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GEOMETRIC STRUCTURES ON THE ORBITS OF LOOP DIFFEOMORPHISM GROUPS

AND RELATED HEAVENLY-TYPE HAMILTONIAN SYSTEMS. I

O. E. Hentosh,1 Ya. A. Prykarpatskyy,2,3 A. A. Balinsky,4 and A. K. Prykarpatski5 UDC 517.9

We present a review of differential-geometric and Lie-algebraic approaches to the investigation of a broad

class of nonlinear integrable differential systems of “heavenly” type associated with Hamiltonian flows

on the spaces conjugate to the loop Lie algebras of vector fields on the tori. These flows are generated by

the corresponding orbits of the coadjoint action of loop diffeomorphism groups and satisfy the Lax–Sato-

type vector-field compatibility conditions. We analyze the corresponding hierarchies of conservation

laws and their relationships with Casimir invariants. We consider typical examples of these systems

and establish their complete integrability by using the developed Lie-algebraic construction. We also

describe new generalizations of the integrable dispersion-free systems of heavenly type for which the

corresponding generating elements of the orbits have factorized structures, which allows their extension

to the multidimensional case.

1. Introduction

It is known that the investigations of integrability of complex mathematical models of contemporary natural

science or the corresponding nonlinear differential equations and dynamical systems is an actual field [4, 7, 23]

of mathematical research starting from the time of creation of the inverse-scattering method and the application of

differential-geometric, algebraic-geometric, and operator-spectral methods [2, 13–16, 18, 19, 23] for their detailed

analysis. The indicated nonlinear models are, to a certain extent, universal because they appear in numerous fields

of physics (such as solid-state physics, nonlinear optics, hydrodynamics, plasma physics, etc.) in the course of

both theoretical and applied investigations. At the same time, the integrability of these models is closely connected

with numerous directions of modern mathematics and characterized by the presence of rich and beautiful structures

encountered in these models.

In the present review, we mainly consider integrable systems of multidimensional dispersion-free dynamic

flows and partial differential equations possessing a modified Lax–Sato-type representation associated with their

hidden group symmetry and Hamiltonian structure. Systems of this kind appear in mechanics, in the general rel-

ativity theory, in the differential geometry, and in the general theory of integrable dynamical systems. Among

these systems, we can especially mention the Boyer–Finley equation and the Plebański heavenly type equation

that describe a class of self-dual 4-manifolds, the dispersion-free Kadomtsev–Petviashvili equation known as the

Khokhlov–Zabolotskii equation in the nonlinear acoustics, and in the Einstein–Weyl theory of structures. The in-

tegrability of these systems was investigated by using different advanced approaches, including, in particular,
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the symmetry analysis, the differential-geometric methods, the techniques of dispersion-free @̄ -dressing and fac-

torization, the Virasoro constraints, the hydrodynamic reductions, etc.

In the present paper, we present a survey of a certain class of differential-geometric and Lie-algebraic struc-

tures characterizing the classical hydrodynamic-type dynamical systems that are important both for the description

and construction of their exact solutions and for the detailed analysis of the properties of mathematical objects

related to them. The first examples and the corresponding Hamiltonian structures were considered in [24–28].

Later, numerous examples of systems of dispersion-free partial differential equations were analyzed in detail in

[29–31, 49, 69–72]. These systems are called heavenly type systems. For the first time, this name was intro-

duced by Plebański in [32]. Heavenly type systems were studied in numerous works (see [8–12, 20–22, 26–28,

31–42]) by using different approaches. In particular, the differential-geometric and symplectic methods of their

investigation were extensively used in [26–28, 33–41]. In recent works [29, 30], the general Lie-algebraic scheme

was developed for the construction of the Lax–Sato integrable heavenly type differential systems. The indicated

scheme is based on the application of the Adler–Kostant–Symes classical geometric structure (AKS-theory) and

the R-operator structures connected with it [16–18, 24–28, 42–45] to the loop Lie algebra gdiff(Tn) of the vector

fields on an n-dimensional torus T
n and its holomorphic generalization. According to the scheme developed by

the authors, these differential systems follow from the commutativity condition for Hamiltonian flows on regular

spaces conjugate to the above-mentioned Lie algebras given by the R-deformed Lie–Poisson bracket and the cor-

responding Casimir invariants as Hamiltonians. For each of these Lie algebras, the commutativity condition on the

orbits of coadjoint action is reduced to the Lax–Sato representations of the heavenly type systems.

In the cited works, it was also indicated that, in most cases, integrable systems of the heavenly type are

generated by elements of a regular space conjugate to a loop Lie algebra with a special structure of total differential

or a structure proportional to this structure over the ring of smooth functions on a torus. Moreover, in the space of

modules [46, 47] of gauge connectedness on T
n, for the coadjoint actions of the corresponding Casimir invariants,

there exists a canonical symplectic structure, which enables us to study the geometric nature of these systems

by using the cohomological approaches proposed in [46, 48] for the case of Riemannian surfaces. In addition,

the authors established the relationship between the Hamiltonian flows constructed by us and the well-known

Lagrange–d’Alembert principle of classical mechanics. In particular, in [10], a generalization of the Lie-algebraic

scheme developed in [29, 30] was proposed for n = 1 in the case of a loop Lie algebra of superconformal vector

fields on the supercircle S
1|N ' S

1 ⇥ Λ1, where Λ := Λ0 ⊕ Λ1 and Λ0 ⊃ C is the Grassmann algebra over

the field C. Further, new Lax–Sato integrable superanalogs of some known heavenly type systems were obtained

[30, 49]. We also note that nonassociative and noncommutative algebras of flows on a torus T
m, m 2 N, were

used in [30, 50–53], for the analysis of heavenly type systems. In [26–28], the authors developed the general

Lie-algebraic approach to the construction of bi-Hamiltonian heavenly type systems based on the use of a central

extension of a so-called loop Lie algebra of vector fields on a circle.

We now briefly describe the structure of the present paper.

In the first section, we consider some main concepts and mathematical structures that form a basis of the

differential-geometric Lie approach to the study of integrable differential Lax–Sato-type equations.

In the second section, we describe Lie-algebraic structures associated with these equations in the space con-

jugate to the Lie algebra and the associated Lie–Poisson structures and formulate an algebraic criterion for the

existence of integrable Lax-type flows.

The third section is devoted to the differential-geometric analysis of a group of diffeomorphisms of a torus and

the construction of the canonical Lie–Poisson structure on the space conjugate to its Lie algebra.

In the fourth section, we present the description of integrable Hamiltonian systems generated by orbits of the

coadjoint action of the loop group of diffeomorphisms on the space conjugate to its Lie algebra.

Integrable multidimensional heavenly Lax–Sato-type systems and the associated conformal structures gen-

erating these equations are discussed in the fifth and sixth sections. Among them, one can find equations quite
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important for the contemporary research fields in physics, hydrodynamics, and especially, Riemannian geometry

connected with interesting conformal structures on metric Riemann spaces, namely, with the Einstein and Einstein–

Weyl metric equations, the second Plebański conformal metric equation, the Dunajski metric equation, etc. More-

over, some of them are based on the holomorphic generating elements in certain special subdomains of the complex

plane and their analysis requires certain modifications of their theoretical substantiation. Furthermore, since the

general differential-geometric structure of generating elements connected with some equations of conformal met-

rics is invariant with respect to the space dimension of the analyzed Riemann spaces, they can be analytically

described in the multidimensional case. In particular, we study the Einstein–Weyl metric equation, the modified

Einstein–Weyl metric equation, the system of heavenly Dunajski equations, the equations of the first and sec-

ond conformal structures generating the corresponding integrable heavenly equations, the inverse first heavenly

Shabat equation, the first and modified heavenly Plebański equations and their multidimensional generalizations,

the heavenly Husain equation and its multidimensional generalizations, and the general Monge equation and its

multidimensional generalizations.

The short seventh section is devoted to the construction of superconformal analogs of the heavenly Whitham

equation. In the eighth section, we investigate geometric structures related to the one-dimensional completely

integrable hydrodynamic Chaplygin system. It turns out that this system is closely connected with differential

systems on a torus and with orbits of the loop group of diffeomorphisms associated with them. This geometric

structure made it possible to establish an additional correlation between the generating differential forms on a torus

and give an analytic description of the infinite hierarchy of new integrable hydrodynamic systems. As shown in [3],

these systems are closely connected with a class of completely integrable Monge-type equations whose geometric

structure has been recently comprehensively analyzed in [6] by using a somewhat different approach based on the

properties of embeddings of general differential systems (defined on jet-submanifolds in the Plücker coordinates)

in Grassmann manifolds. In particular, this approach poses an interesting problem of finding the relationships

between different geometric approaches to the description of completely integrable dispersion-free differential

systems.

In the last two sections, we develop an analog of the Lie-algebraic scheme proposed in [10, 29, 30] for central

extensions of the loop Lie algebra of vector fields on an n-dimensional torus T
n for any n 2 N, which is the

semidirect sum of the Lie algebra of vector fields on T
n for the corresponding conjugate regular space and a loop

Lie algebra of holomorphic generalizations of the vector fields on the torus T
n. We apply the proposed Lie-

algebraic scheme for the construction of Lax–Sato integrable modified and generalized heavenly Mikhalev–Pavlov-

type systems in the four-dimensional space and the modified heavenly Martı́nez Alonso–Shabat system in the

four-dimensional space.

2. Lie Algebras, Associated Poisson Structures, and the Existence of Integrable Lax-Type Flows

Let (G̃; [·, ·]) be a Lie algebra over the field C and let G̃⇤ be the natural conjugate space. Consider a tensor

element r2G̃ ⌦ G̃'Hom(G̃⇤; G̃) with partition into the symmetric and antisymmetric parts of the form r=k⊕σ,

where the symmetric tensor k 2 G̃ ⌦ G̃ is nondegenerate. This enables us to introduce, on the Lie algebra G̃,

a nondegenerate symmetric bilinear form (·|·) : G̃ ⌦ G̃ !C by using the expression (a|b) := k−1(ab) for any

a, b 2 G̃. The composition of mappings R := σ ◦ k−1 : G̃ ! G̃ acting according to the rule

G̃
k−1

! G̃⇤ σ
! G̃

determines the R-operator structure

[a, b]R := [Ra, b] + [a,Rb]
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on the Lie algebra G̃ for any a, b 2 G̃. The following theorem enables us to introduce the Poisson structure on the

space conjugate to G̃ [42, 48, 54, 55]:

Theorem 2.1. For any ↵, β 2 G̃⇤, consider a bracket

{↵, β} := ad⇤r↵β − ad⇤rβ↵. (2.1)

Bracket (2.1) is Poisson if and only if the R-operator structure on the Lie algebra G̃ specifies the Lie structure

on G̃, i.e., for any a, b 2 G̃, the Yang–Baxter equality

[Ra,Rb]−R[a, b]R = −[a, b]

is true.

By using this theorem, we can construct Hamiltonian flows of the Lax type on the conjugate space G̃⇤ in the

case where there exists a Killing-type functional Tr(·) generating, on G̃, the symmetric and ad-invariant product

Tr(ab) := (a|b), (a|[b, c]) = (([a, b]|, c)

for any a, b and c 2 G̃. Then, for any element a 2 G̃, the Hamiltonian flow has the standard Lax form

da/dt = [grad(h), a],

where the element grad(h) 2 G̃ is associated with a certain functional h 2 D(G̃).

For the loop Lie algebra

G̃ := gdiff(Tn)

on the torus T
n, it is known that a Tr -type functional on G̃ does not exist. As a result, it becomes necessary to

study Hamiltonian flows on the conjugate loop space

G̃⇤ ' Λ̃1(Tn)

of meromorphic differential forms on the torus T
n and to obtain integrable dispersion-free equations as compati-

bility conditions for the corresponding vector fields generated by the Casimir invariants on G̃⇤. This procedure is

more complicated than the standard procedure and requires the use of a larger number of geometric instruments and

the properties of the structure of coadjoint orbits for elements generating the hierarchy of integrable Hamiltonian

flows. In particular, it is necessary to study the reducing properties of this hierarchy guaranteeing the existence of

nontrivial Casimir invariants on these coadjoint orbits.

The application of the indicated ideas to the central extensions of Lie algebras enables one to construct new

classes of commuting Hamiltonian flows on the extended conjugate space

Ḡ⇤ := G̃⇤ ⊕ C.

These Hamiltonian flows are generated by the elements (ãn l̃;↵) 2 Ḡ⇤ and Casimir invariants constructed on the

orbits in G̃⇤.
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In most cases, generating elements can be obtained as specially factorized differential objects whose geometric

nature is studied quite poorly. With the help of the Lie-algebraic approach, it was established that the correspond-

ing commutativity condition for the constructed factorized Hamiltonian flows is the compatibility condition for

a system of three linear vector-field Lax–Sato-type equations. As examples illustrating these mathematical struc-

tures, we obtain the generalizations of the dispersion-free Mikhalev–Pavlov and Martı́nez Alonso–Shabat systems

for which generating elements have special factorized structures with the help of which they can be extended to the

multidimensional case.

3. Group of Diffeomorphisms Diff(Tn) and the Associated Differential-Geometric Structures

We consider an n-dimensional torus T
n and points X 2 T

n as Lagrange variables for the configuration

⌘ 2 Diff(Tn). The manifold T
n defined as a target configuration space ⌘ 2 Diff(Tn) is called space or Euler

configuration and its points are called space or Euler points. We denote these points by small letters x 2 T
n. Then

any one-parameter configuration Diff(Tn) is a time-dependent, t 2 R, family of diffeomorphisms [56–60], which

can be represented in the form

T
n 3 x = ⌘(X, t) := ⌘t(X) 2 T

n

for any initial configuration X 2 T
n and some mappings ⌘t 2 Diff(Tn), t 2 R.

To study the flows in the space of Lagrange configurations ⌘ 2 Diff(Tn) with respect to the time vari-

able t 2 R generated by the group of diffeomorphisms ⌘t 2 Diff(Tn), t 2 R, we describe the structures of

the tangent (T⌘t(Diff(Tn))) and cotangent (T ⇤
⌘t(Diff(Tn))) spaces to the group of diffeomorphisms Diff(Tn)

at the points ⌘t 2 Diff(Tn) for any t 2 R.

We first describe the space T⌘t(Diff(Tn)) tangent to the group of diffeomorphisms Diff(Tn) at the point

⌘ 2 Diff(Tn) by using the structure developed in [56, 57, 61]. In particular, we consider the Lagrange configura-

tion ⌘ 2 Diff(Tn) and define the space T⌘(Diff(Tn)) tangent to ⌘ 2 Diff(Tn) as a collection of vectors

⇠⌘ := d⌘⌧/d⌧ |⌧=0,

where

R 3 ⌧ 7! ⌘⌧ 2 Diff(Tn), ⌘⌧ |⌧=0 = ⌘,

is a smooth curve on Diff(Tn) and, for any point X 2 T
n, the equality

⇠⌘(X) = d⌘⌧ (X)/d⌧ |⌧=0

is true. The last relation means that the vectors ⇠⌘(X) 2 T⌘(X)(T
n), X 2 T

n, specify the vector field

⇠ : Tn ! T (Tn)

on T
n for any ⌘ 2 Diff(Tn). Hence, the tangent space T⌘(Diff(Tn)) coincides with a set of vector fields on T

n :

T⌘(Diff(Tn)) ' {⇠⌘ 2 Γ(T (Tn)) : ⇠⌘(X) 2 T⇠(X)(T
n)}.

Similarly, the cotangent space T ⇤
⌘ (Diff(Tn)) is formed by all linear functionals on T

n over ⌘ 2 Diff(Tn) :

T ⇤
⌘ (Diff(Tn)) =

�
↵⌘ 2 Λ1(Tn)⌦ Λ3(Tn) : ↵⌘(X) 2 T ⇤

⌘(X)(T
n)⌦ |Λ3(Tn)|
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with respect to the ordinary nondegenerate convolution (·|·)c on T ⇤
⌘ (Diff(Tn))⇥ T⌘(Diff(Tn)) :

If ↵⌘ 2 T ⇤
⌘ (Diff(Tn)) and ⇠⌘ 2 T⌘(Diff(Tn)), where

↵⌘|X = h↵⌘(X)|dxi ⌦ d3X and ⇠⌘|X = h⇠⌘(X)|@/@xi,

then

(↵⌘|⇠⌘)c :=

Z

Tn

h↵⌘(X)|⇠⌘(X)id3X.

This structure enables one to identify the cotangent bundle T ⇤
⌘ (Diff(Tn)) for a fixed Lagrange configuration

⌘ 2 Diff(Tn) with the tangent space T⌘(Diff(Tn)) because the tangent space T (Tn) is endowed with a natural

intrinsic metric h·|·i at the point ⌘(X) 2 T
n, which enables one to identify the spaces T (Tn) and T ⇤(Tn) by using

the corresponding metric isomorphism ] : T ⇤(Tn) ! T (Tn). We can construct an extension of this isomorphism

to T ⇤
⌘ (Diff(Tn)) for ⌘ 2 Diff(Tn) as follows: for any elements ↵⌘, β⌘ 2 T ⇤

⌘ (Diff(Tn)),

↵⌘|X = h↵⌘(X)|dxi ⌦ d3X and β⌘|X = hβ⌘(X)|dxi ⌦ d3X 2 T ⇤
⌘ (Diff(Tn)),

we define a metric

(↵⌘|β⌘) :=

Z

Tn

h↵]
⌘(X)|β]⌘(X)id3X,

where, by definition,

↵]
⌘(X) := ]h↵⌘(X)|dxi and β]⌘(X) := ]hβ⌘(X)|dxi 2 T⌘(X)(T

n)

for any X 2 T
n.

By using the structure described above, we can construct smooth functionals on the cotangent bundle

T ⇤(Diff(Tn))

that are invariant under the coadjoint action of the diffeomorphism group Diff(Tn). In addition, the cotangent

bundle T ⇤(Diff(Tn)) is a priori equipped with a canonical symplectic structure [42, 43, 45, 56, 57, 60, 62–

65], which is equivalent to the bracket of smooth functionals on T ⇤(Diff(Tn)). This enables us to study the

corresponding Hamiltonian flows, their hidden symmetries, and integrability.

Further, we consider the cotangent bundle T ⇤(Diff(Tn)) as a smooth manifold with canonical symplectic

structure [56, 62], which is equivalent to the canonical Poisson bracket on the space of smooth functionals given

on this manifold.

Since the cotangent space T ⇤
⌘ (Diff(Tn)) for ⌘ 2 Diff(Tn) is shifted under the R⌘−1-action toward the space

T ⇤
Id(Diff(Tn)), Id 2 Diff(Tn), is diffeomorphic to the space Diff⇤(Tn) conjugate to the Lie algebra Diff(Tn) '

Γ(T (Tn)) of the vector fields on T
n {this was shown by S. Lie as early as in 1887 (see, e.g., [60, 66–68])}, this

canonical Poisson bracket on T ⇤
⌘ (Diff(Tn)) turns into the classical Lie-Poisson bracket on the conjugate space

G⇤ [57, 60, 62, 64, 66, 67]. In addition, the orbits of the group of diffeomorphisms Diff(Tn) on T ⇤(Diff(Tn))

are mapped into coadjoint orbits on the conjugate space G⇤ generated by the corresponding elements of the Lie

algebra G. The following lemma enables one to construct this Lie–Poisson bracket:
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Lemma 3.1. The Lie algebra diff(Tn) ' Γ(T (Tn)) is given by the commutation relation

[a1, a2] = ha1|ria2 − ha2|ria1 (3.1)

for any vector fields a1, a2 2 Γ(T (Tn)) on the manifold T
n.

Proof. The commutation relation (3.1) follows from the definition of the group operation of multiplication

('1,t ◦ '2,t)(X) = '2,t('1,t(X))

for any group diffeomorphisms '1,t, '2,t 2 Diff(Tn), t 2 R, and X 2 T
n under the condition that aj(X) :=

d'j,t(X)/dt|t=0 and 'j,t|t=0 = Id 2 Diff(Tn), j = 1, 2.

To find the Poisson bracket on the cotangent space T ⇤
⌘ (Diff(Tn)) for any ⌘ 2 Diff(Tn), we consider the

cotangent space T ⇤
⌘ (Diff(Tn)) ' Diff⇤(Tn), i.e., the space conjugate to the tangent space T⌘(Diff(Tn)) of the

left-invariant vector fields Diff(Tn) for any ⌘ 2 Diff(Tn), and a canonical symplectic structure on T ⇤
⌘ (Diff(Tn))

of the form !(2)(µ, ⌘) := δ↵(µ, ⌘). Moreover, the canonical Liouville form

↵(µ, ⌘) := (µ|δ⌘)c 2 Λ1
(µ,⌘)(T

⇤
⌘ (Diff(Tn)))

is a priori defined at the point (µ, ⌘) 2 T ⇤
⌘ (Diff(Tn)) of the tangent space T⌘(Diff(Tn)) ' Γ(T (M)) of

right-invariant vector fields on the torus T
n . If we find the corresponding Poisson bracket for smooth functions

(µ|a)c, (µ|b)c 2 C1(T ⇤
⌘ (Diff(Tn));R) on T ⇤

⌘ (Diff(Tn)) ' Diff⇤(Tn), ⌘ 2 Diff(Tn), then we can formulate the

following theorem:

Theorem 3.1. The Lie–Poisson bracket on the conjugate space T ⇤
⌘ (Diff(Tn)) ' diff⇤(Tn), ⌘ 2M, is given

by the expression

{f, g}(µ) = (µ|[δg(µ)/δµ, δf(µ)/δµ])c (3.2)

for any smooth functionals f, g 2 C1(G⇤;R).

Proof. By using the definition of the Poisson bracket for smooth functions

(µ|a)c, (µ|b)c 2 C1(T ⇤
⌘ (Diff(Tn));R)

on the symplectic space T ⇤
⌘ (Diff(Tn)) [56, 62], we get

{µ(a), µ(b)} := δ↵(Xa, Xb)

= Xa(↵|Xb)c −Xb(↵|Xa)c − (↵|[Xa, Xb])c, (3.3)

where

Xa := δ(µ|a)c/δµ = a 2 diff(Tn) and Xb := δ(µ|b)c/δµ = b 2 diff(Tn).

In view of the right invariance of the vector fields Xa, Xb 2 T⌘(Diff(Tn)), Xa(↵|Xb)c = 0 and Xb(↵|Xa)c = 0,

the Poisson bracket (3.3) turns into

{(µ|a)c, (µ|b)c} = −(↵|[Xa, Xb])c
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= (µ|[b, a])c = (µ|[δ(µ|b)c/δµ, δ(µ|a)c/δµ])c

for all (µ, ⌘) 2 T ⇤
⌘ (Diff(Tn)) ' Diff⇤(Tn), ⌘ 2 Diff(Tn), and any a, b 2 diff(Tn). The Poisson bracket (3.3)

can be easily generalized to

{f, g}(µ) = (µ|[δg(µ)/δµ, δf(µ)/δµ])c

for any smooth functionals f, g 2 C1(G⇤;R), which completes the proof of the theorem.

By using the Lie–Poisson bracket (3.2), it is possible to construct Hamiltonian flows on the conjugate space

diff⇤(Tn) in the form @l/@t = −ad⇤gradh(l)l for any element l 2 diff⇤(Tn), t 2 R. Here, by definition,

d

d"
h(l + "m)|"=0 := (m| gradh(l))c

for some smooth Hamiltonian function h 2 C1(Diff⇤(Tn);R).

If a system has, in addition to the Hamiltonian function, sufficiently many additional global invariants, then

it is possible to expect that the procedure of reduction transforms the system into its complete integrable differential

form.

4. Vector Fields on a Torus and Their Lie-Algebraic Properties

Consider the Lie loop group G̃ := gdiff(Tn), i.e., the set of smooth mappings
�
C
1 ⊃ S

1 −! G := Diff(Tn)
 

holomorphically extended, respectively, from the circle S
1 ⇢ C

1 to the set D1
+ of interior points of the circle S

1

and to the set D1
− of its exterior points λ 2 C\D

1
+. The corresponding Lie algebra admits the following splitting:

G̃ := G̃+ ⊕ G̃−, where

G̃+ := gdiff(Tn)+ ⇢ Γ
�
D
1
+⇥T

n;T (D1
+⇥T

n)
�

is the Lie subalgebra containing the vector fields on the manifold S
1⇥T

n holomorphically extended to the disk D
1
+

and

G̃− := gdiff(Tn)− ⇢ Γ
�
D
1
−⇥T

n;T (D1
−⇥T

n)
�

is the Lie subalgebra containing the vector fields on the manifold C⇥ T
n holomorphic on the set D1

−. The conju-

gate space G̃⇤ := G̃⇤
+ ⊕ G̃⇤

−, where the space

G̃⇤
+ ⇢ Γ(D1

+⇥T
n;T ⇤(D1

+⇥T
n))

contains differential forms on the manifold S
1 ⇥T

n holomorphically extended to the set C\D
1
+ and the conjugate

space

G̃⇤
− ⇢ Γ

�
D
1
−⇥T

n;T ⇤(D1
−⇥T

n)
�

contains differential forms on the manifold S
1 ⇥T

n holomorphically extended to the set D1
+ so that the space G̃⇤

+

is dual to G̃+ and the space G̃⇤
− is dual to G̃− with respect to the convolution on the product G̃⇤ ⇥ G̃ :

(l̃|ã) := resλ

Z

Tn

hl, aidx (4.1)
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for any vector field

ã :=

⌧
a(x),

@

@x

�
2 G̃

and the differential form l̃ := hl(x), dxi 2 G̃⇤ on C⇥ T
n that depends on the coordinate

x := (λ;x) 2 C⇥ T
n.

Here, h·, ·i is the ordinary scalar product in the Euclidean space E
n+1 and

@

@x
:=

✓
@

@λ
,
@

@x1
,
@

@x2
, . . . ,

@

@xn

◆>

is the ordinary gradient vector. Splitting the Lie algebra G̃ into the direct sum

G̃ = G̃+ ⊕ G̃−, (4.2)

we get the following splitting into the direct sum:

G̃⇤ = G̃⇤
+ ⊕ G̃⇤

−

with respect to convolution (4.1). If we determine the set of smooth invariant Casimir functionals h : G̃⇤ ! R on

the conjugate space G̃⇤ by the action of the coadjoint Lie algebra G̃

ad⇤
rh(l̃)

l̃ = 0 (4.3)

on the generating (so-called “seed”) element l̃ 2 G̃⇤, then we can explicitly construct a broad class of multidimen-

sional completely integrable dispersion-free (so-called “heavenly”) nonlinear commuting Hamiltonian systems by

using the classical Adler–Kostant–Symes scheme [26–28, 30]:

dl̃/dt := −ad⇤
rh+(l̃)

l̃ (4.4)

for all h 2 I(G̃⇤), rh(l̃) := rh+(l̃) ⊕ rh−(l̃) 2 G̃+ ⊕ G̃−, on the corresponding functional manifold. More-

over, the commuting flows (4.4) can be represented as compatible systems of the vector-field Lax–Sato-type equa-

tions [30] on the functional manifold of generating element C2(C⇥ T
n;C) , which generate the complete set of

first integrals on this manifold.

5. Lie-Algebraic Structures and Integrable Hamiltonian Systems

Consider the loop Lie algebra G̃ defined above. Elements of this algebra can be represented in the form

a(x;λ) :=

⌧
a(x;λ),

@

@x

�
=

nX

j=1

aj(x;λ)
@

@xj
+ a0(x;λ)

@

@λ
2 G̃
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for some vectors a(x;λ) 2 E⇥ E
n holomorphic in λ 2 D

1
± for all x 2 T

n, where

@

@x
:=

✓
@

@λ
,
@

@x1
,
@

@x2
, . . . ,

@

@xn

◆>

is the generalized gradient vector with respect to the variable x := (λ, x) 2 C⇥ T
n. The Lie algebra G̃ as the

direct sum of subalgebras (4.2) enables us to introduce the classical R-structure as follows:

[ã, b̃]R := [Rã, b̃] + [ã,Rb̃]

for any ã, b̃ 2 G̃, where R := (P+ − P−)/2 and P±G̃ := G̃± ⇢ G̃.

The space G̃⇤ ' Λ̃1(C⇥T
n) conjugate to the algebra G̃ of holomorphic vector fields on C⇥T

n is functionally

identified with G̃ with respect to metric (4.1). Thus, for any f, g 2 D(G̃⇤), we can define two Lie–Poisson brackets

{f, g} :=
�
l̃, [rf(l̃),rg(l̃)]

�

and

{f, g}R :=
�
l̃, [rf(l̃),rg(l̃)]R

�
, (5.1)

where, for any seed-element l̄ 2 G̃⇤, the gradient vectors rf(l̃) and rg(l̃) 2 G̃ are computed in metric (4.1).

Assume that a smooth function γ 2 I(G̃⇤) is a Casimir invariant, i.e.,

ad⇤
rγ(l̃)

l̃ = 0 (5.2)

for the chosen seed-element l̃ 2 G̃⇤. The coadjoint mapping ad⇤
rf(l̃)

: G̃⇤ ! G̃⇤ for any f 2 D(G̃⇤) can be

represented as follows:

ad⇤
rf(l̃)

(l̃) =

⌧
@

@x
, ◦rf(l)

�
l̄ +

nX

j=1

⌧⌧
l,

@

@x
rf(l)

�
, dx

�
,

where, by definition,

rf(l̃) :=

⌧
rf(l),

@

@x

�
.

Thus, for the Casimir function γ 2 D(G̃⇤), condition (5.2) is equivalent to the equation

l

⌧
@

@x
,rγ(l)

�
+

⌧
rγ(l),

@

@x

�
l +

⌧
l,

✓
@

@x
rγ(l)

◆�
= 0. (5.3)

For applications, this equation must be solved in the analytic form. In the case where an element l̃ 2 G̃⇤ is

singular as |λ| ! 1, we can consider the general asymptotic decomposition

rγ := rγ(p) ⇠ λp
X

j2Z+

rγ
(p)
j λ−j (5.4)

for a properly chosen p 2 Z+. Thus, substituting (5.4) in Eq. (5.3), we recursively solve this equation.
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Let h(y), h(t) 2 I(G̃⇤) be a Casimir function for which the generators of the Hamiltonian vector field

rh
(y)
+ (l) :=

�
rγ(py)(l)

�
|+, rh

(t)
+ (l) :=

�
rh(pt)(l)

�
|+ (5.5)

are defined for some integer quantities py, pt 2 Z+. These two invariants generate the following commuting

Hamiltonian flows:

@l/@t = −

⌧
@

@x
, ◦rh

(t)
+ (l)

�
l −

⌧
l,

✓
@

@x
rh

(t)
+ (l)

◆�
(5.6)

and

@l/@y = −

⌧
@

@x
, ◦rh

(y)
+ (l)

�
l −

⌧
l,

✓
@

@x
rh

(y)
+ (l)

◆�
(5.7)

with respect to the Lie–Poisson bracket (5.1), where y, t 2 R are the corresponding evolutionary parameters. Since

the invariants h(y), h(t) 2 I(G̃⇤) commute with respect to bracket (5.1), flows (5.6) and (5.7) are also commuting.

As a result, the corresponding generators of the Hamiltonian vector fields

rh
(t)
+ (l̃) :=

⌧
rh

(t)
+ (l),

@

@ x

�
, rh

(y)
+ (l̃) :=

⌧
rh

(y)
+ (l),

@

@ x

�
(5.8)

satisfy the Lax compatibility condition

@

@y
rh

(t)
+ (l̃)−

@

@t
rh

(y)
+ (l̃) = [rh

(t)
+ (l̃),rh

(y)
+ (l̃)] (5.9)

for all y, t 2 R. On the other hand, condition (5.9) is equivalent to the condition of compatibility of two linear

equations

✓
@

@t
+rh

(t)
+ (l̃)

◆
 = 0,

✓
@

@y
+rh

(y)
+ (l̃)

◆
 = 0 (5.10)

for a function  2 C2(R2 ⇥ C⇥ T
n;C) for all y, t 2 R and any λ 2 C. The reasoning presented above can be

formulated in the form of the following main technical statement:

Proposition 5.1. Assume that a seed-element l̃ 2 G̃⇤ and h(y), h(t) 2 I(G̃⇤) are Casimir functions with

respect to the metric (·|·) on the loop Lie algebra G̃ and the natural coadjoint action on the loop coalgebra G̃⇤.

Then the dynamical systems

@l̃/@y = −ad⇤
rh

(y)
+ (l̃)

l̃, @l̃/@t = −ad⇤
rh

(t)
+ (l̃)

l̃

are commuting vector Hamiltonian fields for all λ 2 C and y, t 2 R. Moreover, the condition of compatibility of

these flows is equivalent to relations (5.10), where  2 C2(R2 ⇥ C⇥ T
n;C) and the vector fields rh

(t)
+ (l̃) and

rh
(y)
+ (l̃) 2 G̃ are given by relations (5.8) and (5.5).
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Remark 5.1. As indicated above, expansion (5.4) is efficient if the chosen generating seed element l̃ 2 G̃⇤ is

singular as |λ| ! 1. In the case where it is singular as |λ| ! 0, expression (5.4) takes the form

rγ(p)(l) ⇠ λ−p
X

j2Z+

rγ
(p)
j (l)λj

for properly chosen integers p 2 Z+ and reduced gradients of the Casimir function given by the generators of the

Hamiltonian vector fields

rh
(y)
− (l) := λ(λ−py−1rγ(py)(l))−,

rh
(t)
− (l) := λ(λ−pt−1rγ(pt)(l))−

for properly chosen positive integers py, pt 2 Z+, and the corresponding Hamiltonian flows can be represented as

@l̃/@t = ad⇤
rh

(t)
−

(l̃)
l̃ and @l̃/@y = ad⇤

rh
(y)
−

(l̃)
l̃.

6. Integrable Multidimensional Heavenly Lax–Sato-Type Systems and the Associated Equations of

Conformal Structures

6.1. Einstein–Weyl Metric Equations. We denote G̃⇤ = gdiff(T1)⇤ and choose a seed element as follows:

l̃ = (uxλ− 2uxvx − uy) dx+
�
λ2 − vxλ+ vy + v2x

�
dλ.

In metric (4.1), this element generates the gradient of Casimir invariants h(pt), h(py) 2 I(G̃⇤) in the form

rh(pt)(l) ⇠ λ2(0, 1)> + (−ux, vx)
>λ+ (uy, u− vy)

> +O(λ−1),

rh(py)(l) ⇠ λ(0, 1)> + (−ux, vx)
> + (uy,−vy)

>λ−1 +O(λ−2)

as |λ| ! 1 for pt = 2 and py = 1. For the gradients of the Casimir functions h(t), h(y) 2 I(G̃⇤) given

by Eqs. (5.5), we can get the corresponding generators of the Hamiltonian vector fields (5.8) and (5.5) on the

coalgebra G̃⇤ in the form

A
rh

(t)
+

=

⌧
rh

(t)
+ (l),

@

@x

�
= (λ2 + λvx + u− vy)

@

@x
+ (−λux + uy)

@

@λ
,

A
rh

(y)
+

=

⌧
rh

(y)
+ (l),

@

@x

�
= (λ+ vx)

@

@x
− ux

@

@λ

(6.1)

satisfying the compatibility condition (5.9) equivalent to the integrable Einstein–Weyl equations [36]

uxt + uyy + (uux)x + vxuxy − vyuxx = 0,

vxt + vyy + uvxx + vxvxy − vyvxx = 0.

(6.2)
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It is known [33] that, for v=0, the invariant reduction (6.2) yields the well-known dispersion–free Kadomtsev–

Petviashvili equation

(ut + uux)x + uyy = 0, (6.3)

for which the reduced representation (5.10) follows from (6.1) and takes the form of vector fields:

A
rh

(t)
+

= (λ2 + u)
@

@x
+ (−λux + uy)

@

@λ
,

A
rh

(y)
+

= λ
@

@x
− ux

@

@λ
,

(6.4)

satisfying the compatibility condition (5.9), which is equivalent to Eq. (6.3). As a partial result of (5.10) and (6.4),

we conclude that the compatibility condition for the vector fields

@ 

@t
+ (λ2 + u)

@ 

@x
+ (−λux + uy)

@ 

@λ
= 0,

@ 

@y
+ λ

@ 

@x
− ux

@ 

@λ
= 0

is satisfied for  2 C2(R2 ⇥ C⇥ T
n;C) and any y, t 2 R, (x, λ) 2 T

1
C
.

6.2. Modified Einstein–Weyl Metric Equations. These equations were introduced in [20] and have the form

uxt = uyy + uxuy + u2xwx + uuxy + uxywx + uxxa,

wxt = uwxy + uywx + wxwxy + awxx − ay,

where ax := uxwx − wxy. In this case, we take

G̃⇤ = gdiff(C⇥ T
n)

and choose a seed-element l̃ 2 G̃ in the form

l̃ = [λ2ux + (2uxwx + uy + 3uux)λ+ 2ux@
−1
x uxwx + 2ux@

−1
x uy

+ 3uxwx
2 + 2uywx + 6uuxwx + 2uuy + 3u2ux − 2aux]dx

+ [λ2 + (wx + 3u)λ+ 2@−1
x uxwx + 2@−1

x uy + wx
2 + 3uwx + 3u2 − a]dλ.

It generates two Casimir invariants with respect to metric (4.1) γ(j) 2 I(G̃⇤), j = 1, 2, with the following gradi-

ents:

rγ(2)(l) ⇠ λ2[(ux,−1)> + (uux + uy,−u+ wx)
>λ−1

+ (0, uwx − a)>λ−2] + O(λ−1),
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rγ(1)(l) ⇠ λ[(ux,−1)> + (0, wx)
>λ−1] +O(λ−1)

as |λ| ! 1 for py = 1 and pt = 2. The corresponding gradients of the Casimir functions h(t), h(y) 2 I(G⇤)

given by (5.5) generate the Hamiltonian vector fields

rh
(y)
+ := rγ(1)(l)|+ = (uxλ,−λ+ wx)

>,

rh
(t)
+ = rγ(2)(l)|+ = (uxλ

2 + (uux + uy)λ,−λ
2 + (wx − u)λ+ uwx − a)>.

(6.5)

By using (6.5), we arrive at a consistent system of linear Lax equations

@ 

@y
+ (−λ+ wx)

@ 

@x
+ uxλ

@ 

@λ
= 0,

@ 

@t
+ (−λ2 + ( wx − u)λ+ uwx − a)

@ 

@x
+ (uxλ

2 + (uux + uy)λ)
@ 

@λ
= 0,

which is true for  2 C2(R2 ⇥ C⇥ T
n;C) and any y, t 2 R, (λ, x) 2 C⇥ T

n.

6.3. System of Dunajski Heavenly Equations. These equations were proposed in [35] and generalize the

corresponding antiself-dual Einstein vacuum equation related to the Plebański metric and the well-known second

heavenly Plebański equation [8, 32]. To study the integrability of the Dunajski equations

ux1t + uyx2 + ux1x1ux2x2 − u2x1x2
− v = 0,

vx1t + vx2y + ux1x1vx2x2 − 2ux1x2vx1x2 = 0,

(6.6)

where (u, v) 2 C1(R2 ⇥ T
2;R2), (y, t;x1, x2) 2 R

2 ⇥ T
2, we define

G̃⇤ = gdiff(C⇥ T
2)⇤.

As a seed-element l̄ 2 G̃⇤, we take

l̃ = (λ+ vx1 − ux1x1 + ux1x2)dx1 + (λ+ vx2 + ux2x2 − ux1x2)dx2 + (λ− x1 − x2)dλ.

In metric (4.1), the gradients of two functionally independent Casimir invariants h(py), h(py) 2 I(G̃⇤) as

|λ| ! 1 can be found in the asymptotic form as follows:

rh(py)(l) ⇠ λ(1, 0, 0)> + (−ux1x2 , ux1x1 ,−vx1)
> +O(λ−1),

rh(pt)(l) ⇠ λ(0,−1, 0)> + (ux2x2 ,−ux1x2 , vx2)
> +O(λ−1)

(6.7)

for pt = 1 = py. Computing the generators of the Hamiltonian vector fields

rh
(y)
+ := rh(py)(l)|+ = (λ− ux1x2 , ux1x1 ,−vx1)

>,
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rh
(t)
+ := rh(pt)(l)|+ = (ux2x2 ,−λ− ux1x2 , vx2)

>,

which follow from the gradients of the Casimir functions (6.7), we get the vector fields

A
rh

(t)
+

=

⌧
rh

(t)
+ ,

@

@x

�
= ux2x2

@

@x1
− (λ+ ux1x2)

@

@x2
+ vx2

@

@λ
,

A
rh

(y)
+

=

⌧
rh

(y)
+ ,

@

@x

�
= (λ− ux1x2)

@

@x1
+ ux1x1

@

@x2
− vx1

@

@λ
.

The vector fields (6.8) satisfy the Lax compatibility condition (5.9), which is equivalent to the following

consistent relations for vector fields:

@ 

@t
+ ux2x2

@ 

@x1
− (λ+ ux1x2)

@ 

@x2
+ vx2

@ 

@λ
= 0,

@ 

@y
+ (λ− ux1x2)

@ 

@x1
+ ux1x1

@ 

@x2
− vx1

@ 

@λ
= 0,

(6.8)

which are satisfied for  2 C2(R2 ⇥ C⇥ T
2;C) for any (y, t) 2 R

2 and all (λ;x1, x2) 2 C⇥ T
2. As indicated

in [34], the Dunajski equations (6.6) generalize both dispersion-free Kadomtsev–Petviashvili equations, and the

second Plebański equation is also a Lax integrable Hamiltonian system.

6.4. First Generating Equation of the Conformal Structure: uyt+uxtuy−utuxy = 0 . A seed-element

l̃ 2 G̃⇤ = gdiff(T1
C
)⇤ of the form

l̃ =
⇥
u−2
t (1− λ)λ−1 + u−2

y λ(λ− 1)−1
⇤
dx,

where u 2 C2(R2⇥T
1;R), x 2 T

1, λ 2 C\{0, 1}, and d denotes the total differential, generates two independent

Casimir functionals γ(1) and γ(2) 2 I(G̃⇤) whose gradients have the following asymptotic expansions:

rγ(1)(l) ⇠ uy +O(µ2)

as |µ| ! 0, µ := λ− 1, and

rγ(2)(l) ⇠ ut +O(λ2)

as |λ| ! 0. The commutativity condition

[X(y), X(t)] = 0 (6.9)

for the vector fields

X(y) := @/@y +rh(y)(l̃), X(t) := @/@t+rh(t)(l̃), (6.10)

where

rh(y)(l̃) := −
�
µ−1rγ(1)(l̃)

���
−
= −

uy
λ− 1

@

@x
,
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rh(t)(l̃) := −
�
λ−1rγ(2)(l̃)

���
−
= −

ut
λ

@

@x
,

leads to the heavenly equations

uyt + uxtuy − uxyut = 0.

Their Lax–Sato representation is the compatibility condition for the first-order partial differential equations

@ 

@y
−

uy
λ− 1

@ 

@x
= 0,

@ 

@t
−
ut
λ

@ 

@x
= 0,

where  2 C2(R2 ⇥ T
1
C
;C).

6.5. Second Generating Equation of Conformal Structure: uxt + uxuyy − uyuxy = 0. For a seed-

element

l̃ 2 G̃⇤ = gdiff(C⇥ T
1)⇤

of the form

l̃ =
⇥
u2x + 2u2x(uy + ↵)λ−1 + u2x(3u

2
y + 4↵uy + β)λ−2

⇤
dx,

where u 2 C2(T1 ⇥ R
2;R), x 2 T

1, λ 2 C\{0}, and ↵, β 2 R, there exists a unique independent Casimir

functional γ(1) 2 I(G̃⇤) with the following asymptotic expansion of its functional gradient as |λ| ! 0 :

rγ(1)(l) ⇠ c0u
−1
x + (−c0uy + c1)u

−1
x λ+ (−c1uy + c2)u

−1
x λ2 +O(λ3),

where cr 2 R, r = 1, 2. If we assume that c0 = 1, c1 = 0, and c2 = 0, then we get two functionally independent

gradient elements

rh(y)(l̃) := −(λ−1rγ(1)(l̃))|− = −
1

λux

@

@x
,

rh(t)(l̃) := (λ−2rγ(1)(l̃))|− =

✓
1

λ2ux
−

uy
λux

◆
@

@x
.

The corresponding commutativity condition (6.9) for the vector fields (6.10) leads to the heavenly equations

uxt + uxuyy − uyuxy = 0.

The linearized Lax–Sato representation of these equations is given by the following system of first-order equations:

@ 

@y
−

1

λux

@ 

@x
= 0,



GEOMETRIC STRUCTURES ON THE ORBITS OF LOOP DIFFEOMORPHISM GROUPS 1191

@ 

@t
+

✓
1

λ2ux
−

uy
λux

◆
@ 

@x
= 0

for the linear vector fields with a function  2 C2(R2 ⇥ C⇥ T
1;C).

6.6. Inverse First Reduced Heavenly Shabat Equation. A seed-element l̃ 2 G̃⇤ = gdiff(T1
C
)⇤ of the form

l̃ = (a0u
−2
y u2x(λ+ 1)−1 + a1u

2
x + a1u

2
xλ)dx,

where u 2 C2(T1 ⇥ R
2;R), x 2 T

1, λ 2 C \ {−1}, and a0, a1 2 R, generates two independent Casimir

functionals γ(1) and γ(2) 2 I(G̃⇤) whose gradients have the following asymptotic expansions:

rγ(1)(l) ⇠ uyu
−1
x − uyu

−1
x µ+O(µ2)

as |µ| ! 0, µ := λ+ 1, and

rγ(2)(l) ⇠ u−1
x +O(λ−2)

as |λ| ! 1. Setting

rh(y)(l̃) :=
�
µ−1rγ(1)(l̃)

���
−
= −

λ

λ+ 1

uy
ux

@

@x
,

rh(t)(l̃) :=
�
λrγ(2)(l̃)

���
+
=

λ

ux

@

@x
,

we conclude that the commutativity condition (6.9) for the vector fields (6.10) yields the following heavenly equa-

tion:

uxy + uyutx − utyux = 0,

which can be obtained as a result of the following simultaneous change of independent variables: R 3 x ! t 2 R,

R 3 y !2 R, and R 3 t ! y 2 R in the first reduced heavenly Shabat equation. The corresponding Lax–Sato

representation is specified by the compatibility condition for the first-order equations for the vector fields

@ 

@y
−

λ

λ+ 1

uy
ux

@ 

@x
= 0,

@ 

@t
+

λ

ux

@ 

@x
= 0,

where  2 C2(R2 ⇥ C⇥ T
n;C).

6.7. First Plebański Equation and Its Generalizations. A seed-element

l̃ 2 G̃⇤ = gdiff(C⇥ T
2)⇤

of the form

l̃ = λ−1(uyx1dx1 + uyx2dx2) + (utx1dx1 + utx2dx2) = λ−1duy + dut, (6.11)
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where u 2 C2(T2 ⇥ R
2;R), (x1, x2) 2 T

2, λ 2 C\{0}, and d denotes the total differential, generates two inde-

pendent Casimir functionals γ(1) and γ(2) 2 I(G̃⇤) whose gradients have the following asymptotic expansions:

rγ(1)(l) ⇠ (−uyx2 , uyx1 , )
> +O(λ),

rγ(2)(l) ⇠ (−utx2 , utx1)
> +O(λ)

(6.12)

as |λ| ! 0. The commutativity condition (6.9) for the vector fields (6.10), where

rh(y)(l̃) := (λ−1rγ(1)(l̃))
��
−
= −

uyx2

λ

@

@x1
+
uyx1

λ

@

@x2
,

rh(t)(l̃) := (λ−1rγ(2)(l̃))
��
−
= −

utx2

λ

@

@x1
+
utx1

λ

@

@x2
,

yields the first Plebański equation [5]:

uyx1utx2 − uyx2utx1 = 1.

Its Lax–Sato representation implies the compatibility condition for the first-order partial differential equations

@ 

@y
−
uyx2

λ

@ 

@x1
+
uyx1

λ

@ 

@x2
= 0,

@ 

@t
−
utx2

λ

@ 

@x1
+
utx1

λ

@ 

@x2
= 0,

where  2 C1(R2 ⇥ C⇥ T
2;C).

In view of the fact that the determining condition for the Casimir invariants is symmetric and equivalent

to a system of first-order inhomogeneous linear differential equations for the covector function l = (l1, l2)
>,

the corresponding seed-element can be also chosen in a different form. Moreover, form (6.11) is independent of

the space dimension of the torus T
n, which enables us to describe the corresponding generalized conformal metric

equations of any dimension.

In particular, we note that the asymptotic expansions (6.12) are also true for the invariant seed-elements

l̃ = λ−1duy + dut.

The Lie-algebraic scheme described above can be generalized to an arbitrary dimension n = 2k, where k 2 N

and n > 2. In this case, we get 2k independent Casimir functionals γ(j) 2 I(G̃⇤), where

G̃⇤ = gdiff(T2k)⇤, j = 1, 2k,

with the following asymptotic expansions of their gradients:

rγ(1)(l) ⇠
⇣
−uyx2 , uyx1 , 0, . . . , 0| {z }

2k−2

⌘>
+O(λ),
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rγ(2)(l) ⇠
⇣
−utx2 , utx1 , 0, . . . , 0| {z }

2k−2

⌘>
+O(λ),

rγ(3)(l) ⇠
⇣
0, 0,−uyx4 , uyx3 , 0, . . . , 0| {z }

2k−4

⌘>
+O(λ),

rγ(4)(l) ⇠
⇣
0, 0,−utx4 , utx3 , 0, . . . , 0| {z }

2k−4

⌘>
+O(λ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rγ(2k−1)(l) ⇠
⇣
0, . . . , 0| {z }
2k−2

,−uyx2k
, uyx2k−1

⌘>
+O(λ),

rγ(2k)(l) ⇠
⇣
0, . . . , 0| {z }
2k−2

,−utx2k
, utx2k−1

⌘>
+O(λ).

Assume that

rh(y)(l̃) :=
⇣
λ−1

⇣
rγ(1)(l̃) + . . .+rγ(2k−1)(l̃)

⌘⌘ ���
−

= −
kX

m=1

✓
uyx2m

λ

@

@x2m−1
−
uyx2m−1

λ

@

@x2m

◆
,

rh(t)(l̃) :=
⇣
λ−1

⇣
rγ(2)(l̃) + . . .+rγ(2k)(l̃)

⌘⌘ ���
−

= −
kX

m=1

✓
utx2m

λ

@

@x2m−1
−
utx2m−1

λ

@

@x2m

◆
.

Thus, the commutativity condition (6.9) for the vector fields (6.10) yields the following multidimensional analogs

of the first heavenly Plebański equation:

kX

m=1

(uyx2m−1utx2m − uyx2mutx2m−1) = 1.

6.8. Modified Heavenly Plebański Equation and Its Generalizations. For a seed-element l̃2G̃⇤=gdiff(T2)⇤

of the form

l̃ = (λ−1ux1y + ux1x1 − ux1x2 + λ)dx1

+ (λ−1ux2y + ux1x2 − ux2x2 + λ)dx2

= d(λ−1uy + ux1 − ux2 + λx1 + λx2), (6.13)
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where dλ = 0, u 2 C2(T2 ⇥ R
2;R), (x1, x2) 2 T

2, and λ 2 C\{0}, there exist two independent Casimir

functionals γ(1) and γ(2) 2 I(G̃⇤) with the following asymptotic expansions of the gradients:

rγ(1)(l) ⇠ (uyx2 ,−uyx1)
> +O(λ)

as |λ| ! 0 and

rγ(2)(l) ⇠ (0,−1)> + (−ux2x2 , ux1x2)
>λ−1 +O(λ−2)

as |λ| ! 1. In the case where

rh(y)(l̃) := (λ−1rγ(1)(l̃))|− =
uyx2

λ

@

@x1
−
uyx1

λ

@

@x2
,

rh(t)(l̃) := (λrγ(2)(l̃))|+ = −ux2x2

@

@x1
+ (ux1x2 − λ)

@

@x2
,

the commutativity condition (6.9) for the vector fields (6.10) yields the modified heavenly Plebański equation [5]:

uyt − uyx1ux2x2 + uyx2ux1x2 = 0 (6.14)

with the Lax–Sato representation given by the first-order partial differential equations

@ 

@y
−
uyx2

λ

@ 

@x1
+
uyx1

λ

@ 

@x2
= 0,

@ 

@t
− ux2x2

@ 

@x1
+ (ux1x2 − λ)

@ 

@x2
= 0

for the functions  2 C2(R2 ⇥ T
2
C
;C).

The differential-geometric form of seed-element (6.13) is also independent of the dimension of additional

space variables on the torus T
n, n > 2. This leads to the natural problem of determination of the corresponding

multidimensional generalizations of the modified heavenly Plebański equation (6.14).

Selecting a seed-element l̃ 2 G̃⇤ = gdiff(T2k)⇤ in the form (6.13), where u 2 C2(T2k ⇥ R
2;R), we arrive at

the following asymptotic expansions for the gradients of 2k 2 N independent Casimir functionals γ(j) 2 I(G̃⇤),

where G̃⇤ = gdiff(T2k)⇤, j = 1, 2k :

rγ(1)(l) ⇠
⇣
−uyx2 , uyx1 , 0, . . . , 0| {z }

2k−2

⌘>
+O(λ),

rγ(3)(l) ⇠
⇣
0, 0,−uyx4 , uyx3 , 0, . . . , 0| {z }

2k−4

⌘>
+O(λ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rγ(2k−1)(l) ⇠
⇣
0, . . . , 0| {z }
2k−2

,−uyx2k
, uyx2k−1

⌘>
+O(λ)
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as |λ| ! 0 and

rγ(2)(l) ⇠
⇣
0,−1, 0, . . . , 0| {z }

2k−2

⌘>
+
⇣
−ux2x2 , ux1x2 , 0, . . . , 0| {z }

2k−2

⌘>
λ−1 +O(λ−2),

rγ(4)(l) ⇠
⇣
0, 0,−ux4x2 , ux3x2 , 0, . . . , 0| {z }

2k−4

⌘>
λ−1 +O(λ−2),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rγ(2k)(l) ⇠
⇣
0, . . . , 0| {z }
2k−2

,−ux2kx2 , ux2k−1x2

⌘>
λ−1 +O(λ−2)

as |λ| ! 1. In the case where

rh(y)(l̃) := −(λ−1
⇣
rγ(1)(l̃) + . . .+rγ(2k−1)(l̃))

⌘ ���
−

=

kX

m=1

✓
uyx2m

λ

@

@x2m−1
−
uyx2m−1

λ

@

@x2m

◆
,

rh(t)(l̃) :=
⇣
λ
⇣
rγ(2)(l̃) + . . .+rγ(2k)(l̃)

⌘⌘ ���
+

= −ux2x2

@

@x1
+ (ux1x2 − λ)

@

@x2
−

kX

m=2

✓
ux2mx2

@

@x2m−1
− ux2m−1x2

@

@x2m

◆
,

the commutativity condition (6.9) for the vector fields (6.10) yields the following multidimensional analogs of the

modified heavenly Plebański equation:

uyt −

kX

m=1

(uyx2mux2x2m−1 − uyx2m−1ux2x2m) = 0.

6.9. Heavenly Husain Equation and Its Generalizations. A seed-element l̃ 2 G̃⇤ = gdiff(T2)⇤ of the form

l̃ =
d(uy + iut)

λ− i
+
d(uy − iut)

λ+ i
=

2(λduy − dut)

λ2 + 1
, (6.15)

where i2 = −1, dλ = 0, u 2 C2(T2 ⇥ R
2;R), (x1, x2) 2 T

2, and λ 2 C\{−i; i}, generates two independent

Casimir functionals γ(1) and γ(2) 2 I(G̃⇤) with the following asymptotic expansions for the gradients:

rγ(1)(l) ⇠
1

2
(−uyx2 − iutx2 , uyx1 + iutx1)

> +O(µ), µ := λ− i,
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as |µ| ! 0 and

rγ(2)(l) ⇠
1

2
(−uyx2 + iutx2 , uyx1 − iutx1)

> +O(⇠), ⇠ := λ+ i,

as |⇠| ! 0. In the case where

rh(y)(l̃) := (µ−1rγ(1)(l̃) + ⇠−1rγ(2)(l̃))|−

=
1

2µ

✓
(−uyx2 − iutx2)

@

@x1
+ (uyx1 + iutx1)

@

@x2

◆

+
1

2⇠

✓
(−uyx2 + iutx2)

@

@x1
+ (uyx1 − iutx1)

@

@x2

◆

=
utx2 − λuyx2

λ2 + 1

@

@x1
+
λuyx1 − utx1

λ2 + 1

@

@x2
,

rh(t)(l̃) := (−µ−1irγ(1)(l̃) + ⇠−1irγ(2)(l̃))|−

=
1

2µ

✓
(−utx2 + iuyx2)

@

@x1
+ (utx1 − iuyx1)

@

@x2

◆

+
1

2⇠

✓
−(utx2 + iuyx2)

@

@x1
+ (utx1 + iuyx1)

@

@x2

◆

= −
uyx2 + λutx2

λ2 + 1

@

@x1
+

uyx1 + λutx1

λ2 + 1

@

@x2
,

the commutativity condition (6.9) for the vector fields (6.10) gives the heavenly Husain equation [5]

uyy + utt + uyx1utx2 − uyx2utx1 = 0 (6.16)

with the Lax–Sato representation given by the following first-order partial differential equations:

@ 

@y
+
utx2 − λuyx2

λ2 + 1

@ 

@x1
+
λuyx1 − utx1

λ2 + 1

@ 

@x2
= 0,

@ 

@t
−
uyx2 + λutx2

λ2 + 1

@ 

@x1
+

uyx1 + λutx1

λ2 + 1

@ 

@x2
= 0,

where  2 C2(R2 ⇥ T
2
C
;C).

The differential-geometric form of the seed-element (6.15) is also independent of the dimension of additional

space variables on the torus T
n, n > 2, which opens the problem of determination of the corresponding multidi-

mensional generalizations of the heavenly Husain equation (6.16).
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For a seed-element l̃ 2 G̃⇤ = gdiff(T2k)⇤ chosen in the form (6.15), where u 2 C2(T2k ⇥ R
2;R), we obtain

the following asymptotic expansions for the gradients of 2k 2 N independent Casimir functionals γ(j) 2 I(G̃⇤),

where G̃⇤ = gdiff(T2k)⇤, j = 1, 2k :

rγ(1)(l) ⇠
1

2

⇣
−uyx2 − iutx2 , uyx1 + iutx1 , 0, . . . , 0| {z }

2k−2

⌘>
+O(µ),

rγ(3)(l) ⇠
1

2

⇣
0, 0,−uyx4 − iutx4 , uyx3 + iutx3 , 0, . . . , 0| {z }

2k−4

⌘>
+O(µ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rγ(2k−1)(l) ⇠
1

2

⇣
0, . . . , 0| {z }
2k−2

,−uyx2k
− iutx2k

, uyx2k−1
+ iutx2k−1

⌘>
+O(µ)

as |µ| ! 0 and

rγ(2)(l) ⇠
1

2

⇣
−uyx2 + iutx2 , uyx1 − iutx1 , 0, . . . , 0| {z }

2k−2

⌘>
+O(⇠),

rγ(4)(l) ⇠
1

2

⇣
0, 0,−uyx4 + iutx4 , uyx3 − iutx3 , 0, . . . , 0| {z }

2k−4

⌘>
+O(⇠),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rγ(2k)(l) ⇠
1

2

⇣
0, . . . , 0| {z }
2k−2

,−uyx2k
+ iutx2k

, uyx2k−1
− iutx2k−1

⌘>
+O(⇠)

as |⇠| ! 0. In the case where

rh(y)(l̃) :=

kX

m=1

(µ−1rγ(2m−1)(l̃) + ⇠−1rγ(2m)(l̃))
��
−

=
kX

m=1

✓
utx2m − λuyx2m

λ2 + 1

@

@x2m−1
+
λuyx2m−1 − utx2m−1

λ2 + 1

@

@x2m

◆
,

rh(t)(l̃) :=
kX

m=1

i(−µ−1rγ(2m−1)(l̃) + ⇠−1rγ(2m)(l̃))
��
−

=

kX

m=1

✓
−
uyx2m + λutx2m

λ2 + 1

@

@x2m−1
+
uyx2m−1 + λutx2m−1

λ2 + 1

@

@x2m

◆
,

the commutativity condition (6.9) for the vector fields (6.10) yields the multidimensional analogs of the heavenly



1198 O. E. HENTOSH, YA. A. PRYKARPATSKYY, A. A. BALINSKY, AND A. K. PRYKARPATSKI

Husain equation:

uyy + utt +
kX

m=1

(uyx2m−1utx2m − uyx2mux2x2m−1) = 0.

6.10. General Heavenly Monge Equation and Its Generalizations. A seed-element

l̃ 2 G̃⇤ = gdiff(C⇥ T
4)⇤

of the form

l̃ = duy + λ−1(dx1 + dx2),

where u 2 C2(T4 ⇥ R
2;R), (x1, x2, x3, x4) 2 T

4, and λ 2 C\{0}, generates four independent Casimir func-

tionals γ(1), γ(2), γ(3), and γ(4) 2 I(G̃⇤) whose gradients have the following asymptotic expansions:

rγ(1)(l) ⇠ (0, 1, 0, 0)>

+
�
−uyx2 − (@x2 − @x1)

−1uyx2x1 , (@x2 − @x1)
−1uyx2x1 , 0, 0

�>
λ+O(λ2),

rγ(2)(l) ⇠ (1, 0, 0, 0)>

+ (@x1 − @x2)
−1uyx1x2 ,−uyx1 − (@x1 − @x2)

−1uyx1x2 , 0, 0)
>λ+O(λ2),

rγ(3)(l) ⇠ (0, 0,−uyx4 , uyx3)
> +O(λ2),

rγ(4)(l) ⇠ (0, 0,−utx4 , utx3)
>

+
�
uyx3utx4 − uyx4utx3 , 0, uyx4utx1 − uyx1utx4 , uyx1utx3 − uyx3utx1

�>
λ+O(λ2)

as |λ| ! 0. In the case where

rh(y)(l̃) := (λ−1(rγ(1)(l̃) +rγ(3)(l̃)))|−

= 0
@

@x1
+

1

λ

@

@x2
−
uyx4

λ

@

@x3
+
uyx3

λ

@

@x4
,

rh(t)(l̃) :=
�
λ−1(−rγ(2)(l̃) +rγ(4)(l̃))

� ��
−

= −
1

λ

@

@x1
+ 0

@

@x2
−
utx4

λ

@

@x3
+
utx3

λ

@

@x4
,

the commutativity condition (6.9) for the vector fields (6.10) yields the following general heavenly Monge equa-

tion [6]:

uyx1 + utx2 + uyx3utx4 − uyx4utx3 = 0
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with the Lax–Sato representation given by the following first-order partial differential equations:

@ 

@y
+

1

λ

@ 

@x2
−
uyx4

λ

@ 

@x3
+
uyx3

λ

@ 

@x4
= 0,

@ 

@t
−

1

λ

@ 

@x1
−
utx4

λ

@ 

@x3
+
utx3

λ

@ 

@x4
= 0,

where  2 C2(R2 ⇥ C⇥ T
n;C) and λ 2 C\{0}.

In view of the fact that the condition imposed on the Casimir invariants is equivalent to a system of homoge-

neous linear differential equations for the covector function l = (l1, l2, l3, l4)
|, the corresponding seed-element

can be chosen in a different form. Thus, if the expression

l̃ = dut + λ−1(dx1 + dx2)

is regarded as a seed-element, then it generates four independent Casimir functionals γ(1), γ(2), γ(3), and γ(4) 2

I(G̃⇤) whose gradients have the following asymptotic expansions:

rγ(1)(l) ⇠ (0, 1, 0, 0)>

+
�
−utx2 − (@x2 − @x1)

−1utx2x1 , (@x2 − @x1)
−1utx2x1 , 0, 0

�>
λ+O(λ2),

rγ(2)(l) ⇠ (1, 0, 0, 0)>

+
�
(@x1 − @x2)

−1utx1x2 ,−utx1 − (@x1 − @x2)
−1utx1x2 , 0, 0

�>
λ+O(λ2),

rγ(3)(l) ⇠ (0, 0,−utx4 , utx3)
>

+
�
0, utx3uyx4 − utx4uyx3 , utx4uyx2 − utx2uyx4 , utx2uyx3 − utx3uyx2

�>
λ+O(λ2),

rγ(4)(l) ⇠ (0, 0,−uyx4 , uyx3)
> +O(λ2)

as |λ| ! 0. For a seed-element of the form

l̃ = duy + dut + λ−1(dx1 + dx2), (6.17)

the asymptotic expansions for the gradients of four independent Casimir functionals γ(1), γ(2), γ(3), and γ(4) 2

I(G̃⇤) can be represented in the form:

rγ(1)(l) ⇠ (0, 1, 0, 0)>

+
�
−(uyx2 + utx2)− (@x2 − @x1)

−1(uyx2x1 + utx2x1),

(@x2 − @x1)
−1(uyx2x1 + utx2x1), 0, 0

�>
λ + O(λ2),
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rγ(2)(l) ⇠ (1, 0, 0, 0)>

+
�
(@x1 − @x2)

−1(uyx1x2 + utx1x2),

− (uyx1 + utx1)− (@x1 − @x2)
−1(uyx1x2 + utx1x2), 0, 0

�>
λ+O(λ2),

rγ(3)(l) ⇠ (0, 0,−uyx4 , uyx3)
>

+
�
0, utx3uyx4 − utx4uyx3 ,

utx4uyx2 − utx2uyx4 , utx2uyx3 − utx3uyx2

�>
λ+O(λ2),

rγ(4)(l) ⇠ (0, 0,−utx4 , utx3)
>

+
�
uyx3utx4 − uyx4utx3 , 0,

uyx4utx1 − uyx1utx4 , uyx1utx3 − uyx3utx1

�>
λ+O(λ2)

as |λ| ! 0.

The scheme outlined above can be generalized for all n = 2k, where k 2 N and n > 2. In this case, we have

2k independent Casimir functionals γ(j) 2 I(G̃⇤), where

G̃⇤ = gdiff(C⇥ T
2k)⇤, j = 1, 2k,

and the asymptotic expansions for their gradients are given by the formulas:

rγ(1)(l) ⇠ (0, 1, 0, . . . , 0| {z }
2k−2

)>

+
�
−(uyx2 + utx2)− (@x2 − @x1)

−1(uyx2x1 + utx2x1),

(@x2 − @x1)
−1(uyx2x1 + utx2x1), 0, . . . , 0| {z }

2k−2

�>
λ + O(λ2),

rγ(2)(l) ⇠ (1, 0, 0, . . . , 0| {z }
2k−2

)>

+
�
(@x1 − @x2)

−1(uyx1x2 + utx1x2),

− (uyx1 + utx1)− (@x1 − @x2)
−1(uyx1x2 + utx1x2), 0, 0

�>
λ+O(λ2),

rγ(3)(l) ⇠ (0, 0,−uyx4 , uyx3 , 0, . . . , 0| {z }
2k−4

)>
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+
�
0, utx3uyx4 − utx4uyx3 ,

utx4uyx2 − utx2uyx4 , utx2uyx3 − utx3uyx2 , 0, . . . , 0| {z }
2k−4

�>
λ+O(λ2),

rγ(4)(l) ⇠ (0, 0,−utx4 , utx3 , 0, . . . , 0| {z }
2k−4

)>

+
�
uyx3utx4 − uyx4utx3 , 0,

uyx4utx1 − uyx1utx4 , uyx1utx3 − uyx3utx1 , 0, . . . , 0| {z }
2k−4

�>
λ+O(λ2),

rγ(2k−1)(l) ⇠ (0, . . . , 0| {z }
2k−4

, 0, 0,−uyx2k
, uyx2k−1

)>

+
�
0, . . . , 0| {z }
2k−4

, 0, utx2k−1
uyx2k

− utx2k
uyx2k−1

,

utx2k
uyx2 − utx2uyx2k

, utx2uyx2k−1
− utx2k−1

uyx2

�>
λ+O(λ2),

rγ(2k)(l) ⇠
�
0, . . . , 0| {z }
2k−4

, 0, 0,−utx2k
, utx2k−1

�>

+
�
0, . . . , 0| {z }
2k−4

, uyx2k−1
utx2k

− uyx2k
utx2k−1

, 0,

uyx2k
utx1 − uyx1utx2k

, uyx1utx2k−1
− uyx2k−1

utx1

�>
λ+O(λ2)

if a seed-element l̃ 2 G̃⇤ is chosen in the form (6.17). If

rh(y)(l̃) :=
�
λ−1(rγ(1)(l̃) +rγ(3)(l̃) + . . .+rγ(2k−1)(l̃))

� ��
−

= 0
@

@x1
+

1

λ

@

@x2
−
uyx4

λ

@

@x3

+
uyx3

λ

@

@x4
+ . . .−

uyx2k

λ

@

@x2k−1
+
uyx2k−1

λ

@

@x2k

= 0
@

@x1
+

1

λ

@

@x2
−

kX

j=2

✓
uyx2j

λ

@

@x2j−1
−
uyx2j−1

λ

@

@x2j

◆
,

rh(t)(l̃) :=
�
λ−1(−rγ(2)(l̃) +rγ(4)(l̃) + . . .+rγ(2k)(l̃))

� ��
−
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= −
1

λ

@

@x1
+ 0

@

@x2
−
utx4

λ

@

@x3

+
utx3

λ

@

@x4
+ . . .−

utx2k

λ

@

@x2k−1
+
utx2k−1

λ

@

@x2k

= −
1

λ

@

@x1
+ 0

@

@x2
−

kX

j=2

✓
utx2k

λ

@

@x2k−1
−
utx2k−1

λ

@

@x2k

◆
,

then the compatibility condition (6.9) for the vector fields (6.10) yields the following multidimensional analogs of

the general Monge equation:

uyx1 + utx2 +

kX

j=2

(uyx2j−1utx2j − uyx2jutx2j−1) = 0.

7. Superanalogs of the Heavenly Whitham Equation

Assume that the element l̃ 2 G̃⇤, where

G̃ := ˜diff(T1|N ) = ˜diff+(T
1|N )⊕ ˜diff (T1|N ),

is a loop Lie algebra of superconformal diffeomorphisms of the group D̃iff(T1|N ) of vector fields on a

(1, 1)|N -dimensional supertorus

T
(1,1)|N := C⇥ T

1 ⇥ ΛN
1

(see [10]) embedded in the finite-dimensional Grassmann algebra Λ := Λ0 ⊕ Λ1 over C, Λ0 ⊃ R, which yields

the following asymptotic expansions for the gradients of Casimir invariants: h(1), h(2) 2 I(G̃⇤) :

rh(1)(l) ⇠ wy +O(λ) (7.1)

as |λ| ! 0 and

rh(2)(l) ⇠ 1− wxλ
−1 +O(λ−2) (7.2)

as |λ| ! 1. Then the compatibility condition for the Hamiltonian flows

dl̃/dy = ad⇤
rh

(y)
−

(l̃)
l̃, rh

(y)
− (l) = −(λ−1rh1(l))− = −wyλ

−1,

dl̃/dt = −ad⇤
rh

(t)
+ (l̃)

l̃, rh
(t)
+ (l) = −(λrh(2)(l))+ = −λ+ wx,

(7.3)

yields the following heavenly-type equations:

wyt = wxwyx − wywxx −
1

2

NX

i=1

(D#i
wx)(D#i

wy), (7.4)
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where w 2 C2(R2 ⇥ T
(1,1)|N ; Λ0) and

D#i
:= @/@#i + #i@/@x, i = 1, N,

are the superderivatives with respect to the anticommuting variables #i 2 Λ1, i = 1, N.

This equation can be regarded as a supergeneralization of the heavenly Whitham equation [11, 12, 30] for

any N 2 N. The compatibility condition for the first-order partial differential equations

 y +
1

λ

 
wy x +

1

2

NX

i=1

(D#i
wy)(D#i

 )

!
= 0,

 t + (−λ+ wx) x +
1

2

NX

i=1

(D#i
wx)(D#i

 ) = 0,

where  2 C2(R2 ⇥ T
(1,1)|N ; Λ0) and λ 2 C\{0}, yields the corresponding Lax–Sato representation for the

heavenly-type equation (7.4).

Moreover, as a result of simple calculations, we obtain the corresponding seed-element l̃ := ldx 2 G̃⇤ from

the equation for the Casimir invariant. For any N 2 N, this element can be represented in the following form:

l = Ca−
4−N

2 , a := rh(l).

Here, the scalar function C = C(x;#) satisfies the linear homogeneous differential equation

Cx = hDC,Qi,

where

Q = (Q1, . . . , QN ) and Qi =
(−1)N

2
(D#i

ln a),

in the superspace

R
2N−1|2N−1

' Λ2N−1

0 ⇥ Λ2N−1

1 .

Moreover, C 2 C1(T(1,1)|N ; Λ1) if N is an odd natural number and C 2 C1(T(1,1)|N ; Λ0) if N is an even

integer. For N = 1, we have

l = C1(@
−1
x D✓1a

− 1
2 )a−

3
2 ,

where C1 2 R is a real constant.

If N = 1 and C1 = 1, then the corresponding seed-element l̃ 2 G̃⇤ connected with the asymptotic expan-

sions (7.1) and (7.2) can be reduced to the form

l̃ = [λ−1(@−1
x D✓1w

− 1
2

y )w
− 3

2
y + ⇠x/2 + ✓1(2ux + λ)]dx,

where w := u+ ✓1⇠, u 2 C1(R2 ⇥ S
1; Λ0) and ⇠ 2 C1(R2 ⇥ S

1; Λ1).
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8. Hamiltonian Flows Associated with Hydrodynamic Chaplygin Systems

Consider a hydrodynamic Chaplygin system [1, 17, 23]

ut = −uux − kvxv
−3,

vt = −(uv)x,

(8.1)

where k 2 R is a constant parameter and (u, v) 2 M ⇢ C1(R/2⇡Z;R2) are 2⇡ -periodic dynamic variables

for the evolutionary parameter t 2 R on the functional manifold M. To describe the geometric structure of

system (8.1), we define a loop Lie algebra G̃ := gdiff(T1) on the manifold C⇥ T
1 and choose a seed-element

l̃ 2 G̃⇤ in the form

l̃ =

✓
1

8
↵x + uux

◆
λ+

1

2
uxλ

3

�
dx

+


3

8
(↵+ 4u2) +

5

2
uλ2 + λ4

�
dλ,

where

↵ := kv−2 + u2.

Then we determine the asymptotic expansions for some Casimir functionals h(y), h(t), and h(s) 2 I(G̃⇤) :

rh(t)(l) := rh(2)(l), rh(y)(l) := rh(4)(l), rh(s)(l) := rh(6)(l),

where

rh(2)(l) =

 
−2

0

!
λ2 +

 
0

ux

!
λ1 +

 
u

0

!
λ9 +O(λ−1),

rh(4)(l) =

 
−8

0

!
λ4 +

 
0

4ux

!
λ3 +

 
−4u

0

!
λ2 +

 
0

↵x

!
λ1 +

 
↵

0

!
λ0 +O(λ−1)

and

rh(6)(l) =

 
−2

0

!
λ6 +

 
0

ux

!
λ5 +

 
−3u

0

!
λ4

+

 
0

↵x/4 + uux

!
λ3 +

 
−↵/4− 1/2u2

0

!
λ2

+

 
0

−(u↵)x/8

!
λ1 +

 
u↵/8

0

!
λ0 +O(λ−1)

as λ! 1.
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The corresponding Lax–Sato generators of the vector fields are given by the formulas

rh
(t)
+ (l) := (rh(2)(l))|+ =

 
−2

0

!
λ2 +

 
0

ux

!
λ1 +

 
u

0

!
λ0,

(8.2)

rh
(y)
+ (l) :=

�
rh(4)(l)

���
+

=

 
−8

0

!
λ4 +

 
0

4ux

!
λ3 +

 
−4u

0

!
λ2 +

 
0

↵x

!
λ1 +

 
↵

0

!
λ0

and

rh
(s)
+ (l) := (rh(6)(l))|+

=

 
−2

0

!
λ6 +

 
0

ux

!
λ5 +

 
−3u

0

!
λ4

+

 
0

↵x/4 + uux

!
λ3 +

 
−↵/4− 1/2u2

0

!
λ2

+

 
0

−(u↵)x/8

!
λ1 +

 
u↵/8

0

!
λ0 (8.3)

as λ! 1.

By using relations (8.2) and (8.3), we obtain the following evolutionary flows:

@l̃/@t = −ad⇤
rh

(t)
+ (l̃)

l̃ ⇠
ut = −(u2 − kv−2)x

vt = −(uv)x

9
=
; (8.4)

for the evolutionary parameter t 2 R, which are equivalent to the hydrodynamic system (8.1),

@l̃/@y = −ad⇤
rh

(y)
+ (l̃)

l̃ ⇠
uy = −[uv(u2 + kv−2)]x

vy = −[(u2 + kv−2)v]x

9
=
; (8.5)

for the evolutionary parameter y 2 R, and

@l̃/@s = −ad⇤
rh

(s)
+ (l̃)

l̃ ⇠

us = −
�
−3↵2 + 4u4

�
x
/12

vs = −[(u2 + kv−2)uv]x/3

9
=
; (8.6)

for the evolutionary parameter s 2 R. All these flows are mutually commuting,

[@/@t+rh
(t)
+ (l), @/@y +rh

(y)
+ (l)] = 0,
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[@/@t+rh
(t)
+ (l), @/@s+rh

(s)
+ (l)] = 0,

[@/@s+rh
(s)
+ (l), @/@y +rh

(y)
+ (l)] = 0,

Lax–Sato-type vector fields on the manifold C⇥ T
1 for all parameters t, y, and s 2 R and yield three new com-

patible systems of heavenly integrable dispersion-free differential equations. The obtained result can be formulated

as the following theorem:

Theorem 8.1. The hydrodynamic Chaplygin system (8.4) is equivalent to the completely integrable Hamil-

tonian system (8.6) on the space G̃⇤ conjugate to the loop Lie algebra G̃ ' gdiff(T1) of vector fields on the

manifold C⇥ T
1. The associated Casimir functionals on G̃⇤ generate an infinite hierarchy of additional commut-

ing Hamiltonian systems of the form (8.5) and (8.6) and the Lax–Sato-type vector fields on C⇥ T
1, which gives

new dispersion heavenly equations.

As shown in [3], the hydrodynamic Chaplygin system (8.4) is closely related to the class of completely in-

tegrable Monge-type equations whose geometric structure was analyzed in [6] by using another approach based

on the properties of embedding of the Grassmann manifold of general differential equations defined on jet-sub-

manifolds. This observation reduces the problem of determination of the relationship between different geometric

approaches to the description of completely integrable dispersion-free differential systems.

Finally, we note that the Lie-algebraic scheme proposed by Ovsienko [26, 27] can be generalized by analyzing

a broader class of integrable heavenly equations represented in the form of consistent Hamiltonian flows on the

semisimple product of the Lie algebra G̃ of holomorphic vector fields on the torus C⇥ T
n by its regular conjugate

space supplemented with the Maurer–Cartan cocycle G̃⇤. This structure will be considered in the second part of

the present survey.
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