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ABSTRACT

Aims. We investigate the importance of lensing magnification f or e stimates o f g alaxy c lustering and i ts c ross-correlation w ith s hear f or the
photometric sample of Euclid. Using updated specifications, we study the impact of lensing magnification on the constraints and the shift in the
estimation of the best fitting cosmological parameters that we expect if this effect is neglected.

Methods. We follow the prescriptions of the official Euclid Fisher matrix forecast for the photometric galaxy clustering analysis and the combi-
nation of photometric clustering and cosmic shear. The slope of the luminosity function (local count slope), which regulates the amplitude of the
lensing magnification, and the galaxy bias have been estimated from the Euclid Flagship simulation.

Results. We find that magnification significantly affects both the best-fit estimation of cosmological parameters and the constraints in the galaxy
clustering analysis of the photometric sample. In particular, including magnification in the analysis reduces the 10 errors on €, 9, wo, w ,at the
level of 20-35%, depending on how well we will be able to independently measure the local count slope. In addition, we find that neglecting
magnification in the clustering analysis leads to shifts of up to 1.60 in the best-fit parameters. In the joint analysis of galaxy clustering, cosmic
shear, and galaxy—galaxy lensing, magnification does not improve precision, but it leads to an up to 60 bias if neglected. Therefore, for all models
considered in this work, magnification has to be included in the analysis of galaxy clustering and its cross-correlation with the shear signal (3 X 2pt
analysis) for an accurate parameter estimation.

Key words. Cosmology — large-scale structure of Universe — cosmological parameters — Cosmology: theory
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1. Introduction

In the past few decades, observational cosmology has undergone
unprecedented advances in terms of experimental techniques.
The anisotropies of the cosmic microwave background (CMB)
have been mapped with stunning accuracy (Planck Collabora-
tion: Aghanim et al. 2020), and the low-redshift window has
become accessible with observations of the large-scale distri-
bution of galaxies and the statistics of weak gravitational lens-
ing (Alam et al. 2017; DES Collaboration: Abbott et al. 2018;
Lee et al. 2021; Sevilla-Noarbe et al. 2021; DES Collaboration:
Abbott et al. 2021; Asgari et al. 2021; Heymans et al. 2021),
as have distance measurements from supernovae (Scolnic et al.
2018). This progress on the experimental side has led to the affir-
mation of A cold dark matter (CDM) as the concordance model
for cosmology. Despite the remarkable success of ACDM, there
are two ingredients whose nature is still unknown: dark mat-
ter and dark energy. In addition, the value of the cosmological
constant corresponds to a vacuum energy in the millielectron-
volt regime, which is unsatisfactory from a theoretical point of
view. Furthermore, the constancy of A leads to the question of
why its contribution to the expansion rate of the Universe should
be of the same order of magnitude as the one from the matter
density only at the present time. These fine-tuning and coinci-
dence (‘why now’) problems motivate researchers in the field to
consider alternatives to ACDM, such as scalar field dark energy
(quintessence, k-essence) and more general tensor-scalar grav-
ity theories or other modifications of general relativity (see e.g.
Amendola et al. 2018 for an extended discussion). The next gen-
eration of large-scale structure probes is expected to provide cru-
cial information on the dark sector that will allow us to test many
of these different models of dark energy and our theory of grav-
ity on cosmological scales. Due to the statistical power of these
future surveys, new efforts are needed to reduce systematic un-
certainties to a higher degree than previously required. Such sys-
tematic effects arise not only from observational aspects, but also
from the theoretical predictions that may have to be improved as
well to exploit the full power of the upcoming observations.

The Euclid survey (Amendola et al. 2018; Laureijs et al.
2011) will contribute to the challenge of constraining the dark
sector with the combination of two complementary probes: a)
a spectroscopic sample of about 30 million galaxies that will
be used to study the growth of structure in the redshift range
z € [0.9,1.8] (Pozzetti et al. 2016) and b) a photometric cat-
alogue of about 1.5 billion galaxy images, which will provide
a direct tomographic map of the distribution of matter through
measurements of cosmic shear in the redshift range z € [0,2]
(Amendola et al. 2018).

In this paper, we focus on the photometric sample. Galaxy
images and positions in this sample will be used both for ex-
tracting the galaxies’ shapes and their weak lensing (WL) dis-
tortions and for galaxy clustering measurements in photometric
redshift bins. However, the statistics of galaxy number counts
are not only determined by the local density of sources; they
are also affected by gravitational lensing due to the foreground
matter distribution (Menard & Bartelmann 2002; Menard et al.
2003a,b; Matsubara 2004; Scranton et al. 2005; LoVerde et al.
2008; Hui et al. 2008; Hildebrandt et al. 2009; Van Waerbeke
et al. 2010; Heavens & Joachimi 2011; Bonvin & Durrer 2011;
Challinor & Lewis 2011; Duncan et al. 2014; Unruh et al. 2020;
Liu et al. 2021). Gravitational lensing affects the observed num-
ber count of galaxies in two ways, which have opposite signs: it
modifies the observed size of the solid angle, diluting the num-
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ber of galaxies per unit of solid angle behind an overdensity, and
it magnifies the apparent luminosity of galaxies behind an over-
density, enhancing the number of galaxies above the magnitude
threshold of a given survey. The second effect is survey depen-
dent. To model it, we need to know the luminosity function and
the magnitude cut of the galaxies in the sample. The combination
of these two effects is known as ‘lensing magnification’.

Lensing magnification has not been taken into account in the
validated Euclid forecast (Euclid Collaboration: Blanchard et al.
2020, EC20 in the following), and the aim of this work is to
assess its impact on the analysis of the Euclid photometric sam-
ple. There has been extensive work in investigating the relevance
of magnification for future cosmological surveys (see for exam-
ple Namikawa et al. 2011; Bruni et al. 2012; Gaztafaga et al.
2012; Duncan et al. 2014; Montanari & Durrer 2015; Eriksen &
Gaztanaga 2015a; Eriksen & Gaztafiaga 2015; Raccanelli et al.
2016; Cardona et al. 2016; Di Dio et al. 2016; Eriksen & Gaz-
tanaga 2018; Lorenz et al. 2018; Villa et al. 2018; Thiele et al.
2020; Tanidis et al. 2020; Bellomo et al. 2020; Jelic-Cizmek
et al. 2021; Viljoen et al. 2021). The consensus is that lensing
should be taken into account in the analysis of photometric clus-
tering for the following reasons: i) Including lensing will sig-
nificantly improve the cosmological constraints by breaking the
degeneracy between galaxy bias and the amplitude of primordial
perturbations. This is especially relevant for photometric sam-
ples where redshift-space distortions (RSDs) are smeared out.
ii) Neglecting this effect can lead to significant shifts in the esti-
mation of some cosmological parameters — especially for models
beyond the minimal ACDM (Camera et al. 2015; Lorenz et al.
2018; Villa et al. 2018). iii) Lensing magnification provides a to-
mographic measurement of the lensing potential that is comple-
mentary to cosmic shear analysis and can be used to test general
relativity (Montanari & Durrer 2015).

In this work, we study the impact of lensing magnification
on the analysis of the photometric sample of Euclid, using for
the first time realistic specifications for the local count slope
based on the Euclid Flagship simulation. Apart from ACDM
and massive neutrinos, we consider a simple phenomenological
parametrisation of dark energy as a function of redshift, z, via an
equation of state of the form

w(z) =wo+w <
0 a1+Z7

which is the so-called Chevallier-Polarski-Linder (CPL), or
wow,, parametrisation (Chevallier & Polarski 2001; Linder
2003). While these simple models do not fully allow one to ex-
plore the additional information that lensing magnification may
add to photometric galaxy clustering (GCph) as a cosmological
probe, they are sufficient to assess whether we need to include
lensing magnification to avoid systematically biasing our results.
An extended analysis that includes dark energy models with a
stronger impact on the growth of structure is beyond the scope
of this paper and is left for future work.

The paper is structured as follows. In the next section, we
introduce the theoretical, linear perturbation theory expressions
for the quantities measured in the survey. In Sect. 3 we present
the Euclid specifics used in this work, and we outline how they
have been extracted from the Flagship simulation. In Sect. 4 we
describe the Fisher formalism used in our analysis. In Sect. 5
we present the results and discuss them. In Sect. 6 we show the
outcome of several tests that we performed to assess the robust-
ness of our results. We conclude in Sect. 7. In the appendix we
discuss in more detail some technical aspects of our work.
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2. The photometric sample observables: Number
counts and cosmic shear

In this section we define our observables: the galaxy number
counts, the shear, and their cross-correlation. We consider them
as quantities on the sphere at different redshifts. We first give
a brief recap on power spectra and correlation functions on the
sphere for different tensorial quantities. We then discuss our spe-
cific observables in more detail.

2.1. Angular power spectra

Whenever we have a function on the sphere, such as the num-
ber counts, A(n, z), the lensing potential, ¥(n, z), or the conver-
gence, k(n, 7), observed in the direction n at fixed redshift, z, or
integrated over a redshift bin centred at z, we can expand it in
spherical harmonics,

A2 = ) @Y, (M
tm

Kn,2) = ) as, (DY) @
tm

Due to statistical isotropy, which we assume here!, the a,
coeflicients for different € and m values are uncorrelated, and we
obtain the angular power spectra

(@t @apm (@) = CPN@) 80 3)
(a5, (@i @) = CE2) OO )
(a5, i @) = CP2.2) SO )

where the symbol 6aKb denotes the Kronecker delta and the super-
scripts A and « denote the number counts and the convergence
field as example of functions on the sphere for which we can
compute the angular power spectrum. For Gaussian fluctuations,
these power spectra contain the full statistical information. In
the presence of non-Gaussianities, reduced higher-order spectra
and other statistics contain additional information. The fact that
the power spectra depend on redshift is what makes clustering
surveys so useful. They contain three-dimensional information,
which we exploit in this case by considering several redshifts
and their cross-correlations.

For functions on the sphere, the link between the power spec-
trum and the correlation function is given by

(f(n,2) f(n'.2)) = %r ;<2€+ D /(7)) Pen-n'),  (6)

where P, denotes the Legendre polynomial of degree ¢ and f is
the considered function on the sphere.

The shear is not a function, but a helicity-2 object on the
sphere, which has to be expanded in spin-weighted spherical har-
monics (see Bartelmann & Schneider 2001 for an introduction).
Denoting the complex shear by v = y; + iy, we can write

Y2 = )" al, (@) Yeu(m).

tm

(N

! Observational evidence of statistical isotropy in the galaxy distribu-
tions has been found for example in Blake & Wall (2002), Alonso et al.
(2015), and Bengaly et al. (2017). However, recent measurements of
the local radio dipole exhibit an anomaly when compared to the CMB
dipole, which may indicate a not purely kinematic origin (see for ex-
ample Siewert et al. 2021). The presence of a large-scale anisotropy
has been also found in CMB data (see Fosalba & Gaztafiaga 2021 for
details).

Here .Yy, are the spin-2 spherical harmonics (see e.g. Durrer
2020 for details). The correlators

(an@ a7 @) = €7@ 2) 8y B ®)
denote the shear power spectrum. In order to compare the shear
spectrum with the convergence «, we first act on y with the spin-

lowering operator ¢ (again, see e.g. Durrer 2020 for details).
This allows us to define the function

€+2)!
Ef t 2;' a}/m(z) Yen(n).

Bn,2) = @) y(m2) =) ©)
tm

For the second equality we made use of the identity

£+ 2)!
@ VoY om) = /%m(m .

The scalar quantity 8 is actually just the Laplacian of «, which
implies

e+ e = L2 e

C-2) ¢ (10)

On small angular scales, £ > 1, these spectra therefore agree,

(11)

A similar relation can be derived for the cross-correlation of the
shear and a scalar function (see Appendix A for details).

Given the power spectra correlating two quantities A and B,
C?B (z,7), we can compute the corresponding spectra obtained
from two bins i and j with (normalised) galaxy distributions 7;(z)
and 7(z). They are simply given by

KK ~ VY
Cl =Y.

CrPG. ) = f dzdg’ ni(2) (') C7%(2. 7). (12)

The observables AB used in this paper are the galaxy number
counts AA, the cosmic shear yy and their cross-correlation Ay
(galaxy—galaxy lensing). We discuss them in more detail in the
following section.

2.2. Galaxy number counts

The clustering of matter in the Universe is a very promising ob-
servable not only to determine cosmological parameters but also
to test the theory of gravity, general relativity, on cosmological
scales. While we cannot observe the matter density directly, it is
generally assumed that on large scales the distribution of galax-
ies is a faithful biased tracer of the matter distribution. On large
enough scales (roughly £ < 500), the bias depends on redshift
but not on scale (see for example Fosalba et al. 2015b). An im-
portant issue is, however, that we do not observe galaxies in
a three-dimensional spatial hypersurface but on our past light
cone. More precisely, we measure angular positions and red-
shifts, which are affected by the perturbed geometry and the pe-
culiar motion of galaxies. While the galaxy velocities have been
taken into account in galaxy number counts since the seminal
paper by Kaiser (1987), the fully relativistic perturbed light-cone
projection has been considered first about a decade ago. In Yoo
et al. (2009), Yoo (2010), Bonvin & Durrer (2011), and Challinor
& Lewis (2011) these light-cone or projection effects have been
studied at first order in perturbation theory. A numerical code for
the fast calculation of all relativistic effects is presented in Di Dio
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et al. (2013), with vanishing curvature, and Di Dio et al. (2016),
including curvature. These codes are publicly available and in-
cluded in the newer releases of cLass (Blas et al. 2011). Attempts
to go to second order in the light-cone projection have also been
published (Bertacca et al. 2014; Yoo & Zaldarriaga 2014; Di Dio
et al. 2015).

On small scales, k > H/c, where k is the comoving wave
number, ¢ is the speed of light, and H denotes the comoving
Hubble parameter, H(z) = cl,g_:;’ with a the scale factor and n
conformal time, only density, peculiar velocity (which enters
through RSDs) and lensing magnification are relevant. These
terms lead to the following simple formulae in angular and red-
shift space

b(2)6[r()n, z] - L0"'rVr[r(z)n, z]

Aln,z) = HO
+[5s(z) — 2] k(n, z), (13)
@ [r(z) = '] .,
k(n,z) = f dr ﬁ Aq(® +W)[r' n, z(r")] (14)
0 r(2)r
1
= Shay(n.2), (15)

where the unit vector n denotes the direction of observation, z
is the measured redshift, V., = —V - n is the peculiar velocity
in longitudinal gauge V projected along the radial direction, and
Aq is the Laplace operator on the sphere.” Here, y is the lens-
ing potential®, b(z) is the galaxy bias, r(z) is the comoving dis-
tance out to redshift z and z(r) is its inverse. ® and ¥ are the
Bardeen potentials, which in ACDM are related to the Newto-
nian potential by ¥ =~ @ =~ Onewion /c?. The function s(z) is the
local count slope* given by the logarithmic derivative of the cu-
mulative number density of galaxies as a function of their flux
F measured at the flux limit of the survey under consideration,
Flim. More precisely,

0logio N(z, F > Fiim)

5
a Fim =-
) 5(z, Flim) 910210 Fiim

(16)

Contrary to the bias b(z), which is estimated through the clus-
tering analysis together with the cosmological parameters, the
local count slope s(z) can in principle be measured directly from
the luminosity function of the galaxy sample, which provides a
measurement independent of the cosmological analysis.

The angular power spectrum of galaxy clustering is given by

CrMz ) = C3(z,2) + [55(2) - 21 C¥(z.7) 17)

+[55(2) = 21 C}*(z,7') + [55(2) = 21[55(z') = 21 C{(z, 2)

+CP(z,7),

where the term in the last line contains the RSD-RSD correlation
as well as the density-RSD and the magnification-RSD correla-
tions.

In our analysis, we used Limber’s approximation for these
spectra (Limber 1954), which is very good for the lensing poten-
tial and for £ > 30. We also made use of the Einstein constraint

2 The operator Aq is defined in terms of the spin lowering and raising
operators J* and d, that is, Aqg = @ J" +d"J)/2 (see Bernardeau et al.
2010, for details).

3 We use the sign convention of Bartelmann & Schneider (2001) for
the lensing potential, which is the opposite of the one in Lewis et al.
(2000).

“ In the literature this is often called the ‘magnification bias’.

Article number, page 4 of 26

equation in the late Universe, where radiation can be neglected,
such that
Hy y 2 2

Posr(hk,) = 9(72) Qo1 + 2% Pas(z, )

Here Pg;s is the matter power spectrum in comoving gauge,
and Pg.y is the power spectrum of the two Bardeen potentials
(which are equal in our regime), which enters into the computa-
tion of the convergence in Eq. (15), and €, ¢ is the matter den-
sity parameter. Using Limber’s approximation (Limber 1954),
the galaxy-magnification correlation in Eq. (17) can be written
as

(13)

2 UL+ 1) (1) = r(2)] <

65)mo (2)

Q2+ 12 r()r(z)
oK
C{; (z,7) = (1 +2) Py €+1/2,Z], (19)
r(z)
0, z>7,

and the magnification-magnification correlation becomes

. 2H,\* O+ 1)
Cifz7) = (T) (3Qm,0)2(2€Tl)4

y fr,nin dr [r(Z) - r][l"(z’) —_ r] [1 4 Z(r)]2 P§§ (f + 1/2’Z) ’
0 Hz2)r(@') r

where i, = min{r(z), r(z’)} (for more details on Limber’s ap-
proximation, see e.g. Durrer 2020).

In Fig. 1 we show the main contributions to the galaxy num-
ber counts for the Euclid specifics described in Sect. 3. We show
two representative configurations: the auto-correlation at mean
redshift 7; = z, = 0.69, where the density contribution dom-
inates, and the cross-correlation of two far-apart redshift bins,
Z1 = 0.14 and 7, = 1.91, where the entire signal consists of the
cross-correlation of density at Z; and magnification at 2.

While RSDs, the second term on the first line of Eq. (13), are
very important for spectroscopic surveys, they are smeared out in
photometric surveys: their contribution to the auto-correlations
is ~ 30% at ¢ ~ 10 and drops below 1% at £ > 90. For this rea-
son, they have been neglected in the official forecast presented in
EC20. In this paper, we focus on lensing magnification. There-
fore, we neglect RSDs in the main analysis presented in this
manuscript, and we test the impact of this approximation on our
results in Sect. 6. A detailed study on the impact of RSDs on the
Euclid analysis is left to future work, as it has been pointed out
in Tanidis & Camera (2019) that correct modelling of RSDs is
crucial so as not to bias cosmological parameter estimation.

Even though Eq. (13) is strictly valid only within linear per-
turbation theory, the density term and the magnification term are
well modelled by replacing the linear power spectrum with a
non-linear prescription (see e.g. Fosalba et al. 2015b,a; Lepori
et al. 2021). This is not at all the case for RSDs, but since we
do not include this effect in the analysis, the main results of this
work, namely the relevance of magnification for parameter es-
timation, can be trusted when obtained with a non-linear pre-
scription. At equal redshifts, the density fluctuation is usually
the dominant contribution to the number counts, while at un-
equal redshifts, the lensing terms dx and x« dominate, as can be
seen in Fig. 1.

(20)

2.3. Cosmic shear

The paths followed by photons coming from distant galaxies are
deflected due to the large-scale structure of the Universe. These



Euclid Collaboration: Euclid preparation. XIX.

Number counts z; = 0.69, z, =0.69 /—M_/”—_/’,_w
o
- 102 7
Ao ) ,x’"/
Fls 7
<l 107 / —— density
o density + magnification
------- density + magnification + rsd
g -
eI 12 e —
2 100
= " — — ==l
= 101 rsd
S 102 magnification .
X
10! 102
{
o
1074 |eermm T
g 10° _
% 108 — dens!ty o
= . density + magnification
+ |5 07 density + magnification + rsd
S 108
=
10°
1010 Number counts Z; =0.14, Z, =1.91
=1 102
3
£ 10!
2 1000 T e
E 10:2 fffff rsd T e
o 10 e e T
S 103 magnification e ]
IS
10! 10?2

Fig. 1: Number counts of power spectra for the Euclid pho-
tometric sample (top panels) and percentage contributions of

magnification and RSDs, 100 x C?SD/ magn C?A (bottom panels).
The contribution of magnification includes the x« contribution
as well as the density-« contributions, given by the second, third,
and fourth terms in Eq. (17). The contribution of RSDs, third
line in Eq. (17), comprises the RSD-RSD correlation and the
cross-correlation of RSDs with density and magnification. The
magnification-RSD correlation is sub-dominant. The top sub-
figure refers to the auto-correlation at z; = Z, = 0.69. While
the contribution of RSDs is 30% on large scales, that is, £ ~ 10,
it drops below 1% at £ > 90. For this configuration, the contri-
bution of magnification is at the sub-percent level on all scales
(the blue line and the orange line overlie on all scales). The bot-
tom sub-figure shows the cross-correlation of two bins with large
redshift separation, z; = 0.14, z, = 1.91. The contribution of
density alone and RSDs is negligible in this case. Magnification
(and its cross-correlation with the density) constitutes the totality
of the spectrum.

deflections introduce distortions in the images of these galaxies.
We can decompose these distortions (at the linear level and lo-
cally) into convergence given by « and complex shear y. The for-
mer is related to the magnification of the images, while the latter
is linked to the shape distortion of the images. More specifically,
these two effects correspond to the trace and trace-free part of
the Jacobian of the lens map given by

n —» n-anz,
a(n,z) = Vay(n,2),

2y
(22)

where Vg denotes the gradient on the sphere.

Although cosmological information can be extracted from
the convergence (see e.g. Alsing et al. 2015), we focus here on
the cosmological signal that can be obtained from the shear field.
Under the assumption of homogeneity and isotropy of our Uni-
verse, the mean of the shear field vanishes. However, its angular
power spectrum Czy contains cosmological information sensi-
tive to both the expansion and the growth of structures.

Linking the shear field to observations, the ellipticity of a
given galaxy, at linear order, can be expressed as
e=y+é€, (23)
where €' stands for the intrinsic ellipticity of the object. Under
the assumption that galaxies are randomly oriented, the elliptic-
ity provides an unbiased estimator of the complex shear. How-
ever, in practice tidal interactions during the formation of galax-
ies or other astrophysical effects may induce an intrinisic align-
ment of galaxies (see e.g. Joachimi et al. 2015), resulting in one
of the major systematic effects in WL analyses.

Considering the angular power spectra of Eq. (23), we can
express the ellipticity angular power spectrum as
CE=CY +C)+Cl+CY, (24)
where the two indexes represent two tomographic redshift bins.
Therefore, the cosmic shear angular power spectra are contam-
inated by the correlations between background shear and fore-
ground intrinsic ellipticity, C?, the correlations between back-

ground and foreground intrinsic ellipticity, C?, and the corre-
lations between background intrinsic ellipticity and foreground
shear, Czl. We note that CZI should be equal to zero because
foreground shear should not be correlated with a background el-
lipticity except if galaxies are misplaced due to the photomet-
ric redshift uncertainty. Using Eq. (11), the cosmic shear (with-
out intrinsic alignments) angular power spectra, CZV, is directly
given by Eq. (20) within Limber’s approximation.

In this work, we model the remaining terms in Eq. (24), using
the extended non-linear alignment model for intrinsic alignments
presented in EC20. In this model, the three-dimensional matter-
intrinsic and intrinsic-intrinsic power spectra can be expressed
as

F1a(2)

Psi(k,z) = _ﬂIACIAQm,OmP&S(k’ 2), (25)
2
Pk, z) = [ﬂIACIAQm,O@ Pss(k, z), (26)
()
with
~ oot
Fia@) = (1 +2)" [L—(Z)] , 27

where Aja, 14, P1a are nuisance parameters controlling the in-
trinsic alignment amplitude, redshift dependence, and luminos-
ity dependence, respectively. Following the standard conven-
tion in the literature to model the intrinsic alignments (see e.g.
Joachimi et al. 2021), the constant Cya is set to a fixed value
of 0.0134 as it is fully degenerate with Ajx. The (L) (z) and
L.(z) stand for the redshift-dependent mean and the character-
istic luminosity of source galaxies. We refer the reader to EC20
for more details on this model.
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Given these three-dimensional power spectra, again using
Limber’s approximation, we can express the full ellipticity an-
gular power spectra as

CeE=CY +C) +CY, (28)
where C? and C}' are given by
H(z) t+1/2
CH , ’ = § _ , , 29
¢ (z2) p(z—2) 1) @ } (29)
Ho\? £(¢+1) [r(2) - r(2)]
6Qmo (—) .
1 c/) 2+1)? r(2)r(z)
C)(z7) = +1/2 0
[(ZZ) X(1+Z)P§1 A / ,Z:|, Z<(Z3,)
r(z)
0, z2>7.

Considering photometric redshift bins i and j, even if the
mean redshift Z; > Z; we have to include not only C?( J, i) but

also C?(i, J) = CZI(j, i) in C§°(i, j) due to the significant overlap
of photometric redshift bins.

It is important to mention that relativistic effects are also
present in the source sample and therefore in cosmic shear analy-
ses. For example, magnification effects can also change the num-
ber of sources in a magnitude-limited survey. However, these ef-
fects are of second order and the inclusion of magnification ef-
fects in cosmic shear requires the modelling of the matter bispec-
trum. Furthermore, its overall impact is significantly smaller than
for galaxy number counts (see e.g. Duncan et al. 2014; Desh-
pande et al. 2020). Because of this, and the fact that the impact
of magnification effects in cosmic shear has already been stud-
ied in Deshpande et al. (2020) in the context of Euclid, we do
not consider this effect (and other relativistic effects that appear
at second order) in the cosmic shear part of our analysis.

2.4. Galaxy—galaxy lensing

In the photometric survey of Euclid, we measure both galaxy
number counts and cosmic shear, and we will also cross-
correlate these measurements (see e.g. Tutusaus et al. 2020). For
purely scalar perturbations, the correlation function between the
tangential shear and number counts is given by Eq. (A.5):

1 20+ 1
(A(n, )y (', 7)) = e 5(5—11) Pp(n-n')CH(z.7), (31)
€

where Py, is the modified Legendre function, of degree ¢ and
index m = 2 (see Abramowitz & Stegun (1970)). Here, C?K(z, 7)
is the angular correlation spectrum between the number counts
A and the convergence « (see Sect. 2.1).

As before, for a photometric survey, we can neglect RSD and
large-scale relativistic contributions, so that
CM(z,7) = C¥(z,7) + [5s(z) - 21 C{(z.2) . (32)

Using Limber’s approximation, the two contributions in
Eq. (32) are given by Egs. (19) and (20), respectively. For 7’ > z
the dominant term is C}"(z, 2') since the foreground density fluc-
tuations contribute to the integral « (see Eq. (14)) This correla-
tion has been measured by, for example, the Dark Energy Sur-
vey (DES; DES Collaboration: Abbott et al. 2018). For z > 7/,
this term (nearly) vanishes and the correlation is dominated
by the C}“(z,z’) term. This term has also been recently mea-
sured (Liu et al. 2021). Considering distributions rn;(z) for galaxy
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number counts and 7 (z) for the shear measurements in bins i and
J» respectively, one obtains in Limber’s approximation (see e.g.
Ghosh et al. 2018):

(A7) () =

0 o < £de
f dzni(z)f d7 nj(z’)f —L(OCHz,7).
0 0 0o 2w

In Fig. 2 we show two representative configurations of these
spectra for the Euclid specifics. For 7; < Z the density term
in the number counts is the largest contribution to the cross-
correlation; vice versa, the configuration with z; > 7, is dom-
inated by the cross-correlation of magnification and lensing. It
should be noted that RSDs have an effect of < 3% on both con-
figurations.

(33)

3. Euclid specifics from the Flagship simulation

In this section, we briefly describe the Flagship galaxy catalogue
and the ingredients extracted from this simulation to obtain real-
istic input for our forecasts.

We use the Flagship galaxy mock catalogue of the Euclid
Consortium adapted the photometric sample (Euclid Collabora-
tion, in preparation). The catalogue uses the Flagship N-body
dark matter simulation (Potter et al. 2017). The cosmological
model assumed in the simulation is a flat ACDM model with
fiducial values Qno = 0.319, Q,p = 0.049, Q, = 0.681,
og = 0.83, ng = 0.96, h = 0.67. The N-body simulation ran
in a 3.78 h~! Gpc box with particle mass m, = 2.398 X 10°
h™' M. Dark matter halos are identified using the code ‘Robust
Overdensity Calculation using K-Space Topologically Adaptive
Refinement’, known as RocksTar (Behroozi et al. 2013), and are
retained down to a mass of 2.4x 100 4! Mo, which corresponds
to ten particles. Galaxies are assigned to dark matter halos using
the halo abundance matching (HAM) and halo occupation dis-
tribution (HOD) techniques, closely following Carretero et al.
(2015). The galaxy mock generated has been calibrated using
local observational constraints, such as the luminosity function
from Blanton et al. (2003) and Blanton et al. (2005a) for the
faintest galaxies, the galaxy clustering measurements as a func-
tion of luminosity and colour from Zehavi et al. (2011), and the
colour-magnitude diagram as observed in the New York Uni-
versity Value Added Galaxy Catalog (Blanton et al. 2005b). The
mock calibration is automated and reproducible thanks to a novel
and efficient minimisation technique that works in the presence
of stochastic noise inherent to the galaxy mock construction (Tu-
tusaus et al, in preparation). The catalogue contains about 3.4 bil-
lion galaxies over 5000 deg? and extends up to redshift z = 2.3.

Given this galaxy catalogue, we extract three different quan-
tities to adapt our forecasts to Euclid specifications: the galaxy
distributions as a function of redshift, n(z), the galaxy bias, and
the local count slope. The Flagship mock galaxy catalogue is
complete for magnitude limits below 25.5 —26 in the Euclid VIS
band. The specifics for the Euclid photometric sample used in
this work have been extracted applying a magnitude cut of 24.5
in the VIS band, which is well within the completeness limit.

Number density distributions: The different galaxy distributions
used in this analysis correspond to the fiducial selection pre-
sented in Euclid Collaboration: Pocino et al. (2021). In this ref-
erence, the authors generated photometric redshift estimates for
all objects in an area of 400 square degrees of the Flagship cata-
logue. Using the directional neighbourhood fitting (DNF; De Vi-
cente et al. 2016) training-based algorithm, two different redshift
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Fig. 2: Angular power spectra of the GGL cross-correlation for
the Euclid photometric sample (top panels) and percentage con-
tributions of magnification and RSDs, 100 x C?K’RSD/magn / C?“
(bottom panels). The contribution of magnification is the second
term in Eq. (32). The contribution of RSDs, which is neglected in
Eq. (32), is given by the cross-correlation RSD-«. The top sub-
figure refers to the configuration z; < Z, that is, we correlate
galaxies at low redshift with the background lensing. The contri-
bution of RSDs is 3% on large scales and drops below the per-
cent level at £ = 30, while the contribution of magnification is at
the sub-percent level on all scales. The bottom sub-figure shows
the configuration z; > Z,, that is, we correlate number counts at
high redshift with foreground lensing. The contribution of den-
sity alone and RSDs is negligible in this case: we observe the
correlation of magnification with the foreground cosmic shear.
The small contribution of density alone, the blue curve in the top
panel, changes sign at £ ~ 50: it is negative on small scales and
positive on large scales.

estimates were provided for each object. The DNF algorithm
estimates the photometric redshifts based on the closeness in
colour and magnitude space of the galaxies with unknown red-
shift to reference galaxies with known redshifts (training sam-
ple). The average of the redshifts from the neighbourhood in
colour and magnitude space is one of the estimates, denoted
Zmean- BUt DNF can also provide a second estimate consisting
of a Monte Carlo draw from the nearest neighbour, denoted as
Zme- This estimate can be understood as a one-point sampling
of the photometric redshift probability density function. In this
work, we consider the fiducial settings from Euclid Collabora-
tion: Pocino et al. (2021), which were selected to optimise the

constraining power of galaxy clustering and galaxy—galaxy lens-
ing (GGL) with the Euclid photometric sample. Such settings
imply that DNF was trained with an incomplete spectroscopic
training sample to mimic the expected lack of spectroscopic in-
formation at very faint magnitudes. We consider the optimistic
magnitude limits for all photometric bands shown in Table 1
of Euclid Collaboration: Pocino et al. (2021). Given these two
photometric redshifts estimates per galaxy, and following Eu-
clid Collaboration: Pocino et al. (2021), we select all Flagship
galaxies with zpe,n between 0 and 2, and split the sample into
13 bins with equal redshift width. We then obtain the final n(z)
used in our predictions by computing the histogram of z;. of
all the galaxies within each one of these bins. For these pho-
tometric bins, the fraction of outliers is 2.2% (see Table 3 in
Euclid Collaboration: Pocino et al. 2021). In Fig. 3 we repre-
sent the 13 normalised n(z) distributions obtained by binning in
Zmean and computing the histogram of z,,., while the vertical grey
lines show the mean redshift for each sample, zZ. We note that it
should not be confused with the zean €stimate provided by DNF
for each object. Moreover, although the bins were selected with
equal width in Zyean, given the non-Gaussianity of the zy,. distri-
butions, their mean redshift 7 is not equispaced, as can be seen in
Table 1. The number density for each of the bins is also provided
in the same table.

Galaxy bias: The linear galaxy bias is calculated as the square-
root ratio between the angular galaxy-galaxy power spectrum,

C{%g, from the different n(z) samples and the angular matter-

matter power spectrum, C%°. The C3* is obtained from the maps

of the fractional overdensity of galaxies, generated using the
HEALPix framework (Gorski et al. 2005). The maps have a res-
olution of Ngge = 4096 (that is 0.85 arcmin/pixel). We estimated
the angular power spectra using PoLSpice > (Szapudi et al. 2000;
Chon et al. 2004). Mask effects for the 400 square degrees photo-
z region are also accounted for in this harmonic space analy-
sis. The resulting C, values are corrected for shot noise using
C" = Cp — A7 fawy/nga1, Where fiy is the fraction of the sky
covered by the photo-z sample and 7y, is the number of galaxies
in the sample. The C%° is modelled with the public code Core

Cosmology Library © (CCL; Chisari et al. 2019) using the fidu-
cial cosmology of the Flagship simulation. We used Limber’s
approximation for every multipole since CCL does not yet allow
a non-Limber framework to be used. We note that the (linear)
galaxy bias is calculated as the mean value across the multipole
range ¢ € [50,500] to avoid non-linear (or higher-order) bias
effects.

Local count slope: As described in Sect. 2.2, the local count
slope can be calculated from Eq. (16). We use the observed mag-
nitude in the Euclid VIS band with error realisation, assuming a
100 magnitude limit of 24.6. For our analysis, we use a mag-
nitude cut of 24.5. A binned magnitude cumulative function is
calculated for the photo-z sample at the different redshifts, and
the corresponding slope is calculated at the magnitude cut using
bins centred at 24.45 and 24.55.

The results for n(z), b(z), and s(z) are shown in Table 1 and
Fig. 4.

> www2.iap.fr/users/hivon/software/PolSpice

6 ccl.readthedocs.io/en/latest
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Fig. 3: Normalised number of galaxies in the photometric red-
shift bins of Euclid, as inferred from the Flagship simulation.
The sample is split into 13 equally spaced redshift bins defined
by Zmean. The redshift distribution of the galaxies inside the bins
is estimated computing the histogram of the redshift defined by
Zme. The vertical lines indicate the mean redshifts of the bins, Z.
We note that this is the fiducial setting from Euclid Collabora-
tion: Pocino et al. (2021), selected to optimise the constraining
power of galaxy clustering and GGL with the Euclid photomet-
ric sample.

P 4 .t rrrrr oo
N ..
~ o S
= 2 .
&0 .
: ‘ I S
0 —
— 2 " )
N .
= :
1 -
1.0 A
— -
305 ‘
» g S A ’ ’
0.0 ="
0.0 0.5 1.0 1.5 2.0

Fig. 4: Galaxy number density in units of gal/bin/arcmin’ (top
panel), galaxy bias (middle panel), and local count slope (bottom
panel) as a function of redshift. These results are obtained from
the Flagship simulation. We note thatat z = 1 we have s ~ 0.4, so
2-5s(z = 1) = 0. Hence, the lensing term exactly cancels at this
redshift. A simple fit for b(z) and s(z) is found in Appendix C.
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Table 1: Summary of Euclid specifics from Flagship.

Z  ng(dlgal/bin/arcmin’]  bE)  5(2)
0.14 0.758 0.624 0.023
0.26 2.607 0921 0.135
0.39 4.117 1.116  0.248
0.53 3.837 1.350 0.253
0.69 3.861 1.539 0.227
0.84 3.730 1.597 0.280

1.0 3.000 1.836  0.392
1.14 2.827 1.854 0.481
1.3 1.800 2.096 0.603
1.44 1.078 2270 0.787
1.62 0.522 2481 1.057
1.78 0.360 2.193  1.138
1.91 0.251 2.160 1.094

Number density (in units of gal/bin/arcmin?), galaxy bias, and
local count slope used in each photometric bin. Values are ex-
tracted from the Flagship simulation. A simple fit for b(z) and
5(z) can be found in Appendix C.

4. Method
4.1. The Fisher matrix formalism

In this work, we follow EC20 in estimating the uncertainties on
the cosmological parameters using a Fisher matrix formalism.
We used the Fisher matrix code FisherCLASS, based on version
v2.9.4 of the cLass code (Blas et al. 2011; Di Dio et al. 2013),
adapted to the prescription described in the previous section. The
code has been validated against EC20. More details on the code
and its validations are presented in Appendix B.

We should recall that the Fisher matrix is defined as the ex-
pectation value of the second derivative with respect to the model
parameters of the logarithm of the likelihood function of the
data (Tegmark 1997),

2
Fup = <_ 0 lnL>

060,063
where a and S label the parameters of interest 6, and 6.
Under the assumption of a Gaussian likelihood for the data,
the Fisher matrix can be written as

(34)

_,0C Oy o\ O
[—Claeﬁ ]@(ﬁ(ol)m—e;,
Pq

where p is the mean of the data vector and C is the covariance
matrix of the data. The trace and sum over p or ¢ stand for sum-
mations over the components of the data vector. It is important
to note that, in practice, we consider the angular power spectra
as observables, which follow a Wishart distribution if the fluctu-
ations are Gaussian. As shown for example in Carron, J. (2013);
Bellomo et al. (2020), the Fisher matrix for such distributions is
given by Eq. (35) but without the first term. Therefore, in the fol-
lowing, we only consider the second term when computing the
Fisher matrix.

Once the Fisher matrix is constructed, we estimate the ex-
pected covariance matrix of the cosmological parameters as the
inverse of the Fisher matrix:

Cop = (F‘l)aﬁ .

(35)

(36)
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The Fisher matrix formalism is a powerful tool to quickly
forecast the constraining power of future surveys. The main lim-
itation of this approach is the Gaussian approximation, which
results in optimistic cosmological constraints. Wolz et al. (2012)
and Takada & Jain (2009) show that, for observables that trace
structure formation, such as WL and tomographic galaxy clus-
tering analysis, the 1o errors are typically underestimated by
10% to 20%. The purpose of our analysis is assessing the impact
of magnification. Therefore, when we compare the cosmologi-
cal constraints with and without magnification we do not expect
the Gaussian approximation to change significantly our results
because both constraints with and without magnification are af-
fected in the same way.

Another limitation of the Fisher approach is that it only pro-
vides the uncertainties for a fiducial model. Therefore, it cannot
quantify the bias in the posterior distributions if a wrong model
is used to forecast the data vector and its covariance. This can
be fixed using extensions of the Fisher matrix formalism, as ex-
plained at the end of this section.

We consider analyses of GCph, WL, and their cross-
correlation terms. In the case of a joint analysis, a joint covari-
ance matrix is required. In this work, since we consider the angu-
lar power spectra as observables (see e.g. EC20, for the equations
when using the spherical harmonic coefficients as observables),
we use the fourth-order Gaussian covariance given by

6K
clc2ti, j), cA (k)| = ——4&——
[C22G. ). € (k) ESTTY;

x { €2 ko + N G| [CEF G + NEF D) o0

Sl n+ N2 ] [CB G+ NEF b ).

where A, B, A’, B’ run over WL and galaxy clustering, and i, j, k,
run over all tomographic bins. The noise terms Ng(Y " are given by

of/ﬁiéf.j, 65/7%, and 0 for WL, galaxy clustering, and the cross-
correlation terms, respectively. o2 is the variance of the elliptic-
ity measurement (equal to 0.3? in EC20 and in this work), and 7;
is the number density in the corresponding tomographic bin.

With this covariance matrix, we can compute the final joint
Fisher matrix as

i~ AB(; CD
= 0, j) dCEP (m, n)
Fop = ——=C' [, j), CFPom )| —
2 2, %,
ijmn
(38)

where A, B, C, D run over the different probes. The indices ij and
mn run over all unique pairs of tomographic bins (i < j,m < n)
for WL and galaxy clustering, while they run over all pairs of
tomographic bins for the cross-correlation terms.

Throughout this study, we consider the pessimistic scenario
presented in EC20 as a conservative choice for the lensing ef-
fects. We include all multipoles from ¢ = 10 up to £ = 1500 for
WL and all multipoles from £ = 10 up to £ = 750 for galaxy
clustering and the cross-correlation terms. These maximum ¢
values have been determined in EC20 by mapping the signal-
to-noise ratio (S/N) between an analysis with and without the
super-sample covariance contribution. In more detail, such ¢ val-
ues correspond to the values providing the same S/N in an anal-
ysis considering a Gaussian covariance and in an analysis going
to very non-linear scales (£max = 5000 for WL and €, = 3000

for galaxy clustering and the cross-correlation terms) but ac-
counting for the super-sample covariance. We note that the max-
imum multipole considered for galaxy clustering and the cross-
correlation terms is significantly smaller than the maximum mul-
tipole considered for WL. The main reason behind this choice is
that galaxy clustering (and cross-correlations) is more sensitive
to non-linearities, and their relevance appears sooner than in the
WL case when including small scales. Given the fact that we
consider a linear galaxy bias model, we prefer to be more con-
servative when selecting the scale cuts for galaxy clustering and
the cross-correlation terms.

4.2. Beyond the Fisher matrix formalism

In this analysis, beyond providing the expected constraints on
the cosmological parameters, we want to quantify the amount
of information that is misinterpreted in an analysis that neglects
magnification and how this affects the estimation of cosmologi-
cal parameters. This is a model comparison problem, where the
two models have a common set of cosmological parameters, and
they differ by an extra model parameter, which is fixed in both
models, but to a different value (see for example, Taylor et al.
2007). We can generically express our theoretical model for the
angular power spectra as

CoAG, j) = C2(i, j) + e, Cr ™G, ),
CoG, j) = C¥G, j) + a.C ™G, ),

(39)
(40)

where ¢ is the extra model parameter, fixed to ¢ = 1 in the
correct model and to ¢ = 0 in the wrong model. We note
that in Eq. (39) the magnification contribution C?A’magn(i, j) in-
cludes both the density-magnification cross-correlation and the
magnification-magnification auto-correlation, while in Eq. (40)
C?K’magn(i, j) is the cross-correlation between magnification and
K.

The shift in the fixed parameter in the wrong model leads to a
shift in the maximum of the likelihood and, therefore, to a bias in
the estimation of the common set of cosmological parameters. A
first-order Taylor expansion of the likelihood around the wrong
model leads to the following expression for the shift in the best

fit of common parameters {6, }:

Ay =) (F_l)aﬁ By, (41)
B
where
Cinax AB(: CD
a aCy" (i, j) o oC%"(m,n)
Bg = ZE—C ! [C?B (i, ), CEP(m, n)] 50—
o, A5cn 008 L
ijmn
(42)

We note that since we are expanding the likelihood around
the wrong model, the Fisher matrix in Eq. (41) must be com-
puted neglecting magnification. This difference is of course of
second order, but since we neglect other second-order terms, this
is the more consistent approach. This formalism provides a fast
and straightforward method to test the accuracy of our analysis if
a known systematic effect is neglected. However, it is important
to keep in mind the implicit assumptions behind the formula:
since we are Taylor-expanding our likelihood around the incor-
rect model, we are assuming that the neglected systematic effect
is small and, therefore, this formula can be quantitatively trusted
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only for small values of the shifts. If this assumption is violated,
the computation of the shifts with this formalism gives a clear
indication that the systematic effect is important for a precise
parameter estimation.

Our analysis aims to assess whether magnification must be
modelled for the analysis of the photometric sample of Euclid
or if the effect can be neglected. Therefore, for the purpose of
our paper, a Fisher matrix analysis is a reliable tool to qualita-
tively study the impact of neglecting magnification. A quantita-
tive determination of the parameter shifts is beyond the scope of
this work and would require a full Markov chain Monte Carlo
(MCMC) analysis to be run.

5. Results

We investigate the impact of magnification for the primary cos-
mological probes in the photometric sample of Euclid: the GCph
and the probe combination of galaxy clustering, WL and GGL
(GCph + WL + GGL).

The fiducial cosmology adopted in our analysis is a flat
ACDM model with one massive neutrino species. The set of pa-
rameters considered in the analysis comprises: the present mat-
ter and baryon critical density parameters, respectively Q. o and
Qy0; the dimensionless Hubble parameter /; the amplitude of the
linear density fluctuations within a sphere of radius 8 #~' Mpc,
os; the spectral index of the primordial matter power spectrum
ng; the equation of state for the dark energy component {wy, w,};
and the sum of the neutrino masses )’ m,,.

The fiducial values of the cosmological parameters are re-
ported in Table 2. They correspond to the ACDM best-fit param-
eters from the 2015 Planck release (Planck Collaboration: Ade
et al. 2016). This choice is consistent with the baseline cosmol-
ogy adopted in (EC20).

Table 2: Fiducial values of the cosmological parameters.

Qm,O
0.32 0.05

2 my[eV]
0.06

Qb,O wo Wy h ng (O
-1.0 0.0 0.67 0.96 0.8156

In addition to these cosmological parameters, we introduce
nuisance parameters and marginalise over them. For galaxy clus-
tering the bias in each redshift bin, {;}, i = 1,..., Npips, are in-
cluded as nuisance parameters. We modelled them as constant
within each redshift bin, and we estimated their fiducial values
in the Flagship simulation, as described in Sect. 3 (see values
in Table 1). For WL, the nuisance parameters are the ones used
to model the intrinsic alignment contamination to cosmic shear,
as defined in Sect. 2.3: {Aja, 71a,B1a}. We note that since Cy4 is
fully degenerate with Aja, it is kept fixed in the Fisher analysis.
Their fiducial values are given by: Ajx = 1.72, nia = —0.41,
Bia = 2.17, and Cia = 0.0134. We note that these fiducial val-
ues correspond to the values considered in EC20. However, the
amplitude A;x might be smaller in practice (see Fortuna et al.
2021, for a discussion on the intrinsic alignment amplitude for
different types of galaxies).

The impact of magnification on the cosmological parameters
may depend on the model chosen to describe our Universe. We
therefore ran our analysis for four different cosmological models
and comment on the difference between the results when rele-
vant. We considered: 1) a minimal ACDM model, with five free
parameters {Qn, 0, Qb0, /1, 15, g} plus nuisance parameters; 2) a
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ACDM model plus the sum of the neutrino masses as an addi-
tional free parameter: {Qn o, Qv.0, /1, 15, 03, ), M, } plus nuisance
parameters; 3) dynamical dark energy with seven free parame-
ters {Qm0, b0, Wo, Wa, 1, 15, 073} plus nuisance parameters; and
4) dynamical dark energy plus the sum of the neutrino masses as
an additional free parameter: {Qy, o, Qp.0, Wo, Wa, h, 115, 08, >, 1y}
plus nuisance parameters.

Although we ran our analysis for the four models described
above, some results and tests that we performed will be reported
only for model 3 that we consider as our baseline analysis. In the
baseline model, we did not vary the sum of the neutrino masses
because its likelihood is highly non-Gaussian due to a physi-
cally forbidden region: it cannot be negative. Since the Fisher
approach assumes Gaussian statistics, it is not accurate for com-
puting constraints on the neutrino mass. The results reported for
models 2 and 4 are therefore less accurate than the ones for mod-
els 1 and 3. An MCMC analysis that does not rely on Gaussianity
for the effect of lensing magnification in the estimated neutrino
mass is presented in Cardona et al. (2016).

5.1. Magnification information in the photometric sample

As discussed in the introduction, neglecting magnification in the
modelling of the clustering signal will have two effects on the
results of the Euclid analysis: first, it will lead to incorrect esti-
mations of the error bars on cosmological parameters, and sec-
ond, it will lead to wrong estimations of the best-fit values of the
cosmological parameters. The importance of these two effects
is directly related to the S/N of the observables, compared to the
S/N of magnification. We therefore start by computing these var-
ious S/N. Since we are interested in the redshift dependence of
the S/N, we did not sum over all redshift bins, but rather com-
puted the S/N for each pair of redshift bins (z;, z;) separately. The
S/N for our observables is given by

sy e e T s
(ﬁ),,- = J 3 € jy GG . G )| €A ),
{=Cmin

(43)

where {AB} = {AA}, {A«}, {x«} for GCph, GGL, and WL, respec-
tively, and (i, j) refers to the pair of redshift bins. The S/N for the
magnification contribution in GCph and GGL is given by

EIA

where AC?B (i, j) denotes the contribution of magnification to the
angular power spectrum AB. We note that in Eq. (44) only the
magnification is included in the signal, but the covariance is that
of the full observable.

In Fig. 5 we show the S/N for GCph, GGL, and WL (without
magnification) for each pair of redshift bins (the index i refers to
the ith redshift bin defined in Table 1). We see that the GCph sig-
nal is most significant in the auto-correlations and in the cross-
correlation of nearby bins. The S/N is slightly larger at low red-
shift (it peaks for bins 2 and 3). Interestingly, the S/N of the
GCph signal in the cross-correlations of bins 12 and 13 is larger
than the one in the corresponding auto-correlations. There are
two reasons for this: on the one hand, these bins have a very sig-
nificant overlap, as can be seen from Fig. 3; and on the other

[max
D ACHEG, T [CRBG, ), CREG, D] ACHEG, j).
=Cmin
(44)
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Fig. 5: S/N per bin neglecting lensing magnification for the observables: GCph (top left), GGL (top right), and WL (bottom). The
index i refers to the ith redshift bin defined in Table 1. The S/N is computed from Eq. (43).
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Fig. 6: S/N per bin from lensing magnification in the GCph (left panel) and GGL analysis (right panel).The index i refers to the ith
redshift bin defined in Table 1. The S/N is computed from Eq. (44).
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hand, correlations of different bins have no shot noise, which
is the dominant source of noise in high-redshift bins. The GGL
S/N is prominent in the cross-correlations of cosmic shear at in-
termediate redshift (z ~ 0.7-1.3) and the galaxy density at low z
(z ~ 0.25-0.55). Finally, the S/N of WL is found to be prominent
in the cross-correlation of nearby bins in the redshift range z ~
0.7-1.5, reaching a maximum for the configurationi =7 ( = 1),
Jj =8 (z = 1.14). The peak of the WL S/N per bin is comparable
to the peak of the GCph S/N and to the peak of the GGL S/N.

The S/N of magnification is shown in Fig. 6 for the GCph
alone analysis and for the GGL alone analysis (the WL analysis
is not affected by magnification). In the GCph analysis, we find
that the S/N of magnification is largest for the cross-correlation
of widely separated redshift bins, reaching a maximum in the
cross-correlation of i = 3 and j = 12. For these pairs, the con-
tribution of magnification is dominated by the cross-correlation
of density at low z and magnification at high z. We also note
that the minimum S/N is found for the auto-correlation of the
bin i = 7 and its cross-correlations with other bins. This is due
to the value of the local count slope, close to the critical value
s = 0.4 for these configurations. In fact, for s = 0.4 the effect of
magnification on the apparent luminosity of the observed galax-
ies compensates exactly for the change in the observed solid an-
gle due to lensing, and therefore, the magnification contribution
to the number counts is exactly zero for this critical value (see
Eq. (13)). Comparing with Fig. 5, we see that the maximum S/N
for magnification is roughly four times smaller than the maxi-
mum S/N for GCph (due to density).

In the GGL observable, the magnification signal is given
by the cross-correlation of the magnification contribution to the
number count and cosmic shear. The largest S/N is found cross-
correlating the magnification at high redshift (z > 1.7) and cos-
mic shear at intermediate and high redshift (z € [0.8, 1.5]). For
these configurations the contributions of density to the galaxy
counts is very small: the background density field is (almost) un-
correlated with the lensing signal in the foreground and the small
correlations that we estimate are due to the overlap between the
redshift distribution of the sources in the bins. Comparing with
Fig. 5, we see that the maximum S/N for magnification in the
GGL observable (which is due to the magnification-shear corre-
lation) is roughly 2.5 times smaller than the maximum S/N for
GGL (which comes from the density-shear correlation).

In general, comparing Fig. 5 with Fig. 6 we see that the con-
tamination due to magnification is maximal for the bins in which
the S/N of the corresponding observable is minimal. This will
somewhat mitigate the impact of magnification on the analysis,
but as we will see in Sects. 5.2.2 and 5.3.2 it is not enough to
make magnification negligible.

5.2. Impact of magnification on the galaxy clustering analysis

We now compute the impact of magnification on the constraints
and on the best-fit values of the cosmological parameters. We
first consider an analysis based on galaxy clustering alone.

5.2.1. Cosmological constraints

In order to quantify the amount of cosmological information en-
coded in the magnification signal, for each cosmological model
we ran two Fisher matrix analyses: a) one that includes only the
density contribution to the galaxy clustering observable and co-
variance, and b) one that also takes into account lensing magni-
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fication, both in the theoretical signal and in the covariance. We
then compared the constraints in both cases.

The impact of magnification strongly depends on the value of
the local count slope s(z). As we see from Eq. (13), if s(z) = 0.4,
magnification has no effect in the corresponding bin. For Eu-
clid’s photometric survey, this is nearly the case for redshift bin 7
around z = 1 (see Table 1). As a first step, we assumed that we
know the value of the local count slope s(z) exactly in each red-
shift bin. This local count slope can indeed be measured directly
from the distribution of galaxies as a function of luminosity. In
Table 3 we report the constraints obtained for the two analyses.
In Table 4 we show the relative difference between the 10~ con-
straints obtained in the two cases.

Including magnification significantly improves the con-
straints on cosmological parameters. For a ACDM model, mag-
nification provides additional information on €, and og, im-
proving their constraints at the level of 21% and 28%. This can
be understood by the fact that the density contribution is pro-
portional to the bias, which is a free parameter (over which we
marginalise). In the linear regime, there is therefore a strong
degeneracy between the amplitude of perturbations og and the
bias, both of which control the amplitude of the density term.
The non-linear evolution of the density field breaks this degener-
acy. However, since we restrict the analysis to mildly non-linear
scales, the degeneracy is only partially broken. Including magni-
fication then significantly improves the constraints on og, since
it helps to break the degeneracy further. Looking at the magni-
fication contribution to GCph we see that it contains two terms:
one that depends linearly on the bias (from the correlation be-
tween density and lensing) and one that is independent of bias
(from the lensing-lensing correlation). These two terms break
the degeneracy between og and the bias, leading to a significant
improvement in the constraints. We verified that this improve-
ment is even stronger when we use a smaller £,,x since in this
case non-linearities are less relevant and are therefore not able
to break the degeneracy: for example, for £,,x = 300, the con-
straint on og is improved by 50%. Adding magnification also
improves the constraints on Q, ¢, which is not surprising since
Qo is itself also degenerate with o7g: it determines the redshift
of matter-radiation equality where density perturbations start to
grow. This degeneracy is evident in Fig. 7. Breaking the degen-
eracy between the bias and og therefore automatically leads to
better constraints on Qp, o.

For our baseline model with dynamical dark energy, we have
a large improvement for all the parameters, up to roughly 35%
for Qo and {wy, w,}. From Table 3, we see that adding {wo, w,}
as free parameters strongly degrades the constraints on Qp .
This is due to the fact that these quantities are degenerate, as
can be seen from Fig. 7: changing Qp, ¢ means changing Qpg,
which can be partially counterbalanced by a change of the equa-
tion of state. When only density is included in the analysis, this
degeneracy is worsened by the fact that the bias is free and can
be adjusted at each redshift. However, when magnification is in-
cluded, it tightens the constraints since the lensing-lensing con-
tribution is independent of bias. This leads to a significant im-
provement in the constraints on Qy, o and {wg, w,}.

Finally, adding the sum of the neutrino mass as a free param-
eter degrades the constraints with respect to the ACDM case,
especially for Qo and os3. Adding magnification mitigates this
degradation, again due to the fact that magnification has a con-
tribution that is bias independent.

As already mentioned, all these results were obtained assum-
ing perfect knowledge of the local count slope, s(z). However,
in a realistic scenario, the local count slope will not be exactly
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Table 3: Constraints on cosmological parameters for GCph alone.

model Qno Qo wo Wwa h ny o5  Xmy
ACDM Y etn 11 45 28 11 0w
ACDMzm  EdmW e N T T RS
W DM Y on 47 69 16 4 32 12 1§ -
W CDM + S, e 47 72 165 34 32 13 18 150

The 1o constraints on cosmological parameters are relative to their corresponding fiducial values (in %), without and with magnifi-
cation. For the parameter w,, we report the absolute error times 100. We have marginalised over the galaxy bias parameters, and the
values of the local count slope are kept fixed in the computation of the constraints with magnification. We report the results for four
cosmological models: a minimal ACDM model with one massive neutrino species and fixed neutrino mass, an analogue model that
includes dynamical dark energy, denoted as wy w,CDM, and two extensions of these models where the sum of the neutrino masses

is a free parameter.

Table 4: Improvement in the constraints for GCph alone, including magnification.

model meo Qb,O wo Wq h ng [ 2 m,
ACDM 21% 0.3% - - 1% 12%  28% -
ACDM + ) m, 11% 0.5% - - 1.65% 13% 16% 3%
wo w,CDM 36% 24% 34% 35% 14% 32% 18% -
wow,CDM + > m, 37% 25% 35% 35% 15% 30% 15% 4%

Shown is the improvement in the constraints (given by 1 — 0'magn/0 dens, in %), including magnification. We report the results for
the same models as in Table 3, and, in the same way, we marginalise over the galaxy bias parameters. The values of the local count
slope are fixed, and thus we assume a perfect knowledge of s(z) in each redshift bin.

Table 5: Uncertainty in the local count slope, GCph alone.

parameter  s(z;) fixed s(z;)) marg + 10% prior on s(z;)

Qmo 36% 17% 23%
Qbo 24% 13% 16%
wo 34% 14% 21%

Wy 35% 17% 20%

h 14% —-8% 13%

ng 32% —22% 9%

o 18% -21% 18%

The relative difference, 1 — 0'magn/ 0 dens, in percentage, is shown
for three cases: a) an optimistic scenario, when the local count
slope is measured with high accuracy and thus s(z) is kept fixed
in the analysis (Col. 2), b) a pessimistic scenario where the local
count slope cannot be constrained by an independent measure-
ment, and therefore we marginalise over its values (Col. 3), and
¢) a realistic scenario such that the local count slope is assumed
to be measured independently with a 10% precision (Col. 4).
The results reported here refer to our baseline cosmology, the
wo w,CDM model.

known: it will be measured with some uncertainty. In order to
take this into account, we compared the optimistic analysis pre-
viously discussed to a pessimistic case and a realistic case. In the

pessimistic case, we assumed no prior knowledge of local count
slope, and we treated it in the same way as the galaxy bias: we
marginalised over the local count slope parameters in each red-
shift bin. In the realistic case, we still marginalised over the local
count slope, but we included a uniform 10% prior on the Ny
extra parameters.

The prior information oy, = 0.1 X s; on the local count slope
inthe i = 1, ..., Nyjns bins is included adding to our Fisher matrix
a diagonal prior information matrix, whose entries are

0
0';’,2

In Table 5 we report the percent improvement due to mag-
nification for the optimistic (second column), pessimistic (third
column), and realistic (fourth column) scenario, for our baseline
model of dynamical dark energy. In the pessimistic scenario, that
is, assuming no prior knowledge of the local count slopes, we
partially lose the information encoded in the magnification sig-
nal when constraining Qp, o, Qb 0, wo, and w,. More worryingly,
h,ng, and og will be measured with larger errors compared to
an analysis including only density. We would like to emphasise
that this does not imply that an analysis without magnification
is preferable for measuring these parameters: as we show in the
next section, neglecting magnification generates a shift in the
best-fit values of the parameters. Such an analysis would there-
fore be more precise but less accurate, which is not a viable op-
tion.

- 55 for a # s;,
for a=s;.

ap (45)

prior
F of
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Fig. 7: Cosmological constraints from the GCph analysis neglecting magnification (blue contours), including magnification and
assuming a perfect knowledge of the local count slope (red contours), and marginalising over the local count slope parameters
with a 10% prior (yellow contours). The results reported here refer to our baseline cosmology, that is, the wy w,CDM model. The
contour plot was generated using the Python library CosmicFish (Raveri et al. 2016). Dark and light contours refer to the 1o~ and

20 confidence level, respectively.

Finally, in the realistic scenario where we assumed that we
can measure s(z) with a 10% precision, we see from Table 5
that magnification improves the constraints on all cosmological
parameters. The improvement is smaller than in the optimistic
scenario, but it still reaches ~ 20% for Qp, ¢ and the dark energy
equation of state. This test suggests that an independent precise
measurement of the local count slope is crucial for an optimal
analysis of the photometric galaxy number counts. There are
several difficulties associated with this measurement. In partic-
ular, systematic effects such as noise, colour selection, and dust
extinction can have a significant impact (see e.g. Hildebrandt
2016). Furthermore, galaxy samples are in general not purely
flux-limited. A novel method for estimating the local count slope
for a complex selection function has been developed for the
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Kilo-Degree Survey (KiDS; see von Wietersheim-Kramsta et al.
2021). Assessing whether this method will be accurate enough
for Euclid, that is, whether it can be used to estimate the local
count slope within a 10% uncertainty, requires further investiga-
tion.

5.2.2. Shift in the best fit

In an optimal cosmological analysis, we aim to estimate the pa-
rameters of our models in a precise and accurate way. In this
section, we study the impact of magnification on the accuracy of
the analysis, that is, we calculate the shift induced on the best-fit
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values of the parameters due to neglecting magnification in the
theoretical modelling of the clustering signal.

As discussed in Sect. 4.1, the estimation of the shift is based
on a Taylor expansion of the likelihood around the correct model
and, therefore, it can be trusted quantitatively only when the
shifts A@ are much smaller than the 1o error. The results of our
analysis should therefore be regarded as a diagnostic to deter-
mine whether magnification can be neglected or not: if we find
small values for the shifts A§ <« o, the Taylor expansion is valid,
and we can confidently conclude that it is safe to neglect magni-
fication in the theoretical modelling. On the other hand, if large
values A6 > o are found, we cannot quantitatively trust the value
of the shift, but we can conclude that the shifts are large and that,
consequently, magnification cannot be neglected in the theoreti-
cal modelling.

In Table 6 we report the shift in the best-fit estimation of
our parameters for the four models under consideration. For a
five-parameter ACDM model, all parameter shifts in the best-fit
estimation are below 1o-. The measurement of og is the most af-
fected by magnification (Aog ~ 0.607). The shifts are negative
for Qy, 0 and og, which means that the magnification contamina-
tion decreases the clustering signal. The sign of the magnifica-
tion contamination depends on the sign of 55— 2 and on the rela-
tive importance of the density-magnification correlation (which
is proportional to 5s — 2 and therefore changes sign at z ~ 1),
and the magnification-magnification correlation (which is pro-
portional to (55 — 2)* and is therefore always positive). To un-
derstand the sign of the shifts, we performed the following test:
we ran an analysis where we remove the magnification from the
signal for z > 1, that is, we pretended that magnification con-
taminates only the redshifts z < 1. We found that the shifts on
all parameters remain almost the same in this case’. This shows
that the shifts are not due to the high magnification contamina-
tion (S/N ~ 80) at high redshift (z > 1.62 in Fig. 6) but rather to
the (relatively) small contamination (S/N ~ 10 —20) at z < 1. At
those redshifts, the factor 55 — 2 is negative. From Fig. 5 we see
that the GCph signal peaks for the auto-correlations of redshift
bins. We expect therefore the constraints, and consequently the
shifts, to come mainly from these auto-correlations. Since the
bins are relatively wide, both the density-magnification and the
magnification-magnification contribute to the auto-correlations,
and we checked that the density-magnification always dominates
at z < 1. As a consequence, the magnification contamination is
negative for the bins that contribute most to the constraints, lead-
ing to a decrease in Qp, ¢ and os.

For all the models beyond ACDM, we find shifts above 1o.
The parameters that are mostly affected are the parameters be-
yond the ACDM minimal model: the neutrino mass and the dy-
namical dark energy parameters {wy, w,}. This can be understood
by looking at Fig. 5, where we see that the S/N for GCph peaks at
low redshift: z € [0.26, 0.39], which corresponds to bins i = 2, 3.
For ACDM, we expect the constraints to be driven by these bins.
For models beyond ACDM, however, the evolution with redshift
becomes relevant: the sum of the neutrino mass and the dark en-
ergy equation of state modify indeed the redshift evolution of
perturbations. More redshift bins contribute therefore to the con-
straints, which increases proportionally the impact of magnifica-
tion and leads to a larger shift. Since the impact of dark energy
and neutrino mass decreases with redshift, we expect however
the highest-redshift bins to be irrelevant for the constraints. As
before, to check this, we ran an analysis without the magnifica-

7 The only parameters for which the shift decreases are the bias pa-
rameters governing the bias evolution at high redshift.

tion contamination at z > 1 and we found that the shifts on all
parameters remain almost the same. This again means that the
shifts do not come from the high-redshift bins where the mag-
nification contamination is the largest, but rather from the low-
redshift bins. A direct consequence of this is that any alterna-
tive model that would be constrained by the highest-redshift bins
of Euclid, would be significantly more biased when neglecting
magnification. We note that these results are in agreement with
previous analyses on this subject (see e.g. Cardona et al. 2016;
Lorenz et al. 2018; Villa et al. 2018).

Looking at the sign of the shifts of Q0 and o3 for models
beyond ACDM, we see from Table 6 that when the neutrino mass
is included the shift in Q,,o becomes positive, whereas in the
dynamical dark energy model the shift in o3 becomes positive.
However, the overall amplitude is still decreased by magnifica-
tion, since the negative shifts are always larger than the positive
ones.

For our calculation of the shifts, we used the fiducial values
of the local count slope measured in the Flagship simulation. We
did not consider the local count slope as a free parameter in this
part of the analysis, since our goal was to determine the shifts
induced on the other cosmological parameters by a magnifica-
tion signal of a given fixed amplitude. However, we tested the
stability of our results by repeating the analysis with different
fiducial values of the local count slope. We found that, in the
range s; = (1 O.l)s?d, the values of the shifts do not change
significantly. Therefore, our results are robust with respect to the
fiducial s; used in the analysis.

5.3. Impact of magnification on the probe combination
analysis

In this section, we present the same analysis described in
Sect. 5.2, but this time for the joint data GCph + WL + GGL.
We note that magnification contributes to the galaxy clustering
observable and to the cross-correlation GGL, while in our anal-
ysis it does not affect cosmic shear.

5.3.1. Constraints on cosmological parameters

Similar to the discussion in the previous section, we studied the
impact of magnification on the constraints on cosmological pa-
rameters by comparing a Fisher matrix analysis for the probe
combination that neglects this effect and an analysis that consis-
tently includes it. As before, we considered an optimistic case
where we assume that the local count slope is exactly known, a
pessimistic case where the local count slope is considered as a
free parameter, and a realistic case where we include a 10% prior
on the local count slope.

In the optimistic case, that is, assuming a perfect knowledge
of the local counts slope, we found that the improvement on
the constraints due to magnification is negligibly small, that is,
smaller than 3% for all cosmological parameters and all models
under consideration. This is due to the fact that the information
encoded in magnification is the same as the one in the cosmic
shear. As a consequence, adding magnification does not help to
break degeneracies between parameters anymore, since these de-
generacies are already broken by the inclusion of cosmic shear.
This can be seen by looking at Table 7, where we report the
1o constraints for the joint analysis. Comparing with Table 3,
we see for example that the constraints on Qp, ¢ for our baseline
dynamical dark energy model are four times better in the joint
analysis, and the constraints on og are three times better. This
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Table 6: Shift in best-fit parameters for GCph alone.

model Qmo Qb0 Wo Wq h n g > m,
ACDM -0.18 0.004 - - -0.02 033 -0.57 -

ACDM + Y m, 096 -0.15 - - -042 098 -1.62 1.64
wo w,CDM -0.65 -0.64 -1.02 120 0.05 1.04 0.17 -

wow,CDM + ¥ m, -090 -1.12 -1.27 121 022 159 -0.13 1.62

The shift in best-fit parameters are in units of 1o. We report the results for the same models as in Tables 3 and 4. The shifts are
estimated with the formalism described in Sect. 4.2. The values of shifts that are larger than 1o~ cannot be trusted but indicate that
the shift is large. We marginalise over the galaxy bias parameters, and the values of the local count slope are fixed to their fiducial

values.

reflects the fact that cosmic shear breaks the degeneracy between
the amplitude of perturbations and the bias, and since its S/N is
significantly higher than that of magnification (as can be seen
from Figs. 5 and 6), adding magnification does not help any-
more. This also becomes clear by looking at Fig. 8, which com-
pares the constraints from galaxy clustering alone, with the ones
from the joint analysis for our baseline dynamical dark energy
model: we see that adding cosmic shear brings a much larger
improvement in the constraints than including magnification in
the clustering signal.

These constraints refer to the optimistic scenario. In Table 8
we compare this with the pessimistic scenario (second column)
and the realistic scenario (last column). In the pessimistic sce-
nario, the constraints are degraded at the level of 10-20%. This
degradation, especially in og and Qy, o, is due to the fact that we
no longer have a precise measure of the density fluctuation am-
plitude if the amplitude of lensing magnification is completely
unknown. In a realistic scenario we are able to recover the same
information as in the optimistic case.

To conclude, including magnification has a negligible impact
on the constraints for the joint analysis, provided that the local
count slope will be measured independently with a 10% uncer-
tainty. If we do not have independent measurements of the local
count slope, an analysis with no magnification will provide con-
straints that are up to 10-20% too optimistic.

5.3.2. Shift in the best fit

The fact that magnification has little impact on the constraints on
cosmological parameters extracted from the joint analysis does
not mean that an analysis that neglects this effect is accurate in
terms of parameter estimation. Applying the Fisher formalism to
our model comparison problem, we compute the shift in the best-
fit estimation for an analysis that assumes the incorrect model
with no magnification.

The values of the shifts are reported in Table 9. For all four
cosmological models under consideration we find large devia-
tions, that is, above 1o. Although the Fisher formalism that we
use cannot be trusted quantitatively in this case, we can conclude
that an analysis that neglects magnification does not provide an
accurate estimation of cosmological parameters. This important
result agrees with previous studies (see Duncan et al. 2014): al-
though magnification has little impact on the precision of the
cosmological constraints in the 3 X 2pt analysis, inferred cos-
mological parameter values are highly biased when the effect is
neglected. Comparing the above with the shifts obtained from
galaxy clustering alone (see Table 6), we see that the shifts (in
units of o) are significantly larger in the joint analysis, especially
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for Q0 where it lies between 5 and 70, depending on the model,
and for o3 where it is between 3 and 4.50". This is only partially
due to the fact that now the 1o errors are smaller, as is seen
in Fig. 8. More importantly, the shear measurements provide a
precise estimation of the gravitational potential so that number
counts are no longer well-fitted without lensing magnification.

Looking at the sign of the shifts in Table 9, we see that the
shifts in og are negative for all models, whereas the shifts in
Qo are always positive. Moreover, we checked the shifts of the
best-fit galaxy bias parameters and found that most of them are
negative. In Fig. 9, we directly compare the shifts for our base-
line dynamical dark energy model in the GCph analysis and in
the combined analysis. The shifts are systematically of opposite
sign. We already know that in the GCph signal, the magnifica-
tion contamination is negative in the pairs of redshift bins that
contribute most to the constraints. In the GGL signal, the magni-
fication contamination is proportional to 5Ss—2, which is negative
at z < 1 and positive at z > 1. The sign of the shifts will there-
fore depend on which range of redshift contributes most to the
constraints. As before, we ran an analysis removing the magni-
fication contamination in GCph and in GGL at z > 1. We found
that the shifts decrease slightly in amplitude but remain of the
same sign: for example, the shift in g decreases from —4.60 to
—2.30, whereas the shift in Q,, o decreases from 6.90 to 4.4c.
This means that the constraints are mainly driven by z < 1, where
the magnification contamination is negative in both GCph and
GGL. Indeed, if the magnification contamination at z > 1 were
to be the main driver of the shifts, we would expect the shifts to
change sign when we remove the z > 1 contamination, since at
z = 1 the contamination in GGL changes sign. This test shows
that removing from the analysis the bin configurations at high
redshift, which are dominated by magnification, does not reduce
the bias in the best-fit estimation due to neglecting magnifica-
tion, as already pointed out in Thiele et al. (2020).

We then performed another test, where we fixed the value
of Qn and computed the shifts in the other parameters for our
baseline dynamical dark energy model. We found that, in this
case, the shift in g becomes positive, whereas the shifts in the
bias parameters become significantly more negative. This shows
that there is a strong interplay between the impact of o, Q, 0,
and the bias on the amplitude of the GCph signal and the GGL
signal, and that there are therefore various ways of decreasing
the overall amplitude of these signals. When only GCph is in-
cluded, one can decrease the amplitude of the density signal by
decreasing og, Qp, 0, or the bias. Depending on the model, differ-
ent solutions might mimic better the magnification contamina-
tion. In the joint analysis on the other hand, the problem is much
more constrained: since the WL (shear-shear correlation) is not
contaminated, this part of the signal has to remain unchanged.
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Table 7: Constraints on cosmological parameters for GCph + WL + GGL.

model Qno Qo wo wg, h n oy Ym,
ACDM 075 34 - - 22 076 037 -

ACDM + Y, m, 091 4.0 - - 23 076 0.60 100
wo w,CDM 1.1 44 40 15 24 0.89 046 -

wow,CDM + Y m, 12 45 40 16 24 1 0.83 140

1o constraints are relative to their corresponding fiducial values, including magnification (in %). For the parameter w,, we report
the absolute error times 100. We have marginalised over the galaxy bias and the intrinsic alignment parameters, and the values
of the local count slope are kept fixed. We report the results for four cosmological models: a minimal ACDM with one massive
neutrino species and fixed neutrino mass, an analogue model that includes dynamical dark energy, denoted as wy w,CDM, and their
extensions where the sum of the neutrino masses is also a free parameter. The constraints obtained when neglecting magnification
differ from the values reported here by less than 3% for all cosmological parameters and all models considered.

Table 8: Uncertainty in the local count slope, GCph+WL+GGL.

parameter  s(z;) fixed s(z;) marg + 10% prior on s(z;)

Qmo 1% -23% -3%
Qbo <1% 3% < 1%

wo 2% —-16% <1%

Wy 2% -11% 2%

h <1% <1% <1%

g <1% —4% —2%

oy 1% —14% < 1%

The relative difference, 1 — 0'magn/O dens, 1S in percentage. As
in Table 5, we report the results for three scenarios: a) an op-
timistic scenario, when the local count slope is measured with
high accuracy and thus s(z) is kept fixed in the analysis (Col. 2),
b) a pessimistic scenario where the local count slope cannot be
constrained by an independent measurement, and therefore we
marginalise over its values (Col. 3), and c) a realistic scenario
such that the local count slope is assumed to be measured in-
dependently with a 10% precision (Col. 4). The results reported
here refer to our baseline cosmology, the wy w,CDM model.

Any negative shift in og needs therefore to be compensated for
by a positive shift in Q¢ to keep Sg = 0g(Qm0/0.3)*> almost
constant. This explains why in all models the shift in o3 and the
shift in Q,, o have opposite sign (see Table 9). In particular, for
the dynamical dark energy model, we have that the positive shift
AQn0/Qmo = 7% and the negative shift Aog/os = —2% par-
tially compensate to give a small positive shift ASg/Ss = 1%.
Moreover, the shifts must be adjusted to decrease at the same
time the GCph signal, which is proportional to 5?(66), and the
GGL signal, which is proportional to b{dk). From Table 9 and
Fig. 9 we see that all this leads to shifts that are systematically
larger in the joint analysis than in the GCph analysis. This shows
that including magnification in the theoretical model is abso-
lutely crucial for the joint analysis of the photometric sample.

6. Robustness tests

The results presented in the previous sections are a natural exten-
sion of the Euclid forecast presented in EC20 to include magni-
fication in the analysis of the photometric sample. We adopted
three underlying simplifications: 1) non-linearities are modelled
with the Halofit prescription (Smith et al. 2003), including the

Bird and Takahashi corrections; 2) the RSD contribution to the
galaxy count is neglected in the analysis; and 3) both the signal
and covariance are computed using Limber’s approximation. In
what follows, we test the robustness of our results with respect
to these three assumptions.

6.1. Non-linear prescription

Martinelli et al. (2021) investigate in detail the impact of differ-
ent non-linear prescriptions on parameter estimation for the WL
analysis of Euclid. In this work, we do not aim to compare the
parameter estimation analysis itself for different non-linear mod-
els. Instead, we want to verify whether the impact of magnifica-
tion on the analysis strongly depends on our non-linear recipe.

With this objective in mind, we compared the analysis pre-
sented in Sect. 5 for three non-linear prescriptions. The first is
Halofit (Smith et al. 2003; Bird et al. 2012; Takahashi et al.
2012), a model for the non-linear matter power spectrum in-
spired by the halo model (Cooray & Sheth 2002). This is our
reference recipe, and it is the implementation adopted in the
forecast validation project for Euclid (EC20). The second is
Halofit+Pk-equal (Casarini et al. 2016), which is an exten-
sion to the Halofit fitting formula to models with a redshift-
dependent equation of state for the dark energy component. The
third is HMICODE (Mead et al. 2016), an alternative parametrisa-
tion for the total matter power spectrum that is based on the halo
model but with physically motivated free parameters. Although
this model can account for baryonic feedback, in this test we
used the model fitted to the Cosmic Emulator dark-matter-only
simulation (Heitmann et al. 2014). The three models considered
here are all implemented in version v2.9.4 of crLass (Blas et al.
2011) and, therefore, applying our analysis to different recipes is
straightforward.

We performed this test on our baseline cosmology, and we
assumed the optimistic scenario for the local count slope, that is,
we assumed that s(z) is exactly known. Therefore, its value was
fixed in the analysis.

In Table 10 we compare the improvement in terms of con-
straining power for the non-linear models considered here, for
a GCph alone analysis. The maximum percentage improvement
of the 1o errors between an analysis with magnification and an
analysis that neglects this effect varies between 25% (Pk-equal)
and 42% (HMCODE).

Table 11 shows a comparison of the shifts in the best-fit pa-
rameters for GCph alone analysis. For all the non-linear prescrip-
tions considered here, neglecting magnification can introduce a
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Table 9: Shift in best-fit parameters for GCph + WL + GGL.

model Qno Qo  Wo Wq h n oy > m,
ACDM 473 041 - - -0.56 -1.76 -2.88 -

ACDM + Y m, 5.64 0.65 - - 0.07 -151 -421 3.08
wo w,CDM 690 289 458 -282 1.16 -439 -4.56 -

wow,CDM + > m, 621 271 457 -2.82 1.09 -3.60 -291 0.51

We report the shift in the values of the best fitting parameters, in units of 1o, for the same models as in Table 7. The shifts are
computed with the formalism described in Sect. 4.2, and therefore, the values of shifts that are larger than 1o~ cannot be quantitatively
trusted but indicate that the shift is large. We marginalise over the galaxy bias and intrinsic alignment parameters, and the values of

the local count slope are fixed to their fiducial values.

Table 10: Impact of non-linear prescription on the constraints for
GCph alone.

parameter Halofit Halofit + Pk-equal HMCODE
Qmo 36% 24% 31%
Qbo 24% 15% 27%
Wwo 34% 22% 20%
Wa 35% 25% 23%
h 14% 13% 6%
ng 32% 18% 42%
o 18% 14% 11%

We compare the relative difference 1 — 0 genstmagn/Cdens» €X-
pressed as a percentage, obtained when using three different non-
linear prescriptions, as described in the text. The results reported
here refer to our baseline cosmology, that is, the wyw,CDM
model.

Table 11: Impact of non-linear prescription on the shifts for
GCph alone.

parameter Halofit Halofit + Pk-equal HMCODE
Qo —-0.65 -1.08 -1.34
Qbo —-0.64 -1.00 -1.42
wo -1.02 -1.62 -1.82
Wq 1.20 -1.84 2.06
h 0.05 0.53 -0.26
ng 1.04 1.03 1.33
oy 0.17 0.72 0.67

We compare the shift in the best-fit parameters, in units of 1o,
obtained using three different non-linear prescriptions, as de-
scribed in the text. The results reported here refer to our baseline
cosmology, the wy w,CDM model.

shift larger than 1o for several model parameters. Therefore, we
find that magnification should not be neglected in the galaxy
clustering analysis of the photometric sample of Euclid, inde-
pendently of the non-linear modelling.

We repeated the same analysis for the probe combination
GCph + WL + GGL. We find that the impact of magnification
on the constraints is negligible (< 3%) for all non-linear pre-
scriptions considered here. In Table 12 we report the shifts in the
best-fit estimation due to neglecting magnification in the joint
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Table 12: Impact of non-linear prescription on the shifts for

GCph + WL + GGL.
parameter Halofit Halofit + Pk-equal HMCODE

Qo 6.90 6.4 6.35

Qo 2.89 2.99 2.83
Wo 4.58 4.58 4.37
Wy -2.82 -3.07 -3.31
h 1.16 0.71 0.72
N -4.39 —4.17 -2.79
o -4.56 -4.73 -4.49

We compare the shift in the best-fit parameters, in units of 1o,
obtained using three different non-linear prescriptions, as de-
scribed in the text. The results reported here refer to our baseline
cosmology, the wy w,CDM model.

analysis. The shifts do not strongly depend on the way we model
non-linearities, and they show that magnification should not be
neglected in the analysis.

In conclusion, we have shown that the results that we present
in the main body of this manuscript are valid independent of
the non-linear modelling. Although this test assumes the wow,
parametrisation, it has been shown in, for example, Lorenz et al.
(2018) and Villa et al. (2018) that the impact of magnification on
galaxy clustering is enhanced for several modified gravity mod-
els. Therefore, we do not expect this picture to change signifi-
cantly for other cosmological models.

6.2. Redshift-space distortions

Redshift-space distortions are currently neglected in the Euclid
forecast for the photometric sample. The reason is twofold. First,
in photometric redshift bins radial correlations are washed out
due to poor redshift resolution and, therefore, the information
encoded in the RSD contribution is highly suppressed. Second,
the non-linear modelling of RSDs is a challenging task: the sev-
eral prescriptions proposed to include the finger-of-god effects
into our theoretical model have been proven to be inaccurate
for modelling RSD contribution to the angular power spectrum
(Jalilvand et al. 2020) and it has also been shown that finger-
of-god effects change the RSD harmonic-space spectrum on all
scales (Grasshorn Gebhardt & Jeong 2020). Although a compre-
hensive study on the impact of RSDs in the analysis of the Eu-
clid photometric sample would require an accurate modelling of
RSDs, which is beyond the scope of this work, we are interested
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B GCph (without magnification)
I GCph (with magnification, s marginalised with prior)
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Fig. 8: Marginalised 1o errors on cosmological parameters, rela-
tive to their corresponding fiducial values for the baseline model
of dynamical dark energy. The error bars for w, represent the
absolute error, o, for this parameter since a relative error can-
not be computed for a fiducial value of 0. Each histogram refers
to a different cosmological analysis or observational probe. We
show in blue a GCph analysis that neglects magnification, in or-
ange a GCph analysis that includes magnification and assumes a
10% prior on the measurement of the local count slope (realistic
scenario), and in green a GCph analysis that models magnifi-
cation assuming a perfect knowledge of the local count slope
(optimistic scenario). For comparison, we show in pink the con-
straints from the WL analysis and in violet the one obtained from
the probe combination GCph + WL + GGL.

in studying whether including the RSD signal could significantly
affect our conclusions on the impact of magnification for the Eu-
clid photometric sample.

For this purpose, we repeated the analysis presented in
Sect. 5, including RSD contributions to galaxy clustering. The
non-linear RSD is naively modelled using the Kaiser formula,
that is, finger-of-god effects are neglected. This approximation
overestimates the contribution from RSDs to the galaxy clus-
tering analysis, and should therefore give a first indication of
whether the effect is important or not.

B GCph
B GCph + WL + XC
|
g I
ne __
L !
w, —
|
o _—
]
Ql>,() -
|
Qm.() -
—4 -2 0 2 4
Ab/o

Fig. 9: Shift in the best-fit estimation of cosmological parameters
induced by neglecting magnification in our theoretical model.
The values of the shift are expressed in units of the marginalised
1o constraints. The blue histogram refers to the parameters esti-
mated from the GCph alone analysis, and the orange histogram
represents the shifts for the 3 x 2pt analysis GCph + WL + GGL.
The red regions highlight shifts above 1o in absolute value. The
values of the shifts computed with the Fisher formalism cannot
be trusted quantitatively in this region.

In Table 13 we compare the impact of lensing on the con-
straints and the shift in the best fit induced by neglecting magni-
fication, with and without RSDs. We stress that the lines denoted
‘with RSD’ include the RSD signal, both in the Fisher analysis
that includes magnification and the one that neglects it. More-
over, in the shift analysis, we are comparing an incorrect model
that includes density and RSDs to a correct model that accounts
for density, RSDs, and magnification. For both the GCph alone
analysis and the joint analysis, including RSDs does not signifi-
cantly change the improvement in the constraints driven by mag-
nification and the shift in the best-fit estimation induced by ne-
glecting this effect. Therefore, our conclusions on the impact of
magnification do not depend on the RSD contribution. However,
we stress that this result does not imply that RSDs can be ne-
glected in the analysis. In fact, an analysis without RSDs could
still provide an inaccurate estimate of cosmological parameters.
This aspect will be addressed in a future work.

6.3. Limber’s approximation

An exact computation of the angular power spectra for the
galaxy clustering and WL analysis requires the estimation of
double integrals in redshift (or comoving distance) of spheri-
cal Bessel functions and their derivatives, which is a numerical
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Table 13: Impact of RSDs.

Qno Qb wo Wq h ng o

I-EREIEC  GNRSh B 0% 9% %% 1% 2% 174
0/ (GCph) WRRSD 075 063 08 08 025 105 009

|- RO WLLOOh  BReh  1g  lig a4 <14 <ig 14
20jo OCPh+WL+GOL)  ih'Rsh 695 2m2 4 298 107 42 47

Impact of magnification in the GCph and GCph + WL + GGL analyses, including or neglecting RSDs, for our baseline cosmology.
In the results labelled as ‘with RSD’, we add the contribution of RSDs both in the Fisher analysis that includes magnification and
the one that neglects it. Vice versa, the results denoted as ‘no RSD’ completely neglect RSDs, and they correspond to the analysis

presented in Sect. 5.

Table 14: Impact of Limber’s approximation.

Qo Qo wo Wy h g o3

Cmmean  amw wE oMW o m B M
2017 (GCph) wolimber 177 17 2% 25 o041 218 120

|- BRI WLEGOL (b 1 lig e % <1 <ie 1
R O e A e A

Impact of magnification in the GCph and GCph + WL + GGL analyses for our baseline cosmology. We compare the results obtained
within Limber’s approximation to an analysis that does not use Limber at low ¢, as described in the text.

challenge for data-analysis pipelines due to the oscillatory be-
haviour of the Bessel functions. The computational time can be
drastically reduced when making use of Limber’s approximation
(Limber 1953, 1954; LoVerde & Afshordi 2008), which assumes
small angular scales and that the other function that appears in
the radial integral varies much more slowly than the spherical
Bessel functions. Effectively, this implies that we can approxi-
mate the spherical Bessel functions with a Dirac-delta function,

The accuracy of Limber’s approximation depends on the se-
lection functions of the tracers and the scales that we are prob-
ing (see for example Simon 2007; Eriksen & Gaztanaga 2015b;
Kitching et al. 2017; Kilbinger et al. 2017; Lemos et al. 2017;
Fang et al. 2020; Matthewson & Durrer 2021). For tracers with
a broad kernel, such as cosmic shear, Limber’s prescription has
a relatively small impact on the estimation of cosmological pa-
rameters (Kilbinger et al. 2017; Lemos et al. 2017). On the other
hand, the approximation is inaccurate for the density and RSD
contributions to the number count, especially for selection func-
tions with a narrow radial width (Eriksen & Gaztanaga 2015b;
Fang et al. 2020; Matthewson & Durrer 2021).

Since a brute-force computation of the angular power spec-
tra is not doable for a full MCMC analysis, Limber’s approx-
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imation has been widely adopted in the literature (EC20), and
we adopted the same approximation in the analysis presented
in the previous sections of this paper. In this section, we study
the impact of the approximation on the analysis. For this pur-
pose, we ran the Fisher analysis presented in Sect. 5 using
a brute-force integration for estimat