent
length L′

p and Darcy friction fp) into (3.7), one obtains

Pp =
1

rAc

(
M21θ̈ +M22γ̈ +N2 +G2

)
=

1

rAc

[ (
mcr

2 −mcRr cos(γ + θ)
)
θ̈

+mcr
2γ̈ − 0.5r2sgn(γ̇) ((n1/Vl) + n2) γ̇

2 + (mc − ρfνc) gr sin(γ + θ)

]
, (3.8)

where the constant terms n1 and n2 are defined as follows:

n1 =
64μfAc
DcgρfAcl

, n2 = Kb/g + CDρfAc.

Note that the fluid pressure Pp depends not only on θ and γ and their derivatives, but also on
the velocity of the linear actuator Vl.

Having the defined fluid pressure Pp, one can then define the DC motor torque input Tm
with the use of the Bernoulli equation (2.3). Note that the pressure in the cylinder tank, Pcl, is
related to the motor torque Tm as [11] Pcl = Fcl/Acl = (2πη/Acl)Tm. Thus, upon rearranging
Eq. (2.3) with inclusion of the head-loss (2.4), one obtains

Tm =
1

m1
[Pp −m2V

2
l +m3V

7
4
l − ρfg(Zil − Zp(1− cos γil))], (3.9)

where

m1 =
2πη

lAcl
, m2 =

ρf
2

[
1− (Acl/Ac)

2 − (A2
clKse/A

2
il)
]
,

m3 =
[
0.158

(
L3
ilρ

3
fμfA

7
cl

) 1
4

] /(
A

7
4
ilDil

)
.

Once the expression of the motor torque is established, the states of the linear actuator,
Xl and Vl, can be defined by integrating system (2.5).

4. Simulation Results

In this section, the two control strategies outlined in Section 3 are tested under simulation.
In the simulations, the time duration is set as T = 6 s. The initial values for γ(0), γ̇(0), θ(0),

θ̇(0), Xl(0), and Vl(0) are zero. The desired position of the sphere is set as θ(T ) = 3 rad and

θ̇(T ) = 0 rad/s. The desired position of the core is set as γ(T ) = 0 rad and γ̇(T ) = 0 rad/s. The
parameters of the rolling robot are listed in Table 1. The integration of the equations of motion
is done with the use of Matlab ODE45 function, in which the integration step is set as 0.006 s and
the relative accuracy is set as 0.001. In the simulations, the velocity of the linear actuator, VL,
is reset to zero every time the rod reaches the end of the cylinder. Note that the sign change
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Table 1. Parameters of the robot

Variable Kse Kb � μl ml η CD Ms

Value 0.9 0.2 0.007 m 0.75 0.2 kg 96% 0.8 1 kg

Variable r LT μf γil Is Dc Dil D1

Value 0.131 m 0.05 m 1.81×10−3 kg/m · s 10o 0.0140 kg·m2 0.028 m 0.00635 m 0.0047 m

Variable mc ρf g R D2 Lp Lil Iw

Value 0.25 kg 1000 kg/m3 9.8 m/s2 0.145 m 0.0097 m 0.411 m 0.145 m 0.0086 kg·m2

of VL presents the flow direction inside the pipes as it comes from solving (3.9) with Pp and Vl
as variables. When the fluid is sucked from the input port (it is connected to the circular pipe)
by the cylinder, the states {Xl, Vl} have negative values. But when the fluid is injected from
the cylinder to the circular pipe, they have positive values. In physical systems, the direction of
the flow is controlled by control valves (see [10, 11] for the control valve integration).

In the first case, when the motion of the core is specified by (3.2), one can find a = −15.92
rad from the condition θ(T ) = 3 rad. The simulation results are presented in Figs. 3–4. We
can observe that the given motion of the core results in the desired rest-rest displacement of
the sphere. As the core moves to the upper hemisphere, its circulation begins to dissipate the
positive velocity of the sphere. In particular, after 2.5 s, where the core passes the zenith point
of the sphere (see Fig. 4), the rest of its rotation creates a negative sphere velocity as opposed

to the positive one (see Fig. 3 for θ̇). The dynamics of the linear actuator states are shown in
Fig. 3. The desired propulsion of the sphere is successfully created by the driving mechanism.
However, it should be noted that the dynamics of the linear actuator are not at rest at the final
moment of time.

Fig. 3. Results of inverse dynamics in simulation of the first case.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(4), 611–622
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Fig. 4. Core location and velocity with respect to the base frame in the first case.

Fig. 5. Results of inverse dynamics in simulation of the second case.

In the second case, the motion of the sphere is specified by (3.6), where the parameter a
is set to 3 rad. The motion of the core is obtained by integrating (3.3). The simulation results
are shown in Figs. 5–6. The absolute position of the core (γ + θ) follows, qualitatively, the
two-phase motion pattern as in the first case, but with minor oscillations. However, the core (γ)
stays at the lower hemisphere (see Fig. 6). Again, one can notice that the dynamics of the linear
actuator are not at rest at the final moment of time. However, it is more important to note
that the velocity of the core is not exactly zero (although very close to it). Contrary to the first
case where the rest-to-rest motion is ensured (the formal proof can be constructed similarly to
what has been done in [24, 25] for the pendulum-actuated robot), the convergence of γ̇ to zero
cannot be guaranteed. The choice of a higher-order Beta function for the motion of the sphere
may decrease the end-point velocity of the core. A systematic analysis of the convergence of γ̇
to zero will be addressed in the future work.

To evaluate the performance of the control strategies, we now simulate the motion of the
robot for different time constants T ∈ [1.5, 3] and desired sphere position θdes ∈ [0, 10]. The
purpose of these simulations is to evaluate the level of oscillations in the velocity profiles of the

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(4), 611–622
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Fig. 6. Core location and velocity with respect to the base frame in the second case.

Fig. 7. Example of simulation to compute the maximum amplitude change Δθ̇ for the case that the core
states are specified.

core or the sphere depending on the selected control strategy. To unify this analysis into one
scheme, define x to be the variable defined by numerical integration (the variable that is not
specified directly by a given function of time). So, x stands for either θ (obtained by solving
Eq. (3.1) in the 1st control strategy) or γ (obtained by solving Eq. (3.3) in the 2nd control
strategy).

In what follows, we define the maximum amplitude change Δẋ of the velocity signal via
comparing the value ẋ(t) with the filtered curve (refer to Fig. 7 as an example of x = θ) as
follows:

Δẋ =

∣∣∣∣ max
t∈[0,T ]

{ẋ(t)− ẋm(t)}+ min
t∈[0,T ]

{ẋ(t)− ẋm(t)}
∣∣∣∣ /2, (4.1)

where ẋm is the filtered curve of ẋ found as the backward-looking moving average by

ẋm(t) =
1

w

t∫
t−w

ẋ(τ)dτ,

where w is the moving average window size set as 0.1 s in our simulations.
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Fig. 8. a) Velocity fluctuation of the carrier state when the core states are given. b) Velocity fluctuation
of the core when the carrier states are given.

The simulation results are shown in Fig. 8. For the case when the motion of the core is given
(see Fig. 8a), the sphere velocity does not have serious oscillations. However, as the movement
duration T decreases and the traveling distance θdes increases, the sphere velocity has larger
oscillations. This feature also holds true for the case when the motion of the sphere is given (see
Fig. 8b), however, the motion profile is more oscillating compared to the first movement strategy.

As an exception, note that the peak value of the given core case Δθ̇ is very high in contrast to
the given sphere case Δγ̇ at T � 2 s and θdes > 8 rad. Thus, if the motion of the core is assigned
directly (T > 2 s), the amplitude of the velocity oscillations is less compared to the case when
the motion of the sphere is assigned. Overall, we can interpret that the control based on the
Beta function (or any other continuous function used in specifying the desired motion) would
not be suitable for a relatively short movement duration and a relatively long traveling distance.

5. Conclusions

In this paper, the rest-to-rest motion planning problem was addressed for a fluid-actuated
spherical robot. The robot was composed of an outer shell actuated by an internal mass. The
internal mass moved within a fluid-filled circular pipe fixed inside the shell. The motion of the
mass was led by the fluid circulation in the pipe created by a linear actuator.

To develop feasible control laws, the dynamic model of the spherical rolling robot including
the driving mechanism was first derived and then, two feed-forward control methods were pro-
posed. The methods were based on the parameterization for the motions of the shell or that of
the internal mass by Beta functions. Finally, the validity of the proposed feed-forward methods
was tested under simulations.

It should be noted that in this paper we dealt only with the planar motion of the rolling
robot. The development of control algorithms for three-dimensional motion will be addressed
in a separate paper. Also, experiments will be conducted in future work.
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