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Transient noise appearing in the data from gravitational-wave detectors frequently causes problems, such as instability of the
detectors and overlapping or mimicking gravitational-wave signals. Because transient noise is considered to be associated with
the environment and instrument, its classification would help to understand its origin and improve the detector’s performance.
In a previous study, an architecture for classifying transient noise using a time–frequency 2D image (spectrogram) is proposed,
which uses unsupervised deep learning combined with variational autoencoder and invariant information clustering. The pro-
posed unsupervised-learning architecture is applied to the Gravity Spy dataset, which consists of Advanced Laser Interferometer
Gravitational-Wave Observatory (Advanced LIGO) transient noises with their associated metadata to discuss the potential for
online or offline data analysis. In this study, focused on the Gravity Spy dataset, the training process of unsupervised-learning
architecture of the previous study is examined and reported.

Keywords: deep learning, training process, hyperparameter tuning, classification, transient noise

1 Introduction

Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced LIGO) detector [1] located at Livingston and 
Hanford, USA, made its first observation of gravitational waves from the coalescence of a binary black hole in September 2015 
[2]. Following that, Advanced LIGO and Advanced Virgo [3] in Pisa (Italy) have made three international joint obser-vations 
and observed as many as 90 events of gravitational waves emitted by the coalescence of the compact binary [4–7]. KAGRA [8–
13] in Japan will join the next (fourth) observing run (O4) by Advanced LIGO and Advanced Virgo.



In the data analysis of gravitational waves, the technique of separating the gravitational waves from the noise in the ob-
served data is essential because the signals of the gravitational waves are generally smaller than the detector noise. Be-
cause the gravitational-wave detector is sensitive to environmental and instrumental conditions, such as ground motions, 
air pressure, optics suspensions, laser fluctuations, vacuum, and mirror, the non-stationary and non-Gaussian noise called 
“transient noise” frequently appears in the detector’s data [14]. The transient noise causes the detector to be unstable, it can 
also hide and imitate gravitational-wave signals [15]. During O3b [7], LIGO Scientific Collaboration, Virgo Collabora-tion, and 
KAGRA Collaboration (LVK) reported that the transient noise rate with a signal-to-noise ratio (SNR) of > 6.5 was 1.17 events 
per minute at LIGO Livingston.
Machine learning is increasingly being applied in the study of transient noise [16–18]. Transient noise has various time-
frequency characteristics that are related to its causes. Classifying transient noise could provide a clue to explore its ori-gins and 
improve the performance of the detector [19]. Thus, the Gravity Spy project [20–23] attempted to classify the transient noise. In 
the Gravity Spy project, the Omicron software [24] was used to identify the signal of transient noise observed in the time-series 
data. Following that, using the Omega Scan [25], a time-frequency spectrogram was created around the identified transient 
noise as a 2D image. Based on a portion of these created 2D images, 22 types of labels as-sociated with the characteristics or 
causes of transient noise were annotated for the analysis using cloud resources in col-laboration with LIGO detector 
characterization experts and volunteer citizen scientists. Both the images and labels were recorded. Finally, using the pre-
classified images and labels, they classified the transient noise in the remaining images us-ing supervised learning.
Recently, there are some reports on the clustering and/or classification of transient noise using unsupervised learning [26–30]. 
Sakai et al. [26] discussed an architecture for the classification of transient noise using unsupervised learning, which combines a 
variational autoencoder (VAE) [31] [32] and invariant information clustering (IIC) [33]. The consistency be-tween the label 
annotated by the Gravity Spy project and the class provided by the proposed unsupervised-learning archi-tecture was 
confirmed using the Gravity Spy dataset of LIGO O1, and the potential for the classification of transient noise using 
unsupervised learning was discussed. Unsupervised learning is expected to reduce annotation work for training data, increase 
classification objectivity, and even classify a new class, such as the transient noise because it does not require any pre-assigned 
labels for the training dataset. Moreover, the training process of unsupervised learning is essential and some detailed 
reports on the training process can be found in refs. [34, 35]. In this study, focused on the Gravity Spy dataset, the training 
process of unsupervised-learning architecture of ref. [26] is examined and reported.
The remainder of this study is organized as follows: In Section 2, we explain the outline of VAE and IIC, which are used in 
the proposed architecture. In Section 3, we review the architecture, which was proposed in our previous research [26]. In 
Section 4, we report on how the training process of the unsupervised learning architecture was conducted. We also give a 
summary of the evaluation and obtained results discussed in [26]. Section 5 presents a summary of the work.

2 Outline of Used Method for Proposed Architecture

The proposed architecture discussed in Section 3 to classify transient noise is combined VAE [31] [32] and IIC [33], both of 
which are known as unsupervised-learning methods.

2.1 Variational Autoencoder

We introduce VAE [31] [32] that forms the feature learning [36] [37] part of our proposed architecture. VAE is a Bayesian 
inference method that uses a predictive distribution for the parameters and was designed for unsupervised learning. VAE 
has an architecture that compresses an image to the latent variables before reconstructing the original image from the la-
tent variables. Let X ⊂ RD be the input space and Z ⊂ RJ be the latent space, where D, J ∈ Z and J < D. Suppose a true (but 
unknown) probability distribution is the parameterized model Pθ of the variable x ∈ X , and the latent variable z ∈ Z is 
represented instead of the parameters θ, which are not directly observed. The marginal likelihood Pθ(x), which we are 
interested in, has the following relation (Bayes’ theorem), Pθ(x) = Pθ(x|z)Pθ(z)/Pθ(z|x). Then, let the likelihood Pθ(x|z) be 
the generative model, and a prior distribution Pθ(z) be hypothesized to be a Gaussian distribution. Unfortu-nately, Pθ(x) is 
intractable; therefore, we cannot evaluate it directly. However, considering the posterior distribution as the inference model 
Pθ(z|x) ∼ Qφ(z|x) that is parameterized by φ, we can evaluate Pθ(x) indirectly. Then, the logarithm marginal likelihood can 
be expressed as

lnPθ(X) = DKL (Qφ(z|x)||Pθ(z|x)) + Lθ,φ(x), (1)

where DKL is the Kullback-Leibler divergence of two distributions, and Lθ,φ(x) is known as the variational lower bound, 
respectively. The first term on the right-hand side of Equation (1) gradually approaches zero as the accuracy is increased. 
Therefore, maximizing the log-likelihood can be replaced by the problem of maximizing the variational lower bound as fol-
lows, arg max

θ

lnPθ(x) = arg max
θ,φ

Lθ,φ(x). Then, the equation for the variational lower bound is expressed as

Lθ,φ(x) ∼ −DKL (Qφ(z|x)||Pθ(z)) +

∫

Qφ(z|x) lnPθ(x|z)dz, (2)



where X = {x = fθ(z)|z ∈ Z} represents the input space and a map fθ : Z → X is known as a decoder. Similarly, the 
latent space is also represented by Z = {z = gφ(x)|x ∈ X } and a map gφ : X → Z is is known as an encoder. Suppose the 
two multivariate Gaussian distributions in the latent space are expressed as follows, Qφ(z|x) = N(z; µ, σ2I) and Pθ(z) = 
N(z; 0, I), where µ is the mean and σ is the variance, and I is the identity matrix. Then, using the reparameterization trick 
[31], Equation (2) can be expressed as

Lθ,φ(x) =
1

2

J
∑

j=1

(1 + lnσ2
j − µ2

j − σ2
j ) +

1

L

L
∑

l=1

lnPθ(x|z
(l)), (3)

where µj and σj are the mean and variance of J-dimensional Gaussian distribution, respectively, and L is the number of 
samples per datapoint. L can be set to 1 when the minibatch size is large enough [31].

2.2 Invariant Information Clustering

We briefly explain IIC [33] that forms the classification part of our proposed architecture. Although classification using 
supervised learning generally requires numerous labels for its training, IIC can classify without these labels and achieve 
results comparable to supervised learning. The goal of IIC is to learn what is in common between the paired data. These 
paired data, for example, could be different images with the same characteristics. Let x, x′ ∈ X be paired data following a
joint probability distribution P (x, x′) and C ∈ Z be the number of output classes. IIC learns a classifier (representation) 
Φ : X → RC that maximizes the mutual information I expressed by entropy H as follows

(4)I(Φ(x), Φ(x′)) = H(Φ(x)) − H(Φ(x)|Φ(x′)).

Moreover, the maximum value of Equation (4) such that x = x′ can be analytically obtained as 

followsmax(I(Φ(x)) = lnC. (5)

Calculating a criterion for data within the same class and data between different classes is useful for evaluating the perfor-
mance of the classifier. Thus, let Pij = Φ(x(i)) ·Φ(x′(j))T be the conditional joint distribution and
Pi =

∑

j Φ(x(i)) ·Φ(x′(j))T be the marginal distribution, where x(i) ∈ X are data belonging to the ith class, and a notation
T means a transpose and “·” means an inner product. Then, the mutual information Equation (4) can be expressed as

I(Φ(x),Φ(x′)) =
C
∑

i

C
∑

j

Pij ln
Pij

PiPj

. (6)

The objective of training IIC is to construct the classifier Φ that maximizes Equation (6).

3 Outline of Proposed Architecture

We review an unsupervised-learning architecture proposed in ref. [26], which has deep convolutional neural networks for the 
classification of transient noise. The proposed architecture consists of two processes: feature learning using VAE and 
classification using IIC. We input four 2D images of transient noise with different time durations to the proposed archi-
tecture, and its shape is (4, 224, 224) data having four square images (224, 224). More details of the input 2D images are shown 
in Section 4.1. Regarding the implementation of VAE, we used the architecture, as shown in Figure 1. Each block shows the 
components of neural networks and their shape. The purpose of VAE is to learn the latent variables, which are the compressed 
features from a large dataset. We used four convolutional neural networks in our proposed architecture be-cause convolutional 
layers are known to be effective in image processing. Additionally, we used a ReLU activation function to avoid the vanishing 
gradient problem in deep neural networks and used a batch normalization technique in all convolu-tional layers to stabilize 
training. For the encoder part, the first convolution layer outputs a shape of (M, 64, 112, 112) from the input 2D image having a 
shape of (M, 4, 224, 224), where M is a minibatch size. A max-pooling layer next to the con-volutional layer extracts the 
features and compresses them into a shape of (M, 112, 56, 56). Following that, further features are extracted with three 
convolutional layers and are averaged through an average-pooling layer. A fully connected layer connects to all variables in 
neural networks. After using reparameterization trick [31], the latent variables z are obtained (in the case of Figure 1, its 
shape is (512)). For the decoder part, the decoder constructs an image element whose shape is (M, 512, 14, 14) from the 
latent variables z through a fully connected layer and an upsampling nearest layer. Because 2D nearest-neighbor 
upsampling simply doubles the shape of the input, this layer is combined with a convolutional layer to generate an image. 
The decoder has four upsampling and convolutional layers. Following that, a (M, 4, 224, 224) image with the same shape as 
the input was obtained.
IIC for the classification of transient noise uses VAE’s pre-trained encoder as shown in Figure 2. Because the features of 
transient noise have already been learned by the VAE’s pre-trained encoder, the IIC architecture was simply configured



with VAE’s pre-trained encoder and a fully connected layer. Additionally, overclustering [33] was applied to IIC to improve the 
performance of the architecture. Regarding the two inputs x, x′ ∈ X to IIC in training, we let x be the center-cropped 2D image 
of transient noise and x′ be the perturbed 2D image (Section 4.1) in the time direction, whose shapes of images are the same as 
(4, 224, 224), and gtrain : X → Z is the mapping of pre-trained encoder. Then, IIC trains to maximize the mutual information 
I(Φ(gtrain(x)), Φ(gtrain(x

′))) and overclustering I(Φover(gtrain(x)), Φover(gtrain(x
′))), where Φ ∈ RC and Φover ∈ RW . We also 

used several classifiers (typically set as five) and backpropagated the ensemble average for this mutual information to reduce 
the initial value dependence of the neural networks. The details are shown in Section 4.3. Following IIC training, although we 
could obtain a classification result from one classifier, the softmax outputs of each classifier differ slightly due to the initial value 
of the neural networks. Therefore, this result should be averaged by multiple classifiers to obtain a uniform classification result. 
Regarding unsupervised learning, the classification labels are given ran-domly in training. For example, the first classifier 
classifies the data as class label “0,” while the second classifier classifies the same data as class label “1.” Therefore we could not 
calculate an ensemble average of multiple classification results. As an alternative, we used an approach that constructs one 
classification result from the features extracted by multiple clas-sification results using the spectral clustering [38]. Now, let D ∈ 
Z be the total number of datasets and K ∈ Z be the number of classifiers, C ∈ Z be the estimated number of classes, and MD×C 
(R) be the classification matrix output from one classifier. Based on the hypermatrix HD×CK(R), which is composed of the 
concatenated results of multiple classifiers, we calculated an affinity matrix AD×D(R) using the Gaussian similarity function 
(A)i,j = exp (−||hi − hj ||

2), where hi is a row vector of the hypermatrix H = (h1, . . . , hi, . . . , hD)T . After applying spectral 
clustering to the affinity matrix, we obtained the following new classification matrix: MD×C (R).

4 Training Process and Result

We report on the training process and results of our proposed architecture step by step.

4.1 Outline of Dataset

The target dataset is the Gravity Spy dataset of LIGO O1 [20] [21] which consists of 8535 transient noise images with 22 
different labels (e.g., “Blip,” “Power Line,” and “Koi Fish”). All transient noise in the dataset has been selected with the SNR 
≥ 7.5 by Omicron software [24]. Each transient noise image is represented as a time-frequency spectrogram 2D image. One 
transient noise is recorded in four time durations: 0.5, 1.0, 2.0, and 4.0 s. More details of the labels, the distribution of the 
dataset, and 2D images of the transient noise are explained in Figure 1 in ref. [26].
We also applied a preprocess that randomly shifts between ± 0-24 px from the center of the image to the transient noise 
2D image. The 2D images of the transient noise in each time duration have the shape of 224 × 272 px. The preprocess-ing 
randomly shifts the time direction of the image between 0 and 24 px and crops it at 224 × 224 px (square image). The 
purpose of this preprocessing is to allow the proposed architecture to train transient noise features without relying
on small-time shifts. Reducing the size of input images contributes to saving the training cost. More details of the prepro-
cessing are shown in Figure 7 in ref. [26].
We used these four original and perturbed 2D images as the input data, as shown in Figures 1 and 2. More details of the 
dataset can be found in ref. [26].

4.2 Training of VAE

The objective of VAE training is to maximize the variational lower bound expressed by Equation (3). Regarding the log-
likelihood expressed as the second term of Equation (3), the original study [31] proposed two equations: Bernoulli and 
Gaussian distributions. Moreover, we used the mean squared error (MSE) as a reconstruction error. The three equations 
are expressed as

lnPθ(x|z) =











∑D

i [xi ln yi + (1− xi) ln(1− yi)] (Bernoulli distribution)
∑D

i (xi − yi)
2 (MSE)

1/2 ln(2π) +
∑D

i [ln |σi|+ (xi − µi)
2/(2σ2

i )] (Gaussian distribution)

, (7)

where yi is each pixel of the reconstructed image, µi and σi are the mean and variance with respect to each pixel of xi, 
respectively. Because the Gaussian distribution requires both µi and σi, we doubled the output layer of the decoder in Fig-ure 1.
Generally, deep learning has hyperparameters for optimal training. We investigated the hyperparameters as shown in Ta-
ble 1 (top) and conducted an experiment using our proposed architecture as follows: the initial learning rate (used Adam [39], 
which is one of the stochastic gradient descent methods) is in the range of [5 × 10−7, 5 × 10−2] in increments of one digit;
the minibatch size is in the range of [32, 128] in increments of ≈ 32; the training size is in the range of [60%, 90%] in incre-ments of 
10%; the dimensions of the latent variable z are 64, 128, 256, 512, and 1024; VAE has the evaluation phase every



Table 1: Hyperparameters on training of VAE (top) and IIC (bottom).

Hyperparameter name Range Increment value

Training of VAE Initial learning rate [5× 10−7, 5× 10−2] 10−1

Mini-batch size [32, 128] ≈ 32
Training size [60%, 90%] 10%
Dimensions of z 64, 128, 256, 512, 1024 -

Training of IIC Initial learning rate [5× 10−7, 5× 10−2] 10−1

Mini-batch size [64, 256] 32
Number of classes [22, 100] 2
Number of over clustering [50, 500] 50
Classifier number 3, 5, 10, 20 -

Table 2: Representative hyperparameters for the training process of the proposed architecture and its computational cost. 
All cases are adopted by Adam optimization [39].

Initial learning rate Batch size Training size Dimension of z Computational cost
(500 epochs)

Bernoullie
Case1 5× 10−5 128 80% 512 5.0 h
Case2 5× 10−4 128 80% 512 5.0 h

MSE
Case1 5× 10−5 64 60% 256 2.0 h
Case2 5× 10−4 96 70% 512 3.5 h

Gaussian
Case1 5× 10−4 32 60% 128 1.8 h
Case2 5× 10−2 82 80% 256 6.0 h

five epochs to quantify the performance of the model, and the size of the evaluation dataset is (1− Training size), respec-tively. In 
this study, the case of representative hyperparameters, as shown in Table 2 was used to explain the training pro-cess.
The training curves using the Bernoulli distribution in Table 2 are shown in Figure 3 (top). Because “Case 1” and “Case 2” of 
evaluation curves (plotted as dashed) are close to these training curves (plotted as solid), there is no overfitting in the training 
process. Although the training curve of “Case 1” (drawn in blue) progresses slowly, the training curve of “Case 2” (drawn in 
pink) sets a higher learning rate than “Case 1”. It also progresses rapidly and is stabilized near 100 epochs. Considering the 
Bernoulli case, an optimizer with a small learning rate would be the cause of slow progress in training. The reconstructed 
images from the decoders of “Case 1” at 300 epochs and “Case 2” at 100 epochs are shown in Figure 3 (bottom). The “Case 
1” image may not have been reconstructed appropriately. However, the “Case 2” image seems to ex-tract the feature of the 
input image appropriately. Therefore, “Case 2” is considered suitable in the case of the Bernoulli distribution.
The training curves using MSE in Table 2 are shown in Figure 4 (top). The training curves converge in both cases, with the 
difference being that the “Case 2” curve (drawn in green) is close to zero, and the “Case 1” curve (drawn in red) is smaller than 
the “Case 2” curve. Therefore, we confirmed that “Case 2” is more optimal for the hyperparameters than “Case 1” in the MSE 
case. The reconstructed images of “Case 1” at 100 epochs and “Case 2” at 100 epochs are shown
in Figure 4 (Bottom). The “Case 1” image would only be roughly reconstructed because it is considered to be caused by 
insufficient optimization of the hyperparameters. The “Case 2” reconstructed image seems to be close to the input image, but 
this image is blurry. This is the reason why the decoder of “Case 2” reconstructs images along with background fea-tures. 
Therefore, the training curve might be close to zero.
The training curves using the Gaussian distribution are shown in Figure 5 (top). The “Case 1” training curve (drawn in yellow) 
has a difference between the training and evaluation curves, and this training is considered overfitting. The “Case 2” training 
curve (drawn in black) converges at 150 epochs and the evaluation curve is close to the training curve. “Case 2” is stable. 
Therefore, “Case 2” is more appropriate than “Case 1” in the Gaussian case. The reconstructed images “Case 1” at 50 
epochs and “Case 2” at 150 epochs, which are µi of the decoder output in Equation (7), is shown in Figure 5 (Bottom). 
Both images would be less clear than the input image. The reconstructed image is averaged because the mean µi of the 
Gaussian distribution was applied to the output.
We used two NVIDIA GeForce RTX 2080 Ti GPUs, Intel Xeon CPU E5-2637 v4 (eight cores), and with 125 GB of main 
memory. The computational cost of each training process is shown in Table 2. The computational cost increases as the 
batch size and training size increase. Bernoulli and MSE cases have almost the same computational cost because the neu-ral 
network layers are the same. However, the computational cost for the Gaussian case is higher than that for the Bernoulli 
and MSE cases. The reason for the higher computational cost in the Gaussian case is that the decoder optimizes the neu-ral 
network through the mean and variance of the output, which increases the neural network layers.
We also investigated the latent variables, which are outputs from the encoder. The auxiliary analysis is frequently ap-



plied to a training model to understand the learned features of the dataset. Latent variables are important for the repre-
sentation of the dataset. However, because the latent space is generally the higher dimension, it is difficult to assess its
utility. For this reason, visualization methods are frequently applied by embedding from a high-dimensional space to a
lower-dimensional space. A typical approach is principal component analysis (PCA), which is a linear dimension reduction
technique based on keeping the covariance of the data. Alternatively, the t-distributed stochastic neighbor embedding (t-
SNE) [40] is a nonlinear technique that preserves the distance between the higher-dimensional and lower-dimensional fea-
tures. PCA leads to a better understanding of the data’s global structure. Alternately, t-SNE helps in the understanding
of the local structure which is important for comprehending clustering visually. Therefore, we applied the t-SNE method
for the visualization of the latent space. Let pij → R be the joint distribution of the two latent variables zi, zj ∈ Z and
qij → R be the joint probability of the lower -dimensional variables yi,yj ∈ Y, where Y is the lower -dimensional space.
Suppose pij follows the Gaussian distribution and qij follows t-distribution, respectively, then, the t-SNE objective d is de-
termined using the following equation

d =
∑

ij

pij log
pij
qij

. (8)

Let Y ⊂ R
3 be the lower-dimensional space, and the learning parameters of t-SNE be set as below: perplexity, which is

related to the number of nearest neighbors as 40, the maximum number of iterations for the optimization as 2000, and ran-
dom seed as 10. We also used the Gravity Spy labels to visualize how the Gravity Spy dataset is clustered in the latent
space. The t-SNE mapping was applied to each model: Bernoulli “Case 2” at 100 epochs, MSE “Case 2” at 100 epochs,
and Gaussian “Case 2” at 150 epochs. The t-SNE results of the Bernoulli, MSE, and Gaussian cases are shown in Fig-
ure 6 (top) , Figure 7 (top), and Figure 8 (top), respectively. Considering the Bernoulli case, the data in each class
appear to be clustered in 3D space, and each cluster has a spatially expansive structure. However, considering the MSE
case, the data are also clustered, and the difference is that the structure of each cluster seems to be smaller than that of
the Bernoulli case. Similar aspects to the MSE were found in the Gaussian case.
Moreover, the t-SNE results are quantitatively examined using the silhouette coefficient. Let Cin ⊂ Y be the intra-cluster
dataset and Cnear ⊂ Y be the nearest-cluster dataset, where Cin ∩ Cnear = ∅. The mean intra-cluster distance of the ith data
is defined as follows: a(i) = 1/(|Cin| − 1)

∑

y(j)∈Cin
||y(i) − y(j)||, and the mean nearest-cluster distance of the ith data is

defined as follows: b(i) = 1/|Cnear|
∑

y(j)∈Cnear
||y(i) − y(j)||. The silhouette coefficient s(i) is defined as

s(i) =
b(i) − a(i)

max (b(i), a(i))
. (9)

Note that the silhouette coefficient is a mapping Y → [−1, 1] and it approaches 1 when the clustering is condensing and 
approaches 0 when the number of clusters is not appropriate. The negative value means that these data overlapped with 
each cluster.
The silhouette coefficients for the Bernoulli, MSE, and Gaussian cases are shown in Figure 6 (bottom), Figure 7 (bottom), and 
Figure 8 (bottom), respectively. The average values (drawn in red) for all classes are 0.22 in the Bernoulli case, 0.19 in the MSE 
case, and 0.19 in the Gaussian case. The average silhouette coefficient in the Bernoulli case is greater than that in the other two 
cases. The MSE and Gaussian cases overlapped with other classes because their clustering was more con-densed than the 
Bernoulli case. As a result, their silhouette coefficients decreased.
We summarize the results of VAE’s training process. The training optimization was conducted in Equation (7) using three 
types of the reconstruction error. The Bernoulli “Case 2” decoder at 100 epochs was used to reconstruct the features of 
transient noise. We also confirmed the t-SNE results and silhouette coefficients. As the results show, it was also suggested 
that the Bernoulli “Case 2” encoder at 100 epochs was better for transient noise classification. Therefore, we used the 
Bernoulli “Case 2” encoder at 100 epochs as a pre-trained encoder for IIC.

4.3 Training of IIC
Following VAE training, IIC uses a pre-trained encoder to classify the transient noise 2D image. The objective of IIC train-ing is 
to maximize the mutual information expressed by Equation (6). The maximum mutual information expressed by Equation (5) 
increases monotonically with the number of classes. We divided Equation (6) by Equation (5), and obtained the normalized 
mutual information I(Φ(x), Φ(x′))/ ln C for the number of classes C. Our proposed architecture maximizes the normalized 
mutual information in the training process. This normalized expression allows for mutual information com-parisons with the 
different numbers of classes.
The hyperparameters for IIC are also investigated as shown in Table 1 (bottom) and experimented using our proposed ar-
chitecture as follows: the initial learning rate is in the range of [5 × 10−7, 5 × 10−2] in increments of one digit (same as 
VAE training); the minibatch size is in the range of [64, 256] in increments of 32; the number of classes is in the range of 
[22, 100] in increments of 2; the number of over clustering is in the range of [50, 500] in increments of 50; the classifier num-
ber is one of 3, 5, 10, and 20.
Regarding the initial learning rate, when other hyperparameters are fixed, the normalized mutual information is not af-
fected unless the value is far away, for example, 5 × 10−7 and 5 × 10−2. Similar aspects to the number of overclustering,



the classifier number, and the minibatch size were found in the training process. Therefore, in this study, we set the initial 
learning rate to 5 × 10−4, the number of classifiers to five, the number of over clustering to 250, and the minibatch size to
128. We investigated the range of [22, 100] to determine the number of classes that affect the normalized mutual informa-tion. 
Because the previous studies [22] [27] [28] presented new classes in addition to the 22 classes of the same dataset, the 
representative training curves for C = 30, 40, 50, and 100 are shown in Figure 9. Note that because the training curve was 
oscillating and covered by other training curves, we applied the exponential moving average to these training curves, and 
the average span was set to 10 epochs in Figure 9. All the cases converge and stabilize near 100 epochs, as shown in Fig-
ure 9. The training curves of over clustering were found to be independent of the number of classes C, and the normalized 
mutual information was high at C = 30 and C = 40. Therefore, from Figure 9, the number of classes C is considered to be 
suitable between 30 and 40 in our proposed architecture.

4.4 Correspondence to Result of Supervised Learning (Gravity Spy labels) and Summary
of Obtained Result in Ref. [26]

After the IIC training discussed in Section 4.3, we investigated the correspondence between the results of supervised learn-ing 
(Gravity Spy labels) and our unsupervised learning. Although the details can be found in ref. [26], we briefly review
the results. We used the accuracy in Equation (1) of ref. [26] defined as follows,

∑C

i max(v(i))/|
∑C′

j v(i)|, where C is the

number of classes with unsupervised learning, C ′ = 22 is the number of classes with supervised learning (Gravity Spy la-bels), 
and v(i) is the ith column in the confusion matrix (e.g., in Figure 4 of ref. [26]). By calculating the accuracy as a criterion, we 
determined the number of classes in unsupervised learning. Furthermore, we used the spectral clustering dis-cussed in Section 3 
to compress the multiple results of classification into one result. We investigated the number of classes between 30 and 40, 
which yields high values for the normalized mutual information in Section 4.3. The results for the rep-resentative numbers C = 
30, 36, and 40 are shown in Figure 10. The dashed line represents the average accuracy from each classifier, which was set to 
five classifiers, and the solid line represents the accuracy using the spectral clustering for the results of five classifiers. In all 
cases, spectral clustering outperformed the average of the five classifiers, with the high-est accuracy of 90.9% achieved with the 
number of classes C = 36 at 200 epochs. Note that the Gravity Spy project [20] using supervised learning achieved 97.1% 
accuracy on the testing data using the same dataset used here. In terms of ac-curacy, the proposed architecture can classify 
with performance close to supervised learning, and also has the advantage that unsupervised learning does not require the data 
annotations. The proposed architecture shows the results of super-vised learning with a high level of consistency for 
classification. For example, the data of “1080Lines” were classified into one class for both supervised and unsupervised learning. 
Furthermore, our architecture indicates the existence of the un-revealed classes from the Gravity Spy dataset. For example, the 
“Blip” data that were classified as one class in supervised learning would be separated into more detailed subclasses in 
unsupervised learning.
We confirmed the consistency between the label annotated by the Gravity Spy project and the class provided by our pro-
posed unsupervised-learning architecture and provided the potential for the existence of the unrevealed classes. More de-tails 
on the result and discussion of unsupervised classification are shown in ref. [26].

5 Summary

Transient noise appearing in the data from gravitational-wave detectors frequently causes problems. Because transient 
noise is considered to be associated with the environment and instrument, classifying it may help us understand its ori-gin 
and improve the detector’s performance. In our previous study [26], an architecture of classifying the transient noise using 
a time-frequency 2D image (spectrogram), which uses the unsupervised deep learning combined with VAE and IIC was 
proposed. The training process of unsupervised learning is essential. In this study, using the Gravity Spy dataset,
we reported on how the training process of unsupervised-learning architecture of ref. [26] was conducted. We used three types of 
objective functions in the training process for feature learning of transient noise using VAE. We investigated the three types of 
training curves, reconstructed images from the decoders, t-SNE mapping of the latent variables, and silhou-ette coefficient of t-
SNE mapping. The normalized objective function was used in the training process using IIC for tran-sient noise classification, 
and the results were compared between the different classes to investigate the appropriate number of classes. We also confirmed 
that the classification result compressed from the multiple unsupervised classifications ap-proaches the accuracy in supervised 
learning.
A more detailed discussion of the results for the classification of transient noise using our proposed unsupervised architec-ture 
can be found in ref. [26].
We applied the unsupervised classification to the Gravity Spy dataset of LIGO O1 as a first step. In future work, we will 
apply our architecture to the recent observation run (O2 and O3) dataset. Furthermore, we will use our unsupervised clas-
sification in KAGRA to develop a transient noise system. Additionally, we will extend our architecture to self-supervised 
learning [41] to improve classification accuracy, in which the architecture generates pseudo labels for a given dataset and re-
trains it.
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Figure 1: Schematic view of the proposed VAE architecture for training the latent variables from input images of tran-
sient noise. The encoder part is from the input layer (at the left end) to the latent variables z (at the center), and the
decoder part is from z to the output layer (at the right end). The blue block represents batch normalization, whereas the
red block represents the ReLU activation function. A solid line in reparameterization-trick blocks simply means splitting
the component in half, and lines with an arrow mean the sampling from the mean µ and the variance σ.



Figure 2: Schematic view of the proposed IIC architecture for image classification of transient noise. C ∈ Z is the esti-
mated number of classes of the transient noise and W ∈ Z is the number of classes for overclustering, where C < W . IIC
uses the VAE’s pre-trained encoder and classifies transient noise from the latent variables z, and the softmax (also called
normalized exponential function) layer outputs the probabilities of classification of transient noise in the range of [0, 1].
The result of the mutual information, including the clustering of C and the overclustering of W are added (at the right
end), and then IIC trains to maximize this mutual information. The two input images to IIC are the center-cropped image
of transient noise and its perturbed image.



Figure 3: VAE training curves using the Bernoulli distribution in Table 2 (Top). The decoder’s output used the model
at the specific epoch (Bottom). An input image with the Gravity Spy label of “Koi Fish” (bottom left). The output im-
age by “Case 1” at 300 epochs does not appropriately reconstruct the input image (bottom center). The output image by
“Case 2” at 100 epochs appropriately reconstructs the input image (bottom right).

Figure 4: Same representation of Figure 3 but for MSE. The output image by “Case 1” at 100 epochs does not appro-
priately reconstruct the input image (bottom center). The output image by “Case 2” at 100 epochs appropriately recon-
structs the input image (bottom right). The training curve of “Case 1” is worse than “Case 2”. Regarding “Case 2”, the 
training curve is small, but it reconstructs the transient noise along with the background. As a result, the reconstructed 
image seems to be blurred. Therefore the MSE architecture is not suitable to reconstruct the transient noise.



Figure 5: Same representation of Figure 3 but for the Gaussian distribution. An output image by “Case 1” at 50 epochs 
does not appropriately reconstruct the input image (bottom center). An output image by “Case 2” at 150 epochs approxi-
mately reconstructs the input image (bottom right).



Figure 6: Colors represents 22 types of Gravity Spy label. The t-SNE mapping with Bernoulli “Case 2” at 100 epochs
(Top). The silhouette coefficient of the above t-SNE results (Bottom). A dashed line drawn in black represents the aver-
age silhouette coefficient of each label, and the dashed red line represents an average for all labels.



Figure 7: Same representation of Figure 6 but for the MSE “Case 2” at 100 epochs.



Figure 8: Same representation of Figure 6 but for the Gaussian “Case 2” at 150 epochs.



Figure 9: Training curves of IIC. The solid lines represent the average mutual information for each number of classes C.
The dashed lines represent the average mutual information with overclustering corresponding to the number of classes C,
and the classes of all overclustering are set to W = 250.

Figure 10: Accuracy of the proposed architecture (unsupervised learning) using the Gravity Spy label (supervised learn-
ing). The colored solid lines show the results of the cases where the number of classes is 30, 36, and 40 (denoted by C in
the legend) with the spectral clustering of five classifiers. The dashed line represents the average accuracy of five classifiers.
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