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Abstract: The imino pyridine Schiff base cobalt(II) and nickel(II) complexes (C1 and C2) and their
functionalised γ-Fe3O4 counterparts (Fe3O4@C1 and Fe3O4@C2) were synthesised and characterised
using IR, elemental analysis, and ESI-MS for C1 and C2, and single crystal X-ray diffraction for C1,
while the functionalised materials Fe3O4@C1 and Fe3O4@C2 were characterized using IR, XRD, SEM,
TEM, EDS, ICP-OES, XPS and TGA. Complexes C1, C2 and the functionalised materials Fe3O4@C1
and Fe3O4@C2 were tested as catalysts for the selective transfer hydrogenation of cinnamaldehyde
and all four pre-catalysts showed excellent catalytic activity. Complexes C1 and C2 acted as homo-
geneous catalysts with high selectivity towards the formation of hydrocinnamaldehyde (88.7% and
92.6%, respectively) while Fe3O4@C1 and Fe3O4@C2 acted as heterogeneous catalysts with high
selectivity towards cinnamyl alcohol (89.7% and 87.7%, respectively). Through in silico studies
of the adsorption energies, we were able to account for the different products formed using the
homogeneous and the heterogeneous catalysts which we attribute to the preferred interaction of the
C=C moiety in the substrate with the Ni centre in C2 (−0.79 eV) rather than the C=O (−0.58 eV).

Keywords: Fe3O4-immobilised pre-catalysts; transfer hydrogenation; cinnamaldehyde

1. Introduction

The difficulty in separating products from homogeneously catalyzed hydrogenation
reactions is a major disadvantage that limits the use of homogeneous catalysts for indus-
trial production, despite their often-high catalytic activities compared to heterogeneous
catalysts [1]. The use of water-soluble catalysts and supported catalysts are some of
the strategies employed towards improving the recyclability of homogeneous catalysts.
Supported catalysts have gained scientific interest as they are intermediates between ho-
mogeneous and heterogeneous catalysts [2]. Catalytic systems with a ligand bearing the
alkoxy(alkyl)silane moiety offer potential for attaching a solid support to the catalytic
system through covalent bonding between the hydroxyl moiety of the support and the
alkoxide groups on the ligand [3], which provides sustainable and recyclable active cata-
lysts, as the support improves product isolation and recyclability of the catalysts without
the use of solvents [4]. The structure of supported catalysts dictates their activity, and
it is hence vital that we study the structure and reactivity of the unsupported catalyst
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in comparison with the supported catalysts to gain better understanding of the activity,
selectivity, and other effects of the support [2].

The catalytic hydrogenation of organic compounds possessing multiple unsaturated
bonds, such as α, β-unsaturated aldehydes using both homogeneous and heterogeneous
catalysts is particularly challenging, which hence requires active catalytic sites that can
discriminate between the closely related moieties [5,6]. Cinnamaldehyde (CAL) is an
example of an α, β-unsaturated aldehyde which can be converted to valuable chemical
intermediates by hydrogenation of either the olefinic or the carbonyl moieties using ho-
mogeneous catalysts. Owing to the presence of different chemical moieties in varying
chemical environments, it is a better subject for a comparative study on the catalyst activity
and selectivity than other substrates such as furfural [7]. Chemoselective hydrogenation of
cinnamaldehyde leads to the formation of either hydro-cinnamaldehyde (HCAL), cinnamyl
alcohol (COL), or hydro-cinnamyl alcohol (HCOL) (Scheme 1) [6]. HCOL and COL are
important intermediates in the production of cosmetics, fragrances and flavourings, while
HCAL is used as an intermediate in the production of drugs used for HIV treatment [7–9].
The reduction of the unsaturated moieties in cinnamaldehyde by hydrogen molecules
proceeds through the 1,2 or 1,4 addition pathways (Scheme 1). Since the 1970s, supported
nickel [10], palladium [11,12], and cobalt [13] catalysts have been shown to hydrogenate
olefins [14]. Supported cobalt [14–16] catalysts in particular are known to be selective
in the hydrogenation of the olefinic bond in subtrates that contain both the olefinic and
carbonyl bonds [16].
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Scheme 1. Synthesis of L1 and complexes C1 and C2. Scheme 1. Synthesis of L1 and complexes C1 and C2.

In view of the above, it is critically important to determine the structure of molecular
compounds that are used as catalysts, especially if such compounds have bidentate ligands
that could render these compounds polymeric, in order to establish how such compounds
act as catalysts [17,18]. There are only limited reports in the literature on the use of
supported catalysts in the hydrogenation process and comparing their catalytic activity
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and selectivity to their homogeneous counterparts, either computationally (in silico) or by
experimental methods, is therefore highly relevant for progress in this field.

The aim of this study was to employ unsupported and supported catalysts for hy-
drogenation reactions, and the use of in silico methods to elucidate the selectivity of the
supported catalyst in comparison with their homogeneous analogues. As such, this report
first presents the synthesis and characterisation of homogeneous Co2+ and Ni2+ N-(1-
(pyridin-2-yl)ethylidene)-3-(triethoxysilyl)-1-propanamine pre-catalysts and their γ-Fe3O4
immobilized counterparts, and the application of all four pre-catalysts in the transfer
hydrogenation of cinnamaldehyde using formic acid as a hydrogen source.

2. Results and Discussion
2.1. Syntheses and Characterization of the Ligand and Homogeneous Pre-Catalysts

Complexes C1 and C2 were prepared from the reaction of (N-(1-(pyridin-2-yl)ethylidene)-
3-(triethoxysilyl)-1-propanamine (L1) with the appropriate metal salts (Scheme 1). Charac-
terization of L1 and C2, which are known compounds [19], can be found in Figures S1–S3;
whilst C1, which is new, was characterized as described below. Complex C1 was isolated
as an orange solid that is soluble in dichloromethane and methanol. The IR spectrum
showed the following peaks which are assigned to the stretching frequencies in parenthesis;
2970 cm−1 (νC-N), 2886 cm−1 (νC-C),1645 cm−1 (νC=N), 1456 cm−1 (νC-C),1365 cm−1(νC-C),
1074 cm−1(νSi-O),950 cm−1(νC-O). When the IR peaks of L1 (Figure S4) are compared to
those of pre-catalysts C1 and C2, there is a shift in the stretching frequency of the imine
bond from 1649 cm−1 to (1646, and 1645) cm−1. The observed decrease in the stretching
energy is associated with the pseudo-single bond that the imino bond assumes as the ligand
interacts with the metal centre [20], which requires less stretching energy.

Crystal Structure Determination of C1

The crystal structure of C1 is shown in Figure 1. It is mononuclear with two chelating
ligands bound to the metal in a bidentate fashion via the nitrogen atoms. The crystal
structure is different from those observed for bidentate cobalt complexes that have biden-
tate nitrogen chelating bipyridyl and imidazole ligands, which show polymeric crystal
structures [17]. Table 1a shows the metal complex to have a monoclinic crystal structure.
In the solid-state structure shown in Figure 1, the interaction between the cobalt metal
centres with the nitrogen donor atoms is evident. The interaction between the metals and
the free imine is weaker (longer bond lengths [Table 1b]) compared to that of the aromatic
imine (shorter bond lengths [Table 1b]). C1 crystalizes in a centrosymmetric crystal system
(monoclinic [Table 1a]), with a primitive lattice (P) allowing a 2-fold/180◦ rotation. Table 1b
shows shorter bond lengths between the pyridyl nitrogen and the metal centre compared to
the imine nitrogen, suggesting stronger interactions of the cobalt with the pyridyl nitrogen,
and the bond angles for an octahedral geometry. Table 1b shows the bite angle of (78.86
and 78.80)◦ between the cobalt atom and the nitrogen ligand, which shows distortion from
the ideal bite angle of 90◦ for an octahedral geometry.

2.2. Characterization of Magnetite and the Supported Pre-Catalysts

The general reaction schemes that produced the two supported pre-catalysts, Fe3O4@C1
and Fe3O4@C2, are shown in Scheme 2. Complexes C1 and C2 were immobilized on
superparamagnetic iron oxide (Fe3O4) nanoparticles according to previously reported
procedures [3,21,22] with some modifications. Figure S5 shows the IR, TEM, SEM-EDS,
XRD and particle distribution of Fe3O4-immino-py. From Figure S5, PXRD patterns show
that the inverse spinel phase of magnetite is preserved, as its characteristic peaks are
observed, but the phases at hkl values 220 and 422 appear broad, which is an indication
of non-uniform macro-straining on the magnetite lattice as the ligand is attached. The
IR spectra show the appearance of a new peak at 1700 cm−1, which is attributed to the
presence of the imine moiety in the immobilised ligand [23]. The TEM micrographs show
the agglomerated spherical crystalline particles with average particle size of 3.4–4 nm,
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whereas the SEM image shows an inhomogeneous surface with agglomerated particles.
The EDS provides evidence for the presence of Si and nitrogen in addition to magnetite
atoms (Fe and O). These results show successful anchoring of the L1 onto magnetite.
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Table 1. (a) Crystal data and structure refinement for C1. (b) Selected bond Lengths and bond angles
for C1.

(a)

Identification Code C1

Empirical formula C30H52Cl2CoN4O6Si2
Formula weight 750.76
Temperature/K 150.00(10)
Crystal system monoclinic

Space group P21/c
a/Å 19.0910(7)
b/Å 12.7328(4)
c/Å 17.5010(6)
α/◦ 90
β/◦ 115.307(5)
γ/◦ 90

Volume/Å3 3845.9(3)
Z 4

ρcalcmg/mm3 1.297
µ/mm−1 0.69

F(000) 1588
2Θ range for data collection 5.15 to 61.856◦

Index ranges −26 ≤ h ≤ 26, −17 ≤ k ≤ 16,
−23 ≤ l ≤ 23

Reflections collected 65540
Independent reflections 8989[R(int) = 0.1308]

Data/restraints/parameters 8989/0/406
Goodness-of-fit on F2 0.969

Final R indexes [I >= 2σ (I)] R1 = 0.0391, wR2 = 0.0799
Final R indexes [all data] R1 = 0.0642, wR2 = 0.0871

Largest diff. peak/hole/e Å−3 0.43/−0.31

(b)

Atom Atom Length/Å Atom Atom Atom Angle/°

Co1 N1 2.1808(12) N1 Co1 N2 76.82(5)
Co1 N2 2.1332(12) N1 Co1 N3 169.36(5)
Co1 N4 2.1361(12) N3 Co1 N4 76.80(5)
Co1 N3 2.1660(13)
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Figure 2a shows the powder X-ray diffractions of as-synthesised magnetite. The peaks
indexed as the X-ray diffractions from the following planes: (220), (311), (400), (422), (511),
and (440), correspond to a face centred cubic inverse spinel phase of magnetite [20,21]. The
phases at hkl values 220 and 422 appear broad for the system with supported pre-catalysts.
The crystallite size measurements of the supported pre-catalysts were determined from
the full width at half maximum (FWHM) of the strongest reflection of the hkl diffraction
peak, using the Debye-Scherrer formula, D = kλ

βCosθ where D is the crystallite mean size
and a shape factor k = 0.9 is used, λ is the wavelength of the radiation, β the full width
at half maximum (FWHM) in radians in the 2θ scale, and θ = 2θ

2 in radians. The average
crystal sizes calculated for the pre-catalysts were 3.40 ± 0.40, 3.0 ± 0.5, and 4.0 ± 0.3 nm
for magnetite, Fe3O4@C1, and Fe3O4@C2, respectively. Figure 2b shows the IR spectra of
magnetite, Fe3O4@C1, and Fe3O4@C2, with the Fe-O-Fe stretches at 702 cm−1. The peaks
at 1359 cm−1, and 1443 cm−1 correspond to the CH2 stretch and the adsorbed H2O stretch
is observed at 1060 cm−1, while the hydroxy moiety (νOH) is observed at 3287 cm−1. The
IR of the supported pre-catalysts is staggered in Figure 2b. The stretching frequencies of
Fe-O-Si appear at higher stretching frequencies, 769 and 887 cm−1, compared to 702 cm−1
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for the Fe-O functionality. This shift to higher frequencies shows that a higher energy
is required to cause a stretch in the Fe-O bond in the supported pre-catalyst, due to the
attached heavy atom (Si), which is also evident from the disappearance of a sharp narrow
peak at 1060 cm−1. The imino functionality of the ligand (C=N) is detected at 1599 cm−1.
The appearance of the stretching frequency at 1018 cm−1 corresponds to the presence of
the Si-O bond.
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Figure 2. Powder X-rays diffraction patterns (a) and FTIR spectra (b) of magnetite (Fe3O4), Fe3O4@C2
and Fe3O4@C1.

The Ni and Co metal loadings on the pre-catalysts have been determined by Induc-
tively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) to be 1.22 and 1.37 m/m%
for the pre-catalyst Fe3O4@C1 and Fe3O4@C2, respectively, which are comparable to litera-
ture reports [3,22]. These observations further support the successful coordination of the
active metal to the immobilised ligand. The effect of attaching a ligand/pre-catalyst to mag-
netite causes strain onto the lattice, which can be identified from the shifts or broadening of
the peaks. Peak broadening is a characteristic of non-uniform macro-strain on the lattice,
while peak shift is a result of uniform micro-strain. From Figure 2a, the peaks broaden
with minor shifts as the pre-catalysts are supported onto the support. The resulting total
strain was estimated from the Williamson-Hall (W-H) equation (Equation (1)), where the
micro-strain (ε) was obtained from the slope of the straight-line fit, where D is the crystallite
mean size, and a shape factor k = 0.9 is used, λ is the wavelength of the radiation, β the full
width at half maximum (FWHM) in radians in the 2θ scale, and θ = 2θ

2 in radians.

β cos θ =
K
D

+ ε·4Sinθ (1)

ε =
Slope
4Sinθ

(2)

The macro-strains estimated from the W-H plot are shown in Table S1 alongside the
metal loading determined from ICP-OES. Attaching the ligand to magnetite exerts a lattice
strain (ε) of 9.8 × 10−3, giving a highly strained lattice. However, coordinating the metal
centre to the immobilised ligand leads to a decrease in the lattice strain of magnetite from
6.9 × 10−3 and 9.8 × 10−3 to 7.0 × 10−3 for Fe3O4@C1 and Fe3O4@C2, respectively, which
indicates that the immobilised pre-catalysts are more stable compared to the ligand only,
because of lower lattice stain. In this study, the heterogenized catalysts were subjected
to thermal analysis in the temperature range of 40–1000 ◦C. Figure S6 shows the total %
weight loss of 10, 40 and 60% for Fe3O4, Fe3O4@C1 and Fe3O4@C2, respectively. Between
0 to 400 ◦C, Fe3O4 shows a mass loss of 8% which corresponds to loss of the adsorbed water
molecules, while for Fe3O4@C2, and Fe3O4@C1, mass losses of 40 and 60% are observed,
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respectively, between 400–1000 ◦C, which correspond to the loss of the anchored catalyst.
These results are similar to the observations made by Sobhani et al. for a palladium-Schiff
base complex immobilized covalently on magnetic nanoparticles [1]. Transmission electron
microscopy was used to determine the average particle size, morphology and relative
shape of magnetite. Figure 3 shows TEM micrographs of magnetite Fe3O4 (a), compared
to Fe3O4@C1 (b and d) and Fe3O4@C2 (c and e). From the TEM micrographs, the nano-
catalysts are agglomerated into spherical shapes. This tendency is not surprising, given
the nanoparticles’ small size and magnetic properties [24]. The appearance of dark shades
in the images (b–e) implies that the electron beam did not penetrate the sample, which
could be a result of the homogeneous phase of the catalyst that is attached to the support
occluding the electron beam. In contrast, these dark shades are not apparent in Figure 3a
showing the pure magnetite.
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Figure 3. TEM micrograph of Fe3O4 (a), Fe3O4@C1 (b,d) Fe3O4@C2 (c,e), respectively.

The SEM images show inhomogeneous surfaces with non-uniform particle shapes
(Figure S7) for magnetite, Fe3O4@C1, and Fe3O4@C2, which is not surprising due to the
magnetic nature of the particle, which is often difficult to overcome even by solvent disper-
sion. The corresponding EDS spectra of Fe3O4@C1 and Fe3O4@C2 are shown in Figure 4,
which reveal the presence of the metals (Ni and Co) in the supported pre-catalysts, showing
that the active metal centre was successfully coordinated to the supported ligand [25].
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Figure 5a shows the overview spectra of the composition of the catalyst Fe2O3@C2
with atomic percentage, whereas the analysis for the elements Fe, Cl, Si are shown in
Figure 5c–e. We can fit the N 1s spectrum, Figure 5b, into a typical peak corresponding to
a metal-N species (399.1 eV); these species in Ni-N-C support the dispersion of Ni in the
form of Ni-N coordination [1,24].
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Figure 6a–e, shows the XPS survey and high resolution analysis of the N, Si, Fe, Cl
and O in pre-catalyst Fe2O3@C1. The bonding configurations of the N 1s spectrum can
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be divided into three distinct peaks at 399.2 eV, 401.9 eV and 406.3 eV, corresponding to
Co-N, graphite-N, and nitrate-N species, respectively [26–28]. The nitrogen atoms are
mainly in the form of Co-N (79.76%), nitrate-N (12.47%) and graphite-N (7.76%) [26,27].
The N 1s bond with the Co metal may be the possible active site in the reactions [28–30]. In
both Figures 5c and 6c, the major peak at 710.8 eV (red curve) confirms the characteristic
peak from Fe2p3/2 core level electrons that can be attributed to Fe3+ octahedral and
tetrahedral sites, while Fe2+ species are found at binding energy 714.1 eV (green curve).
Furthermore, the peak at 723.9 eV (blue curve) confirms Fe2+ species in octahedral sites of
the Fe3O4 [31,32].
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2.3. Catalytic Evaluation

We have investigated the transfer hydrogenation of cinnamaldehyde to different
products as shown in Scheme 3. The examples of the 1NMR and GC spectra used to
estimate the conversions are shown in Figures S8–S11.
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2.3.1. Effect of Temperature on Catalyst Activity and Selectivity of C1, C2, Fe3O4@C1
and Fe3O4@C2

Temperature was established to be an influential factor in the transfer hydrogena-
tion process. For C2, Table 2 entries 1–5 show that a gradual temperature increase from
40 ◦C to 120 ◦C (Table 2) resulted in a corresponding gradual increase in the percentage
conversion from 0% at 40 ◦C to 89.9% at 120 ◦C, while the selectivity towards the hydro-
cinnamaldehyde product also gradually increased over the same temperature rise. The
same observation is made for C1 (Table 2, entries 6–8), where an increase in the tempera-
ture from 80 to 120 ◦C increased the conversion from 38.5% to 48.8%. C2 showed higher
conversions of cinnamaldehyde compared to C1 (Table 2, entries 5 and 8). Both homoge-
neous pre-catalysts showed high selectivity towards hydro-cinnamaldehyde in the range of
85–92%, while HCOL production is in the range of 7.4–13.1% for both C1 and C2 (Table 2,
entries 1–6). These results show that the olefinic moiety (C=C) was selectively reduced
compared to the carbonyl moiety (C=O) by the C1 and C2 catalysts.

Magnetite has been reported to have catalytic activity for processes such as the degra-
dation of organic compounds [33], whereas it is reported to be inert towards other catalytic
processes [21]. As shown in Table 2, entries 9–13, an increase in the temperature also gave
better conversions for both Fe3O4@C1 and Fe3O4@C2. However, the selectivity changed
from high yields of HCAL to high yields of COL for the reactions catalysed by both
Fe3O4@C1 (89.7%) and Fe3O4@C2 (87.7%). Entry 14, Table 2 shows that no conversion was
observed when using pure magnetite as a catalyst. From this study, it is evident that the
changes in the selectivity from HCAL to COL as the catalysts are immobilized on magnetite
are due to the surface effects of the support. The supported catalysts reduce the substrates
through a different mechanism compared to the homogeneous catalysts, which is a possible
cause of the varying selectivities observed. Similar selectivity observations have been
reported for the hydrogenation of ketones and aldehydes using catalysts supported on
magnetite [34]. The selectivity of catalysts for the α,β unsaturated aldehyde is of interest,
and cinnamaldehyde with its conjugated phenyl ring has been reported to be reduced to
corresponding alcohols over heterogeneous catalysts [35]. Moreover, the use of Fe is also
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reported to be a known promoter of the hydrogenation of C=O in α,β unsaturated alde-
hydes, as observed in a study of crotonaldehyde and cinnamaldehyde over supported Pt,
Ru, and Rh catalysts, with Fe(II) added as a promoter [35,36]. The homogeneous catalysts
convert cinnamaldehyde to hydro-cinnamaldehyde, followed by further conversion to
hydrocinnamyl alcohol. With the supported homogeneous catalysts, cinnamaldehyde is
converted to both cinnamyl alcohol and hydro-cinnamaldehyde but further conversion of
these two products to a fully saturated system (hydrocinnamyl alcohol) is not observed for
the heterogeneous catalysts.

Table 2. Catalytic evaluation of the catalysts for transfer hydrogenation of cinnamaldehyde at varying
temperature using all the pre-catalysts.

Entry Cat
Temp
(◦C)

Conv
(%)

TOF
Selectivity (%)

HCAL COL HCOL

1 C2 40 0.0 0 0.0 0.0 0.0
2 C2 60 49.1 20.45 87.3 0.0 12.7
3 C2 80 75.3 31.37 87.1 0.0 12.9
4 C2 100 82.9 34.54 86.9 0.0 13.1
5 C2 120 89.9 37.45 92.6 0.0 7.40
6 C1 80 38.5 16.04 91.9 0.0 8.11
7 C1 100 43.3 18.04 89.8 0.0 10.2
8 C1 120 48.8 20.33 88.7 0.0 11.3

9 * Fe3O4@C2 100 86.5 4.282 12.9 87.1 0.0
10 * Fe3O4@C2 120 99.8 4.940 12.3 87.7 0.0
11 * Fe3O4@C2 140 100 4.950 11.9 88.1 0.0
12 * Fe3O4@C1 120 68.7 3.454 10.2 89.7 0.0
13 * Fe3O4@C1 140 73.9 3.848 9.1 90.9 0.0
14 Fe3O4 120 0.0 0 0.0 0.0 0.0

Reaction conditions: CAL (20 mmol), (catalyst 0.1 mol% (formic acid 40 mmol, base 20 mmol),120 ◦C, 24 h
Conversions estimated by gas chromatography (Figure S8. * 0.8% moles of the catalysts. Error estimates
±0.69 (C1), ±0.91 (C2), ±0.14 (Fe3O4@C2) and ±0.58 (Fe3O4@C1).

2.3.2. Catalyst Reusability Studies
Recyclability of Pre-Catalysts C1, C2, Fe3O4@C1 and Fe3O4@C2

It is important to establish the number of cycles over which a catalyst can convert a
substrate to products before deactivation. In this study, the homogeneous catalysts were
recycled as per methods reported in the literature [37]. In the experiment, the reaction was
simultaneously repeated with catalyst recovery from the reaction mixture. After the first
catalytic cycle, the products were extracted with hexane and diethyl ether. This allowed
the pre-catalysts to precipitate, before being dried under reduced pressure and weighed.
Dichloromethane was used to wash the catalyst back into the autoclave reactor. The reactor
was then charged with the pre-catalyst, substrate, base, and formic acid. For Fe3O4@C1 and
Fe3O4@C2, after the first cycle the catalyst was separated from the products using a magnet
(Figure 7b,c) and washed with dichloromethane and oven dried. The reactor was then
charged with the substrate, base, and formic acid. Recyclability studies of homogeneous
catalysts are rare in the literature, especially for C1 and C2. From Figure 7, the homogeneous
catalysts are recyclable up to 3 cycles, giving conversions ranging between 50–38% and
80–70% from cycle 1 to cycle 3 for catalysts C1 and C2, respectively. The loss of activity in
the third cycle could be due to catalyst poisoning/fouling by the organic waste or catalyst
loss due to workup. The supported catalysts could be used up to 8 cycles, (Figure 7a) giving
conversions of 65% and ~99% for Fe3O4@C1 and Fe3O4@C2, respectively, maintained over
8 cycles. Loss of activity starting in cycle 9 is observed for both Fe3O4@C1 and Fe3O4@C2,
which is attributed to the same causes as the homogeneous catalysts.
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Figure 7. Recyclability studies using pre-catalyst C1 and C2 (labelled 1 & 2), Fe3O4@C2 (1a) and
Fe3O4@C1 (2a). Reaction conditions: For pre-catalyst C1 and C2: CAL (20 mmol), (catalyst:0.1 mol%
for 1 & 2 and 0.8 mol% for Fe3O4@C2 and Fe3O4@C1 (formic acid 40 mmol, base 20 mmol),120 ◦C,
24 h Conversions estimated by Gas chromatography. (a) shows the maximum number of cycles the
homogeneous catalyses before deactivation while (b,c) shows the isolation of the spent catalyst from
the reaction mixture.

Characterization of the Used Fe3O4@C1 and Fe3O4@C2

To investigate the stability of the used catalysts, we characterized the materials by
TEM, IR, XRD and EDS, and the results were compared to those of the fresh catalysts.
The TEM images in Figure S12a,b show no changes in the morphology and size of the
particles, whereas the functional groups and elements of the supported ligand are still
observed in the IR (Figure S12c) and EDS (Figure S13) spectra. From Figure S14, the inverse
spinel of magnetite is still preserved after 9 catalytic cycles. The XPS survey of Fe3O4@C2
(Figure S15) and Fe3O4@C1 (Figure S17) and the high-resolution analysis of N, C, Si, Cl/Br,
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O, Fe in Fe3O4@C2 (Figure S16) and Fe3O4@C1 (Figure S18) show no significant changes
in the catalysts after use.

2.3.3. Metal Leaching and Homogeneity Tests
Homogeneity Studies for Pre-Catalysts C1 and C2

Mercury interacts with nanoparticles to form amalgam (HgyMx), which completely
blocks the heterogeneous active sites, leading to inhibited catalytic activity due to het-
erogeneous species that might have formed in the reaction mixture as a result of catalyst
decomposition [38]. Formation of amalgam leads to over 50% decrease in the conversions
for heterogeneously catalysed reactions. From Figure S19, it is evident that there was a
small decrease in the conversions from 48.7% to 40.7% for pre-catalyst C1 and 89.5% to
83.6% for pre-catalyst C2. These decreases are, however, not enough to account for the
possibility of Ni2+ and Co2+ decomposition, and the mercury poisoning test has been
reported to often lead to inaccurate conclusions with M(II) pre-catalysts, especially in the
case of dynamic catalytic systems [38,39].

Leaching Test for Pre-Catalyst Fe3O4@C1 and Fe3O4@C2

The leaching of Co and Ni from the Fe3O4@C1 and Fe3O4@C2 catalysts was deter-
mined using methods reported in the literature [40]. After a 24 h catalytic reaction time, the
catalyst was removed from the reaction mixture using a magnet. The reaction mixture was
placed in a crucible and heated to 500 ◦C under a ramping regime of 10 ◦C/min, before
being calcined at 600 ◦C for 3 h. The residue was weighed and digested in aqua regia and
analyzed for Ni and Co using ICP-OES. The results showed that 0.4 and 0.5 mg/kg of Co
and Ni, respectively, were detected in the residue, i.e., less than 1% of the initial catalyst
loadings, which indicates that only negligible amounts of Ni and Co were leached from the
surface of magnetite to the solution. As such, we may infer that the catalysts are stable and
tolerate the reaction conditions for the transfer hydrogenation of cinnamaldehyde.

2.3.4. In Silico Studies of the Selectivity of the Catalysts

In supported catalysts, the active metal is dispersed on the surface of the support,
which in turn can alter the catalytic activity and selectivity because of the active metal-
support interactions. To gain detailed insight into the selectivity of the homogenous and
heterogeneous catalysts towards the C=C and C=O bonds in cinnamaldehyde, we have
carried out calculations based on the density functional theory (DFT) to predict the lowest
energy adsorption geometries and the adsorption energetics (Figure 8). The active species
formed through oxidative addition of the hydrogen molecule to the metal centre in the
pre-catalysts were used to investigate favourable interactions between the Ni metal and the
olefinic or carbonyl moieties present in cinnamaldehyde.

The DFT calculations reveal that C=C bond adsorption to the homogenous catalyst is
more stable (Eads = −0.79 eV) than that of the C=O bond (−0.58 eV), indicating a higher
selectivity to HCAL. In contrast, at the heterogeneous catalyst, the adsorption of CAL via
a C=O bond at both the Ni site (−1.29 eV) and on the magnetite support (−1.57 eV) is
energetically more favourable than via the C=C bond at the Ni site (−1.11 eV) and on the
support (−1.33 eV). These results indicate that the heterogeneous catalysts favour the C=O
centred adsorption and hydrogenation, which results in its selectivity towards the formation
of COL rather than towards HCOL. These results are consistent with the experimental
results, which show that the homogenous catalysts have higher HCAL selectivity, while
the heterogeneous catalysts produce higher COL selectivity.



Molecules 2023, 28, 659 14 of 19Molecules 2023, 28, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 8. Optimized adsorption geometries and energetics (Eads) of CAL on the homogeneous cata-
lyst via (a) C=C bond and (b) C=O bond; on the heterogeneous catalyst via C=C bond (c,e) and C=O 
bond (d,f) at the Ni site and on the magnetite support. 

The DFT calculations reveal that C=C bond adsorption to the homogenous catalyst is 
more stable (Eads = −0.79 eV) than that of the C=O bond (−0.58 eV), indicating a higher 
selectivity to HCAL. In contrast, at the heterogeneous catalyst, the adsorption of CAL via 
a C=O bond at both the Ni site (−1.29 eV) and on the magnetite support (−1.57 eV) is ener-
getically more favourable than via the C=C bond at the Ni site (−1.11 eV) and on the sup-
port (−1.33 eV). These results indicate that the heterogeneous catalysts favour the C=O 
centred adsorption and hydrogenation, which results in its selectivity towards the for-
mation of COL rather than towards HCOL. These results are consistent with the experi-
mental results, which show that the homogenous catalysts have higher HCAL selectivity, 
while the heterogeneous catalysts produce higher COL selectivity. 

3. Materials and Methods 
All chemicals were purchased from Sigma Aldrich and were used without further 

purification. All solvents were dried in molecular sieves 24 h before use. E)-1-(pyridin-2-
yl)-N-(3-(triethoxysilyl)propyl) methanimine (L1) and (E)-1-(pyridin-2-yl)-N-(3-(triethox-
ysilyl)propyl) methanimino nickel bromide (C2) were prepared according to the literature 
procedures [25]. All hydrogenation reactions were performed in a PPV-CTRO1-CE high-
pressure reactor vessel fitted into a high-pressure autoclave reactor with in-built stirring, 
heating, and cooling systems. 

Figure 8. Optimized adsorption geometries and energetics (Eads) of CAL on the homogeneous
catalyst via (a) C=C bond and (b) C=O bond; on the heterogeneous catalyst via C=C bond (c,e) and
C=O bond (d,f) at the Ni site and on the magnetite support.

3. Materials and Methods

All chemicals were purchased from Sigma Aldrich and were used without further purifi-
cation. All solvents were dried in molecular sieves 24 h before use. E)-1-(pyridin-2-yl)-N-(3-
(triethoxysilyl)propyl) methanimine (L1) and (E)-1-(pyridin-2-yl)-N-(3-(triethoxysilyl)propyl)
methanimino nickel bromide (C2) were prepared according to the literature procedures [25].
All hydrogenation reactions were performed in a PPV-CTRO1-CE high-pressure reactor
vessel fitted into a high-pressure autoclave reactor with in-built stirring, heating, and
cooling systems.

3.1. Characterization Techniques

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Ultrashield-400
MHz spectrometer (1H: 400 MHz, 13C{1H}: 100 MHz) in chloroform using tetramethylsilane
(TMS) as a reference. All the chemical shifts were reported in ppm (δ) using TMS as a
reference. The functional groups were confirmed using a Thermo Nicolet IR instrument
fitted with an ATR probe. Mass spectrometry was carried out on a Water Synapt G2
electrospray ionization mass spectrometer in the negative or positive-ion mode. Elemental
analyses were done using a Thermo Scientific Flash 2000 Series CHNO elemental analyzer.

Powder X-ray diffraction (PXRD) data were collected using an XPERT-PRO diffrac-
tometer (Cu Kα radiation) with a current flow of 40 mA and voltage of 40 kV. Single
crystal X-ray data were collected using a Bruker KAPPA APEX II DUO diffractometer with
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graphite monochromator Mo–Kα radiation (l 1
4 0.71073 A). The data collection was carried

out at low temperatures (173 K) using a Cryostream cooler. Unit cell refinement and data
reduction were performed using the program OLEX. Structure solutions and refinement
were achieved by the SHELXS program.

For TEM analysis, the supported catalysts were dispersed in ethanol followed by
ultrasonication for 15 min. The samples were placed on a carbon-coated copper grid, dried
at room temperature. The transmission electron microscope images were collected using a
JEOL Model JEM 2100F electron transmission electron microscopy (TEM) system operating
at a voltage of 200 kV. For the scanning electron microscopy (SEM), the heterogeneous
catalysts were coated with carbon, and images were collected using the Tescan Vega 3LMH
scanning electron microscope coupled with energy-dispersive X-ray spectroscopy (EDS)
system. The Co and Ni metal loading on Fe3O4@C2 and Fe3O4@C1 were determined using
Spectro Arcos ICP-OES.

The XPS analyses were performed with an ESCAlab 250Xi instrument. The X-ray
source was chosen as the monochromatic Al K line (1486.7 eV). XPS can detect all elements
except hydrogen and helium, it probes the sample surface to a depth of 2–10 nm, and has
detection limits of around 0.1 at%. The pass energy was 20 eV, and the energy increment
was 100 meV. Narrow scan photoelectron spectra were recorded (between four and eight
scans). The spectra were charge-corrected to the main line of the carbon 1s spectrum
(adventitious carbon) set at 284.8 eV. Quantifying the detected elements and deconvolution
of thespectra was performed with the CasaXPS software (version 2.3.25).

3.2. Synthesis of (E)-1-(Pyridin-2-yl)-N-(3-(triethoxysilyl)propyl) Methanimino Cobalt Chloride (C1)

Complex C1 was prepared by adding a solution L1 (0.311 g, 1.0 mmol) in dry
dichloromethane (10 mL) to a solution of [Co(NCME)2Cl2] (1.0 mmol) in dry dichloromethane
(20 mL) under nitrogen. The reaction mixture was stirred for 24 h at room temperature.
After completion of the reaction, the volume of solution was reduced to about 5 mL on
a rotary evaporator and solid product was precipitated by adding ice-cold diethyl ether
(15 mL). The product was filtered, washed with 3 parts of diethyl ether (10 mL) and dried
in vacuum. Elemental Analysis (found values are in parenthesis): C, 40.92% (39.33%); H,
5.95% (5.55%); N, 6.36% (6.22%).

3.3. Synthesis of the Supported Catalysts Fe3O4@C1 and Fe3O4@C2

The immobilized catalysts were synthesized by a modification of a method reported
in the literature. 0.3 g Fe3O4 in 30 mL of toluene was added a solution of 0.3 g of L1 in 5 mL
of dichloromethane. The mixture was then reacted together under ultra-sonication for 0.5 h.
The metal precursor (2 mmol) was further added to the reaction mixture and allowed to
react for 24 h. The reaction mixture was centrifuged, and the solvent discarded. The solid
product was washed with dichloromethane and dried in air.

3.4. Catalytic Selectivity and Activity Tests
Transfer Hydrogenations Studies

A Teflon reactor (50 mL) was used in this study. A mixture of the catalysts, cin-
namaldehyde, formic acid, and a base was heated to the desired temperature after purging
four times with nitrogen gas at a stirring speed of 960 rpm for a desired reaction time.
At the end of the reaction, the reactor vessel was cooled, followed by the release of the
excess gas. A sample of the mixture was then analysed by 1H NMR spectroscopy and/or
gas chromatography to determine the conversion and product selectivity. Examples of
the typical spectrum are shown in Figures S7 and S8 (1H NMR) and the GC shown in
Figures S9 and S10.The conversion of cinnamaldehyde and selectivity of the products were
calculated using the following equations:

CAL conv = (
Initial moles of CAL − Final moles of CAL

initial moles of CAL
)× 100 (3)
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HCAL selectivity =

(
moles of HCAL

Total moles of products

)
× 100 (4)

HCOL selectivity =

(
moles of HCOL

Total moles of products

)
× 100 (5)

COL selectivity =

(
moles of COL

Total moles of products

)
× 100 (6)

3.5. Computational Details

The spin-polarized density functional theory (DFT) calculations were carried out
using the Vienna Ab Initio Simulation Package (VASP) [41–44] wherein the interactions
between the core and valence electrons were treated using the Project Augmented Wave
(PAW) method [41]. The exchange-correlation potential was calculated using the Perdew-
Burke-Ernzerhof (PBE) generalized gradient approximation (GGA) functional [42] with
a Hubbard correction (PBE+U), which accounts for the Coulomb interaction of localized
d-electrons [43,44]. In this study, the value for the on-site Coulomb interaction term for
Fe was set to Ueff = 3.7 eV, which has been demonstrated to provide sufficiently accurate
lattice parameters, electronic, and magnetic properties of Fe3O4 [45]. Long-range dispersion
interactions were accounted for using the Grimme DFT-D3 scheme [46]. The Kohn-Sham
wave functions were expanded in a plane-wave basis set with a kinetic energy cut-off of
500 eV. Structural optimizations were conducted using the conjugate-gradient algorithm
until the residual Hellmann–Feynman forces on all relaxed atoms reached 0.01 eV/Å.

The bulk Fe3O4 material was modelled in the full conventional cubic unit cell of
56 atoms, where a 5 × 5 × 5 Monkhorst–Pack [47] k-point mesh was used to sample the
Brillouin zone. The most stable (001) surface was employed for the construction of the
supported pre-catalysts and for the adsorption characterization of CAL. A vacuum region
of 20 Å was added to the c-axis to avoid interactions between periodic slabs. Different
coordination modes of CAL (C=C and C=O bond adsorption) were explored to find the
most stable adsorption configurations [48,49]. No symmetry constraints were imposed in
any of the calculations on the structural optimization of the CAL-catalyst systems, and in
particular, the CAL was free to move away laterally and vertically from the initial binding
site(s) or reorient itself to find the lowest-energy adsorption configuration. The strength of
adsorption for CAL was determined by calculating the adsorption energy (Eads) as follows:

Eads = Ecatalyst+CAL − (Ecatalyst + ECAL) (7)

where Ecatalyst+CAL, Ecatalyst, and ECAL are the relaxed total energies of the catalyst-CAL
systems, the isolated catalyst, and the CAL adsorbate molecule, respectively. The adsorption
is deemed exothermic and favourable if the calculated adsorption energy is negative.

4. Conclusions

We have reported the synthesis and characterisation of the homogeneous cobalt(II)
and nickel(II) pre-catalysts (C1 and C2) of the E-1pyridyl-N-3-triethoxysilylpropyl metha-
nimine ligand and their magnetite-immobilised counterparts Fe3O4@C1 and Fe3O4@C2,
as efficient catalysts in the transfer hydrogenation of cinnamaldehyde. Catalyst Fe3O4@C1
and Fe3O4@C2 are efficient, recyclable, and easily recoverable from the reaction mixture,
yielding over 80% of cinnamyl alcohol with a metal loading of 1.37%m/m and 1.22%m/m,
respectively, while the homogeneous catalysts yielded over 89% of hydro-cinnamaldehyde.
Supporting the homogeneous catalysts on magnetite was found to alter the selectivity from
the reduction of C=C to the reduction of C=O, which change in selectivity was established
to be associated with the interaction of the favoured C=O moiety at the support surface,
as compared to the C=C. The catalysts Fe3O4@C1 and Fe3O4@C2 show negligible metal
leaching at less than 1% after 9 cycles, which creates less pollution and more stable catalysts.
Thus, anchoring the homogeneous catalysts to a support is an effective way to improve
catalyst recyclability, but as observed in this work, product selectivity can be influenced by
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the magnetite support, even though the support itself is catalytically inactive in the transfer
hydrogenation process.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28020659/s1, FigureS1: 1H NMR spectra of (E)-1-(pyridin-
2-yl)-N-(3-(triethoxysilyl)propyl)methanimine, Figure S2: The 13C NMR spectra of 2:(E)-1-(pyridin-
2-yl)-N-(3-(triethoxysilyl)propyl)methanimine, Figure S3: Time of Flight Electrospray Ionisation
spectrum of C2 in negative mode, Figure S4: The IR spectra of the ligand and the corresponding
homogeneous catalysts, Figure S5: P-XRD, FTIR, SEM, EDS, particle size distribution and TEM
characterization of Fe3O4-immino-py, Figure S6: Thermal gravimetric analysis of the supported
pre-catalysts, Figure S7: The SEM images of the fresh heterogeneous catalysts, Figure S8: Example of
the 1H NMR spectrum of the isolated products of CAL hydrogenation using homogeneous catalyst
C2 after 16 h of reaction time, Figure S9: Example of the 1H NMR spectrum of the crude mixture
after CAL hydrogenation using Fe3O4@C2 after catalyst 8 h of reaction time, Figure S10: Example
of the GC spectrum of CAL hydrogenation using homogeneous catalyst C2, Figure S11: Example
of the GC spectrum of CAL hydrogenation using homogeneous Fe3O4@C2 catalyst, Figure S12:
The TEM images of catalyst Fe3O4@C2 (a) and Fe3O4@C1 (b) and the IR analysis(c) of after the 9th
cycle, Figure S13: The EDS spectra of the spent catalysts, Figure S14: The XRD of the spent catalysts,
Figure S15: The XPS survey of spent Fe3O4@C2, Figure S16: The high-resolution analysis of the
elements detected in Fe3O4@C2, Figure S17: The XPS survey of spent Fe3O4@C1, Figure S18: The
high-resolution analysis of the elements detected in Fe3O4@C1, Figure S19: Homogeneity tests for the
transfer hydrogenation of CAL using catalysts C1 and C2 in the presence of liquid mercury. Reaction
conditions: CAL (20 mmol), catalyst (0.02 mmol) formic acid (40 mmol), base (20 mmol), 120 ◦C, 2 mg
Hg (0), 24 h. Conversions are estimated by gas chromatography. Table S1: Calculated strain on the
lattice of magnetite for the supported pre-catalysts, ligand, and the support.
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