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Supplementary Note 
A robust data analysis pipeline to analyze aSA performance 
The aSA technology was developed to enable the analysis of multiple sample types, before 
subsequent optimisation if required. Accordingly, an aSA data analysis pipeline was designed 
(written in Python) that could apply a range of machine learning (ML) algorithms to a variety 
of potential datasets using established best practices1. A total of 6 ML algorithms were applied 
to each dataset in an automated fashion with the aim of estimating the performance that could 
be achieved in the future, and to allow more tailored approaches to be developed for bespoke 
applications as required. The data analysis pipeline is designed to be as generic as possible 
rather than pre-selecting a specific ML algorithm to use. This includes checkpoints (detailed 
below) where the user must analyse the outputs with regards to their dataset before moving 
to the next step or choosing subsequent variables to use. This removes any “black box” 
approach as the user has full control of how the dataset is treated in the pre-processing and 
ML analysis. 
 
Pre-processing was applied to the raw fluorescence aSA array data before ML analysis 
(Supplementary Figure 10). In stage one, data parsing converted the raw data inputs of the 
fluorescence readings into dataframe format. Readings were min-max scaled relative to the 
DPH, “DPH + analyte” and “aHB + DPH” readings on the same plate using Equation 1. 
Technical repeats of the same analyte – which could be on the same plate or spread across 
multiple different plates – were then averaged by calculating the median reading for each aHB 
in the aSA. At that stage, the individual data points and median aSA fingerprints were 
outputted for visual inspection. Finally, outliers from automated liquid-handling errors were 
identified using a generalized extreme Studentized deviate (ESD) test2, 3 and removed before 
the final datasets were taken into ML analysis. 
 
The aSA ML pipeline (Supplementary Figure 11) trains 6 different classifiers that vary in 
complexity in addition to two dummy classifiers: K-nearest neighbors4, 5, Gaussian Naïve 
Bayes, linear discriminant analysis (LDA), support vector classification (SVC) with either a 
linear kernel or a radial basis kernel6, and AdaBoost7. The dummy classifiers randomly assign 
an output class label – and hence mimic random guessing – either by predicting the most 
frequent class for every sample (“popular”) or by scrambling the true labels (“stratified”). By 
spot checking multiple models, users are able to select the most suitable algorithm for their 
application. The ML algorithms have been implemented using the open source Python 
package scikit-learn8. 
 
To overcome limitations in the amount of data available for training and testing each model, 
stratified k-folds cross-validation9 (CV) was employed. Stratified k-folds cross-validation splits 
a dataset into k subsets, with each subset containing approximately the same relative number 
of samples of each analyte class as the complete dataset. In each fold, one subset formed the 
test set while the remaining subsets were merged into the training set, and this was repeated 
k times. Thus, each subset was used as the test set once, and the overall accuracy was 
calculated from the mean average ± standard deviation across all k-folds. However, some ML 
algorithms in the aSA ML pipeline (e.g., SVC) have associated hyperparameters that require 
tuning, calling for three independent datasets: a training dataset, a validation dataset 
(hyperparameter tuning) and a test dataset (algorithm selection). In the aSA ML pipeline, two 
nested CV loops were used (Supplementary Figure 11). The outer loop splits the data into k1 

subsets, with one subset selected to be the test set. The remaining subsets were merged and 
the second loop divided these data into k2 subsets, with one subset as the validation set and 
the remaining subsets merged into the training dataset. This avoided overfitting of the ML 
algorithms. 
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For all datasets except the tea, k was set to 5 in both the inner and outer CV loops. For the 
tea, k was set to 10 in the outer loop and to 9 in the inner loop, in order that each validation/test 
set comprised all fingerprints measured for one brand of each of the three tea classes. This 
ensured that, across both the inner and outer CV loops, model performance was always 
assessed using tea brands that had not previously been seen during model training.  
 
Throughout the aSA ML pipeline, users are required to analyze the outputs and select the 
subsequent best course of action. Accordingly, the aSA and aSA ML pipeline can be applied 
to differentiate a wide range of analytes and the resulting data that is generated. 
 
Individual aHB importance can be determined for each application 
The aSA used here consisted of 46 aHBs in four different groups: hydrophobic channels, polar 
mutants, charged mutants and aromatic mutants. However, the majority of these aHBs were 
similar and differed in a single residue per peptide chain.  Therefore, it was possible that 
different aHBs provided similar information in the aSA outputs, or noise if the analyte did not 
interact with the reporter dye in the channel. Therefore, feature correlation coefficients 
(Spearman’s rank) were calculated for each classification problem to visualise the 
classes/subsets of aHBs with high or low correlation coefficients. Where appropriate, the aSA 
ML pipeline employed methods to determine feature importance of the aHBs in each 
classification problem (Supplementary Figure 10)8. This served the purpose of removing any 
“redundant” aHBs that provided the same information or added noise to the model. This 
increased the accuracy of the model and/or reduced compute needed to train the ML 
algorithms. In addition, removing unnecessary aHBs will allow larger numbers of fingerprints 
to be collected on each multi-well plate, increasing the robustness of the measurements and 
reducing overall resources and cost in the future. These are all important considerations for 
biotechnological applications.  
 
For each dataset, a 5x2 CV F-test (Supplementary Figure 11)10, 11 was used to test whether 
the best model (as assessed by accuracy/F1 score) trained using the full aSA (46 aHBs) 
performed significantly better than the random guessing of the dummy classifiers. A 5x2 CV 
F-test was also used to compare whether the performance of the best model trained using a 
reduced number of features differed significantly from that of the best model trained on the full 
aSA. 
 
Three feature selection methods are implemented in the aSA pipeline: KBest analysis, an 
ExtraTrees classifier, and permutation analysis. KBest analysis (which in our pipeline 
calculates the ANOVA F-value between the readings measured for each barrel) is a univariate 
method i.e. it calculates the relationship between each feature (aHB) and the output, and 
therefore assumes each feature is independent. The sequence and structural similarity of the 
aHBs in the aSA make this unlikely. Nonetheless, KBest analysis identified the aHBs that 
provided the most/least signal with regards to the output. 
 
The ExtraTrees classifier trains multiple decision trees on a random subset of data and the 
results are averaged to make a prediction. Importance scores are calculated as the average 
increase in purity achieved when using a particular feature to split the data across all trees in 
which that feature is included (i.e. the Gini importance score of the feature). Whilst correlations 
between the included aHBs are reflected in the scores, as more trees incorporating different 
subsets of aHBs are included in the average, feature correlations have less of an effect on 
the importance scores. Thus, correlation between aHBs had little effect on the importance 
scores in this case as the number of trees was 100 and the number of bootstrap repeats 
numbered 1000. 
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In permutation analysis, feature importance scores for each aHB were calculated as the 
difference between two ML models. The first model was trained with the original dataset, the 
second trained on a dataset in which the data points of the specific aHB were randomly 
permuted. As such, this analysis took feature correlations into account by measuring the 
unique information that a particular aHB provided in the context of all available aHBs. 
 
KBest and permutation analysis were used in the training of the ML algorithms and thus the 
reduction of features in the aSA for each classification problem. ExtraTrees is an intermediate 
method compared to the other two feature importance analysis approaches when considering 
assumptions about feature independence. Additionally, the ExtraTrees classifier selected 
similar features (aHBs) as the other two methods (Supplementary Fig. 24). Therefore, to 
optimize the speed and resources required by the aSA ML pipeline, an ExtraTrees classifier 
was not applied in the feature reduction stage. However, the aSA pipeline has been designed 
to enables users to choose which feature importance methods to apply for their specific 
application in the future. 
 
Finally, to limit the likelihood that subsets of aHBs were identified as important by random 
chance—i.e., for a specific dataset rather than an entire population—the aSA ML pipeline 
included feature selection on both the whole dataset, and the training set alone within the 
nested CV. Results of both methods were then compared in the pipeline to confirm that similar 
aHBs were chosen. This compromise, rather than performing feature selection on a single 
training dataset for instance, was made due to the relatively small size of datasets that proof-
of-concept biosensor studies typically obtain, allowing the number and class of aHBs to be 
tailored for a specific classification problem at an early stage. 
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Supplementary Table 1. Sedimentation velocity AUC fitting statistics for the new aHB designs 
in this study. 

Peptide ID v̅1 (cm3 g-1) Fitted Mass2 
(95% confidence, 3 SF) 

f/f03 s4 (S) s20,w5 (S) 

4 0.772 18200 1.238 1.604 1.673 
5 0.757 18200 1.251 1.704 1.774 
6 0.753 22600 1.300 1.932 2.010 
7 0.772 18300 1.200 1.657 1.729 
8 0.763 22300 1.317 1.806 1.882 
9 0.756 17100 1.224 1.679 1.747 
12 0.777 20600 1.302 1.618 1.689 
17 0.768 21500 1.295 1.722 1.795 
18 0.768 18200 1.233 1.636 1.706 
19 0.761 19400 1.176 1.856 1.933 
20 0.751 23400 1.300 1.991 2.072 
21 0.748 19600 1.208 1.928 2.006 
23 0.754 21400 1.215 1.979 2.059 
24 0.780 19500 1.124 1.772 1.850 
25 0.767 20000 1.213 1.782 1.858 
26 0.769 20300 1.248 1.738 1.812 
27 0.761 20000 1.205 1.849 1.926 
28 0.775 16900 1.228 1.519 1.584 
29 0.765 19500 1.299 1.656 1.725 
30 0.756 23800 1.500 1.707 1.777 
31 0.756 22400 1.423 1.725 1.795 
32 0.775 24900 1.362 1.807 1.852 
33 0.756 18800 1.293 1.690 1.760 
34 0.757 20600 1.182 1.955 2.036 
37 0.775 19200 1.257 1.616 1.685 
38 0.791 18100 1.264 1.416 1.482 
39 0.774 18300 1.317 1.496 1.561 
40 0.771 19900 1.171 1.807 1.885 
41 0.770 22700 1.212 1.792 1.869 
43 0.752 22400 1.287 1.949 2.028 
44 0.770 19300 1.193 1.750 1.825 
45 0.771 18700 1.126 1.804 1.882 
46 0.770 22700 1.300 1.784 1.861 
1 Partial specific volume calculated using Sednterp (http://rasmb.org/sednterp/) 
2 Mass quoted to 3 significant figures 
3 Best-fit frictional ratio 
4 Sedimentation coefficient 
5 Normalized sedimentation coefficient in water at 20 °C 

  



Dawson et al. a-Helical barrel Sensor Arrays  S6 

Supplementary Table 2. Crystallisation conditions for the new X-ray crystal structures 
determined in this study 

Peptide systematic name1 aHB ID Crystallisation condition2,3 
CC-Type2-[LaId]4-L14A 4 50 mM sodium cacodylate, 20% MPD and 2.5% PEG 

8000, pH 6.5 
CC-Type2-[LaId]4-I24A 7 50 mM TRIS and 10% v/v ethanol, pH 8.5 
CC-Type2-[MaId]4 9 250 mM ammonium sulfate and 50 mM MES, pH 6.5 
CC-Type2-[QgLaId]4 15 50 mM sodium acetate, 1% w/v PEG 4000, pH 5.0 
CC-Type2-[LaId]4-I17C 17 400 mM potassium sodium tartrate tetrahydrate and 50 

mM sodium HEPES, pH 7.5 
CC-Type2-[LaId]4-L21N-I24N 21 100 mM magnesium chloride hexahydrate, 50 mM TRIS 

and 1.7 M 1,6-hexanediol, pH 8.5 
CC-Type2-[LaId]4-I24N 25 50 mM BICINE and 5% v/v MPD, pH 9 
CC-Type2-[LaId]4-I24S 26 100 mM sodium citrate tribasic dihydrate, 50 mM sodium 

cacodylate and 15% v/v 2-propanol, pH 6.5 
CC-Type2-[LaId]4-I17K-W19F 29 100 mM sodium HEPES, 0.1 M NaCl and 10% v/v 2-

propanol, pH 7.5 
CC-Type2-[LaId]4-L21K 32 100 mM sodium citrate tribasic dihydrate, 50 mM sodium 

HEPES and 10% v/v 2-propanol, pH 7.5 
CC-Type2-[LaId]4-L7Y 41 100 mM ammonium formate and 10% w/v PEG 3350 
CC-Type2-[LaId]4-L28Y 46 50 mM sodium HEPES, 5% w/v PEG 8000 and 4% v/v 

ethylene glycol, pH 7.5 
1 F 4-Bromo-phenylalanine 
2 Dispensed concentrations based on 1:1 dilution with peptide solution  
3 HEPES - 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonate; TRIS - 2-amino-2-
(hydroxymethyl)propane-1,3-diol; MDP - 2-methyl-2,4-pentanediol; MES - 2-morpholinoethanesulfonic 
acid; BICINE - 2-(bis(2-hydroxyethyl)amino)acetic acid 
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Supplementary Table 3. Model parameters and results for the classification of amino acids by 
the aSA 

Algorithm1 Features2 Accuracy (%) Recall (%) Precision (%) F1 score 
(%) 

Dummy classifier 
(popular) 

10 

18 ± 6 18 ± 6 3 ± 2 6 ± 3 

Dummy classifier 
(stratified) 7 ± 10 7 ± 10 11 ± 16 8 ± 12 

K-neighbors classifier 58 ± 9 58 ± 9 60 ± 9 56 ± 9 
Gaussian Naïve Bayes 69 ± 16 69 ± 16 73 ± 20 69 ± 17 

LDA 56 ± 16 56 ± 16 55 ± 20 53 ± 17 
SVC (linear) 64 ± 9 64 ± 9 62 ± 12 60 ± 9 

SVC (rbf) 51 ± 13 51 ± 13 54 ± 9 50 ± 10 
AdaBoost classifier 36 ± 12 36 ± 12 33 ± 19 31 ± 12 

1 Feature selection method: Permutation analysis. LDA – linear discriminant analysis. SVC – support 
vector classification. Nested stratified k-folds cross validation: k=5 (inner and outer loops) 
2 Two-sided 5x2 CV F-test p-values: full and reduced feature aSA = 0.60 (no significant difference), full 
aSA and dummy classifier = 0.001 (full aSA significantly better performance) 

 
Supplementary Table 4. Model parameters and results for the classification of fatty acids by the 
aSA 

Algorithm1 Features2 Accuracy (%) Recall (%) Precision (%) F1 score 
(%) 

Dummy classifier 
(popular) 

2 

22 ± 0 22 ± 0 5 ± 0 8 ± 0 

Dummy classifier 
(stratified) 7 ± 6 7 ± 6 7 ± 6 7 ± 6 

K-neighbors classifier 100 ± 0 100 ± 0 100 ± 0 100 ± 0 
Gaussian Naïve Bayes 100 ± 0 100 ± 0 100 ± 0 100 ± 0 

LDA 91 ± 9 91 ± 9 96 ± 4 91 ± 9 
SVC (linear) 93 ± 6 93 ± 6 94 ± 8 92 ± 7 

SVC (rbf) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 
AdaBoost classifier 78 ± 8 78 ± 8 73 ± 11 73 ± 9 

1 Feature selection method: K-Best analysis. LDA – linear discriminant analysis. SVC – support vector 
classification. Nested stratified k-folds cross validation: k=5 (inner and outer loops) 
2 Two-sided 5x2 CV F-test p-values: full and reduced feature aSA = 0.38 (no significant difference), full 
aSA and dummy classifier = 0.0003 (full aSA significantly better performance) 

 
Supplementary Table 5. Model parameters and results for the classification of carbohydrates by 
the aSA 

Algorithm1 Features2 Accuracy (%) Recall (%) Precision (%) F1 score 
(%) 

Dummy classifier 
(popular) 

4 

21 ± 1 21 ± 1 4 ± 1 7 ± 1 

Dummy classifier 
(stratified) 19 ± 4 19 ± 4 29 ± 4 22 ± 4 

K-neighbors classifier 46 ± 23 46 ± 23 44 ± 23 43 ± 22 
Gaussian Naïve Bayes 40 ± 15 40 ± 15 37 ± 14 37 ± 14 

LDA 59 ± 20 59 ± 20 57 ± 25 56 ± 22 
SVC (linear) 52 ± 25 52 ± 25 50 ± 30 48 ± 26 

SVC (rbf) 61 ± 23 61 ± 23 61 ± 29 58 ± 25 
AdaBoost classifier 41 ± 13 41 ± 13 26 ± 17 30 ± 17 

1 Feature selection method: KBest analysis. LDA – linear discriminant analysis. SVC – support vector 
classification. Nested stratified k-folds cross validation: k=5 (inner and outer loops) 
2 Two-sided 5x2 CV F-test p-values: full and reduced feature aSA = 0.029 (reduced feature aSA 
significantly better performance than the full aSA), reduced aSA and dummy classifier = 0.0001 
(reduced aSA significantly better performance) 
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Supplementary Table 6. Commercial tea brands used in this study 
Tea samples 

Number Brand Number Brand Number Brand 
Black 1 Clipper Green 1 Clipper Grey 1 Asda 
Black 2 Diplomat Green 2 Diplomat Grey 2 Clipper 
Black 3 Dragonfly Tea Green 3 Double Dragon Grey 3 Co-op 
Black 4 PG Tips Green 4 Dragonfly Tea Grey 4 Devonshire Tea 
Black 5 Pukka Green 5 Holland & Barrett Grey 5 Diplomat 
Black 6 Sainsbury’s Gold Green 6 Joe’s Tea Co Grey 6 Joe’s Tea Co 
Black 7 Tesco Green 7 Qi Grey 7 Marks & Spencer 
Black 8 Tetley Green 8 Sainsbury’s Grey 8 Pukka 
Black 9 Twinings Green 9 Tetley Grey 9 Tesco 
Black 10 Yorkshire Tea Green 10 Twinings Grey 10 Twinings 
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Supplementary Table 7. Model parameters and results for the classification of different teas by 
the aSA 

Algorithm1 Features2 Accuracy (%) Recall (%) Precision (%) F1 score 
(%) 

Dummy classifier 
(popular) 

4 

33 ± 2 33 ± 2 11 ± 1 16 ± 1 

Dummy classifier 
(stratified) 27 ± 3 27 ± 3 23 ± 3 25 ± 3 

K-neighbors classifier 82 ± 13 82 ± 13 83 ± 12 82 ± 13 
Gaussian Naïve Bayes 79 ± 16 79 ± 16 82 ± 15 78 ± 16 

LDA 84 ± 14 84 ± 14 86 ± 15 83 ± 16 
SVC (linear) 79 ± 10 79 ± 10 82 ± 11 78 ± 12 

SVC 84 ± 10 84 ± 10 87 ± 9 84 ± 10 
AdaBoost classifier 66 ± 7 66 ± 7 57 ± 14 59 ± 10 

1 Feature selection method: Permutation analysis. LDA – linear discriminant analysis. SVC – support 
vector classification. Nested stratified k-folds cross validation: k=10 (outer loop), k=9 (inner loop) 
2 Two-sided 5x2 CV F-test p-values: full and reduced feature aSA = 0.62 (no significant difference), full 
aSA  and dummy classifier = 2 x10-6 (full aSA significantly better performance) 
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Supplementary Table 8. aSA predictions for individual tea brands 
Tea Sample Overall accuracy (%) Number of predictions1 Correct prediction2 Black Green Grey 
Black 1 100 6 0 0 Yes 
Black 2 50 3 0 3 No 
Black 3 83 5 0 1 Yes 
Black 4 100 6 0 0 Yes 
Black 5 33 2 0 4 No 
Black 6 80 4 0 1 Yes 
Black 7 83 5 0 1 Yes 
Black 8 100 6 0 0 Yes 
Black 9 83 5 0 1 Yes 
Black 10 83 5 0 1 Yes 
Green 1 100 0 6 0 Yes 
Green 2 100 0 6 0 Yes 
Green 3 100 0 5 0 Yes 
Green 4 100 0 6 0 Yes 
Green 5 83 0 5 1 Yes 
Green 6 100 0 6 0 Yes 
Green 7 100 0 6 0 Yes 
Green 8 100 0 6 0 Yes 
Green 9 100 0 6 0 Yes 
Green 10 100 0 6 0 Yes 
Grey 1 67 2 0 4 Yes 
Grey 2 83 1 0 5 Yes 
Grey 3 100 0 0 6 Yes 
Grey 4 67 1 1 4 Yes 
Grey 5 83 1 0 5 Yes 
Grey 6 100 0 0 6 Yes 
Grey 7 33 4 0 2 No 
Grey 8 83 0 1 5 Yes 
Grey 9 100 0 0 6 Yes 
Grey 10 67 2 0 4 Yes 
1 Most prominent prediction shaded the relevant colour 
2 A correct prediction occurs if most prominent prediction matches true sample label 
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Supplementary Table 9. Details of commercial sera samples analysed using the aSA 

ID Collection 
Date Range Diagnosis Sex Mean 

Age Ethnicity 
Mean 
Height 
(cm) 

Mean 
Weight 

(kg) 

Mean 
BMI (kg 

m-2) 
Medical 
history1,2,3 

1 

18/05/2017 
– 

20/03/2020 
Control F 71 ± 6 Caucasian 166 ± 4 78 ± 7 28 ± 2 

DM 
2 H 
3 Hy 
4 H, HF 
5 H, O 
6 H 
7 H, VV 
8 H, HF 
9 MVS 
10 MVI 
11 O 
12 DM, H 
13 H 
14 A 
15 

23/03/2019 
– 

13/06/2019 
NASH F 73 ± 3 Caucasian 167 ± 3 83 ± 5 30 ± 2 

CAD, H, O 
16 CAD, H, O 
17 CAD, H 
18 CAD, H, O 
19 CAD, H 
20 CAD, H 
21 CAD, H, O 
22 CAD, H 
23 CAD, H 
24 CAD, H 
25 CAD, H 
26 CAD, H 
27 CAD, H, O 
28 CAD, H, O 
29 

09/08/2019 
– 

17/08/2020 
CAD F 67 ± 7 Caucasian 165 ± 5 76 ± 8 28 ± 2 

O 
30 H 
31 nd 
32 nd 
33 C 
34 GU, O 
35 nd 
36 nd 
37 nd 
38 nd 
39 nd 
40 MU, CC 
41 nd 
42 TN 
1 Medical history provided “as is” by the commercial biobank. No information is provided regarding being 
current or historic comorbidities 
2 DM – Diabetes mellitus type 2; H – Hypertension; HF – Heart failure; O – Obesity; VV – Varicose veins; MVS 
– Mitral valve stenosis; MVI – Mitral valve insufficiency; A – Anaemia; C – Cholelithiasis; GU – Gastric ulcer; 
MU – Myoma of uterus; CC – Chronic cholecystitis; TN – Thyroid node 
3 nd – No medical history information was provided with sample 
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Supplementary Table 10. Model parameters and results for the classification of NASH and non-
NASH samples by the aSA 

Algorithm1 Features2 Accuracy (%) Recall (%) Precision (%) F1 score 
(%) 

Dummy classifier 
(popular) 5 66 ± 5 66 ± 5 44 ± 7 52 ± 7 

Dummy classifier 
(stratified) 5 78 ± 5 78 ± 5 84 ± 3 74 ± 7 

K-neighbors classifier 5 88 ± 18 88 ± 18 89 ± 16 88 ± 17 
GaussianNB 5 85 ± 11 85 ± 11 86 ± 11 85 ± 11 

Linear Discriminant 
analysis 5 90 ± 5 90 ± 5 93 ± 4 90 ± 6 

SVC (linear) 5 90 ± 5 90 ± 5 93 ± 4 90 ± 6 
SVC (rbf) 5 83 ± 7 83 ± 7 87 ± 7 83 ± 7 

AdaBoost classifier 5 85 ± 11 85 ± 11 86 ± 11 85 ± 11 
1 Feature selection method: Permutation analysis. LDA – linear discriminant analysis. SVC – support 
vector classification. No class balancing applied. Nested stratified k-folds cross validation: k=5 (inner and 
outer loops) 
2 Two-sided 5x2 CV F-test p-values: full and reduced feature aSA = 0.46 (no significant difference), full 
aSA and dummy classifier (stratified) = 0.038 (full aSA significantly better performance), full aSA and 
dummy classifier (popular) = 0.003 (full aSA significantly better performance) 

 
 
 
 
Supplementary Table 11. Model parameters and results for the classification of NASH, CAD and 
control samples by the aSA 

Algorithm1 Features2 Accuracy (%) Recall (%) Precision (%) F1 score 
(%) 

Dummy classifier 
(popular) 4 28 ± 5 28 ± 5 8 ± 3 13 ± 4 

Dummy classifier 
(stratified) 4 36 ± 19 36 ± 19 23 ± 16 28 ± 17 

K-neighbors classifier 4 69 ± 12 69 ± 12 76 ± 11 68 ± 12 
GaussianNB 4 74 ± 17 74 ± 17 74 ± 21 71 ± 20 

Linear Discriminant 
analysis 4 74 ± 15 74 ± 15 80 ± 11 74 ± 14 

SVC (linear) 4 64 ± 22 64 ± 22 67 ± 22 64 ± 23 
SVC (rbf) 4 67 ± 20 67 ± 20 70 ± 24 65 ± 21 

AdaBoost classifier 4 54 ± 13 54 ± 13 52 ± 22 50 ± 16 
1 Feature selection method: Permutation analysis. LDA – linear discriminant analysis. SVC – support 
vector classification. Nested stratified k-folds cross validation: k=5 (inner and outer loops) 
2 Two-sided 5x2 CV F-test p-values: full and reduced feature aSA = 0.46 (no significant difference), full 
aSA and dummy classifier = 0.004 (full aSA significantly better performance) 
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Supplementary Figure 1. Helical wheel of an aHB. The a and d sites of the heptad sequence repeat, 
abcdefg, are highlighted in red and blue, respectively. The sequence of CC-Type2-[LaId]4 (peptide ID 3) 
is shown as an example in one of the helices. 
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Supplementary Figure 2. MALDI-TOF spectra of the new aHB peptides designed for this study.  
Sequences, calculated mass and observed mass for individual peptide IDs can be found in 
Supplementary Table 1. Source data are provided as a Source Data file.  
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Supplementary Figure 3. Analytical HPLC traces of the new aHB peptides designed for this 
study. Top: Analytical HPLC chromatogram at 220 nm. Bottom: Analytical HPLC chromatogram at 280 
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nm. Sequences for individual peptides can be found in Supplementary Table 1. Source data are 
provided as a Source Data file. 
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Supplementary Figure 4. CD spectra of the new aHB peptides designed for this study. Sequences 
for individual peptides numbered can be found in Supplementary Table 1. Conditions: 10 µM peptide, 
PBS, pH 7.4, 20 °C. Source data are provided as a Source Data file. 
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Supplementary Figure 5. CD thermal denaturation profiles of the new aHB peptides designed 
for this study. Sequences for individual peptides can be found in Supplementary Table 1. Conditions: 
10 µM peptide, PBS, pH 7.4, 5-95 °C. Source data are provided as a Source Data file.  
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Supplementary Figure 6. Sedimentation velocity (SV) AUC traces of the new aHB peptides 
designed for this study. Sequences for individual peptides can be found in Supplementary Table 1. 
Fit data for individual peptides can be found in Supplementary Table 2. Residuals are shown as a 
bitmap below the fitted data. Conditions: 150 µM peptide, PBS, pH 7.4, 20 °C. Source data are provided 
as a Source Data file.  
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Supplementary Figure 6 continued. Sedimentation velocity (SV) AUC traces of the new aHB 
peptides designed for this study. Sequences for individual peptides can be found in Supplementary 
Table 1. Fit data for individual peptides can be found in Supplementary Table 2. Residuals are shown 
as a bitmap below the fitted data. Conditions: 150 µM peptide, PBS, pH 7.4, 20 °C. Source data are 
provided as a Source Data file.  
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Supplementary Figure 7. Orthogonal views of new X-ray crystal structures of aHB peptides 
determined through this study. a, CC-Type2-[LaId]4-L14A, ID: 4, PDB: 7NFG. b, CC-Type2-[LaId]4-
I24A, ID: 7, PDB: 7NFF. c, CC-Type2-[MaId]4, ID: 9, PDB: 7NFH. d, CC-Type2-[QgLaId]4, ID: 15, PDB: 
8A09. e, CC-Type2-[LaId]4-I17C, ID: 17, PDB: 7NFO. f, CC-Type2-[LaId]4-L21N-I24N, ID: 21, PDB: 
7NFN. g, CC-Type2-[LaId]4-I24N, ID: 25, PDB: 7NFL. h, CC-Type2-[LaId]4-I24S, ID: 26, PDB: 7NFK. i, 
CC-Type2-[LaId]4-I17K, ID: 29, PDB: 7NFP. j, CC-Type2-[LaId]4-L21K, ID: 32, PDB: 7NFM. k, CC-Type2-
[LaId]4-L7Y, ID: 41, PDB: 7NFI. l, CC-Type2-[LaId]4-L28Y, ID: 46, PDB: 7NFJ. 
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Supplementary Figure 8. Chemical structures of the fatty acids (FAs), carbohydrates (CHOs) 
and amino acids (AAs) analysed with the aSA. 1. Butanoic acid; 2. Decanoic acid; 3. Palmitic acid; 
4. Oleic acid; 5. Nervonic acid; 6. Glucose; 7. Mannose; 8. Glucosamine; 9. Fructose; 10. Maltose; 11. 
Serine; 12. Valine; 13. Glutamic acid; 14. Arginine; 15. Tryptophan 
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Supplementary Figure 9. The pre-processing pipeline of the aSA analysis. 
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Supplementary Figure 10. The machine learning pipeline of the aSA analysis. 
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Supplementary Figure 11. Flow chart illustrating how a 5x2 CV F-test is performed.  
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Supplementary Figure 12. Min-max scaled fluorescent signals from the aSA upon being 
challenged with amino acids. a, Glutamate, n=8 independent samples. b, Arginine, n=9 independent 
samples. c, Serine, n=9 independent samples. d, Valine, n=10 independent samples. a-d, Boxes show 
the interquartile range with the median presented as a line. Whiskers show 1.5 x interquartile range, or 
the range if a smaller value. Outliers are shown as diamonds. Source data are provided as a Source 
Data file. 
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Supplementary Figure 13. aSA analysis for the differentiation of fatty acids. a-e, Min-max scaled 
fluorescent signals from the aSA challenged with fatty acids. Butyric acid (4:0, a, n=10 independent 
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samples), decanoic acid (10:0, b, n=10 independent samples), palmitic acid (16:0, c, n=8 independent 
samples), oleic acid (18:1, d, n=9 independent samples) and nervonic acid (24:1, e, n=8 independent 
samples). Boxes show the interquartile range with the median presented as a line. Whiskers show 1.5 
x interquartile range, or the range if a smaller value. Outliers are shown as diamonds. f, Representative 
dye-displacement data for each analyte in the FA class. aHB ID is shown above each fingerprint. In 
these cases, min-max scaled dye displacement is colored from dark red (less displacement) to dark 
blue (more displacement) according to the respective heat maps (right-hand side of each panel). Each 
fingerprint corresponds to the median signal across all repeats for each FA. g, The 2 features selected 
to take forward to classification. Color scheme as in f, aHBs not selected are colored grey. f & g, Values 
have been limited to a maximum of 2.00 for visualization purposes only, the full range of data can be 
seen in panels a-e. h, Principal component analysis of the 5 fatty acids. Butyric acid – blue circle; 
decanoic acid – green triangle; palmitic acid – red square; oleic acid – cyan diamond; nervonic acid – 
purple star. i, Confusion matrices generated from predictions of FAs using 2 features (g) and the 
Gaussian Naïve Bayes algorithm with nested cross-validation. Here the coloring scheme is from dark 
red (all prediction) to dark blue (no predictions) according to the heat map (right-hand side). Source 
data are provided as a Source Data file.     
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Supplementary Figure 14. aSA analysis for the differentiation of carbohydrates. a-e, Min-max 
scaled fluorescent signals from the aSA challenged with carbohydrates. Fructose (a, n=10 independent 
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samples), glucose (b, n=10 independent samples), glucosamine (c, n=9 independent samples), 
maltose (d, n=9 independent samples) and mannose (e, n=10 independent samples). Boxes show the 
interquartile range with the median presented as a line. Whiskers show 1.5 x interquartile range, or the 
range if a smaller value. Outliers are shown as diamonds. f, Representative dye-displacement data for 
each analyte in the CHO class. aHB ID is shown above each fingerprint. In these cases, min-max 
scaled dye displacement is colored from dark red (less displacement) to dark blue (more displacement) 
according to the respective heat maps (right-hand side of each panel). Each fingerprint corresponds to 
the median signal across all repeats for each CHO. g, The 4 features selected to take forward to 
classification. Color scheme as in f, aHBs not selected are colored grey. h, Principal component 
analysis of the 5 carbohydrates. Fructose – blue circle; glucose – green triangle; glucosamine – red 
square; maltose – cyan diamond; mannose – purple star. i, Confusion matrices generated from 
predictions of CHOs using 4 features (g) and the SVC algorithm with nested cross-validation. Here the 
coloring scheme is from dark red (all prediction) to dark blue (no predictions) according to the heat map 
(right-hand side). Source data are provided as a Source Data file.   
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Supplementary Figure 15. Spearman coefficients of the aHBs in the aSA for the amino acid 
fingerprints. Color scheme is from strong correlation (dark red) to no correlation (dark blue) according 
to the heat map (right-hand side). Source data are provided as a Source Data file.   
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Supplementary Figure 16. Spearman coefficients of the aHBs in the aSA for the fatty acid 
fingerprints. Color scheme is from strong correlation (dark red) to no correlation (dark blue) according 
to the heat map (right-hand side). Source data are provided as a Source Data file.     
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Supplementary Figure 17. Spearman coefficients of the aHBs in the aSA for the carbohydrate 
fingerprints. Color scheme is from strong correlation (dark red) to no correlation (dark blue) according 
to the heat map (right-hand side). Source data are provided as a Source Data file.     
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Supplementary Figure 18. Representative dye-displacement data for each tea brand. a, 
Representative dye-displacement data for each brand in the tea class. aHB ID is shown above each 
fingerprint. In these cases, min-max scaled dye displacement is colored from dark red (less 
displacement) to dark blue (more displacement) according to the respective heat maps (right-hand side 
of each panel). Each fingerprint corresponds to the median signal across all repeats for each brand of 
tea. b, The 4 features selected to take forward to classification. Color scheme as in a, aHBs not selected 
are colored grey. For visualization purposes, the fingerprints (a & b) are the median from the 6 
independent repeats for each tea brand rather than the 180 individual fingerprints used in the analysis. 
All 180 fingerprints can be found at https://github.com/woolfson-group/array_sensing_data_analysis. 
The corresponding brand names can be found in Supplementary Table 8. Source data are provided as 
a Source Data file.   
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Supplementary Figure 19. Min-max scaled fluorescent signals from the aSA challenged with 
NASH sera samples. NASH (blue), non-NASH (orange), n=41 independent samples each measured 
4 times. Boxes show the interquartile range with the median presented as a line. Whiskers show 1.5 x 
interquartile range, or the range if a smaller value. Outliers are shown as diamonds. Source data are 
provided as a Source Data file.   
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Supplementary Figure 20. Median dye-displacement data for each sera sample. The complete fingerprint (a) and the fingerprint of the most important 
features (b) are shown. aHB ID is shown above each fingerprint. In these cases, min-max scaled dye displacement is colored from dark red (less displacement) 
to dark blue (more displacement) according to the respective heat maps (right-hand side of each panel). Each fingerprint is the median value from 16 repeats 
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of each serum sample (4 independent repeats each consisting of 4 technical repeats). Features that are not selected by the machine learning pipeline have 
been colored grey (b). Values have been limited to between 1.5 and -0.4 for visualisation purposes only, the full range of data can be seen in Supplementary 
Figure 23a. The information for each sera sample can be found in Supplementary Table 11. Source data are provided as a Source Data file.  
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Supplementary Figure 21. Spearman coefficients of the aHBs in the aSA for the sera 
fingerprints. Color scheme is from strong correlation (dark red) to no correlation (dark blue) according 
to the heat map (right-hand side). Source data are provided as a Source Data file.     
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Supplementary Figure 22. aSA analysis for the differentiation of NASH, CAD and control sera 
samples. a & b, Full (a) and subsection (b) of min-max scaled fluorescent signals from the aSA 
challenged with different NASH and non-NASH sera samples (blue and orange respectively). Values 
are normalized relative to: 1, for the aHB and the reporter dye with no analyte; and 0, for the dye alone. 
Values between 1.5 and -0.5 are shown in (b) for clear visualization. Data corresponds to 42 
independent samples that were measured 4 times to give a median value for each sera sample – n=14 
NASH, n=14 CAD and n=14 control. Boxes show the interquartile range with the median presented as 
a line. Whiskers show 1.5 x interquartile range, or the range if a smaller value. Outliers are shown as 
diamonds. c, Principal component analysis of the 42 sera samples. NASH – blue square; CAD – green 
triangle; control – orange circle. d, Confusion matrix generated from predictions of NASH, CAD and 
control sera samples using LDA with nested cross-validation.  The coloring scheme is from dark red (all 
prediction) to dark blue (no predictions) according to the heat map (right-hand side). Source data are 
provided as a Source Data file.     
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Supplementary Figure 23. Additional analysis of the sera from NASH, CAD and control patients. 
a, Age ranges of the NASH, CAD and control patients in the proof of concept study. Color scheme: 
NASH, blue; CAD, green; Control, orange. b, BMI ranges of the NASH, CAD and control patients in the 
proof-of-concept study. Color scheme same as in a. a&b, Data corresponds to 42 patients, n=14 NASH, 
n=14 CAD and n=14 control. Boxes show the interquartile range with the median presented as a line. 
Whiskers show maximum and minimum values. Outliers are shown as diamonds. c, Principal 
component analysis of non-obese (BMI<30) NASH, CAD and control patients’ sera samples. Color 
scheme: NASH – blue squares, CAD – green triangles, control – orange circles. Source data are 
provided as a Source Data file.   
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Supplementary Figure 24. Feature importance of the individual aHBs in the aSA. Feature 
importance of the aHBs in the classification of amino acids (a), fatty acids (b) and carbohydrates (c). 
The top five ranked aHBs calculated by KBest analysis, ExtraTrees (ET) and permutation analysis 
(Perm) are highlighted (red, blue and gold, respectively). The most important aHB determined by each 
method is marked (*). 
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