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Online Social Robot Navigation in
Indoor, Large and Crowded Environments
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Abstract— New robotics applications require robots to com-
plete tasks in social spaces (i.e. environments shared with
people), thus arising the necessity of enabling robots to operate
in a socially acceptable manner. Some social spaces tend to
be large and crowded (e.g. museums, shopping malls), which
require robots to move around while showing appropriate
social behaviors (e.g. not interfering with human’s comfortable
areas). Moving under such conditions is generally called social
robot navigation, and there are different approaches to do so.
Nonetheless, current approaches are mostly limited to navigate
large and outdoor spaces, where both robots and people can
easily avoid each other. Other approaches have been tested
in indoor environments, however, the test environments tend
to be small and largely empty. In this paper, we present an
online social robot navigation framework, which allow robots
to navigate indoor, large and crowded environments, while
showing social behaviors. Our framework consists of 3 modules:
1) world modeling that incorporates a novel Social Heatmap
(SH) to represent crowded areas, 2) multilayered path planning
that uses sampling-based approaches, and 3) path following
control. We extensively benchmark our approach against state-
of-the-art approaches in challenging simulated scenarios, and
we also demonstrate its feasibility with the Pepper robot in
real-world trials.

I. INTRODUCTION
In the last decade there has been a significant increase in

the number of applications in which robots should operate
in environments shared with people (i.e. social spaces) [1],
[2]. Application examples include transporting medications
around hospitals [3] and guiding people with visual impair-
ments [4]. While navigating social spaces, it is important for
robots not only to preserve human physical safety, but also
to move in a socially acceptable manner, e.g. respecting the
human’s comfortable spaces [5], [6]. Social spaces are highly
dynamic, thus requiring robots to be robust and adaptable.

In contrast to robot navigation in non-social settings (e.g.
underwater environments [7], warehouses [8]), Social Robot
Navigation (SRN) considers both non-social obstacles, and
social agents (i.e. people) and their comfort, naturalness and
sociability [9]. There are several approaches to solve the
SRN problem that are based on: Artificial Potential Field
(APF) [10], [11], Deep Reinforcement Learning (DRL) [12],
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Fig. 1: The Pepper robot navigates a crowded hospital-like envi-
ronment simulated with Gazebo and PedsimROS.
[13], as well as search-based and sampling-based tech-
niques [14], [15], [16].

Some of these techniques present limitations in indoor
crowded environments. APF and DRL based approaches
could lead to situations in which the robot can get stuck.
In the case of DRL, this issue occurs when a social agent
is in the middle of the robot path to the destination [17].
In APF, this situation is generated when the force gradient
that guides the robot results in local minima that do not
correspond to the desired destination [18], [19]. Search and
sampling-based approaches have proved to be effective in
SRN, however they have only been tested in small, static,
and relatively empty indoor environments [20], [21].

To address the aforementioned limitations, we proposed
an online social robot navigation framework for indoor and
office-like scenarios [16]. However our previous work was
limited to small environments and with a low number of
social agents. In order to overcome these limitations, we
present an enhanced framework that is capable of solving
start-to-goal robot navigation queries in large environments
with a high number of dynamic and static social agents. The
enhanced framework is composed of three modules: 1) a
world modeling module that provides information of non-
social obstacles and social agents, while also keeping record
of crowded regions, 2) a multilayered path planning module
that generates collision-free and socially admissible paths,
and 3) a path following control module.

Our work has multiple contributions. First, we present an
online social robot navigation framework with a multilayered
planning strategy capable of solving start-to-goal queries in
large and highly dynamic social spaces. Second, we propose
the use of a Social Heatmap (SH) that represents people
density in the surroundings, thus leading the robot through
less crowded areas. Lastly, we extensively benchmark our
enhanced framework with other state-of-the-art approaches,
and also demonstrate its feasibility with the Pepper robot.



II. RELATED WORK

This section presents an overview of both the most relevant
approaches for SRN, and the different metrics that are
commonly used to evaluate such approaches.

A. Social Robot Navigation Approaches

1) Artificial Potential Field: a widely known and com-
monly extended approach is the Social Force Model
(SFM) [22]. This model aims to approximate human move-
ment behavior by calculating repulsive forces from undesired
elements (e.g. non-social obstacles and people) and attractive
forces to desired elements (e.g. goal destination) [23]. SFM is
widely used because it can be extended to different scenarios
by adding forces that enable additional robot behaviors (e.g.
following a person) [24].

Kivrak et al. proposed an Extended Social Force Model
(ESFM), in which an additional repulsive force is computed
based on a collision prediction with social agents to increase
people’s safety [25]. Their approach is combined along with
a multilevel mapping technique, which reduces the noise and
resolution of the grid map, and increases the performance in
calculating the repulsive forces from obstacles.

Ferrer et al. also proposed an ESFM that includes an
additional force so that the robot is able to move next to a
person in an outdoor environment [26]. This additional force
attempts collision prediction by considering the movement of
the person to be followed and people in the surroundings.

Although the aforementioned approaches have been tested
in simulation and real life, most of the tests were limited to
outdoor environments. Additionally, APF-based approaches
require heuristic parameter tuning, which in some cases may
lead to undesired robot behavior (e.g. jerky movement) [24].
Moreover, these methods can also suffer from local minima
and robot stuck situations [27].

2) Deep Reinforcement Learning: Chen et al. presented
DRL-based approaches [13], [28], which consider socially
aware behaviors. The DRL policy is trained to minimize the
time to move the robot to the desired goal, while avoiding
collisions with nearby people in the environment.

Pérez-D‘Arpino et al. proposed a DRL approach, which
trains a policy that is capable of moving a robot in indoor
constrained environments with the presence of dynamic
social agents [29]. They combine their approach with a
sampling-based global planner that guides the trained robot
to the destination. While their approach proved to be effec-
tive, they do not consider the effect of static social agents in
the global planner, which can lead to get the robot stuck. In
fact, DRL as well as APF approaches’ effectiveness is highly
dependent on the specific global planner.

3) Search-based and Sampling-based: Patompak et al.
presented an approach that utilizes a Transition-based RRT
(T-RRT) [30], in which a Social Relationship Model (SRM)
is used as a cost function to generate socially acceptable
paths [20]. The SRM models the social agents’ personal com-
fortable distance by using a bivariate Gaussian distribution
function, which depends on gender and social agents’ kin-
ship. Whilst their approach generates feasible and collision-

free paths, they do not compare against other approaches and
their test environments only include static social agents.

Ngo et al. use Dynamic Social Zone (DSZ) [31] and
implement a human interaction detection module together
with a personal space module [15]. Their approach generates
socially acceptable paths by using Dynamic Window Ap-
proach (DWA) [32] with a personal space model as a cost
optimization function. In spite of showing positive results,
they do not compare against other approaches, and the test
environment is static and with a low number of social agents.

To overcome some of the mentioned SRN challenges, we
presented an approach based on an RRT* [33] that included
several strategies that help a robot navigate dynamic and
partially known social spaces [16]. We proposed a new
strategy called social relevance validity checking that helps
the robot focus on the social agents that might affect its
near future movement. Although, our approach showed to
be effective, it struggles to find solution paths with limited
time-budget in larger social spaces with high crowd density.

B. Social Robot Navigation Metrics

There are several metrics that can be used to estimate
human acceptance, this can be related to different aspects that
go from path quality to human psychological safety [34], [2].
Below we present some commonly used metrics:

• Time to solve query is the time that takes for a robot to
move from a starting point to a final point [35].

• Total number of collisions represents the total amount of
collisions that a robot has with other people or objects.
It can be represented as the amount of times a robot has
collisions in a single navigation query [36].

• Social Individual Index (SII) expresses the proxemic
physical safety from a robot to people in the envi-
ronment (i.e. how much a robot invades the personal
space of a person) [37]. The higher the value, the more
uncomfortable a person is, after a certain threshold
collision is assured.

• Relative Motion Index (RMI) expresses physical safety
and probability of collision according to the velocities
of both the person and the robot [37]. The higher the
value, higher is the probability that a robot will collide
with a person.

III. PROBLEM DEFINITION

Robot navigation refers to the capability of a robot to
safely move through its surroundings, i.e. without colliding
with obstacles. To do so, a robot must be able to map its sur-
roundings, localize itself in the generated map, while finding
safe and feasible paths to the desired destinations [38].

SRN is therefore a more specific case in which a robot
moves in a social space [39]. In terms of mapping, SRN
requires the robot to consider nearby people as social entities
that interact with each other and with the environment. In
terms of robot path planning, SRN requires the robot to con-
sider social agents and social interactions to generate paths,
which do not affect or interfere human social behaviors.



A. Definitions

Definition 1: As it was discussed in our previous
work [16], a social agent is a social entity (i.e. a person)
capable of expressing social behaviors and social cues, e.g.
discomfort against objects, and social interactions.

Definition 2: the configuration space (C) corresponds to
the set of all the possible robot configurations (i.e. position
and orientations). C is therefore divided into the space
free of obstacles (Cfree) and obstacle space (Cobs), i.e.
C=Cfree ∪ Cobs [40]. For start-to-goal social robot path
planning problem, we extend the Cobs to consider social
agents, i.e. Cobs = Ccommon obs ∪ Csocial agents [16].

B. Social Robot Path Planning

In social robot path planning the objective is to find a
collision-free, feasible and socially acceptable path that con-
nects a start configuration (qstart) and a goal configuration
(qgoal). While there are different aspects to consider when
planning socially acceptable paths, this work considers a
discomfort function U(qstart, qgoal) → ℜ that represents
the discomfort of the nearby agents [16]. Then the optimal
solution path P ∗ is given by:

P ∗(qstart, qgoal) =
P (qstart,qgoal)∈Cfree

argmin U(qstart, qgoal) (1)

IV. ONLINE SOCIAL ROBOT NAVIGATION
FRAMEWORK

In this work, we aim to enable robots to navigate large and
crowded social spaces (e.g. hospitals, museums, airports).
We propose an enhanced framework that consists of three
functional modules (see Fig. 2): 1) world modeling, 2)
multilayered path planning, and 3) path following control.

A. World Modeling

This module is in charge of building a representation of the
robot’s surroundings. In SRN scenarios, such a representation
needs to consider non-social obstacles (e.g. walls, desks,
chairs, etc.) and social agents separately. In the case of non-
social obstacles, the world modeling module generates a
volumetric representation that is used for collision-checking
purposes. In this work, such a volumetric representation is
obtained with an Octomap [41], which is constructed with
range data that can be provided by different perception
sensors such as LiDARs and depth cameras.

Social agents, on the other hand, are considered both
individually and collectively. In both cases, the state (i.e.
position, orientation and velocity) of each agent is required.
Such a state information can be obtained from a people-
detector-tracker system, e.g. computer-vision-based systems
that recognize and track people. Section V will provide
implementation details on the specific approach used for the
experimental validation in this work.

When social agents are considered individually, the state of
each agent is directly used for collision-checking purposes.
This module also considers social agents collectively by pro-
viding an estimation of those regions in the surroundings that
are crowded (see Fig. 3). Such an estimation is represented

Fig. 2: Proposed framework for online social robot navigation and
its three functional modules: world modeling, multilayered path
planning and path following control.

by a Social Heatmap (SH), which is an occupancy grid
map [42], in which each cell of the map has a value that
indicates the density of people, and high values correspond
to crowded areas. Such values are calculated as:

cellval =

L∑
i=0

persistencei ∗ EPSM(statei) ≤ 100 (2)

where L would correspond to the number of social agents
that would have the cell within their comfort personal
space [43], statei is the ith social agent’s state (position, ori-
entation and velocity) that is used to calculate the Extended
Personal Space Model (EPSM) [37], and persistencei re-
lates to the last time an agent has been observed, and it
calculated as:

persistencei = 100 ∗ exp−A∗(ti−t0) (3)

where ti is the current time, t0 is the first time in which
the social agent was observed and A is a time decay factor.

To create the SH (see Alg. 1), this module uses a list
of social agents that is periodically updated with the list
of reported agents provided by a people-detector-tracker
(line 3). Every reported agent’s time is reset (line 4) and
is assigned with a persistence value of 100 (line 5). If such
an agent had not been observed before, it is added to the list
of social agents (line 6). The updated list of social agents
is then used to populate the SH (lines 8-14). In doing so,
if an existing social agent is not reported, their persistence
is reduced as shown in (3) (line 12). It is worth noting that
if the agent’s persistence is equivalent to zero, the agent is
removed from the list of social agents (line 9).

B. Multilayered Robot Path Planning

We propose a multilayered approach (see Alg. 2) that
includes: 1) an upper layer that plans a lead (global) path
from the robot’s current position to a final destination; and
2) a lower layer that plans a local path to an intermediate
goal along the lead path. For both layers, we propose to
use sampling-based planners that explore the environment
by extending a tree of valid robot configurations.

1) The global planner: uses a tree-based strategy that
builds on the RRT* planner [33] to rapidly generate a lead
path by using a 10% of the total allocated planning time.
To do so, this planner only checks non-social obstacles for
collision. While generating a first approximation of the lead
path, i.e. one that is close to be socially acceptable, the global



Algorithm 1: GenerateSocialHeatmap(Input)
Input:
reported agents[ ] : List of detected social agents
social agents[ ] : List of social agents
Output:
SH: Grid map with social agents occupancy.

1 begin
2 SH ← 2DGridMap()
3 for agent in reported agents do
4 agent.resetTime()
5 agent.setPersistence(100)
6 if agent not in social agents then
7 social agents.addAgent(agent)

8 for agent in social agents do
9 if agent.getPersistence() ≤ 0 then

10 social agents.pop(agent)
11 continue
12 if agent not in reported agents then
13 agent.reducePersistence()

14 SH.computeGrid(agent)
15 return SH

planner uses an optimization cost function that combines the
path length and people density as follows:

GlobalCost(q) =

∫ q

0

SH(q)dq (4)

where GlobalCost(q) corresponds to the cost of a robot
configuration q when searching for a global path, and it is
calculated as the integral of the people density SH(q) with
respect to the traveled distance. By using (4), the calculated
lead path will try to avoid crowded areas whenever possible,
thus minimizing social discomfort.

The global planner uses two strategies to improve its
performance for online incremental planning in partially
known environments. The opportunistic collision checking,
which allows the planner to assume configurations within
unexplored regions to be collision-free. The reuse of last
best known solution, which allows the planner to take the
previous known solution as a starting point of each planning
cycle. We had proved the utility of both strategies in robot
navigation in non-social settings [7], and in this work we
further demonstrate their use in SRN.

2) The local planner: also uses a tree-based strategy that
builds on the Informed RRT* [44], and employs the remain-
ing 90% of the allocated planning time to find collision-free
and socially acceptable local paths within a shorter planning
horizon. To do so, the local planner considers both non-
social obstacles and social agents, while planning paths to
intermediate goals, which are extracted from the lead path
generated by the global planner.

To generate socially acceptable paths, the local planner
uses a social cost optimization function that is defined as

Algorithm 2: Start2GoalOverallPathPlanning(qstart, qgoal)
Input:
qstart: Start configuration.
qgoal: Goal configuration.
Output:
local p∗: An array of configuration waypoints.

1 begin
2 gp← GlobalPlanner(SE2StateSpace)
3 lp← LocalPlanner(SE2StateSpace)
4 last best known solution← {}
5 qnew start ← qstart
6 while not stop condition do
7 wm←reqUpdatedWorldModel()
8 gp.updateWorldModel(world model)
9 lp.updateWorldModel(world model)

10 gp.startFrom(last best known solution)
11 gp.solve(qnew start qgoal)
12 if global solution not found then
13 local p∗ ← getPartialSolution()

14 else
15 g p∗ ← gp.getSolution()
16 last best known solution← g p∗
17 l qgoals ←getIntermediateG(g p∗)
18 lp.solve(l qgoals, g p∗)
19 if local solution not found then
20

21 local p∗ ←
getPartialSolution()

22 else
23 local p∗ ← lp.getSolution()

24 return local p∗

follows:

LocalCost(q) =

∫ q

0

(SH(q) + U(q)) dq (5)

where LocalCost(q) corresponds to the cost of a configu-
ration q when searching for a local path, and it is calculated
as an integral of the sum of the people density SH(q)
and the social discomfort U(q) with respect to the traveled
distance. In this work, we calculate the social discomfort as
the maximum discomfort value obtained from each social
agent using EPSM, as it is shown in (6).

U(q) = max(EPSMi(q)) (6)

The local planner also opportunistically checks for colli-
sion, and reuses the lead path as the last best known solution.
Furthermore, this planner also uses the social relevance
validity checking strategy to identify those social agents that
are relevant to the robot’s near future movement.

3) Solving social start-to-goal robot navigation queries:
is done as shown in Alg. 2. The framework first updates



Fig. 3: Sampling valid intermediate goal candidates. Social
Heatmap is also observed in blue and red colored voxels.

the world model (line 7-9). The global planner reuses the
last best known solution (line 10) when searching a new
solution path (line 11). If a new lead path is not found, the
planning module sends a partial solution that is based on
the last local path (line 12). This partial path is the section
of the last local path that is still valid (i.e. is not under
collision and is socially acceptable). Once a new lead path is
found, it is used to define the intermediate goal of the local
planner (line 17). This intermediate goal is extracted from the
lead path at a predefined distance (e.g. the robot’s maximum
perception range) (see Fig. 3). If such an intermediate goal
is not valid (i.e. in collision with a social agent), a set of
alternative valid goals are obtained by sampling the vicinity
of the original intermediate goal. To find the local path, the
local planner receives a list of intermediate goals and the
lead path (line 18). As it occurs with the global planner, if a
local path is not found (line 20), the path planning module
sends a partial solution that is based on the last local path.

C. Path Following Control

This module receives and follows the path from the
local planner. While alternatives exist to implement such a
controller, this work discretizes the local path and uses a
waypoint follower controller.

V. EXPERIMENTS AND RESULTS

To validate our proposed framework, we tested and com-
pared it with other state-of-the-art approaches.

A. Experimental Setup

We conducted an extensive simulation-based evaluation
and benchmarking of our framework using Gazebo [45] and
the Robot Operating System (ROS) [46]. Our simulation
test environment consisted of a hospital-like setting with
an approximate area of 1375m2, in which a simulated
Pepper robot [47] moves around a high number of static

and dynamic social agents (> 70) (see Fig. 1). The Pepper
robot was equipped with a depth camera to detect non-social
obstacles. To simulate the behavior of social agents, we
used pedsimROS [48], which is a ROS package to interface
with the pedsim library that models walking pedestrians
by using the SFM. As this work is mostly focused on the
planning aspects of SRN, we made different assumptions and
simplifications such as: 1) a perfect robot localization, and
2) the use of pedsimROS output and an indoor positioning
system as the people-detector-tracker for simulation and real-
world tests, respectively.

B. Benchmark Scenarios

We designed two different test scenarios in which the
Pepper robot had to move from the rear entrance of the
hospital to the opposite side of the hospital, while navigating
around non-social obstacles, and static and dynamic social
agents. Those dynamic social agents follow several random
waypoints. It is important to note that social agents react to
the presence of the robot similar to another social agent.

We compare our enhanced framework with our previous
work [16], the Proactive Social Motion Model (PSMM) ap-
proach [37], the SFM [22] and socially aware collision avoid-
ance with deep reinforcement learning (SA-CADRL) [13].
Since PSMM, SFM and SA-CADRL apply short planning
horizons, they all require collision-free waypoints as an
input. As this work aims to enable robots to navigate large
environments, we manually defined such waypoints to reach
the predefined distant destinations.

As our proposed approach has a stochastic behavior, a
single execution of a given test does not provide a statistical
valid conclusion. Therefore, we conducted 100 tests for each
of the compared methods in each of the test scenarios.
Furthermore, in each of those attempts, some behavioural
aspects of the social agents were randomly varied, e.g. the
location of static agents and the order of the waypoints
that dynamic agents followed. All the experiments were
assessed with different metrics (e.g. SII and RMI) providing
insights in terms of both the performance and the social
safety capabilities of the tested approaches. Finally, to bet-
ter understand the experiments, the reader is referred to:
https://youtu.be/Gq149wFVj7A.

1) Scenario 1: Large and Crowded Indoor Environments.
In this scenario, the Pepper robot had to navigate across the
hospital, in which 78 social agents (63 dynamic and 15 static)
were located in different areas of the hospital. As it can
be observed in Table I, our enhanced framework shows the
highest success rate, particularly when using the proposed
Social Heatmap (SH). Although the averages of SII and RMI
for our approach are higher (worse) than the ones obtained
with PSMM, such a comparison has to be analyzed carefully,
since PSMM also had the lowest success rate (around 9% out
of 100 runs). This latter probably means that PSMM is a very
conservative approach that tries to enforce a distance to any
obstacle, thus preventing the robot to reach its destination
when navigating in crowded areas.

https://youtu.be/Gq149wFVj7A


TABLE I: Benchmark of proposed framework and other approaches for Scenarios 1 and 2 (SD = Standard Deviation).

Scenario 1: Large and Crowded Indoor Environments Scenario 2: Queues of Social Agents

Success
Rate

SII
Mean
(SD)

RMI
Mean
(SD)

Total
Time
Mean
(SD)

# Coll.
Mean
(SD)

# Nodes
Mean
(SD)

Success
Rate

SII
Mean
(SD)

RMI
Mean
(SD)

Total
Time
Mean
(SD)

# Coll.
Mean
(SD)

# Nodes
Mean
(SD)

New Fram.
(with SH) 92% 0.074

(0.025)
1.182

(0.119)
342.1
(45.4)

0.696
(1.066)

1419
(201) 91% 0.095

(0.020)
1.297

(0.095)
355.4
(58.7)

0.714
(1.068)

1010
(119)

New Fram.
(without SH) 83% 0.065

(0.020)
1.150

(0.098)
309.5
(41.3)

0.566
(0.736)

1073
(145) 70% 0.094

(0.021)
1.293

(0.095)
304.5
(44.1)

0.643
(0.762)

873
(123)

Prev. Fram. 73% 0.076
(0.012)

1.197
(0.055)

317.5
(37.5)

1.192
(1.243)

945
(77) 81% 0.114

(0.017)
1.400

(0.072)
355.4
(61.5)

1.148
(1.205)

873
(73)

PSMM 9% 0.033
(0.035)

0.589
(0.523)

357.0
(157.6)

1.250
(1.165) - 2% 0.070

(0.028)
1.140

(0.198)
601.5
(12.0)

1.000
(1.414) -

SFM 47% 0.096
(0.040)

1.277
(0.206)

354.0
(71.2)

2.848
(2.231) - 26% 0.081

(0.025)
1.155

(0.145)
419.9

(113.4)
1.808

(1.201) -

SA-CADRL 40% 0.132
(0.092)

1.400
(0.408)

345.3
(76.1)

2.650
(2.032) - 44% 0.123

(0.072)
1.364

(0.317)
326.7
(62.2)

2.419
(1.577) -

In terms of the total time required to complete the navi-
gation task, it can be observed that our previous work and
our new framework can complete the task in less time than
the other approaches. Likewise, our approaches, particularly
the one presented in this work, has a very low average of
number of collisions (see Table I).

Another relevant analysis can be done when comparing our
enhanced framework with our previous framework. In such
a comparison our enhanced framework has similar values
for SII and RMI, but the success rate has an important
improvement, passing from 73% to 92%. An explanation to
this improvement can be found in the proposed multilayered
planning strategy, which allows the enhanced framework to
dedicate more resources when planning local paths around
the lead path. This can be clearly observed in the number
of nodes of the tree-based planners, which is higher for the
enhanced framework (1419 vs. 945) and means the planner
was able to better explore the environment while calculating
a solution path (see Table I).

2) Scenario 2: Queues of Social Agents. In this scenario,
the Pepper robot had to navigate the same hospital environ-
ment, but this time 35 out of 96 social agents were static and
divided in 6 groups that form queues in different corridors of
the environment. This scenario attempts to emulate common
situations in social spaces, where robots might have to
navigate across queues of social agents, thus leading to
challenging situations that resemble narrow passages.

As it can be observed in Table I, in this scenario our
enhanced framework also has the highest success rate (91%),
and the SII and RMI values are lower than the ones obtained
with our previous work. Similar to Scenario 1, PSMM shows
better SRN metrics, but with a very low success rate. Finally,
apart from corroborating the results obtained in Scenario 1,
the results of Scenario 2 demonstrates the ability to navigate
challenging situations, such as queues of social agents.

C. Real-World Trials

We tested our proposed framework with the real-world
Pepper robot in an indoor laboratory setting, in which the
robot was equipped with a LiDAR to self-localize by using
Cartographer [49], an Intel Realsense D435i to detect non-
social obstacles, and a Pozyx indoor positioning system [50]

to track social agents. The robot was able to navigate the
environment while avoiding social agents, hence proving the
feasibility of our approach in a real-world system.

VI. DISCUSSION AND CONCLUSIONS

This paper presented an enhanced online social robot
navigation framework, which enables a robot to navigate
large and crowded spaces in a socially acceptable man-
ner. The framework is composed of three modules: world
modeling, multilayered path planning, and path following
control. The world modeling module includes a novel Social
Heatmap (SH), which attempts to represent the crowded
areas in the environment. The SH proved to be instrumental
to allow the multilayered planning to better dedicate its
computation resources. In the multilayered planning module,
the local planner implements a social cost optimization
function that models the comfort space around the social
agents. That module also combines different strategies like
the opportunistic validity checking, reuse of last best known
solution and social relevance validity checking to help the
robot navigate in large crowded environments.

We tested and compared our enhanced framework against
other state-of-the-art approaches such as SA-CADRL, SFM
and PSMM. The results proved that our new approach has the
highest success rate. Although, some of the tested approaches
showed better SRN metrics, the success rate for such ap-
proaches is significantly lower. In contrast to our enhanced
framework, the APF-based approaches (e.g. SFM) require
tuning heuristic parameters, while DRL-based approaches
are highly limited to be effective in those situations that are
similar to the training sets [6]. We also demonstrated our
framework’s feasibility with the Pepper robot.

In the future, we plan to explore hybrid approaches for
path planning that combine learning-based methods and
sampling-based planners. Such a hybrid approach will aim
to learn and help overcome situations that are commonly
difficult in SRN. Furthermore, we would like to add complex
human-group and human-object interactions to further test
our new framework. Last, we would like to conduct real-
world experiments in large and crowded environments, while
also conducting the corresponding user studies to analyze the
social acceptability of the robot in human-shared spaces.
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